JP2927074B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP2927074B2
JP2927074B2 JP3233905A JP23390591A JP2927074B2 JP 2927074 B2 JP2927074 B2 JP 2927074B2 JP 3233905 A JP3233905 A JP 3233905A JP 23390591 A JP23390591 A JP 23390591A JP 2927074 B2 JP2927074 B2 JP 2927074B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
control
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3233905A
Other languages
Japanese (ja)
Other versions
JPH0552140A (en
Inventor
賢治 生田
章平 鵜戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP3233905A priority Critical patent/JP2927074B2/en
Publication of JPH0552140A publication Critical patent/JPH0552140A/en
Application granted granted Critical
Publication of JP2927074B2 publication Critical patent/JP2927074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関への燃料供給
量を制御することにより同内燃機関への混合気の空燃比
を目標空燃比に制御するに適した空燃比制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device suitable for controlling an air-fuel ratio of an air-fuel mixture to an internal combustion engine to a target air-fuel ratio by controlling a fuel supply amount to the internal combustion engine.

【0002】[0002]

【従来技術】従来、この種の空燃比制御装置において
は、例えば、特開平1ー110853号公報に示されて
いるように、内燃機関への混合気の空燃比を検出する空
燃比検出手段と、内燃機関への燃料供給量を制御する燃
料供給量制御手段と、前記検出空燃比に基づいて前記燃
料供給量制御手段の制御量を定め、前記混合気の現実の
空燃比を目標空燃比に制御する空燃比制御手段とを備え
て、この空燃比制御手段が、現代制御理論の活用によ
り、空燃比を決定する内燃機関の動的なモデルに基づき
前記燃料供給量制御手段の制御量を算出して前記混合気
の現実の空燃比を目標空燃比に制御するようにしたもの
がある。
2. Description of the Related Art Conventionally, an air-fuel ratio control device of this type includes an air-fuel ratio detecting means for detecting an air-fuel ratio of an air-fuel mixture to an internal combustion engine as disclosed in Japanese Patent Application Laid-Open No. 1-110853. Determining the control amount of the fuel supply amount control means based on the detected air-fuel ratio, and setting the actual air-fuel ratio of the mixture to a target air-fuel ratio. Air-fuel ratio control means for controlling, the air-fuel ratio control means calculating the control amount of the fuel supply amount control means based on a dynamic model of the internal combustion engine for determining the air-fuel ratio by utilizing modern control theory. In some cases, the actual air-fuel ratio of the air-fuel mixture is controlled to a target air-fuel ratio.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
構成においては、上述のモデルが、内燃機関への燃料供
給量と混合気の空燃比との間にてきちんとして成立した
動的なモデル関係でもって常に構成されなければならな
い。然るに、前記空燃比検出手段を構成する空燃比セン
サにおいては、図7に示すように、通常のリッチ出力や
リーン出力を生ずる酸素濃度センサが約300(℃)で
活性化するのに対し、空燃比センサの出力である限界電
流のリッチリーン出力は400(℃)から始まる。通常
は限界温度が安定する温度で使用しなければならないの
で、空燃比をここまでの範囲に亘り計測しようとする
と、素子温において630(℃)程度が必要であり、こ
れに達するまでは空燃比のフィードバックを開始できな
い。その結果、このフィードバックの開始時期が、通常
の酸素濃度センサによる空燃比のフィードバックに比べ
かなり遅延されてしまい、排気ガス中のHCが悪化する
という不具合が生ずる。
By the way, in such a configuration, the above-mentioned model is a dynamic model that is well established between the amount of fuel supplied to the internal combustion engine and the air-fuel ratio of the air-fuel mixture. It must always be structured with relationships. However, in the air-fuel ratio sensor constituting the air-fuel ratio detecting means, as shown in FIG. 7, while the oxygen concentration sensor that generates a normal rich output or lean output is activated at about 300 (° C.), The rich lean output of the limit current, which is the output of the fuel ratio sensor, starts from 400 (° C.). Normally, the limit temperature must be used at a stable temperature. Therefore, when trying to measure the air-fuel ratio over this range, the element temperature needs to be about 630 (° C.). Feedback can not be started. As a result, the start timing of the feedback is considerably delayed as compared with the feedback of the air-fuel ratio by the ordinary oxygen concentration sensor, and a problem occurs that HC in the exhaust gas deteriorates.

【0004】この対策として、限界電流が出力し始めた
ら、即座にフィードバックを開始するという方法が考え
られるが、上述の空燃比センサの半暖機状態では、空燃
比センサの出力特性が安定しない。このため、燃料噴射
量と空燃比との間の動的モデル関係が崩れてしまい、そ
の結果、現代制御理論の活用により期待される空燃比の
制御が適正には実現できないという不具合が生ずる。特
に、上述のような構成の空燃比制御装置においては、高
応答性故に、空燃比制御が益々不安定になりハンチング
現象を招くおそれがある。そこで、本発明は、以上のよ
うなことに対処すべく、内燃機関の空燃比制御装置にお
いて、現代制御理論による制御演算処理及び比例・積分
制御演算処理(PI制御演算処理)の選択的な活用によ
り、空燃比センサの活性化の有無にかかわらずその検出
空燃比のフィードバックによる空燃比制御を常に良好に
なし得るようにしようとするものである。
As a countermeasure, a method of immediately starting feedback when the limit current starts to be output can be considered, but the output characteristics of the air-fuel ratio sensor are not stable in the above-mentioned half-warmed state of the air-fuel ratio sensor. For this reason, the dynamic model relationship between the fuel injection amount and the air-fuel ratio is broken, and as a result, the control of the air-fuel ratio expected by utilizing the modern control theory cannot be properly realized. In particular, in the air-fuel ratio control device having the above-described configuration, the air-fuel ratio control becomes more and more unstable due to high responsiveness, which may cause a hunting phenomenon. In order to address the above-described problems, the present invention selectively utilizes control arithmetic processing based on modern control theory and proportional / integral control arithmetic processing (PI control arithmetic processing) in an air-fuel ratio control apparatus for an internal combustion engine. Thus, the air-fuel ratio control based on the feedback of the detected air-fuel ratio can always be satisfactorily performed regardless of whether the air-fuel ratio sensor is activated or not.

【0005】[0005]

【課題を解決するための手段】上記課題の解決にあた
り、本発明の構成上の特徴は、図1にて例示するごと
く、内燃機関へ供給すべき混合気を特定するため同内燃
機関への燃料供給量を制御量に応じて制御する燃料供給
量制御手段1と、内燃機関の排気ガスに基づき前記混合
気の現実の空燃比を検出する空燃比センサと、燃料供給
量制御手段1の制御量を特定するように前記検出空燃比
に応じて前記混合気の現実の空燃比を目標空燃比に制御
する空燃比制御手段2とを備えた空燃比制御装置におい
て、前記空燃比センサの出力信号が出始めるものの安定
していない半暖機状態を判定する半暖機状態判定手段3
を設け、かつ、空燃比制御手段2が、半暖機状態判定手
段3による半暖機状態との判定に応答し、前記検出空燃
比に基づいて前記目標空燃比を所定値にするように比例
・積分制御演算処理にて前記混合気の第1空燃比補正係
数を決定する第1空燃比補正係数決定手段2aと、半暖
機状態判定手段3による非半暖機状態との判定に応答し
前記目標空燃比を前記検出空燃比に応じ制御すべく内燃
機関の動的モデルに基づいた現代制御演算処理にて前記
混合気の第2空燃比補正係数を決定する第2空燃比補正
係数決定手段2bとを具備して、燃料供給量制御手段1
の制御量を、前記空燃比センサの半暖機状態の時には前
記第1空燃比補正係数に応じて、また、前記空燃比セン
サの非半暖機状態の時には前記第2空燃比補正係数に応
じて決定するようにしたことにある。
In order to solve the above-mentioned problems, a structural feature of the present invention is, as exemplified in FIG. 1, that a fuel mixture to be supplied to an internal combustion engine is specified for specifying an air-fuel mixture to be supplied to the internal combustion engine. Fuel supply amount control means 1 for controlling a supply amount according to a control amount, an air-fuel ratio sensor for detecting an actual air-fuel ratio of the air-fuel mixture based on exhaust gas of an internal combustion engine, and a control amount of the fuel supply amount control means 1 And an air-fuel ratio control means 2 for controlling an actual air-fuel ratio of the air-fuel mixture to a target air-fuel ratio in accordance with the detected air-fuel ratio to specify the output signal of the air-fuel ratio sensor. Stability of what starts to appear
Semi- warm-up state determining means 3 for determining a non- warm-up state
And the air-fuel ratio control means 2 responds to the determination of the semi-warmed-up state by the semi-warmed-up state
A first air-fuel ratio correction coefficient determination means 2a for determining a first air-fuel ratio correction coefficient of the mixture of the previous SL target air-fuel ratio in the proportional-integral control arithmetic operation such that a predetermined value based on the ratio, a semi-warm machine state determination section 3 by the non-semi-warm-up state of the response to determining the target air-fuel ratio of the detected air-fuel ratio control all rather internal combustion according to
And and a second air-fuel ratio correction coefficient determination means 2b for determining a second air-fuel ratio correction coefficient of the air-fuel mixture at the current cash control calculation processing based on the dynamic model of the engine, a fuel supply amount controller 1
When the air-fuel ratio sensor is in a semi-warmed state,
According to the first air-fuel ratio correction coefficient,
In the non-semi-warmed state, the determination is made according to the second air- fuel ratio correction coefficient.

【0006】[0006]

【作用】このように本発明を構成したことにより、半暖
機状態判定手段3を設け、前記空燃比センサの出力信号
が出始めるものの安定していない半暖機状態を判定する
と、空燃比制御手段2が、前記検出空燃比に基づいて前
記目標空燃比を前記所定値にするように比例・積分制御
演算処理にて第1空燃比補正係数決定手段2aにより前
記混合気の第1空燃比補正係数を決定する。また、半暖
機状態判定手段3が、前記空燃比センサが半暖機状態に
ないと判定すると、空燃比制御手段3が、前記目標空燃
比を前記検出空燃比に応じ制御すべく内燃機関の動的モ
デルに基づいた現代制御演算処理にて第2空燃比補正係
数決定手段2bにより前記混合気の第2空燃比補正係数
を決定する。そして、空燃比制御手段3が、燃料供給量
制御手段1の制御量を、前記空燃比センサの半暖機状態
の時には前記第1空燃比補正係数に応じて、また、前記
空燃比センサの非半暖機状態の時には前記第2空燃比補
正係数に応じて決定すると、燃料供給量制御手段1が、
同決定制御量に応じて内燃機関への燃料供給量を制御す
る。
According to the present invention , a semi-warm-up is achieved.
The provided machine state determination section 3, before Kisora ratio sensor output signal
When to determine the constant semi warm-up state not stable but begins to appear, the air-fuel ratio control means 2, proportional front <br/> Symbol target air-fuel ratio on the basis of the detected air-fuel ratio to the predetermined value -The first air-fuel ratio correction coefficient of the air-fuel mixture is determined by the first air-fuel ratio correction coefficient determination means 2a in the integral control calculation process. Further, the semi-warm-up state determining means 3, the air-fuel ratio sensor is determined not to half-warm-up state, the air-fuel ratio control means 3, the target air-fuel ratio control all rather internal combustion engine according to the detected air-fuel ratio Dynamic mode
By the second air-fuel ratio correction coefficient determination means 2b at current cash control calculation processing based on Dell determining a second air-fuel ratio correction coefficient of the air-fuel mixture. Then, the air-fuel ratio control means 3 changes the control amount of the fuel supply amount control means 1 to a half-warm-up state of the air-fuel ratio sensor.
In the case of, according to the first air-fuel ratio correction coefficient,
If the air-fuel ratio sensor is determined according to the second air- fuel ratio correction coefficient when the air-fuel ratio sensor is in a non-semi-warmed state , the fuel supply amount control means 1
The fuel supply amount to the internal combustion engine is controlled according to the determined control amount.

【0007】[0007]

【発明の効果】これにより、前記空燃比センサが半暖機
状態にあるときには、比例・積分制御演算処理のもとに
決定した第1空燃比補正係数に基づく制御量でもって、
内燃機関への燃料噴射量を制御して混合気の空燃比を前
記所定値にするように制御し、一方、前記空燃比センサ
が半暖機状態にないときには、内燃機関の動的モデルに
基づいた現代制御理論による制御演算処理のもとに決定
した第2空燃比補正係数に基づく制御量でもって、内燃
機関への燃料噴射量を制御して混合気の空燃比を前記検
出空燃比に応じた目標空燃比にするように制御するの
で、前記空燃比センサが半暖機状態にあっても、空燃比
のフィードバック制御を行うこととなる。このため、こ
の種空燃比制御装置における空燃比のフィードバック制
御の開始時期を従来に比べて早めることができ、その結
果、前記空燃比センサによる検出空燃比に基づいて、当
該空燃比センサの半暖機状態から適正な空燃比制御のも
とで内燃機関を制御することができ、排気ガス中の有害
成分のエミッションの低減によりより一層促進し得る。
As a result, when the air-fuel ratio sensor is in a semi-warmed-up state, a control amount based on the first air-fuel ratio correction coefficient determined based on the proportional / integral control calculation processing is used.
The fuel injection amount to the internal combustion engine is controlled to control the air-fuel ratio of the air-fuel mixture to the predetermined value.On the other hand, when the air-fuel ratio sensor is not in a half-warmed state, the dynamic model of the internal combustion engine is
With the control amount based on the second air-fuel ratio correction coefficient determined on the basis of the control processing by the current cash control theory based, air-fuel ratio the detected air-fuel ratio of the mixture to control the fuel injection quantity to the internal combustion engine Therefore, even if the air-fuel ratio sensor is in a semi-warmed state, feedback control of the air-fuel ratio is performed. Therefore, the start timing of the feedback control of the air-fuel ratio in such air-fuel ratio control system can be advanced as compared with the conventional, so that, on the basis of the detected air-fuel ratio by the air-fuel ratio sensor, equivalent
From the half-warmed state of the air-fuel ratio sensor, proper air-fuel ratio control is performed.
And in can control the internal combustion engine may further promote the reduction of emissions of harmful components of the exhaust gas in the gas.

【0008】[0008]

【実施例】以下、本発明のー実施例を図面により説明す
ると、図2は、4気筒4サイクル型火花点火式内燃機関
Eの燃料噴射制御システムに本発明が適用された例を示
している。内燃機関Eは、その作動下にて、エアクリー
ナ10を通り吸気管20内に流入する空気流を、同吸気
管20内のスロットルバルブ20a及びサージタンク3
0を通りインテークマニホールド40内に流入させ、こ
の流入空気流を、インテークマニホールド40内に各燃
料噴射弁41〜44により噴射される燃料タンクからの
燃料と混合して混合気を形成し、かつこの混合気を機関
本体50の各気筒の燃焼室内に供給して各点火プラグ5
1〜54の点火のもとに燃焼させイグゾーストマニホー
ルド60及び三元触媒70を通し排気ガスとして排気管
80内に排出する。なお、各点火プラグ51〜54は、
ディストリビュータ90から点火回路100との協働に
より配電される高電圧を受けて点火する。また、三元触
媒70はインテークマニホールド60からの排気ガス中
の有害成分(CO、HC、NOx等)を低減する役割を
果たす。
FIG. 2 shows an example in which the present invention is applied to a fuel injection control system of a 4-cylinder 4-cycle spark ignition type internal combustion engine E. . Under its operation, the internal combustion engine E transmits air flowing into the intake pipe 20 through the air cleaner 10 to the throttle valve 20 a and the surge tank 3 in the intake pipe 20.
0, and flows into the intake manifold 40, and the inflow airflow is mixed with fuel from the fuel tanks injected by the fuel injection valves 41 to 44 into the intake manifold 40 to form an air-fuel mixture. The air-fuel mixture is supplied to the combustion chamber of each cylinder of the engine main body 50 and each ignition plug 5
The fuel is burned under the ignition of 1 to 54 and discharged through the exhaust manifold 60 and the three-way catalyst 70 into the exhaust pipe 80 as exhaust gas. In addition, each of the ignition plugs 51 to 54
It ignites by receiving a high voltage distributed from the distributor 90 in cooperation with the ignition circuit 100. Further, the three-way catalyst 70 plays a role in reducing harmful components (CO, HC, NOx, etc.) in the exhaust gas from the intake manifold 60.

【0009】燃料噴射制御システムは、回転数センサ1
10を有しており、この回転数センサ110は、ディス
トリビュータ90に配設されて、機関本体50の出力軸
の現実の回転数(内燃機関10の現実の回転数に相当す
る)を検出しこの検出結果に比例する周波数にてパルス
信号を順次発生する。但し、回転数センサ110からの
パルす信号の発生数は、内燃機関Eの2回転(即ち72
0度クランク角)あたり、24個である。スロットルセ
ンサ120は、スロットルバルブ20aの現実の開度を
検出し開度検出信号として発生する。また、スロットル
センサ120は、アイドルスイッチをも内蔵しており、
このアイドルスイッチは、スロットルバルブ20aの全
閉時にこれを検出し全閉検出信号を発生する。負圧セン
サ130は、吸気管20内のスロットルバルブ20aの
下流に生ずる現実の負圧を検出し負圧検出信号として発
生する。
The fuel injection control system includes a rotational speed sensor 1
The rotational speed sensor 110 is provided in the distributor 90 and detects the actual rotational speed of the output shaft of the engine body 50 (corresponding to the actual rotational speed of the internal combustion engine 10). A pulse signal is sequentially generated at a frequency proportional to the detection result. However, the number of pulse signals generated from the rotation speed sensor 110 is two rotations of the internal combustion engine E (that is, 72 rotations).
24 degrees per 0 degree crank angle). The throttle sensor 120 detects the actual opening of the throttle valve 20a, and generates an opening detection signal. The throttle sensor 120 also has a built-in idle switch.
The idle switch detects this when the throttle valve 20a is fully closed and generates a fully closed detection signal. The negative pressure sensor 130 detects an actual negative pressure generated downstream of the throttle valve 20a in the intake pipe 20 and generates a negative pressure detection signal.

【0010】水温センサ140は、機関本体50の冷却
系統内の現実の冷却水温を検出し水温検出信号として発
生する。空気温センサ150は、吸気管20内のスロッ
トルバルブ20aの上流に流入する空気流の現実の温度
を空気温検出信号として発生する。酸素濃度センサ16
0は、排気管80内の三元触媒70の上流における排気
ガス中の現実の未燃焼酸素濃度を検出し酸素濃度検出信
号として発生する。かかる場合、同酸素濃度検出信号
は、機関本体50に供給される混合気の現実の空燃比λ
に対しリニアな値をとる。酸素濃度センサ170は、排
気管80内の三元触媒70の下流における排気ガス中の
現実の未燃焼酸素濃度を検出し酸素濃度検出信号として
発生する。但し、この酸素濃度センサ170からの酸素
濃度検出信号は、空燃比λが理論空燃比λoに対しリッ
チかリーンであるかを表す。
The water temperature sensor 140 detects an actual cooling water temperature in the cooling system of the engine body 50 and generates a water temperature detection signal. The air temperature sensor 150 generates the actual temperature of the airflow flowing into the intake pipe 20 upstream of the throttle valve 20a as an air temperature detection signal. Oxygen concentration sensor 16
0 detects the actual unburned oxygen concentration in the exhaust gas upstream of the three-way catalyst 70 in the exhaust pipe 80 and generates it as an oxygen concentration detection signal. In such a case, the oxygen concentration detection signal is the actual air-fuel ratio λ of the air-fuel mixture supplied to the engine body 50.
Takes a linear value for. The oxygen concentration sensor 170 detects the actual unburned oxygen concentration in the exhaust gas downstream of the three-way catalyst 70 in the exhaust pipe 80 and generates an oxygen concentration detection signal. However, the oxygen concentration detection signal from the oxygen concentration sensor 170 indicates whether the air-fuel ratio λ is rich or lean with respect to the stoichiometric air-fuel ratio λo.

【0011】マイクロコンピュータ180は、CPU1
81、ROM182、RAM183、バックアップRA
M184、入力ポート185、出力ポート186及びバ
スライン187等により構成されており、CPU181
は、図3〜図5に示すフローチャートに従い、回転数セ
ンサ110からのパルス信号、スロットルセンサ120
からの開度検出信号及び全閉検出信号、負圧センサ13
0からの負圧検出信号、水温センサ140からの水温検
出信号、空気温センサ150からの空気温検出信号、酸
素濃度センサ160からの酸素濃度検出信号並びに酸素
濃度センサ170からの酸素濃度検出信号を入力ポート
185及びバスライン187を通して受け、ROM18
2、RAM183及びバックアップRAM184内の記
憶データをバスライン187を通して受けて、コンピュ
ータプログラムを実行し、この実行中において、バスラ
イン187及び出力ポート186を介し各燃料噴射弁4
1〜44及び点火回路100を駆動制御するに必要な演
算処理を行う。但し、上述のコンピュータプログラムは
ROM182内に予め記憶されている。
The microcomputer 180 has a CPU 1
81, ROM 182, RAM 183, backup RA
M184, an input port 185, an output port 186, a bus line 187, and the like.
Are pulse signals from the rotation speed sensor 110 and the throttle sensor 120 according to the flowcharts shown in FIGS.
Opening detection signal and full closing detection signal from the
0, a water temperature detection signal from the water temperature sensor 140, an air temperature detection signal from the air temperature sensor 150, an oxygen concentration detection signal from the oxygen concentration sensor 160, and an oxygen concentration detection signal from the oxygen concentration sensor 170. Received through input port 185 and bus line 187, ROM 18
2, receiving the data stored in the RAM 183 and the backup RAM 184 through the bus line 187 and executing the computer program, and during this execution, each of the fuel injection valves 4 through the bus line 187 and the output port 186.
The arithmetic processing necessary for controlling the driving of the ignition circuit 100 and the ignition circuit 100 is performed. However, the above-described computer program is stored in the ROM 182 in advance.

【0012】次に、燃料噴射制御システムにおいて、空
燃比制御を行うために予め設計されている手法について
説明する。 1).制御対象のモデリング 本実施例では、エンジンEの空燃比λを制御するシステ
ムのモデルに、無駄時間P=3を有する次数1の自己回
帰移動平均モデルを用い、さらに、外乱dを考慮して近
似している。まず、自己回帰移動平均モデルを用いた空
燃比λを制御するシステムのモデルは、次の数1により
近似できる。
Next, a method designed in advance to perform air-fuel ratio control in the fuel injection control system will be described. 1). Modeling of Controlled Object In this embodiment, an autoregressive moving average model of order 1 having a dead time P = 3 is used as a model of a system for controlling the air-fuel ratio λ of the engine E, and is further approximated in consideration of disturbance d. doing. First, a model of a system for controlling an air-fuel ratio λ using an autoregressive moving average model can be approximated by the following equation 1.

【数1】 λ(K)=a・λ(K−1)+b・FAF(K−3) 但し、この数1において、符号FAFは空燃比補正係数
を表す。また、各符号a、bは定数を表す。また、符号
Kは、最初のサンプリング開始からの制御回数を示す変
数を表す。
Λ (K) = a · λ (K−1) + b · FAF (K−3) where, in Equation 1, the symbol FAF represents an air-fuel ratio correction coefficient. Each symbol a and b represents a constant. The symbol K represents a variable indicating the number of times of control since the start of the first sampling.

【0013】さらに、外乱dを考慮すると、制御システ
ムのモデルは、次の数2で近似できる。
Further, considering the disturbance d, the model of the control system can be approximated by the following equation (2).

【数2】 λ(K)=a・λ(K−1)+b・FAF(K−3)+d(K−1) 以上のようにして近似したモデルに対し、ステップ応答
を用いた回転周期(360度クランク角)サンプリング
で離散化して各定数a、bを定めること、即ち、空燃比
λを制御する系の伝達関数Gを求めることは容易であ
る。
Λ (K) = a · λ (K−1) + b · FAF (K−3) + d (K−1) For the model approximated as described above, the rotation cycle using the step response ( It is easy to determine the constants a and b by discretization by sampling at (360 ° crank angle) sampling, that is, to obtain the transfer function G of the system for controlling the air-fuel ratio λ.

【0014】2).状態変数量IXの表示方法(但し、
IXはベクトル量である) 上述の数2を、次の数3により表される状態変数量IX
(K)を用いて書き直すと、数4及び数5のようにな
る。
2). How to display the state variable quantity IX (however,
IX is a vector quantity.) The above equation 2 is replaced by a state variable quantity IX expressed by the following equation 3.
When rewritten using (K), Equations 4 and 5 are obtained.

【数3】 但し、数3において、符号Tは、転置行列を示す。(Equation 3) However, in Equation 3, the symbol T indicates a transposed matrix.

【数4】 (Equation 4)

【数5】 X1(K+1)=aX1(K)+bX2(K)+d(K)=λ(K+1) X2(K+1)=FAF(K−2) X3(K+1)=FAF(K−1) X4(K+1)=FAF(K)X1 (K + 1) = aX1 (K) + bX2 (K) + d (K) = λ (K + 1) X2 (K + 1) = FAF (K-2) X3 (K + 1) = FAF (K-1) X4 ( K + 1) = FAF (K)

【0015】3).レギュレータの設計 上述の数3〜数5に基づいてレギュレータを設計する
と、空燃比補正係数は、最適フィードバックゲインIK
(ベクトル量を有する)に関する次の数6、及び状態変
数量IX(K)に関する数7を用いて、数8のように表
せる。
3). Design of Regulator When the regulator is designed based on the above equations (3) to (5), the air-fuel ratio correction coefficient becomes the optimum feedback gain IK
Expression (8) can be expressed as Expression (8) using the following Expression (6) relating to (having a vector amount) and Expression (7) relating to the state variable amount IX (K).

【数6】IK=[K1、K2、K3、K4]IK = [K1, K2, K3, K4]

【数7】 (Equation 7)

【数8】 (Equation 8)

【0016】さらに、この数8において、誤差を吸収さ
せるための積分項ZI(K)を加えると、空燃比補正係
数は、次の数9によって与えられる。
Further, when an integral term ZI (K) for absorbing an error is added to the equation (8), the air-fuel ratio correction coefficient is given by the following equation (9).

【数9】 FAF(K)=K1・λ(K)+K2・FAF(K−3) +K3・FAF(K−2)+K4・FAF(K−1) +Z1(K) なお、上述の積分項ZI(K)は、目標空燃比λTG及び
現実の空燃比λ(K)間の偏差と積分定数Kaとから決
まる値であって、次の数10により与えられる。
## EQU9 ## FAF (K) = K1.lambda. (K) + K2.FAF (K-3) + K3.FAF (K-2) + K4.FAF (K-1) + Z1 (K) The above-mentioned integral term ZI (K) is a value determined from the deviation between the target air-fuel ratio λTG and the actual air-fuel ratio λ (K) and the integration constant Ka, and is given by the following equation (10).

【数10】 ZI(K)=ZI(K−1)+Ka・(λTG−λ(K))## EQU10 ## ZI (K) = ZI (K−1) + Ka · (λTG−λ (K))

【0017】図6は、上述のようにモデルを設計した空
燃比λの制御システムのブロック線図を表す。図5にお
いて、空燃比補正係数FAF(K)をFAF(K−1)
から導出するために(1/Z)変換を用いて表示した
が、これは過去の空燃比補正係数FAF(K−1)をR
AM183に記憶しておき、次の制御タイミングで読み
出して用いている。また、図6において、一点鎖線で囲
まれたブロックP1が、空燃比λ(K)を目標空燃比λ
TGにフイードバック制御している状態にて状態変数量I
X(K)を定める部分であり、ブロックP2が、積分項
Z1(K)を求める部分(累積部)であり、かつ、ブロ
ックP3が、ブロックP1で定められた状態変数量IX
(K)とブロックP2で求められた積分項 Z1(K)と
から今回の空燃比補正係数FAF(K)を演算する部分
である。
FIG. 6 is a block diagram of a control system of the air-fuel ratio λ designed as described above. In FIG. 5, the air-fuel ratio correction coefficient FAF (K) is represented by FAF (K−1).
Is expressed using the (1 / Z) conversion to derive from the past air-fuel ratio correction coefficient FAF (K-1) by R
It is stored in the AM 183 and read out and used at the next control timing. In FIG. 6, a block P1 surrounded by a dashed line indicates that the air-fuel ratio λ (K) is the target air-fuel ratio λ.
State variable amount I while feedback control is applied to TG
X (K), the block P2 is a part (accumulation part) for obtaining the integral term Z1 (K), and the block P3 is a state variable IX determined in the block P1.
This is a part for calculating the current air-fuel ratio correction coefficient FAF (K) from (K) and the integral term Z1 (K) obtained in the block P2.

【0018】4).最適フィードバックゲインIK及び
積分定数Kaの決定 最適フィードバックゲイン及び積分定数Kaは、例え
ば、次の数11で示される評価関数Jを最小にすること
で設定できる。
4). Determination of Optimal Feedback Gain IK and Integral Constant Ka The optimal feedback gain and integral constant Ka can be set, for example, by minimizing an evaluation function J expressed by the following equation (11).

【数11】 但し、この数11において、評価関数Jは、空燃比補正
係数FAF(K)の動きを制約しつつ、空燃比λ(K)
と目標空燃比λTGとの偏差を最小にすることを意図した
ものである。また、空燃比補正係数FAF(K)に対す
る制約の重み付けは、重みのパラメータQ、Rの値によ
って変更できる。従って、重みパラメータQ、Rの値を
種々変えて最適な制御特性が得られるまでシミュレーシ
ョンを繰り返して、最適フィードバックゲインIK及び
積分定数Kaを定めればよい。
[Equation 11] However, in equation (11), the evaluation function J restricts the movement of the air-fuel ratio correction coefficient FAF (K) while maintaining the air-fuel ratio λ (K).
And the target air-fuel ratio λTG is intended to be minimized. The weight of the constraint on the air-fuel ratio correction coefficient FAF (K) can be changed by the values of the weight parameters Q and R. Therefore, the simulation may be repeated until the optimum control characteristics are obtained by variously changing the values of the weight parameters Q and R, and the optimum feedback gain IK and the integration constant Ka may be determined.

【0019】さらに、最適フィードバックゲインIK及
び積分定数Kaは、両モデル定数a、bに依存してい
る。従って、現実の空燃比λを制御する系の変動(パラ
メータ変動)に対するシステムの安定性(ロバスト性)
を保証するためには、各モデル定数a、bの変動分を見
込んで最適フィードバックゲインIK及び積分定数Ka
を設定する必要がある。よって、シミュレーションは、
各モデル定数a、bの現実に生じ得る変動を加味して行
い、安定性を満足する最適フイードバックゲインIK及
び積分定数Kaを定める。以上、制御対象のモデリン
グ、状態変数量の表示方法、レギュレータの設計並びに
最適フィードバックゲイン及び積分定数の決定について
説明したが、これらは、予め決定されており、本実施例
においては、上述の数7及び数8のみを用いて燃料噴射
制御システムにおける空燃比制御を行う。
Further, the optimum feedback gain IK and the integration constant Ka depend on both model constants a and b. Therefore, the stability (robustness) of the system against the fluctuation (parameter fluctuation) of the system that controls the actual air-fuel ratio λ
In order to guarantee the optimum feedback gain IK and the integration constant Ka in consideration of the variation of each of the model constants a and b,
Need to be set. So the simulation is
The optimum feedback gain IK and the integration constant Ka satisfying the stability are determined by taking into account the actual fluctuations of the model constants a and b. The modeling of the control target, the method of displaying the state variable amount, the design of the regulator, and the determination of the optimal feedback gain and the integration constant have been described above. These are determined in advance, and in the present embodiment, Then, the air-fuel ratio control in the fuel injection control system is performed using only equation (8) and equation (8).

【0020】以上のように構成した本実施例において、
燃料噴射制御システムを作動状態におけば、マイクロコ
ンピュータ180のCPU181が、図3〜図5のフロ
ーチャートに従い、ステップ200にてコンピュータプ
ログラムの実行を開始し、ステップ300にて、内燃機
関Eの360度クランク角毎に回転数センサ110から
生ずる各パルス信号に応答し、同回転数センサ110か
ら順次生ずるパルス信号の周波数に応じて内燃機関Eの
回転数Neを演算し、この回転数Ne、負圧センサ13
0からの負圧検出信号の値(以下、負圧PMという)等
に基づき、インテークマニホールド40内への燃料の基
本噴射量Tpを演算し、コンピュータプログラムを空燃
比演算処理ルーティン400(図4及び図5参照)に進
める。
In this embodiment configured as described above,
When the fuel injection control system is in the operating state, the CPU 181 of the microcomputer 180 starts execution of the computer program in step 200 according to the flowcharts of FIGS. In response to each pulse signal generated from the rotation speed sensor 110 for each crank angle, the rotation speed Ne of the internal combustion engine E is calculated according to the frequency of the pulse signal sequentially generated from the rotation speed sensor 110, and the rotation speed Ne and the negative pressure are calculated. Sensor 13
Based on the value of the negative pressure detection signal from 0 (hereinafter, referred to as negative pressure PM) or the like, the basic fuel injection amount Tp into the intake manifold 40 is calculated, and the computer program is converted into an air-fuel ratio calculation routine 400 (see FIG. 4 and FIG. 4). (See FIG. 5).

【0021】すると、CPU181が、空燃比演算処理
ルーティン400の実行をステップ400aにて開始
し、次のステップ410にて、空燃比λのフィードバッ
ク条件の成立の有無を判別する。但し、このフィードバ
ック条件の成立は、機関本体50の冷却系統内の冷却水
温が所定水温以上であること、内燃機関Eの回転数及び
負荷が高くないこと、及び酸素濃度センサ160の温度
がこのセンサの活性化し始める温度400(℃)(図7
参照)以上であること等である。
Then, the CPU 181 starts the execution of the air-fuel ratio calculation routine 400 in step 400a, and in the next step 410, determines whether or not the feedback condition of the air-fuel ratio λ is satisfied. However, the satisfaction of this feedback condition is that the cooling water temperature in the cooling system of the engine body 50 is equal to or higher than a predetermined water temperature, the rotation speed and load of the internal combustion engine E are not high, and the temperature of the oxygen concentration sensor 160 Activation temperature of 400 (° C) (Fig. 7
See above).

【0022】現段階にてフィードバック条件が成立して
いなければ、CPU181が、ステップ410にて、回
転数Ne、負圧PM、水温センサ140からの水温検出
信号の値(以下、水温Thwという)等に応じて「N
O」と判別し、ステップ410aにて空燃比補正係数F
AFをFAF=1とセットし、次のステップ410bに
てオープン制御判定フラグF1をF1=1とセットす
る。但し、F1=1は、燃料噴射制御システムがオープ
ン制御演算処理におかれることを表す。このようにして
空燃比演算処理ルーティン400の演算処理がステップ
400bにて終了すると、CPU181が、ステップ5
00(図3参照)にて、オープン制御のもとに、次の数
12に基づき、ステップ300における基本噴射量Tp
を補正係数FALLに応じ補正しこれを燃料噴射量TA
Uとして設定する。
If the feedback condition is not satisfied at this stage, the CPU 181 determines in step 410 the rotation speed Ne, the negative pressure PM, the value of the water temperature detection signal from the water temperature sensor 140 (hereinafter, referred to as water temperature Thw), and the like. "N
O ", and at step 410a, the air-fuel ratio correction coefficient F
AF is set to FAF = 1, and in the next step 410b, the open control determination flag F1 is set to F1 = 1. However, F1 = 1 indicates that the fuel injection control system is in open control calculation processing. When the calculation processing of the air-fuel ratio calculation processing routine 400 ends in step 400b in this manner, the CPU 181 executes step 5
At 00 (see FIG. 3), the basic injection amount Tp in step 300 is determined based on the following equation 12 under the open control.
Is corrected according to the correction coefficient FALL, and this is corrected by the fuel injection amount TA.
Set as U.

【数12】TAU=FAF・Tp・FALL[Equation 12] TAU = FAF / Tp / FALL

【0023】一方、コンピュータプログラムが上述のよ
うにステップ410に進んだときフィードバック条件が
成立しておれば、CPU181が、同ステップ410に
て、回転数Ne、負圧PM及び水温Thw等に応じ「Y
ES」と判別し、ステップ420にて、酸素濃度センサ
160が半暖機状態にあるか否かを判別する。かかる場
合、酸素濃度センサ160の半暖機状態は、これらセン
サから出力が出始めるものの限界電流値が安定しない温
度状態に相当する(図7参照)。現段階において、酸素
濃度センサ160の温度が限界電流の安定する温度にな
っていれば、CPU181が、ステップ420にて「N
O」と判別し、ステップ420aにて、図8に示すごと
く、酸素濃度センサ160の温度に応じた空燃比のガー
ドを設定し、次のステップ420bにて、運転状態に応
じた目標空燃比λTGを設定する。このガードは、図7に
示すように、ある素子温において限界電流が安定する範
囲を示している。
On the other hand, if the feedback condition is satisfied when the computer program proceeds to step 410 as described above, in step 410, the CPU 181 determines in step 410 according to the rotational speed Ne, the negative pressure PM, the water temperature Thw, and the like. Y
ES ”, and in a step 420, it is determined whether or not the oxygen concentration sensor 160 is in a semi-warmed state. In such a case, the semi-warmed-up state of the oxygen concentration sensor 160 corresponds to a temperature state in which the output from these sensors starts but the limit current value is not stabilized (see FIG. 7). At this stage, if the temperature of the oxygen concentration sensor 160 has reached a temperature at which the limit current is stable, the CPU 181 determines at step 420 that “N
In step 420a, an air-fuel ratio guard corresponding to the temperature of the oxygen concentration sensor 160 is set as shown in FIG. 8, and in the next step 420b, the target air-fuel ratio λTG according to the operating state is set. Set. As shown in FIG. 7, this guard indicates a range where the limit current is stable at a certain element temperature.

【0024】然る後、前回フィードバック条件が成立せ
ずにオープン制御であったか否かの判別を行うため、C
PU181が、ステップ430にてオープン制御判定フ
ラグF1=1の成立の有無を判別する。オープン制御判
定フラグF1=1であるとき、即ち前回オープン制御で
あったときは、CPU181が、ステップ430aに
て、最適フィードバックゲインを、予め定めておいたI
KN (1、2、3、4、A)に設定し、ステップ430
bにて、PI制御判定フラグF2をF2=0とセットす
る。但し、最適フィードバックゲインIKN は、上述の
数11の評価関数Jにおける重みパラメータQの重みパ
ラメータRに対する比(Q/R)を(1/5)に設定す
ることにより定められている。
Thereafter, in order to determine whether or not the open control was performed without satisfying the previous feedback condition, C
In step 430, the PU 181 determines whether or not the open control determination flag F1 = 1 is established. When the open control determination flag F1 = 1, that is, when the previous open control was performed, the CPU 181 determines in step 430a the optimum feedback gain by the predetermined I.
KN (1, 2, 3, 4, A), and
At b, the PI control determination flag F2 is set to F2 = 0. However, the optimal feedback gain IKN is determined by setting the ratio (Q / R) of the weight parameter Q to the weight parameter R in the evaluation function J of the above equation (11) to (1/5).

【0025】ついで、CPU181が、ステップ430
cにて、次の数13に基づき積分項ZI(K−1)を演
算する。
Next, the CPU 181 determines in step 430
At c, the integral term ZI (K-1) is calculated based on the following equation 13.

【数13】 ZI(K−1)=FAF(K−1)+K2・FAF(K−1) +K3・FAF(K−2)+K4・FAF(K−3) −K1・λ(K) 但し、数13において、符号λ(K)は空燃比を表す。
また、この数13は次の数14より逆演算して求めたも
のである。
ZI (K-1) = FAF (K-1) + K2.FAF (K-1) + K3.FAF (K-2) + K4.FAF (K-3) -K1.lambda. (K) In Expression 13, the symbol λ (K) represents the air-fuel ratio.
Further, Expression 13 is obtained by performing an inverse operation from Expression 14 below.

【数14】 FAF(K)=ZI(K)+K1・λ(K)−K2・FAF(K−1) −K3・FAF(K−2)−K4・FAF(K−3) 但し、この数14において、符号FAFは空燃比補正係
数を表す。
FAF (K) = ZI (K) + K1.lambda. (K) -K2.FAF (K-1) -K3.FAF (K-2) -K4.FAF (K-3) where In 14, the symbol FAF represents an air-fuel ratio correction coefficient.

【0026】一方、上述のようにコンピュータプログラ
ムがステップ430に進んだとき同ステップにおける判
別が「NO」となる場合(F1=0の場合)には、CP
U181が、ステップ440にて、PI制御判定フラグ
F2に基づき、前回もPI制御演算処理ではなく現代制
御演算処理を行っていたかどうかを判別する。前回がP
I制御演算処理(F2=1に相当する)中であったとき
は現代制御演算処理に切り換える必要があるため、CP
U181が、ステップ440にて「NO」と判別し、上
述と同様に、各ステップ430a、430b及び430
cにて、順次、最適フィードバックゲインIKN を設定
し、F2=0とセットし、かつ積分項の初期値ZI(K
−1)を演算して、コンピュータプログラムをステップ
430dに進める。
On the other hand, as described above, when the computer program proceeds to step 430 and the determination in this step is “NO” (F1 = 0), the CP
In step 440, U181 determines whether the previous control operation was a modern control operation instead of the PI control operation based on the PI control determination flag F2. Last time was P
If it is during the I control arithmetic processing (corresponding to F2 = 1), it is necessary to switch to the modern control arithmetic processing.
U181 determines "NO" in step 440, and performs steps 430a, 430b, and 430 in the same manner as described above.
At step c, the optimum feedback gain IKN is sequentially set, F2 = 0 is set, and the initial value ZI (K
-1), and the computer program proceeds to Step 430d.

【0027】しかして、CPU181が、同ステップ4
30dにて、上述の数10に基づき積分項ZI(K)を
演算し、ステップ430eにて、上述の数14に基づき
空燃比補正係数FAFを演算し、かつステップ430f
にてオープン制御判定フラグF1をF1=0とセットす
る。このようにしてステップ430eにおける空燃比補
正係数FAFの演算が終了すると、CPU181が、ス
テップ500(図3参照)にて、上述の数12に基づ
き、ステップ300における基本噴射量Tpを、ステッ
プ430eにおける空燃比補正係数FAF及び補正係数
FALLに応じて補正してこれを燃料噴射量TAUと設
定する。
Then, the CPU 181 determines in step 4
In step 30d, the integral term ZI (K) is calculated based on the above equation (10). In step 430e, the air-fuel ratio correction coefficient FAF is calculated based on the above equation (14).
Sets the open control determination flag F1 to F1 = 0. When the calculation of the air-fuel ratio correction coefficient FAF in step 430e is completed in this way, the CPU 181 determines the basic injection amount Tp in step 300 in step 500 (see FIG. 3) based on the above equation 12 in step 500 (see FIG. 3). The correction is made according to the air-fuel ratio correction coefficient FAF and the correction coefficient FALL, and this is set as the fuel injection amount TAU.

【0028】また、上述のようにコンピュータプログラ
ムがステップ420に進んだとき同ステップにおける判
別が「NO」となる場合には、CPU181が、ステッ
プ430gにて、目標空燃比λTGをほぼ「1」と設定す
る。このことは、酸素濃度センサ160のセンサ電流i
をi=0とセットすることを意味する。ついで、目標空
燃比λTGがほぼ「1」であることを前提に、CPU18
1が、ステップ430hにて次の数15に基づき空燃比
補正係数FAFを演算する。
When the computer program proceeds to step 420 as described above, if the determination in the step is "NO", the CPU 181 sets the target air-fuel ratio λTG to substantially "1" in step 430g. Set. This means that the sensor current i of the oxygen concentration sensor 160
Is set to i = 0. Next, assuming that the target air-fuel ratio λTG is substantially “1”, the CPU 18
1 calculates the air-fuel ratio correction coefficient FAF based on the following equation 15 in step 430h.

【数15】FAF(K)=1+Kx(λ(K)−λTG) 但し、数15は、空燃比の偏差に、積分定数 Kxを乗じ
て補正することを意図するものである。かかる場合、現
実に得られるλ(K)が各酸素濃度センサ160、17
0の温度で変化してしまうような半暖機領域のため、積
分定数 Kxを比較的小さくして急激な補正を避ける。
## EQU15 ## FAF (K) = 1 + Kx (.lambda. (K)-. Lambda.TG) Equation 15 is intended to correct the deviation of the air-fuel ratio by multiplying by the integral constant Kx. In such a case, the actually obtained λ (K) is equal to each of the oxygen concentration sensors 160 and 17.
For a semi-warm-up region where the temperature changes at a temperature of 0, the integration constant Kx is made relatively small to avoid abrupt correction.

【0029】然る後、CPU181が、ステップ430
iにて、PI制御判定フラグF2をF2=1とセット
し、かつステップ430fにてF1=0とセットして、
コンピュータプログラムをステップ500に進める。す
ると、CPU181が、同ステップ500にて、上述の
数12に基づき、ステップ300における基本噴射量T
pを、ステップ430hにおける空燃比補正係数FAF
及び補正係数FALLに応じて補正してこれを燃料噴射
量TAUと設定する。
Thereafter, the CPU 181 determines in step 430
At i, the PI control determination flag F2 is set to F2 = 1, and at step 430f, F1 = 0 is set,
The computer program proceeds to step 500. Then, in step 500, the CPU 181 determines the basic injection amount T in step 300 based on the above-described equation (12).
p is the air-fuel ratio correction coefficient FAF in step 430h.
The correction is made according to the correction coefficient FALL and the fuel injection amount TAU is set.

【0030】以上のようにしてステップ410a、43
0e或いは430hにおける空燃比補正係数FAFに基
づきステップ500における燃料噴射量TAUが設定さ
れると、CPU181が、同ステップ500にて、燃料
噴射量TAUを燃料噴射出力信号としてバスライン18
7及び出力ポート186を通して各燃料噴射弁41〜4
4に付与する。これにより、各燃料噴射弁41〜44が
前記燃料タンクからの燃料を前記燃料噴射出力信号の値
に相当する量にてインテークマニホールド40内に噴射
する。換言すれば、酸素濃度センサ160が半暖機状態
にあるときには、目標空燃比をほぼ1とするようにPI
制御演算処理のもとに決定した空燃比補正係数FAFに
基づく燃料噴射量量でもって、内燃機関Eへの燃料噴射
量を制御して混合気の空燃比をほぼ1にするように制御
し、一方、酸素濃度センサ160が半暖機状態にないと
きには、現代制御理論による制御演算処理のもとに決定
した空燃比補正係数FAFに基づく燃料噴射量でもっ
て、内燃機関Eへの燃料噴射量を制御して混合気の空燃
比を前記検出空燃比に応じた目標空燃比にするように制
御する。
As described above, steps 410a, 43
When the fuel injection amount TAU in step 500 is set based on the air-fuel ratio correction coefficient FAF at 0e or 430h, the CPU 181 uses the fuel injection amount TAU as a fuel injection output signal in
7 and the output ports 186, each of the fuel injection valves 41 to 4
4 is assigned. Thus, each of the fuel injection valves 41 to 44 injects fuel from the fuel tank into the intake manifold 40 in an amount corresponding to the value of the fuel injection output signal. In other words, when the oxygen concentration sensor 160 is in a semi-warmed-up state, the PI is set so that the target air-fuel ratio becomes approximately 1.
With the fuel injection amount based on the air-fuel ratio correction coefficient FAF determined based on the control calculation process, the fuel injection amount to the internal combustion engine E is controlled so that the air-fuel ratio of the air-fuel mixture becomes substantially 1; On the other hand, when the oxygen concentration sensor 160 is not in the half-warm-up state, the fuel injection amount to the internal combustion engine E is determined based on the fuel injection amount based on the air-fuel ratio correction coefficient FAF determined based on the control calculation process based on the modern control theory. The air-fuel ratio of the air-fuel mixture is controlled so as to be a target air-fuel ratio corresponding to the detected air-fuel ratio.

【0031】このことは、酸素濃度センサ160が半暖
機状態にあっても、空燃比のフィードバック制御を行う
ことを意味する。このため、この種空燃比制御装置にお
ける空燃比のフィードバック制御の開始時期を従来に比
べて早めることができ、その結果、酸素濃度センサ16
0が半暖機状態であると否とにかかわらず、適正な空燃
比制御のもとに、排気ガス中の有害成分のエミッション
の低減をより一層促進し得る。
This means that the air-fuel ratio feedback control is performed even when the oxygen concentration sensor 160 is in a semi-warmed state. For this reason, the start timing of the feedback control of the air-fuel ratio in this type of air-fuel ratio control device can be advanced as compared with the conventional case, and as a result, the oxygen concentration sensor
Regardless of whether 0 is in the semi-warmed-up state or not, under appropriate air-fuel ratio control, it is possible to further promote the reduction of the emission of harmful components in the exhaust gas.

【0032】なお、本発明の実施にあたっては、燃料噴
射制御システムに限らず、内燃機関の2次空気制御シス
テムやEGR制御システム等にも本発明を適用して実施
してもよい。
The present invention is not limited to the fuel injection control system, but may be applied to a secondary air control system or an EGR control system of an internal combustion engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】特許請求の範囲の記載の対する対応図である。FIG. 1 is a diagram corresponding to the description in the claims.

【図2】本発明を適用した内燃機関の燃料噴射システム
のブロック図である。
FIG. 2 is a block diagram of a fuel injection system for an internal combustion engine to which the present invention is applied.

【図3】図2のマイクロコンピュータの作用を示すフロ
ーチャートである。
FIG. 3 is a flowchart showing an operation of the microcomputer of FIG. 2;

【図4】図3の空燃比補正係数演算処理ルーティンのオ
ープン制御演算処理及びPI制御演算処理の部分を示す
詳細フローチャート部分である。
FIG. 4 is a detailed flowchart showing an open control calculation process and a PI control calculation process of an air-fuel ratio correction coefficient calculation process routine of FIG. 3;

【図5】同現代制御演算処理の部分を示す詳細フローチ
ャート部分である。
FIG. 5 is a detailed flowchart showing a part of the modern control arithmetic processing.

【図6】現代制御理論における動的なモデルのブロック
図である。
FIG. 6 is a block diagram of a dynamic model in modern control theory.

【図7】各酸素濃度センサのセンサ電流iとセンサ温度
との関係を空燃比A/Fをパラメータとして示すグラフ
である。
FIG. 7 is a graph showing a relationship between a sensor current i and a sensor temperature of each oxygen concentration sensor using an air-fuel ratio A / F as a parameter.

【図8】空燃比と各酸素濃度センサのセンサ温度との関
係において空燃比の取り込み範囲を示すグラフである。
FIG. 8 is a graph showing an intake range of an air-fuel ratio in a relationship between an air-fuel ratio and a sensor temperature of each oxygen concentration sensor.

【符号の説明】[Explanation of symbols]

E…内燃機関、20…吸気管、40…インテークマニホ
ールド、41〜44…燃料噴射弁、50…機関本体、6
0…イグゾーストマニホールド、70…排気管、160
…酸素濃度センサ、180…マイクロコンピュータ。
E: internal combustion engine, 20: intake pipe, 40: intake manifold, 41 to 44: fuel injection valve, 50: engine body, 6
0: Exhaust manifold, 70: Exhaust pipe, 160
... oxygen concentration sensor, 180 ... microcomputer.

フロントページの続き (56)参考文献 特開 昭63−223347(JP,A) 特開 平1−110853(JP,A) 特開 平3−145536(JP,A) 特開 平4−370340(JP,A) 特開 平2−215948(JP,A) 特開 平4−252833(JP,A) 特開 昭63−246434(JP,A) 特開 昭64−35037(JP,A) 特開 平4−91348(JP,A) 特開 平2−99745(JP,A) 特開 昭59−196930(JP,A) 特開 昭58−27848(JP,A) 特開 昭59−138752(JP,A) 特開 昭59−65537(JP,A) (58)調査した分野(Int.Cl.6,DB名) F02D 41/00 - 45/00 Continuation of the front page (56) References JP-A-63-223347 (JP, A) JP-A-1-10853 (JP, A) JP-A-3-145536 (JP, A) JP-A-4-370340 (JP) JP-A-2-215948 (JP, A) JP-A-4-252833 (JP, A) JP-A-63-246434 (JP, A) JP-A-64-35037 (JP, A) 4-91348 (JP, A) JP-A-2-99745 (JP, A) JP-A-59-196930 (JP, A) JP-A-58-27848 (JP, A) JP-A-59-138752 (JP, A) A) JP-A-59-65537 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F02D 41/00-45/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関へ供給すべき混合気を特定する
ため同内燃機関への燃料供給量を制御量に応じて制御す
る燃料供給量制御手段と、 内燃機関の排気ガスに基づき前記混合気の現実の空燃比
を検出する空燃比センサと、 前記燃料供給量制御手段の制御量を特定するように前記
検出空燃比に応じて前記混合気の現実の空燃比を目標空
燃比に制御する空燃比制御手段とを備えた空燃比制御装
置において、 前記空燃比センサの出力信号が出始めるものの安定して
いない半暖機状態を判定する半暖機状態判定手段を設
け、 かつ、前記空燃比制御手段が、前記半暖機状態判定手段
による半暖機状態との判定に応答し、前記検出空燃比に
基づいて前記目標空燃比を所定値にするように比例・積
分制御演算処理にて前記混合気の第1空燃比補正係数を
決定する第1空燃比補正係数決定手段と、前記半暖機状
態判定手段による非半暖機状態との判定に応答し前記目
標空燃比を前記検出空燃比に応じ制御すべく内燃機関の
動的モデルに基づいた現代制御演算処理にて前記混合気
の第2空燃比補正係数を決定する第2空燃比補正係数決
定手段とを具備して、前記燃料供給量制御手段の制御量
を、前記空燃比センサの半暖機状態の時には前記第1空
燃比補正係数に応じて、また、前記空燃比センサの非半
暖機状態の時には前記第2空燃比補正係数に応じて決定
するようにしたことを特徴とする内燃機関の空燃比制御
装置。
1. A fuel supply amount control means for controlling a fuel supply amount to an internal combustion engine in accordance with a control amount in order to specify a mixture to be supplied to the internal combustion engine, and the air / fuel mixture based on exhaust gas of the internal combustion engine. An air-fuel ratio sensor that detects the actual air-fuel ratio of the air-fuel mixture, and an air that controls the actual air-fuel ratio of the air-fuel mixture to the target air-fuel ratio in accordance with the detected air-fuel ratio so as to specify the control amount of the fuel supply amount control means. An air-fuel ratio control device provided with a fuel-ratio control means, wherein an output signal of the air-fuel ratio sensor
A half- warm-up state determining means for determining a half-warm-up state is provided, and the air-fuel ratio control means responds to the determination of the semi-warm-up state by the half-warm-up state determining means , and adjusts the detected air-fuel ratio.
A first air-fuel ratio correction coefficient determination means for determining a first air-fuel ratio correction coefficient of the air-fuel mixture in the proportional-integral control arithmetic operation such that a predetermined value before Symbol target air-fuel ratio based on the semi-warming up condition in response to determining that the non-semi-warmed up by the determination means of the control all rather internal combustion engine according to the target air-fuel ratio to the detected air-fuel ratio
And and a second air-fuel ratio correction coefficient determination means for determining a second air-fuel ratio correction coefficient of the air-fuel mixture at the current cash control calculation processing based on the dynamic model, the control amount of the fuel supply amount control means
When the air-fuel ratio sensor is in a semi-warmed state,
Depending on the fuel ratio correction coefficient, and the non-half of the air-fuel ratio sensor
An air-fuel ratio control device for an internal combustion engine, which is determined according to the second air- fuel ratio correction coefficient during a warm-up state .
JP3233905A 1991-08-21 1991-08-21 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP2927074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233905A JP2927074B2 (en) 1991-08-21 1991-08-21 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233905A JP2927074B2 (en) 1991-08-21 1991-08-21 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0552140A JPH0552140A (en) 1993-03-02
JP2927074B2 true JP2927074B2 (en) 1999-07-28

Family

ID=16962424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233905A Expired - Fee Related JP2927074B2 (en) 1991-08-21 1991-08-21 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2927074B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697512B1 (en) 1994-08-12 2002-07-24 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5619976A (en) * 1995-02-24 1997-04-15 Honda Giken Kogyo Kabushiki Kaisha Control system employing controller of recurrence formula type for internal combustion engines
US5781875A (en) * 1995-02-25 1998-07-14 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
DE69525142T2 (en) * 1995-02-25 2002-06-06 Honda Motor Co Ltd Fuel measurement control system for an internal combustion engine
DE69527503T2 (en) * 1995-02-25 2002-11-14 Honda Motor Co Ltd Fuel measurement control system for an internal combustion engine
DE19861385B4 (en) * 1997-04-14 2007-06-21 Denso Corp., Kariya Combustion engine air-fuel ratio control arrangement - has trigger arrangement which initiates feedback control of air/fuel ratio, if detection arrangement detects change of ratio above predetermined value
JP4487971B2 (en) 2006-04-24 2010-06-23 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0552140A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
US6530214B2 (en) Air-fuel ratio control apparatus having sub-feedback control
JPH06229290A (en) Air-fuel ratio control device for internal combustion engine
US6302091B1 (en) Air-fuel ratio feedback control for engines having feedback delay time compensation
JPS62253932A (en) Air-fuel ratio control device for engine
JPH0932537A (en) Control device of internal combustion engine
JP2715208B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP3589683B2 (en) Air-fuel ratio control device for internal combustion engine
US20060150962A1 (en) Air-fuel ratio feedback control apparatus for engines
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JPH10103134A (en) Control device for engine and catalytic temperature setting device
JPH07127502A (en) Air-fuel ratio controller for internal combustion engine
JPH07269407A (en) Engine misfire detecting device
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JP3192514B2 (en) Engine air-fuel ratio control device
JPH05156988A (en) Air fuel ratio control device of internal combustion engine
JPH0810672Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2657670B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS61201842A (en) Control device for rarefied air-fuel ratio during idling of internal-combustion engine
JPH077563Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH077562Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JPH0729234Y2 (en) Electronically controlled fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees