JP2777604B2 - Adsorbent for body fluid treatment - Google Patents

Adsorbent for body fluid treatment

Info

Publication number
JP2777604B2
JP2777604B2 JP63212517A JP21251788A JP2777604B2 JP 2777604 B2 JP2777604 B2 JP 2777604B2 JP 63212517 A JP63212517 A JP 63212517A JP 21251788 A JP21251788 A JP 21251788A JP 2777604 B2 JP2777604 B2 JP 2777604B2
Authority
JP
Japan
Prior art keywords
body fluid
adsorbent
hollow fiber
anionic group
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63212517A
Other languages
Japanese (ja)
Other versions
JPH0260660A (en
Inventor
徹 黒田
徳生 稲摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16623982&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2777604(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP63212517A priority Critical patent/JP2777604B2/en
Publication of JPH0260660A publication Critical patent/JPH0260660A/en
Application granted granted Critical
Publication of JP2777604B2 publication Critical patent/JP2777604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、体液中に存在し、アニオン性基と相互作用
をなす物質、例えば、低比重リポ蛋白質、ある種のウイ
ルス等を吸着するための吸着材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention is intended to adsorb substances present in body fluids and interacting with anionic groups, for example, low-density lipoproteins, certain viruses and the like. Of the adsorbent.

近年、医学、特に内科学、血液学、免疫学、臨床検査
法等の進歩により、疾患の原因あるいは進行と密接な関
係を持っていると考えられる血液中の悪性物質が明らか
になりつつある。中でも確実に因果関係の判っているの
は、家族性高コレステロール血症における低比重リポ蛋
白質である。
In recent years, advances in medicine, especially internal medicine, hematology, immunology, and clinical test methods, have revealed the malignant substances in blood that are considered to be closely related to the cause or progression of disease. Among them, a causal link is known to be low-density lipoprotein in familial hypercholesterolemia.

周知の如く、血液中の脂質、特に低比重リポ蛋白質の
増加は、動脈硬化の原因あるいは進行と密接な関係を持
っていると考えられている。動脈硬化が進むと心筋梗
塞、脳梗塞等循環器系の重篤な症状に陥る可能性が非常
に高くなり、死亡率も高い。そこで、血液、血漿等の体
液成分から低比重リポ蛋白質を選択的に吸着除去するこ
とによって、上記の如き疾患の進行を防止し、症状を軽
減せしめ、さらには治癒を早めることが期待されてい
た。
As is well known, an increase in lipids in blood, especially low-density lipoprotein, is considered to be closely related to the cause or progression of arteriosclerosis. As arteriosclerosis progresses, the possibility of serious symptoms of the circulatory system such as myocardial infarction and cerebral infarction becomes extremely high, and mortality is also high. Thus, by selectively adsorbing and removing low-density lipoprotein from body fluid components such as blood and plasma, it was expected to prevent the progression of the disease as described above, reduce symptoms, and further accelerate healing. .

(従来の技術) 上記目的に使用可能な従来の技術には、ヘパリンと
低比重リポ蛋白質との不溶性複合体を形成させて、これ
を濾過により除去する方法、血液を先ず血球と血漿に
分離した後、血漿成分を血漿成分分離フィルターに通
し、高分子量蛋白である低比重リポ蛋白質を濾別分離す
る方法、抗低比重リポ蛋白質抗体を結合したアガロー
スゲルにより低比重リポ蛋白質を吸着除去する方法、
硫酸多糖を水不溶性ゲルに結合した吸着体を用いて低比
重リポ蛋白質を吸着除去する方法等がある。
(Prior art) Conventional techniques usable for the above purpose include a method of forming an insoluble complex of heparin and low-density lipoprotein and removing the same by filtration, and separating blood into blood cells and plasma first. Thereafter, a plasma component is passed through a plasma component separation filter, a method of separating and separating low-density lipoprotein which is a high-molecular-weight protein, a method of adsorbing and removing low-density lipoprotein by an agarose gel to which an anti-low-density lipoprotein antibody is bound,
There is a method of adsorbing and removing low-density lipoprotein using an adsorbent in which a sulfated polysaccharide is bound to a water-insoluble gel.

しかしながら、の方法では、血漿に加えた過剰のヘ
パリンを除去するためにヘパリン吸着材を使用しなけれ
ばならず、装置が大がかりなものになり、操作も煩雑に
なること、の方法では、高分子量蛋白は全て除去され
てしまう結果、有用な生体成分も除去されてしまうこ
と、の方法では、低比重リポ蛋白質を特異的に吸着で
きるものの、抗体という蛋白質を用いているため滅菌が
難しく、完全に無菌を保証することが不可能であり、ま
た、抗体が高価であること、の方法では、選択的に低
比重リポ蛋白質を吸着できるが、全血を直接吸着材で処
理できないため、血球と血漿を分離する装置が必要にな
り、操作が煩雑になる等の欠点を有していた。
However, in the method, the heparin adsorbent must be used to remove excess heparin added to the plasma, and the apparatus becomes large-scale and the operation becomes complicated. In the method of removing all the proteins, useful biological components are also removed.In this method, low-density lipoprotein can be specifically adsorbed. It is impossible to guarantee sterility, and the antibody is expensive.In the method, it is possible to selectively adsorb low-density lipoprotein, but since whole blood cannot be directly treated with the adsorbent, blood cells and plasma However, there is a drawback in that a device for separating is required, and the operation becomes complicated.

(発明が解決しようとする課題) 上記した従来技術の問題点に鑑み、低比重リポ蛋白質
を選択的に吸着でき、全血をそのまま処理できる、操作
の簡便な低比重リポ蛋白質吸着材を提供することが、本
発明の最大の目的である。
(Problems to be Solved by the Invention) In view of the above-mentioned problems of the prior art, there is provided a low-density lipoprotein adsorbent which can selectively adsorb low-density lipoprotein and can treat whole blood as it is, and which is easy to operate. This is the most important object of the present invention.

(課題を解決するための手段) 本発明者らは、上記目的に沿って鋭意研究した結果、
中空糸状全多孔体を担体として用い、多孔体の構造体部
分の少なくとも表面近傍に低分子化合物に由来するアニ
オン性基を導入することにより、全血を直接処理しても
血液の凝固がなく、血小板の損失も少なく、低比重リポ
蛋白質を選択的に吸着できることを見出し、さらには、
中空糸状全多孔体の構造体部分の表面近傍に低分子化合
物に由来するアニオン性基を導入し、かつ、構造体部分
の遠方にも鎖状の高分子化合物に由来するアニオン性基
を導入することにより、低比重リポ蛋白質の吸着能力を
さらに向上できることを見出し、本発明を得るに至っ
た。
(Means for Solving the Problems) The present inventors have conducted intensive studies along the above-mentioned object, and
Using a hollow fiber-like totally porous body as a carrier, by introducing an anionic group derived from a low molecular compound at least in the vicinity of the surface of the structural part of the porous body, there is no coagulation of blood even when directly treating whole blood, Platelet loss was low, and it was found that low-density lipoprotein could be selectively adsorbed.
An anionic group derived from a low-molecular compound is introduced near the surface of the structural part of the hollow fiber-like totally porous body, and an anionic group derived from a chain-like high molecular compound is introduced far away from the structural part. As a result, they have found that the ability to adsorb a low-density lipoprotein can be further improved, and have led to the present invention.

すなわち、本発明は、中空糸状全多孔体の構造体部分
の少なくとも表面近傍に低分子化合物に由来するアニオ
ン性基を有することを特徴とする体液処理用吸着材であ
り、また、本発明は、中空糸状全多孔体の構造体部分の
表面近傍に低分子化合物に由来するアニオン性基を有
し、かつ、構造体部分の遠方にも鎖状の高分子化合物に
由来するアニオン性基を有することを特徴とする体液処
理用吸着材である。
That is, the present invention is a bodily fluid treatment adsorbent characterized by having an anionic group derived from a low molecular weight compound at least in the vicinity of the surface of the structural part of the hollow fiber-like totally porous body, and the present invention Having an anionic group derived from a low molecular weight compound near the surface of the structural part of the hollow fiber-like totally porous body, and having an anionic group derived from a chain high molecular compound far away from the structural part This is an adsorbent for treating body fluid.

従来、分子の非常に大きい低比重リポ蛋白質を吸着材
で吸着しようとする時には、低比重リポ蛋白質と相互作
用をなす物質としてヘパリン、デキストラン硫酸のよう
に長鎖構造を持った物質をリガンドとして用いて、担体
表面から充分遠方までリガンドを伸ばしてやらないと吸
着できないと考えられており、事実、多孔質ゲルを担体
として用いる時には、短い分子をリガンドとして用いて
も、低比重リポ蛋白質を充分に吸着することは不可能で
あつた。これに対して、本発明者らは、担体として中空
糸状全多孔体を用いたことにより、驚くべきことに短い
分子をリガンドとして用いても充分な量の低比重リポ蛋
白質を吸着できることを見出した。何故短い分子で低比
重リポ蛋白質を効率良く吸着できるのかは明らかでない
が、短い分子を結合した吸着材は、分子自体の抗原性が
低く、また、滅菌時にリガンドの結合が切れ難いという
利点を持っており、この事実は、吸着材として画期的な
ことである。さらに、短い分子と長い分子を組合せれ
ば、中空糸状全多孔体の構造体部分の壁面付近では短い
分子により、微細孔の空間部分では長い分子により、低
比重リポ蛋白質を吸着できるので、低比重リポ蛋白質を
非常に高い効率で吸着できるようになる。
Conventionally, when attempting to adsorb a low-density lipoprotein having a very large molecule with an adsorbent, a substance having a long-chain structure, such as heparin or dextran sulfate, is used as a ligand to interact with the low-density lipoprotein. Therefore, it is considered that adsorption is not possible unless the ligand is extended sufficiently far from the surface of the carrier.In fact, when a porous gel is used as the carrier, even if a short molecule is used as the ligand, the low-density lipoprotein can be sufficiently absorbed. It was impossible to adsorb. In contrast, the present inventors have found that, by using a hollow fiber-like totally porous material as a carrier, a sufficient amount of low-density lipoprotein can be adsorbed surprisingly even when a short molecule is used as a ligand. . It is not clear why short molecules can adsorb low-density lipoproteins efficiently, but adsorbents that bind short molecules have the advantage that the antigenicity of the molecules themselves is low and that the binding of ligands during sterilization is difficult to break. This fact is a breakthrough as an adsorbent. Furthermore, if short molecules and long molecules are combined, low specific gravity lipoproteins can be adsorbed by short molecules near the wall surface of the structure of the hollow fiber-like totally porous body and long molecules in the space of micropores. Lipoprotein can be adsorbed with very high efficiency.

本発明において中空糸状全多孔体とは、外観が中空糸
状であって、中空糸の構造体部分(以下、膜と呼ぶ)の
微細構造が膜の内表面から外表面に連通する多孔構造を
実質上全体に持つものを言う。
In the present invention, the hollow fiber-shaped totally porous body refers to a porous structure in which the appearance is a hollow fiber shape and a fine structure of a hollow fiber structure portion (hereinafter, referred to as a membrane) communicates from the inner surface to the outer surface of the membrane. Say what you have on the whole.

膜の孔径は、被吸着物質の大きさや形状によって自由
に選べるが、被吸着物質が自由に通過できる孔径であ
り、かつ、被吸着物質が接触できる表面が充分にあるこ
とが望ましい。平均孔径を水銀ポロシメーターにより求
めた孔径−空孔容積積分曲線上で、全空孔容積の1/2の
空孔容積を示す孔径として定義した時、本発明に使用さ
れる中空糸状全多孔体の平均孔径は0.005μmから3μ
mの範囲のものが好ましく、被吸着物質の大きさにより
選択できる。さらに好ましい平均孔径は0.01μmから2
μmの範囲であり0.02μmから1μmの範囲が望まし
い。膜の多孔構造の細孔表面積を、BET式表面積測定装
置を用い窒素吸着量から求めた値と定義する時、本発明
に使用される中空糸状全多孔体の細孔表面積は5m2/g以
上であることが好ましく、10m2/g以上であることがさら
に好ましく、15m2/g以上であることが望ましい。中空糸
の内径は30μm以上であることが好ましく、50μmから
5mmであることがさらに好ましく、100μmから1mmであ
ることが望ましい。中空糸の膜厚は5μm以上であるこ
とが好ましく、10μmから1mmであることがさらに好ま
しく、20μmから500μmであることが望ましい。
The pore size of the membrane can be freely selected depending on the size and shape of the substance to be adsorbed, but it is preferable that the pore diameter is such that the substance to be adsorbed can freely pass therethrough and that the surface to which the substance to be adsorbed can come into contact is sufficient. When the average pore diameter is defined as a pore diameter indicating a pore volume of 1/2 of the total pore volume on a pore diameter-pore volume integral curve obtained by a mercury porosimeter, the hollow fiber-like total porous body used in the present invention is Average pore size from 0.005μm to 3μ
m is preferable and can be selected according to the size of the substance to be adsorbed. More preferred average pore size is from 0.01 μm to 2 μm.
μm, preferably in the range of 0.02 μm to 1 μm. When the pore surface area of the porous structure of the membrane is defined as a value obtained from the nitrogen adsorption amount using a BET type surface area measuring device, the pore surface area of the hollow fiber-like totally porous body used in the present invention is 5 m 2 / g or more. It is more preferably at least 10 m 2 / g, more preferably at least 15 m 2 / g. The inner diameter of the hollow fiber is preferably 30 μm or more, and from 50 μm
The thickness is more preferably 5 mm, and more preferably 100 μm to 1 mm. The thickness of the hollow fiber is preferably 5 μm or more, more preferably 10 μm to 1 mm, and more preferably 20 μm to 500 μm.

中空糸の素材としては、セルロース、セルロース誘導
体、ポリビニルアルコール、エチレン−ビニルアルコー
ル共重合体等の親水性材料、ポリエチレン、ポリプロピ
レン、ポリスルホン、ポリテトラフルオロエチレン等の
疎水性材料のいずれでも使用できるが、疎水性材料の場
合は、水系液体の濾過が困難であるため、親水性材料の
コーティング、化学処理による表面親水化、プラズマ処
理による表面親水化等の方法により親水化処理すること
が好ましい。また、アニオン性基を導入する為には、例
えば、アニオン性基を持つリガンドを固定する場合、中
空糸状全多孔体表面にアニオン性基を持つリガンドを固
定し易い水酸基、アミノ基、カルボキシル基、チオール
基等の官能基を有していることが好ましいが、該官能基
を有していなくても、プラズマ処理、アニオン性基を持
つリガンドの包埋コーティング等の方法で、アニオン性
基を持つリガンドを固定することができる。
As the material of the hollow fiber, any of cellulose, cellulose derivative, polyvinyl alcohol, a hydrophilic material such as ethylene-vinyl alcohol copolymer, polyethylene, polypropylene, polysulfone, and a hydrophobic material such as polytetrafluoroethylene can be used. In the case of a hydrophobic material, since filtration of an aqueous liquid is difficult, it is preferable to perform a hydrophilic treatment by a method of coating a hydrophilic material, making the surface hydrophilic by a chemical treatment, or making the surface hydrophilic by a plasma treatment. Further, in order to introduce an anionic group, for example, when fixing a ligand having an anionic group, a hydroxyl group, an amino group, a carboxyl group, which can easily fix the ligand having an anionic group on the surface of a hollow fiber-like totally porous material. It is preferable to have a functional group such as a thiol group, but even if it does not have the functional group, it may have an anionic group by a method such as plasma treatment or embedding coating of a ligand having an anionic group. The ligand can be immobilized.

アニオン性基を持つリガンドを中空糸状全多孔体表面
に固定する方法は、共有結合、イオン結合、物理吸着、
包埋、膜表面への沈澱不溶化等あらゆる公知の方法を用
いることができるが、アニオン性基を持つリガンドの溶
出性よりみて、共有結合により、固定、不溶化するのが
好ましい。例えば、通常、固定化酵素、アフィニティー
クロマトグラフィーで用いられる公知の担体活性化法、
固定法を用いることができる。活性化法を例示すると、
ハロゲン化シアン法、過ヨウ素酸法、架橋試薬法、エポ
キシド法等が挙げられる。活性化法は、中空糸状全多孔
体表面を修飾し、反応性に富んだ状態にして、アニオン
性基を持つリガンドのアミノ基、水酸基、カルボキシル
基、チオール基等の活性水素を有する求核反応基と置換
および/または付加反応できればよく、上記の例示に限
定されるものではない。
The method of immobilizing a ligand having an anionic group on the surface of a hollow fiber-like totally porous material includes covalent bond, ionic bond, physical adsorption,
Any known method such as embedding and insolubilization of the precipitate on the membrane surface can be used, but immobilization and insolubilization by covalent bonds are preferred in view of the elution of the ligand having an anionic group. For example, usually, immobilized enzymes, known carrier activation methods used in affinity chromatography,
An immobilization method can be used. To illustrate the activation method,
Examples thereof include a cyanogen halide method, a periodic acid method, a crosslinking reagent method, and an epoxide method. The activation method is a nucleophilic reaction in which the surface of a hollow fiber-like totally porous material is modified into a highly reactive state, and the active hydrogen such as an amino group, a hydroxyl group, a carboxyl group, or a thiol group of a ligand having an anionic group is formed. It is only necessary to be able to perform a substitution and / or addition reaction with the group, and it is not limited to the above examples.

また、中空糸状全多孔体自身がアニオン性基を有する
素材より成るものであってもよい。
Further, the hollow fiber-like totally porous body itself may be made of a material having an anionic group.

本発明において、アニオン性基とは、スルホン酸基、
硫酸基、リン酸基、カルボキシル基等、体液中で負電荷
を示す官能基のことを言う。
In the present invention, the anionic group is a sulfonic acid group,
A functional group that exhibits a negative charge in a body fluid, such as a sulfate group, a phosphate group, and a carboxyl group.

また、本発明において表面近傍とは、中空糸状全多孔
体を構成する構造体部分(素材自身)の表面から200Å
までの空間のことを言い、構造体の表面を含む。この距
離は低比重リポ蛋白質の直径に相当する。
Further, in the present invention, the term “near the surface” refers to 200 ° from the surface of the structural part (material itself) constituting the hollow fiber-shaped totally porous body.
Up to and including the surface of the structure. This distance corresponds to the diameter of the low density lipoprotein.

中空糸状全多孔体の構造体部分の表面近傍に低分子化
合物に由来するアニオン性基を導入する方法は、アニオ
ン性基を持つ低分子の化合物を、中空糸状全多孔体の構
造体部分の表面に共有結合、イオン結合等の方法で結合
する方法等が挙げられる。
The method of introducing an anionic group derived from a low molecular compound in the vicinity of the surface of the structural portion of the hollow fiber-like totally porous body is a method of introducing a low molecular compound having an anionic group into the surface of the structural part of the hollow fiber-like totally porous body. And a method such as a covalent bond or an ionic bond.

低比重リポ蛋白質はその表面にカチオン性のアミノ酸
残基を持っているので、中空糸状全多孔体の構造体部分
表面に存在するアニオン性基と静電的な相互作用をな
し、静電的引力で吸着される。低比重リポ蛋白質以外に
も、表面にカチオン性ドメインを持った蛋白、ペプチ
ド、ウイルス、例えば、活性化補体成分であるC3a、C4
a、C5a、ある種のレトロウイルス等も本発明吸着材に吸
着される。
Since the low-density lipoprotein has cationic amino acid residues on its surface, it forms an electrostatic interaction with an anionic group present on the surface of the structure of the hollow fiber-like fully porous material, resulting in electrostatic attraction. Is adsorbed. In addition to low-density lipoproteins, proteins, peptides, and viruses that have a cationic domain on the surface, such as activated complement components C3a and C4
a, C5a, certain retroviruses and the like are also adsorbed by the adsorbent of the present invention.

本発明特許請求の範囲第2項において、構造体部分の
遠方にもアニオン性基を有するという意味は、中空糸状
全多孔体を構成する構造体部分の表面から200Å以上離
れた空間にアニオン性基を持つという意味である。
In claim 2 of the present invention, the meaning of having an anionic group far away from the structural part means that the anionic group is located at a distance of 200 ° or more from the surface of the structural part constituting the hollow fiber-shaped totally porous body. Means to have

中空糸状全多孔体の構造体部分の遠方に鎖状の高分子
化合物に由来するアニオン性基を導入する方法は、アニ
オン性基を持つ鎖状の高分子化合物を中空糸状全多孔体
の構造体部分の表面に結合する方法、中空糸状全多孔体
の構造体部分の表面からアニオン性基を持ったグラフト
鎖を伸ばす方法等が挙げられる。
The method of introducing an anionic group derived from a chain-like polymer compound to the far side of the structural portion of the hollow-fiber-like totally porous body is a method of introducing a chain-like polymer compound having an anionic group into a structure of the hollow-fiber-like totally porous body. And a method of extending a graft chain having an anionic group from the surface of the structure portion of the hollow fiber-like totally porous body.

アニオン性基を持つ鎖状の高分子化合物(以下、ポリ
アニオンと言う)の分子量は600から107が好ましく、10
00から5×106がさらに好ましく、2000から106が望まし
い。
Chain of the polymer compound having an anionic group molecular weight (hereinafter, referred to as a polyanion) 10 7 preferably from 600, 10
00 to 5 × 10 6 is more preferable, and 2000 to 10 6 is more preferable.

ポリアニオンを例示すると、ビニル系合成ポリアニオ
ンとしてポリアクリル酸、ポリメタクリル酸、ポリビニ
ルスルホン酸、ポリビニル硫酸、ポリマレイン酸、ポリ
フマル酸およびこれらの誘導体等が挙げられ、スチレン
系合成ポリアニオンとしてポリスチレンスルホン酸、ポ
リスチレンリン酸等が挙げられ、ペプチド系ポリアニオ
ンとしてポリグルタミン酸、ポリアスパラギン酸等が挙
げられ、核酸系ポリアニオンとしてポリU、ポリA等が
挙げられ、合成系ポリアニオンとしてポリリン酸エステ
ル、ポリαメチルスチレンスルホン酸、スチレン−メタ
クリル酸共重合体等が挙げられ、多糖系ポリアニオンと
して、ヘパリン、デキストラン硫酸、コンドロイチン硫
酸、アルギン酸、ペクチン、ヒアルロン酸、およびこれ
らの誘導体等が挙げられる。本発明で言うポリアニオン
は、上記した例示に限定されるものではない。
Examples of the polyanion include polyacrylic acid, polymethacrylic acid, polyvinylsulfonic acid, polyvinylsulfuric acid, polymaleic acid, polyfumaric acid and derivatives thereof as vinyl-based synthetic polyanions, and polystyrenesulfonic acid, polystyrene phosphorus as styrene-based synthetic polyanions. Acids and the like, polyglutamic acid and polyaspartic acid as the peptide-based polyanion, poly-U, poly-A and the like as the nucleic acid-based polyanion, polyphosphate anion as a synthetic polyanion, poly-α-methylstyrenesulfonic acid, Styrene-methacrylic acid copolymer and the like, and polysaccharide-based polyanions include heparin, dextran sulfate, chondroitin sulfate, alginic acid, pectin, hyaluronic acid, and derivatives thereof and the like. It is. The polyanion referred to in the present invention is not limited to the above examples.

中空糸状全多孔体の構造体部分の表面近傍と遠方共に
アニオン性基を持たせることにより、中空糸状全多孔体
の構造体部分表面にも微細孔の空間部分にも低比重リポ
蛋白質を吸着できるようになるので、単位体積当たりの
低比重リポ蛋白質吸着量が飛躍的に多くなり、高い効率
で低比重リポ蛋白質を吸着できるようになる。
By having anionic groups both near and far from the surface of the hollow fiber-like fully porous structure, low density lipoprotein can be adsorbed to both the surface of the hollow fiber-like fully porous structure and the space of the micropores. As a result, the adsorbed amount of the low-density lipoprotein per unit volume is drastically increased, and the low-density lipoprotein can be adsorbed with high efficiency.

本発明体液処理用吸着材の内面に血小板粘着抑制、血
液凝固抑制用の処理を施すことは、さらに好ましい結果
を与える。
Performing a treatment for suppressing platelet adhesion and blood coagulation on the inner surface of the adsorbent for treating body fluid of the present invention gives more preferable results.

以上述べてきた体液処理用吸着材は、多数本集束さ
れ、その両末端を接着固定されたものが容器に充填さ
れ、容器外部と体液処理用吸着材内面とが連通する構造
を有する体液処理用吸着器として使用される。すなわ
ち、患者の体液が体液処理用吸着器の体液処理用吸着材
内面に導入され、体液処理用吸着材内面から膜(中空構
造体部分)に移動した被吸着物質が、膜に固定されたア
ニオン性基と相互作用をなし、吸着され、吸着されなか
った体液成分は、また容器外に導出されるという使い方
に適した吸着器として使用されるのである。また、被吸
着物質の膜への移動をより容易にするために、容器外部
と体液処理用吸着材外面とが連通する構造を設け、中空
糸内面から外面への体液の移動が簡単にできるような構
造にすることができる。
The body fluid treatment adsorbent described above is bundled in a large number, and both ends thereof are bonded and fixed, and the end is filled in a container, and the body fluid treatment adsorbent has a structure in which the outside of the container communicates with the body fluid treatment adsorbent inner surface. Used as an adsorber. That is, the body fluid of the patient is introduced into the inner surface of the adsorbent for body fluid treatment of the adsorber for body fluid treatment, and the substance to be adsorbed that has moved from the inner surface of the adsorbent for body fluid treatment to the membrane (hollow structure) is converted into an anion fixed to the membrane. The bodily fluid component that has interacted with the active group and that has been adsorbed and not adsorbed is also used as an adsorber suitable for use in which it is discharged outside the container. In addition, in order to facilitate the movement of the substance to be adsorbed to the membrane, a structure is provided in which the outside of the container communicates with the outer surface of the adsorbent for bodily fluid treatment so that the bodily fluid can be easily moved from the inner surface of the hollow fiber to the outer surface. Structure.

以下、図面を用いて本発明を説明する。 Hereinafter, the present invention will be described with reference to the drawings.

第1図は本発明体液処理用吸着材を用いた吸着装置の
一例を示す模式図であり、第2図は他の例を示す模式図
である。第3図は本発明体液処理用吸着材の微細孔にお
けるアニオン性基の存在状態を示す模式図である。
FIG. 1 is a schematic diagram showing an example of an adsorption device using the adsorbent for treating body fluid of the present invention, and FIG. 2 is a schematic diagram showing another example. FIG. 3 is a schematic diagram showing the state of the presence of an anionic group in the micropores of the adsorbent for treating body fluid of the present invention.

第1図において、体液は体液導入口1から導入され、
体液輸送手段2により体液処理用吸着器3に送られる。
体液処理用吸着器3内において、体液は体液処理用吸着
材4の内面に送られ、内面から膜(多孔構造体)内部に
液状成分が浸透してゆき、一部の液状成分は体液処理用
吸着材4の外面にまで移行し、再び体液処理用吸着材4
の内面に戻ってきて体液と合流する。この過程で、体液
処理用吸着材の膜に固定されているアニオン性基に被吸
着物質(低比重リポ蛋白質等)が吸着され、被吸着物質
を吸着された体液が体液導出口5から導出される。
In FIG. 1, a bodily fluid is introduced from a bodily fluid inlet 1,
The body fluid is transferred to the body fluid treatment adsorber 3 by the body fluid transporting means 2.
In the bodily fluid treatment adsorber 3, the bodily fluid is sent to the inner surface of the bodily fluid treatment adsorbent 4, and the liquid component permeates from the inner surface into the inside of the membrane (porous structure). It moves to the outer surface of the adsorbent 4, and again the adsorbent 4 for body fluid treatment.
Returns to the inner surface and joins the body fluid. In this process, the substance to be adsorbed (such as low-density lipoprotein) is adsorbed to the anionic group fixed to the membrane of the adsorbent for treating body fluid, and the body fluid having the substance to be adsorbed is led out from the body fluid outlet 5. You.

体液処理用吸着材の微細孔におけるアニオン性基の存
在状態を模式的に示したものが第3図であるが、第3図
イは中空糸状全多孔体の構造体部分6の表面7近傍に低
分子化合物に由来するアニオン性基8を有するもの、第
3図ロは、表面7近傍には低分子化合物に由来するアニ
オン性基8を有し、構造体部分6の遠方9にも鎖状の高
分子化合物に由来するアニオン性基8を有するものであ
る。被吸着物質(低比重リポ蛋白質等)は微細孔を通過
する際、微細孔内のアニオン性基と相互作用をなし、吸
着される。
FIG. 3 schematically shows the presence of anionic groups in the micropores of the body fluid treatment adsorbent. FIG. 3A shows the vicinity of the surface 7 of the structural portion 6 of the hollow fiber-like fully porous body. 3 has an anionic group 8 derived from a low molecular compound in the vicinity of the surface 7 and has a chain-like structure at a distant position 9 of the structural portion 6. Having an anionic group 8 derived from the high molecular compound described above. The substance to be adsorbed (such as a low-density lipoprotein) interacts with the anionic group in the micropore when passing through the micropore, and is adsorbed.

第2図は、本発明体液処理用吸着材を用いた吸着装置
の別な例を示す断面模式図であるが、体液は体液導入口
1から導入され、体液輸送手段2により体液処理用吸着
器3に送られる。体液処理用吸着器3において、体液は
体液処理用吸着材4の内面に送られ、液状成分が内面か
ら膜を通して体液処理用吸着材4の外面に送られる。こ
の過程で被吸着物質(低比重リポ蛋白質等)は膜中のア
ニオン性基と相互作用をなし、吸着される。被吸着物質
を吸着除去された液状成分は、液状成分輸送手段10によ
り体液導出口5の方向に送られ、体液と合流した後、体
液導出口5より導出される。
FIG. 2 is a schematic cross-sectional view showing another example of an adsorption device using the adsorbent for treating a body fluid of the present invention, wherein a bodily fluid is introduced from a body fluid introduction port 1 and is adsorbed by the body fluid transport means 2. Sent to 3. In the body fluid treatment adsorber 3, the body fluid is sent to the inner surface of the body fluid treatment adsorbent 4, and the liquid component is sent from the inner surface to the outer surface of the body fluid treatment adsorbent 4 through the membrane. In this process, the substance to be adsorbed (such as a low-density lipoprotein) interacts with the anionic group in the membrane and is adsorbed. The liquid component from which the substance to be adsorbed has been adsorbed and removed is sent by the liquid component transport means 10 in the direction of the bodily fluid outlet 5, merges with the bodily fluid, and is then led out of the bodily fluid outlet 5.

以上、本発明の体液処理用吸着材について述べてきた
が、以下、実施例により、本発明をさらに具体的に説明
する。
The body fluid treatment adsorbent of the present invention has been described above. Hereinafter, the present invention will be described more specifically by way of examples.

(実施例) 実施例1 中空糸状全多孔体として、ポリエチレン製中空繊維に
ポリ2−ヒドロキシエチルメタクリレート(ポリHEMA)
をコートし熱架橋したものを用いた。ポリエチレン中空
繊維は内径340μm、外径440μm、膜厚50μm、平均孔
径0.3μm、表面積21m2/gのものを用いた。ポリHEMAは
2−ヒドロキシエチルメタクリレート100gエタノール64
0gを加え、アゾビスイソブチロニトリル0.4gを加えた
後、57℃で7.5時間撹拌しながら重合し、水中に沈澱さ
せ、精製したものを用いた。ポリエチレン中空繊維に対
するポリHEMAのコーティングは、ポリHEMAの2重量%エ
タノール溶液にポリエチレン中空糸を浸漬し、40℃で10
分放置後、取り出し、50℃で1時間乾燥した。得られた
中空繊維を集束し、両末端をシリコン接着剤で固定し、
有効長15cm、中空繊維50本の束にし、両端を中空繊維が
縮まないように固定して120℃、3時間熱架橋した。
(Example) Example 1 Poly-2-hydroxyethyl methacrylate (poly-HEMA) was used as a hollow fiber-shaped totally porous body in a polyethylene hollow fiber.
And thermally crosslinked. The polyethylene hollow fiber having an inner diameter of 340 μm, an outer diameter of 440 μm, a film thickness of 50 μm, an average pore diameter of 0.3 μm, and a surface area of 21 m 2 / g was used. Poly HEMA is 2-hydroxyethyl methacrylate 100 g ethanol 64
After adding 0 g and adding 0.4 g of azobisisobutyronitrile, the mixture was polymerized with stirring at 57 ° C. for 7.5 hours, precipitated in water, and purified. Polyethylene hollow fibers are coated with poly-HEMA by dipping polyethylene hollow fibers in a 2% by weight ethanol solution of poly-HEMA,
After leaving for a minute, it was taken out and dried at 50 ° C. for 1 hour. The obtained hollow fibers are bundled, and both ends are fixed with a silicone adhesive,
The bundle was made into a bundle of 50 hollow fibers having an effective length of 15 cm, and both ends were thermally crosslinked at 120 ° C. for 3 hours while the hollow fibers were fixed so as not to shrink.

次に、上記中空糸状全多孔体にエポキシ基を導入し
た。方法は、先ずジメチルスルホキシド80ml、エピブロ
ムヒドリン80ml、40重量%の水酸化ナトリウム30gの混
合溶液を作り、中空糸状全多孔体の中空繊維内側に2.4m
l/minの流速で流した。混合溶液の温度は30℃で、中空
繊維外側に出てくる濾液の流量はコントロールしなかっ
た。この状態で5時間反応させ、その後、アセトンと水
で洗浄した。
Next, an epoxy group was introduced into the above-mentioned hollow fiber-shaped totally porous body. First, a mixed solution of 80 ml of dimethyl sulfoxide, 80 ml of epibromohydrin and 30 g of 40% by weight of sodium hydroxide was prepared, and 2.4 m of hollow fiber-like all-porous material was placed inside the hollow fiber.
The flow was at a flow rate of l / min. The temperature of the mixed solution was 30 ° C., and the flow rate of the filtrate coming out of the hollow fiber was not controlled. In this state, the reaction was carried out for 5 hours, and then, washed with acetone and water.

この後、タウリンをエポキシ基が導入された中空糸状
全多孔体に固定した。方法は、先ずタウリン0.1gを0.1M
炭酸ナトリウムバッファー(pH9.8)100mlに溶解した
後、中空糸状全多孔体の内側に2.4ml/minの流速で流し
た。タウリン溶液の温度は50℃で、中空繊維外側に出て
くる濾液の流量はコントロールしなかった。この状態で
16時間反応させ、その後、水洗してタウリンの固定され
た体液浄化用吸着材を得た。本吸着材の製造方法によれ
ば、アニオン性基(タウリンの持つスルホン酸基)の存
在する位置は、中空糸状全多孔体の構造体部分の近傍
(構造体部分の表面から200Å以内)である。タウリン
の固定量は、中空糸状全多孔体の多孔質部分の体積1ml
当たり60μ当量であった。
Thereafter, taurine was fixed to the hollow fiber-like totally porous body into which the epoxy group was introduced. First, 0.1 g of taurine 0.1M
After dissolving in 100 ml of a sodium carbonate buffer (pH 9.8), the solution was flowed at a flow rate of 2.4 ml / min inside the hollow fiber-like totally porous body. The temperature of the taurine solution was 50 ° C., and the flow rate of the filtrate coming out of the hollow fiber was not controlled. In this state
The mixture was reacted for 16 hours, and then washed with water to obtain an adsorbent for purifying body fluid to which taurine was fixed. According to the method for producing the adsorbent, the position where the anionic group (sulfonic acid group of taurine) exists is in the vicinity of the structural part of the hollow fiber-like fully porous body (within 200 mm from the surface of the structural part). . The fixed amount of taurine is 1 ml in the volume of the porous part of the hollow fiber-like porous body.
It was equivalent to 60 μ per unit.

上記のようにして得られた体液処理用吸着材を乾燥し
た後、管状容器中で両端をウレタン吸着材により固定
し、両端を切断した後、ノズルを形成し、第4図に示す
ような体液処理用吸着器を製作した。体液処理用吸着材
の有効長は7.5cm、本数は50本であった。第4図におい
て、11は体液導入口側ノズル、12は血液導出口側ノズ
ル、4は体液処理用吸着材、13は液状成分導出用ノズル
である。
After drying the bodily fluid treatment adsorbent obtained as described above, both ends are fixed with a urethane adsorbent in a tubular container, and after cutting both ends, a nozzle is formed, and a bodily fluid as shown in FIG. 4 is formed. A treatment adsorber was manufactured. The effective length of the bodily fluid treatment adsorbent was 7.5 cm, and the number was 50. In FIG. 4, 11 is a body fluid inlet side nozzle, 12 is a blood outlet side nozzle, 4 is a body fluid treatment adsorbent, and 13 is a liquid component leading nozzle.

第4図の体液処理用吸着器を用い、第2図に示す体液
処理用吸着装置を組み立て、以下の吸着実験を行った。
Using the body fluid treatment adsorber shown in FIG. 4, the body fluid treatment adsorption device shown in FIG. 2 was assembled, and the following adsorption experiment was conducted.

家族性高コレステロール血症患者由来のヘパリン加全
血を体液導出口1より導入し、ポンプ2により0.5ml/分
で体液処理用吸着器3に送った。体液処理用吸着材4で
液状成分である血漿を濾過し、ポンプ10により血漿を体
液導出口方向に送り、体液処理用吸着器3から導出され
てくる血球成分に富む血液と合流させ、体液導出口5か
ら取り出した。ポンプ10の流量はポンプ2の流量の1/5
とし、この状態で6mlの全血を30分再循環させた。
Heparinized whole blood from a patient with familial hypercholesterolemia was introduced through the body fluid outlet 1 and sent to the body fluid treatment adsorber 3 by the pump 2 at 0.5 ml / min. Plasma, which is a liquid component, is filtered by the adsorbent 4 for body fluid treatment, and the plasma is sent to the body fluid outlet by the pump 10 to be combined with blood rich in blood cells derived from the adsorber 3 for body fluid treatment. Removed from Exit 5. Pump 10 flow rate is 1/5 of pump 2 flow rate
In this state, 6 ml of whole blood was recirculated for 30 minutes.

循環中、凝血、溶血は見られず、安定した循環が行え
た。処理前および処理後の血液(血漿)中の総コレステ
ロールを酵素法により測定した。家族性高コレステロー
ル血症患者血液の場合、コレステロールはほとんど低比
重リポ蛋白質に由来する。
During the circulation, no coagulation or hemolysis was observed, and stable circulation was performed. Total cholesterol in blood (plasma) before and after treatment was measured by an enzyme method. In the blood of patients with familial hypercholesterolemia, cholesterol is mostly derived from low density lipoproteins.

その結果、総コレステロールは処理前が510mg/dlであ
ったのに対し、処理後では190mg/dlに下がっていた。
As a result, the total cholesterol was 510 mg / dl before the treatment, but decreased to 190 mg / dl after the treatment.

比較例1 中空糸状全多孔体を用いる代わりにアガロース系全多
孔質球状ゲルであるCNBr活性化セファロース4B(ファル
マシア・ジャパン(株))を用いて、タウリンを固定し
た。タウリンのCNBr活性化セファロール4Bへの固定化方
法は、ファルマシア社の推奨する通常の方法にしたがっ
た。タウリンの固定量は50μ当量/ml(湿潤容量)であ
った。
Comparative Example 1 Taurine was immobilized using CNBr-activated Sepharose 4B (Pharmacia Japan Co., Ltd.), which is an agarose-based totally porous spherical gel, instead of using a hollow fiber-like totally porous body. The method of immobilizing taurine on CNBr-activated Cephalol 4B followed the usual method recommended by Pharmacia. The fixed amount of taurine was 50 μeq / ml (wet volume).

実施例1の体液処理用吸着器の多孔質構造体部分の体
積と同じ多孔質構造体部分体積の本比較例1タウリン固
定化セファロース4Bを、実施例1に使用したのと同じ血
液6mlに加え、振とうしながら30分間インキュベートし
た。その結果、総コレステロールは処理前が510mg/dlで
あったのに対し、処理後では450mg/dlとあまり下がらな
かった。
Comparative Example 1 Taurine-immobilized Sepharose 4B having the same porous structure partial volume as the porous structure portion of the bodily fluid treatment adsorber of Example 1 was added to 6 ml of the same blood used in Example 1. And incubated for 30 minutes with shaking. As a result, the total cholesterol was 510 mg / dl before the treatment, but was not so reduced to 450 mg / dl after the treatment.

実施例2 中空糸状全多孔体としては、実施例1と同じものを使
用し、中空糸状全多孔体にエポキシ基を導入する方法
も、実施例1と同様に行った。
Example 2 As the hollow fiber-like totally porous body, the same one as in Example 1 was used, and the method of introducing an epoxy group into the hollow fiber-like totally porous body was performed in the same manner as in Example 1.

アニオン性基を導入するために、分子量5万のデキス
トラン硫酸とタウリンをエポキシ基導入後の中空糸状全
多孔体に反応させた。導入の方法は、先ず、水酸化ナト
リウムでpHを13に合わせた0.1重量%デキストラン酸水
溶液を作り、これを50℃の温度にし、0.24ml/minの流速
でエポキシ基導入後の中空糸状全多孔体の中空繊維内側
に流し、1時間循環させた。この時、濾液の流量は調節
しなかった。次に、中空糸状全多孔体を水洗し、この
後、0.1gのタウリンを0.1M炭酸ナトリウムバッファー
(pH9.8)に溶解したものを準備し、これを上記中空糸
状全多孔体の中空繊維内側に流し、15時間循環した。こ
の時のタウリン溶液の温度は50℃で、濾液の流量はコン
トロールしなかった。この後、水洗、乾燥し、体液処理
用吸着材を得た。上記製造方法によれば、中空糸状全多
孔体の構造体部分の近傍に、主にタウリンに由来するア
ニオン性基が存在し、構造体部分の遠方にデキストラン
硫酸に由来するアニオン性基が存在する。
In order to introduce an anionic group, dextran sulfate having a molecular weight of 50,000 and taurine were reacted with the hollow fiber-like totally porous body after the introduction of the epoxy group. First, a 0.1% by weight aqueous solution of dextranic acid adjusted to pH 13 with sodium hydroxide was prepared, brought to a temperature of 50 ° C, and flowed at a flow rate of 0.24 ml / min. It was allowed to flow inside the hollow fibers of the body and circulated for 1 hour. At this time, the flow rate of the filtrate was not adjusted. Next, the hollow fiber-like totally porous body was washed with water, and then, a solution prepared by dissolving 0.1 g of taurine in a 0.1 M sodium carbonate buffer (pH 9.8) was prepared. And circulated for 15 hours. At this time, the temperature of the taurine solution was 50 ° C., and the flow rate of the filtrate was not controlled. Thereafter, the resultant was washed with water and dried to obtain an adsorbent for treating body fluid. According to the above production method, an anionic group mainly derived from taurine is present in the vicinity of the structural part of the hollow fiber-like totally porous body, and an anionic group derived from dextran sulfate is present in a distance of the structural part. .

上記した方法により得られた体液処理用吸着材を、実
施例1と同様に吸着器とし、実施例1と同様に吸着実験
を行った。その結果、処理前のコレステロール濃度が51
0mg/dlであったのに対し、処理後では90mg/dlに下がっ
ていた。
The adsorbent for body fluid treatment obtained by the above method was used as an adsorber in the same manner as in Example 1, and an adsorption experiment was performed in the same manner as in Example 1. As a result, the cholesterol concentration before treatment was 51
It was 0 mg / dl, but decreased to 90 mg / dl after treatment.

実施例3 実施例1と同様にして体液処理用吸着器を製作した。Example 3 A body fluid treatment adsorber was manufactured in the same manner as in Example 1.

該体液処理装置をオートクレーブ滅菌器を用いて、12
1℃、20分間湿熱滅菌した。
Using an autoclave sterilizer, the body fluid treatment device was
The solution was sterilized by wet heat at 1 ° C. for 20 minutes.

湿熱滅菌後の体液処理用吸着器を用いて、実施例1と
同様に吸着実験を行った。その結果、処理前のコレステ
ロール濃度が480mg/dlであったのに対し、処理後では17
0mg/dlに下がっていた。
An adsorption experiment was performed in the same manner as in Example 1 using the adsorber for treating body fluid after wet heat sterilization. As a result, the cholesterol concentration before the treatment was 480 mg / dl,
It had dropped to 0 mg / dl.

比較として、中空糸状全多孔体としては、実施例1と
同様のものを使用し、中空糸状全多孔体にエポキシ基を
導入する方法も、実施例1と同様に行った。
For comparison, the same hollow fiber-like porous body as that of Example 1 was used, and a method of introducing an epoxy group into the hollow fiber-like porous body was also performed in the same manner as in Example 1.

タウリンを用いる代わりに、ヘパリンナトリウム(シ
グマ社,分子量:5,000〜20,000)を用いたこと以外は実
施例1と同様にして、ヘパリンをエポキシ基が導入され
た中空糸状全多孔体に固定した。ヘパリンの固定量は、
中空糸状全多孔体の多孔質部分の体積1ml当たり7.2mgで
あった。
Heparin was fixed to a hollow fiber-like porous body into which an epoxy group had been introduced in the same manner as in Example 1 except that heparin sodium (Sigma, molecular weight: 5,000 to 20,000) was used instead of taurine. The fixed amount of heparin is
The amount was 7.2 mg per 1 ml of the volume of the porous portion of the hollow fiber-like totally porous body.

上記のようにして得られた体液処理用吸着材を、実施
例1と同様にして体液処理用吸着器に組み立てた。
The adsorbent for body fluid treatment obtained as described above was assembled into a body fluid treatment adsorber in the same manner as in Example 1.

該体液処理装置を上記と同条件で湿熱滅菌した。 The body fluid treatment device was subjected to wet heat sterilization under the same conditions as described above.

湿熱滅菌後の体液処理用吸着器を用いて、実施例1と
同様に吸着実験を行ったところ、処理前のコレステロー
ル濃度が480mg/dlであったのに対し、処理後は360mg/dl
とあまり下がらなかった。湿熱滅菌処理により、一部の
ヘパリンが中空糸状全多孔体から外れたものと考えられ
る。
When an adsorption experiment was carried out in the same manner as in Example 1 using an adsorber for treating body fluid after wet heat sterilization, the cholesterol concentration before the treatment was 480 mg / dl, whereas after the treatment, the cholesterol concentration was 360 mg / dl.
And did not drop much. It is considered that part of the heparin was removed from the hollow fiber-like totally porous body by the wet heat sterilization treatment.

(発明の効果) 以上述べたように、本発明の体液処理用吸着材を用い
ることにより、体液中からアニオン性基と相互作用をな
す物質を吸着するに際し、抗原性の少ない、また、滅菌
に際し安定な吸着材とすることができた。さらに、吸着
材としての吸着能力を非常に高いものにできた結果、少
ないプライミングボリュームで効率良く被吸着物質を吸
着できるようになった。
(Effects of the Invention) As described above, by using the adsorbent for treating body fluid of the present invention, when adsorbing a substance that interacts with an anionic group from a body fluid, it has low antigenicity and sterilization. A stable adsorbent was obtained. Further, as a result of the extremely high adsorption capacity as an adsorbent, the substance to be adsorbed can be adsorbed efficiently with a small priming volume.

本発明体液処理用吸着材は、体液中に発現して疾患の
原因あるいは進行と密接に関係していると考えられてい
る悪性物質のうち、特に、低比重リポ蛋白質、アナフィ
ラトキシン、レトロウイルス等、アニオン性基と相互作
用をなす物質の吸着除去に特に有用である。
The adsorbent for treating body fluids of the present invention is a malignant substance that is expressed in body fluids and is considered to be closely related to the cause or progression of disease, particularly, low-density lipoprotein, anaphylatoxin, retrovirus, etc. It is particularly useful for the adsorption and removal of substances that interact with anionic groups.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明体液処理用吸着材を用いた吸着装置の一
例を示す模式図、第2図は本発明体液処理用吸着材を使
用した吸着装置の別の例を示す模式図、第3図イおよび
第3図ロは本発明体液処理用吸着材の微細孔におけるア
ニオン性基の存在状態を示す模式図、第4図は本発明体
液処理用吸着材を用いた吸着器の一例を示す模式図であ
る。 1……体液導入口 2……体液輸送手段(ポンプ) 3……体液処理用吸着器 4……体液処理用吸着材 5……体液導出口 6……中空糸状全多孔体の構造体部分 7……構造体部分の表面 8……アニオン性基 9……構造体部分の遠方 10……液状成分輸送手段(ポンプ) 11……体液導入口側ノズル 12……体液導出口側ノズル 13……液状成分導出用ノズル
FIG. 1 is a schematic diagram showing an example of an adsorption device using the adsorbent for body fluid treatment of the present invention, FIG. 2 is a schematic diagram showing another example of an adsorption device using the adsorbent for body fluid treatment of the present invention, and FIG. 3 and 4 are schematic diagrams showing the presence of anionic groups in the micropores of the body fluid treating adsorbent of the present invention, and FIG. 4 shows an example of an adsorber using the body fluid treating adsorbent of the present invention. It is a schematic diagram. DESCRIPTION OF SYMBOLS 1 ... Body fluid inlet 2 ... Body fluid transport means (pump) 3 ... Body fluid treatment adsorber 4 ... Body fluid treatment adsorbent 5 ... Body fluid outlet 6 ... Structure part of hollow fiber-like totally porous body 7 ... Surface of the structure part 8 ... Anionic group 9 ... Distant of the structure part 10 ... Liquid component transport means (pump) 11 ... Body fluid inlet side nozzle 12 ... Body fluid outlet side nozzle 13 ... Nozzle for deriving liquid components

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中空糸状全多孔体の構造体部分の少なくと
も表面近傍に低分子化合物に由来するアニオン性基を有
することを特徴とする体液処理用吸着材。
1. An adsorbent for treating body fluid, comprising an anionic group derived from a low molecular weight compound at least in the vicinity of the surface of a structural portion of a hollow fiber-like totally porous body.
【請求項2】中空糸状全多孔体の構造体部分の表面近傍
に低分子化合物に由来するアニオン性基を有し、かつ構
造体部分の遠方にも鎖状の高分子化合物に由来するアニ
オン性基を有することを特徴とする体液処理用吸着材。
2. An anionic group having an anionic group derived from a low molecular weight compound near the surface of a structural portion of a hollow fiber-like totally porous material, and an anionic group derived from a chain high molecular compound far from the structural portion. An adsorbent for treating body fluid, comprising a group.
JP63212517A 1988-08-29 1988-08-29 Adsorbent for body fluid treatment Expired - Fee Related JP2777604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63212517A JP2777604B2 (en) 1988-08-29 1988-08-29 Adsorbent for body fluid treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63212517A JP2777604B2 (en) 1988-08-29 1988-08-29 Adsorbent for body fluid treatment

Publications (2)

Publication Number Publication Date
JPH0260660A JPH0260660A (en) 1990-03-01
JP2777604B2 true JP2777604B2 (en) 1998-07-23

Family

ID=16623982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63212517A Expired - Fee Related JP2777604B2 (en) 1988-08-29 1988-08-29 Adsorbent for body fluid treatment

Country Status (1)

Country Link
JP (1) JP2777604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121073A1 (en) * 2011-03-04 2012-09-13 Dic株式会社 Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076004A (en) * 1996-09-05 1998-03-24 Kanegafuchi Chem Ind Co Ltd Adsorbing material for humor treatment and adsorber for humor treatment
US6884228B2 (en) 2001-03-06 2005-04-26 Baxter International Inc. Automated system adaptable for use with different fluid circuits
US6706008B2 (en) 2001-03-06 2004-03-16 Baxter International Inc. Automated system and method for withdrawing compounds from blood
US6582386B2 (en) 2001-03-06 2003-06-24 Baxter International Inc. Multi-purpose, automated blood and fluid processing systems and methods
JPWO2012115021A1 (en) * 2011-02-21 2014-07-07 Dic株式会社 Porous hollow fiber and virus removal device
WO2012124619A1 (en) * 2011-03-11 2012-09-20 Dic株式会社 Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses
JP6134541B2 (en) * 2013-03-07 2017-05-24 ピアス株式会社 Pollen allergy control composition, cosmetics, external preparation, and quasi drug

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222659A (en) * 1985-07-24 1987-01-30 旭化成株式会社 Method and apparatus for regenerating low specific gravity lipoprotein adsorbing material
JPS6379669A (en) * 1986-09-24 1988-04-09 三菱レイヨン株式会社 Adsorbing material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121073A1 (en) * 2011-03-04 2012-09-13 Dic株式会社 Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses
JP5140211B2 (en) * 2011-03-04 2013-02-06 Dic株式会社 Substrate for removing saccharide-immobilized virus and virus removal instrument

Also Published As

Publication number Publication date
JPH0260660A (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US10052427B2 (en) Filter device combining beads and fibers
EP0868208B1 (en) Affinity membrane system and method of using same
JP2013500797A (en) Apparatus and method for removing biologically harmful substances from body fluids
CN104174386B (en) A kind of for removing the adsorbent of B2M in blood
EP0341413B2 (en) An adsorber module and adsorber apparatus for whole blood treatment
JP2777604B2 (en) Adsorbent for body fluid treatment
JP2814399B2 (en) Adsorber for whole blood processing
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
Karoor et al. Immunoaffinity removal of xenoreactive antibodies using modified dialysis or microfiltration membranes
JPH09266948A (en) Blood purifying device and blood purifying equipment
JP3157026B2 (en) Adsorbent for blood purification
JPH0622632B2 (en) Adsorbent and removal device
Fu et al. Preparation of tryptophan modified chitosan beads and their adsorption of low density lipoprotein
JP2010235496A (en) Immunoglobulin g separator
JP2726662B2 (en) Adsorbent and removal device using the same
JPH06233816A (en) Hemocatharsis adsorbent
JP3084436B2 (en) Anti-DNA antibody removal device
JPH05285381A (en) Low-specific gravity lipoprotein adsorptive material
JPH0771632B2 (en) Adsorbent and removal device using the same
JPH01124468A (en) Adsorbent of beta2-microglobulin
JPS6353827B2 (en)
JPH10328565A (en) Immunity complex removing device
JPH05269203A (en) Method of manufacturing plasma from which low specific weight lipoprotein
JPH06237997A (en) Blood purifying/adsorbing material
JPS6282973A (en) Material and apparatus for adsorbing beta-lipoprotein

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees