WO2012124619A1 - Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses - Google Patents

Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses Download PDF

Info

Publication number
WO2012124619A1
WO2012124619A1 PCT/JP2012/056068 JP2012056068W WO2012124619A1 WO 2012124619 A1 WO2012124619 A1 WO 2012124619A1 JP 2012056068 W JP2012056068 W JP 2012056068W WO 2012124619 A1 WO2012124619 A1 WO 2012124619A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
hollow fiber
virus
acid
polyanion
Prior art date
Application number
PCT/JP2012/056068
Other languages
French (fr)
Japanese (ja)
Inventor
直人 櫻井
俊徳 西山
典孝 吉川
哲朗 鈴木
Original Assignee
Dic株式会社
国立大学法人浜松医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社, 国立大学法人浜松医科大学 filed Critical Dic株式会社
Publication of WO2012124619A1 publication Critical patent/WO2012124619A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • A61M1/3482Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate by filtrating the filtrate using another cross-flow filter, e.g. a membrane filter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • A61M1/3486Biological, chemical treatment, e.g. chemical precipitation; treatment by absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds

Definitions

  • the present invention relates to a polymer substrate for removing a polyanion-immobilized virus and a method for removing a virus.
  • Hepatitis C is caused by chronic infection with hepatitis C virus (HCV), and a combination therapy of peginterferon and ribavirin is common as a therapeutic method using drugs.
  • HCV hepatitis C virus
  • the therapeutic result is about 50%, and the rate of transition to cirrhosis and liver cancer is high, so the development of more effective treatments and drugs is desired.
  • Non-Patent Document 1 In general, in the treatment with drugs, it is known that when the amount of virus in the blood is low, the treatment results are high, and when HCV in the blood is removed with a porous filter and combined therapy with the drug is performed, There is a report that treatment results are improved (Non-patent Document 2). That is, it is presumed that the treatment results have been improved by reducing the amount of virus in the body.
  • a blood inlet, an upstream blood circuit, a plasma separation unit, and a downstream blood circuit are connected in this order, and further, a plasma outlet of the plasma separation unit, an upstream plasma circuit, a plasma purification unit, and a downstream plasma
  • the circuits are connected in this order, and the end of the downstream plasma circuit is a blood processing apparatus connected to blood plasma mixing means provided in the middle of the downstream blood circuit, and the blood plasma mixing means of the downstream blood circuit
  • a blood cell treatment means comprising a water-insoluble carrier for removing at least viruses and virus-infected cells is provided on the downstream side
  • the plasma purification means comprises a porous filtration membrane having a maximum pore diameter of 20 nm to 50 nm.
  • the method of removing with the above filter is to remove the virus from the plasma components after separating blood cells and plasma once, so the circuit configuration is complicated, and a method of removing the virus from the blood more easily is desired. Yes.
  • Patent Document 2 discloses that a peptide having affinity for immunoglobulin or the like is immobilized on a water-insoluble gel, and an immune complex type hepatitis C virus is An efficient removal method has been reported.
  • Heparin is effective as a ligand that binds to HCV (Non-patent Document 3).
  • Heparin is a kind of heparan sulfate that is chemically a glycosaminoglycan. It is a polymer in which ⁇ -D-glucuronic acid or ⁇ -L-iduronic acid and D-glucosamine are polymerized by 1,4-bonds.
  • ⁇ -D-glucuronic acid or ⁇ -L-iduronic acid and D-glucosamine are polymerized by 1,4-bonds.
  • it is known as a polyanionic saccharide having a higher degree of sulfation than heparan sulfate.
  • heparin is immobilized in a substrate in which heparin is immobilized on a polymer support such as a hollow fiber that can pass whole blood without separating blood cells and plasma, or in the pores of a blood cell plasma separation membrane. It is expected that HCV can be removed more easily with such a base material, and an HCV removal module or the like with less burden on the patient can be provided. Alternatively, the same effect can be expected if a base material on which polyanions having an action equivalent to that of heparin is immobilized.
  • Examples of the form of the substrate on which the polyanion is immobilized include beads and porous hollow fibers.
  • the internal circulation type and filtration type extracorporeal circulation modules using porous hollow fibers have less blood retention than the extracorporeal circulation modules filled with the particulate polyanion-immobilized base material, Has the advantage of less formation.
  • the type of surface functional group and the immobilization density vary depending on the material of the substrate, and it is necessary to find an optimum method for each substrate.
  • Patent Document 3 discloses a polymer base material having a methylene group in the main chain, an ethylenically unsaturated bond and a sugar chain. Or a polymerizable composition containing the polymerizable compound is contacted and irradiated with ionizing radiation, or the polymeric base material is irradiated with ionizing radiation, and then the polymerizable compound or A sugar chain-immobilized polymer substrate for HIV adsorption having a sugar chain, obtained by contacting a polymerizable composition containing the polymerizable compound, is described.
  • the problem of the present invention is that a body fluid such as blood can flow without causing clogging due to generation of a thrombus and the like, and a substrate capable of efficiently removing viruses in the body fluid, To provide an instrument.
  • the present inventors have selected a polymer support, a method for immobilizing a polyanion having a function of removing a virus on a polymer support, and a polymer group on which the polyanion is immobilized. As a result of examining the materials in detail, the present invention has been completed.
  • the present invention is a virus-removing polymer base material on which a polyanion is immobilized, in particular, the polymer base material is a polyolefin hollow fiber, and the polyanion is immobilized on the surface of the hollow fiber. It relates to a polymer substrate for virus removal having
  • the polymeric base material which has the function which can selectively remove a virus, without adsorbing and removing the blood component which removal is not preferable, and a medical device using the same can be provided.
  • the present invention Polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, ring-opened polymer containing maleic anhydride polymer, polyfumaric acid, polyglutamic acid, polyaspartic acid, polyallylcarboxylic acid, polyvinylsulfuric acid, polyphosphoric acid, polyvinylphosphoric acid , Polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyallyl phosphoric acid, 2- (meth) acryloyloxyethane sulfonate polymer, 2- (meth) acryloyloxy ethane phosphate polymer, 2-acrylamide-2 A polymer substrate for virus removal in which a polyanion selected from methylpropanesulfonic acid polymer and polyisoprenesulfonic acid polymer is immobilized; 2.1.
  • Polymer support (A) surface-treated with a polymer material having a hydroxyl group is a partially saponified product of ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer, ethylene-vinyl acetate copolymer 1.
  • the compound (B) having a group capable of reacting with a hydroxyl group and a polyanion is epichlorohydrin or a diepoxy compound. Or 3.
  • a polymer substrate for virus removal in which the polyanion is immobilized A polymer substrate for virus removal in which the polyanion is immobilized on a polymer support (C) by graft polymerization; 6.1.
  • the polymer support (C) is a hollow fiber.
  • the hollow fiber is a porous hollow fiber.
  • the hollow fiber is based on polyethylene, polypropylene or poly-4-methylpentene
  • the average flow pore size of the porous hollow fiber is in the range of 10 to 500 nm.
  • the inner diameter of the porous hollow fiber is in the range of 150 to 500 ⁇ m. ⁇ 10.
  • the film thickness of the porous hollow fiber is in the range of 30 to 100 ⁇ m.
  • the amount of polyanion immobilized on the porous hollow fiber is in the range of 1 to 100 ⁇ g / cm 2 .
  • the virus is hepatitis B or C virus ⁇ 13.
  • virus removal method In the virus removal method described in the above, it has a step of mixing the liquid that has passed through the holes of the hollow fiber and the liquid that has not passed through the holes by passing the virus-containing liquid through the porous hollow fiber.
  • Virus removal method 17.
  • the fluid containing virus is blood containing virus.
  • the virus removal method as described in 1. above.
  • the polyanion used in the present invention is not particularly limited as long as it is a polymer repeatedly containing an anionic functional group such as a carboxyl group, a sulfonic acid group, a sulfuric acid group, and a phosphoric acid group.
  • polymers examples include polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, maleic anhydride polymer-containing polymer ring-opened product, polyfumaric acid, polyglutamic acid, polyaspartic acid, polyallylcarboxylic acid, polyvinyl sulfate, Polyphosphoric acid, polyvinyl phosphoric acid, polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyallyl phosphoric acid, 2- (meth) acryloyloxyethane sulfonate polymer, 2- (meth) acryloyloxyethane phosphate polymer And 2-acrylamido-2-methylpropanesulfonic acid polymer, polyisoprenesulfonic acid polymer, and the like.
  • surface graft polymerization the corresponding monomer may be reacted.
  • porous hollow fiber used for this invention will not be restrict
  • examples include olefin resins such as polyethylene, polypropylene, and poly-4-methylpentene, styrene resins, sulfone resins, acrylic resins, urethane resins, ester resins, ether resins, and cellulose mixed esters. More specifically, polyethylene terephthalate, polymethyl methacrylate, polysulfone, polyether sulfone, polyacrylonitrile and the like can be mentioned. What is necessary is just to manufacture a porous hollow fiber by a well-known and usual method according to the intended purpose. In the case of a polyolefin hollow fiber, those having various pore diameters and pore diameter distributions can be prepared by subjecting the spun yarn to annealing treatment, cold drawing, hot drawing, and heat setting.
  • the graft polymerization reaction used in the present invention may be a known method such as a method using ionizing radiation irradiation or a method using a radical generating reagent.
  • the method using ionizing radiation irradiation can be said to be an environmentally friendly polymerization reaction because no solvent or reagent is used when radicals are generated.
  • a -Graft polymerization method by ionizing radiation irradiation in particular, a method of graft polymerization by reacting radicals generated by irradiating the hollow fiber with ionizing radiation and an ethylenically unsaturated group of a vinyl monomer or the like.
  • the ionizing radiation source used in the graft polymerization include known and commonly used ⁇ -rays, ⁇ -rays, ⁇ -rays, accelerated electron beams, X-rays and the like, and practically preferred are ⁇ -rays and accelerated electron beams.
  • the simultaneous irradiation graft polymerization method in which the porous hollow fiber and the vinyl monomer are brought into contact with each other and irradiated with ionizing radiation, and after the hollow fiber has been previously irradiated with ionizing radiation and before being brought into contact with the vinyl monomer.
  • Any of the irradiation graft polymerization methods is possible and can be selected according to the purpose.
  • the irradiation dose and the acceleration voltage differ depending on the hollow fiber, it is not possible to determine the range in general, and appropriate considering the material, form, thickness, etc. of the hollow fiber It is necessary to adjust. For example, when the irradiation amount is large, dielectric breakdown due to charging occurs, and when the irradiation amount is small, the polymerization reaction does not proceed. For this reason, in consideration of the material and form of the hollow fiber, the amount of irradiation that does not cause dielectric breakdown due to charging and the polymerization reaction proceeds sufficiently may be adjusted as appropriate.
  • the acceleration voltage is related to the permeability and varies depending on the thickness of the hollow fiber. In the case of a thin form such as a film, the acceleration voltage is generally small and may be selected depending on the form of the polymer support.
  • the hollow fiber in the case of a hollow fiber having a thickness of 10 ( ⁇ m) to 100 ( ⁇ m) made of poly-4-methylpentene, the hollow fiber is 10 (kGy) or more and 300 (kGy) or less, and more preferably 90 (KGy) or less, and the acceleration voltage can be selected as appropriate.
  • the irradiation graft polymerization radicals in the substrate after irradiation are quickly inactivated by temperature increase and contact with oxygen. Therefore, after irradiation, it is preferable to store at a low temperature in a state where oxygen is sufficiently removed, and to carry out the polymerization reaction promptly.
  • the polymerization reaction is preferably carried out under deoxygenation or under an inert gas.
  • the hollow fiber after the graft polymerization reaction may be removed from unreacted monomers and homopolymers by various methods such as washing with a solvent.
  • a polymerization reaction can be performed on either the inner surface or the outer surface of the yarn, or both, depending on the embodiment.
  • the monomer solution may be contacted only inside the hollow fiber.
  • the monomer solution is contacted only outside the hollow fiber. It ’s fine.
  • the monomer solution may be brought into contact with the inside of the hole for polymerization.
  • the polymerization method of the porous hollow fiber surface-treated with the polymeric material which has a hydroxyl group can be illustrated especially.
  • CAN diammonium cerium nitrate
  • the surface-treated porous hollow fiber is immersed in a vinyl monomer solution, and CAN is put in a reaction vessel in the form of a solution or a solid and reacted for a predetermined time.
  • the concentration of the vinyl monomer or CAN may be appropriately adjusted according to the target graft ratio, and the monomer concentration may generally be in the range of 1 to 200 mg / mL, and CAN may be in the range of 0.1 to 100 mM.
  • the reaction temperature may be about room temperature to 100 ° C.
  • the polymerization reaction is performed by generating a radical at the hydroxyl group of the polymer support (A) surface-treated with the polymer material having a hydroxyl group.
  • polymerization may be performed by generating radicals directly on the surface of a hollow fiber made of polyolefin such as polyethylene, polypropylene or poly-4-methylpentene.
  • polymeric material having a hydroxyl group examples include an ethylene-vinyl alcohol copolymer, an ethylene-vinyl alcohol-vinyl acetate copolymer, and an ethylene-vinyl acetate copolymer.
  • examples include partially saponified products of polymers, those containing vinyl alcohol copolymers such as vinyl alcohol-vinyl acetate copolymers, those containing hydroxy methacrylate copolymers, partially saponified products of cellulose acetate, or glycerin derivatives. it can.
  • the surface treatment with the polymer material having a hydroxyl group can be performed by a known and usual method.
  • a solution in which the polymer material having a hydroxyl group is dissolved and pulled up Drying and the like can be mentioned as a preferable method.
  • an ethylene-vinyl alcohol copolymer is preferable in that the polyolefin porous hollow fiber can be easily hydrophilized as disclosed in JP-A-61-271003.
  • a compound capable of reacting with a polyanion is immobilized on a hollow fiber surface-treated with a polymer material having a hydroxyl group, and the polyanion can be immobilized via the compound.
  • a diepoxy compound bonded with epichlorohydrin, an alkylene group or a phenylene group is preferable (hereinafter referred to as an epoxy compound).
  • the diepoxy compound ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether, 1,3-butanediene diepoxide, 1,5 -Hexadiene diepoxide and the like.
  • these compounds can be immobilized on the porous hollow fiber by a known and conventional method.
  • an epoxy group remains, a polyanion can be immobilized through the epoxy group, which is preferable.
  • it can fix to either the inner surface of a thread
  • an epoxy compound when blood is perfused inside the hollow fiber, an epoxy compound may be brought into contact with the inside of the hollow fiber, and conversely, during external perfusion, an epoxy compound may be brought into contact with the outside of the hollow fiber.
  • the epoxy compound When trying to pass through the hole of the hollow fiber, the epoxy compound may be brought into contact with the inside of the hole and fixed.
  • the reaction between the remaining epoxy group and the polyanion may be performed by a known and conventional method.
  • a solution in which a polyanion is dissolved may be prepared and reacted as it is, or a reaction may be performed by adding a catalytic amount of an acid, a base, a Lewis acid or the like.
  • the reaction solution, temperature, time, concentration, catalyst, and the like may be appropriately selected depending on the type of polyanion and the substrate, and are not particularly limited as long as the polyanion can be immobilized.
  • a method of immobilizing a polyanion on the surface by treating a porous raw hollow fiber with a polyanion-containing polymer material is also included.
  • a treatment method a preferable method is to immerse the porous hollow fiber in a solution in which the polymer material is dissolved, pull it up and dry it.
  • a polyanion-containing resin when immobilized on a polyolefin hollow fiber, it may be a polyanion formed solely from an anionic monomer, or may be a copolymer in consideration of the solubility of the resin and the adhesion to the polyolefin hollow fiber. Also good.
  • a resin if it is a polymer formed from a single monomer, polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, a ring-opened polymer of a maleic anhydride polymer, polyfumaric acid, polyglutamic acid, poly Aspartic acid, polyallylcarboxylic acid, polyvinylsulfuric acid, polyphosphoric acid, polyvinylphosphoric acid, polyvinylsulfonic acid, polystyrene sulfonic acid, polyallylsulfonic acid, polyallylphosphoric acid, 2- (meth) acryloyloxyethane sulfonate polymer, 2- Examples include (meth) acryloyloxyethane phosphate polymer, 2-acrylamido-2-methylpropanesulfonic acid polymer, and polyisoprenesulfonic acid polymer.
  • a polymer material when blood is perfused into the hollow fiber, a polymer material may be fixed inside the hollow fiber, and conversely, during external perfusion, the polymer material may be brought into contact with the outside of the hollow fiber. When trying to pass through the hole of the hollow fiber, the polymer material may be brought into contact with the inside of the hole and fixed.
  • a post-processed post-processed porous hollow fiber is illustrated, but it is also possible to use a method of making a porous mixture of polyolefin or the like and a polyanion or polyanion-containing polymer in advance. .
  • the virus As a method of removing the virus, it is possible to remove the virus from the liquid by immersing and contacting the polyanion-immobilized hollow fiber in a liquid containing the virus, but when using a porous hollow fiber, By passing the virus-containing liquid through the hole of the hollow fiber, the virus can be efficiently removed.
  • a method of removing the virus it is possible to remove the virus from the liquid by immersing and contacting the polyanion-immobilized hollow fiber in a liquid containing the virus, but when using a porous hollow fiber, By passing the virus-containing liquid through the hole of the hollow fiber, the virus can be efficiently removed.
  • a method of separating blood cells and plasma components, allowing only the plasma components to pass through the pores, and removing viruses from the plasma can be mentioned.
  • a liquid that has passed through the holes of the hollow fiber and a liquid that has not passed through the holes are produced.
  • the virus removal rate in the liquid that passed through the hole of the hollow fiber is a good result as described in the following examples, and is a useful component in the blood It became clear that albumin was not removed.
  • passing through the hole means a state in which liquid passes through from the hollow inner surface to the outer surface side or from the outer surface to the inner surface side.
  • the pore diameter of the porous hollow fiber used is not particularly limited as long as it has a diameter capable of efficiently removing the virus.
  • the mean flow pore size is 500 nm or less so that blood cell components and platelets do not enter the pores.
  • the optimal pore size varies depending on the size of the virus when virus removal is assumed. Taking hepatitis C virus as an example, the preferred pore size is 80 to 250 nm, more preferably 100 to 180 nm.
  • the preferable pore size is 100 to 250 nm, more preferably 120 to 200 nm.
  • the pore diameter may be adjusted according to the purpose.
  • the inner diameter of the porous hollow fiber used is not particularly limited as long as it has an inner diameter capable of efficiently removing the virus.
  • the size of the circulation module and the like cannot be excessively increased.
  • the inner diameter is large, the number of yarns that can be put into the module is reduced, so that the contact area may be reduced or the linear velocity may be inferior and blood may be retained.
  • the inner diameter is preferably 150 to 500 ⁇ m, more preferably 160 to 400 ⁇ m, and further preferably 170 to 350 ⁇ m.
  • the thickness of the porous hollow fiber used is not particularly limited as long as it has a thickness capable of efficiently removing the virus.
  • it is preferably 30 to 100 ⁇ m, more preferably 35 to 80 ⁇ m, taking into consideration the plasma separation performance, contact area, mechanical strength of the hollow fiber, etc. More preferably, the thickness is 40 to 60 ⁇ m.
  • Such other substrate is not particularly limited as long as it has a function of capturing and removing viruses, and examples thereof include a material in which a compound capable of adsorbing viruses is immobilized on a gel or a nonwoven fabric. it can.
  • the amount of polyanion immobilized on the porous hollow fiber used in the present invention is preferably in the range of 1 to 100 ⁇ g / cm 2 in view of efficiently removing viruses.
  • the liquid containing virus targeted in the present invention is not particularly limited as long as it contains a virus. More specifically, for example, a body fluid which is a human body fluid component, a culture solution containing a virus, and the like can be mentioned. More specific examples of body fluids include blood, saliva, sweat, urine, runny nose, semen, plasma, lymph, tissue fluid and the like.
  • the form of the medical device comprising the polymer base material of the present invention is not particularly limited as long as it is a shape applicable to the above-mentioned use, and examples thereof include a hollow fiber module, a filtration column, and a filter. .
  • the shape and material of the container are not particularly limited, but when applied to extracorporeal circulation of body fluid (blood), a cylindrical container having an internal volume of 10 to 400 mL and an outer diameter of about 2 to 10 cm It is preferable to use a cylindrical container having an internal volume of 20 to 300 mL and an outer diameter of about 2.5 to 7 cm. An example is shown in FIG.
  • any method may be used as long as it can be removed from and separated from the virus containing the virus.
  • ⁇ Pore diameter of porous polymer substrate> In accordance with ASTM F316-86 and ASTM E1294-89, Porous Materials, Inc. Using a “Palm Porometer CFP-200AEX” manufactured by the company, the average flow pore size (average pore size of the constricted portion of the hole penetrating from one side of the membrane to the other) was measured by the half dry method. Perfluoropolyester (trade name “Galwick”) was used as the test solution.
  • the pores do not necessarily have to penetrate the membrane as a straight tube, and may be bent inside the membrane. Also, some holes may be fused inside the membrane, or conversely, one hole may be branched, or these may be mixed.
  • ⁇ Polyanion immobilized amount The amount of polyanion immobilized on the hollow fiber was determined by weight increase or titration.
  • ⁇ ELISA> The specimen is pretreated with a pretreatment solution (SDS) to release the HCV core antigen and simultaneously deactivate the coexisting HCV antibody to obtain a measurement sample.
  • a measurement sample is added to an HCV core antigen antibody-immobilized plate and incubated. After the reaction for a predetermined time, washing is performed, and whole radish-derived peroxidase-labeled HCV core antigen antibody is added and incubated. After reacting for a predetermined time, washing is performed, and o-phenylenediamine reagent is added and incubated. After the reaction for a predetermined time, a reaction stop solution is added. Measure the color development at a wavelength of 492 nm. The concentration is calculated from the absorbance of the sample.
  • porous hollow fiber High density polyethylene (HIZEX 2200J manufactured by Mitsui Petrochemical Co., Ltd.) having a density of 0.968 g / cm 3 and a melt index of 5.5 is used.
  • HIZEX 2200J manufactured by Mitsui Petrochemical Co., Ltd.
  • spinning was performed at a spinning temperature of 160 ° C. and wound up with a spinning draft 1427.
  • the dimensions of the obtained unstretched hollow fiber were an inner diameter of 308 ⁇ m and a film thickness of 64 ⁇ m.
  • This unstretched hollow fiber was heat-treated at 115 ° C. for 24 hours at a constant length.
  • the film was stretched 1.8 times at a deformation rate of 21400% / min at room temperature, and then heated in a heating furnace at 100 ° C. until the total stretching ratio was 4.8 times so that the deformation rate was 330% / min. Further, the film was further subjected to thermal shrinkage in a heating furnace at 125 ° C. until the total draw ratio became 2.8 times to obtain a porous raw drawn yarn.
  • Example of surface treatment with a polymer material having a hydroxyl group For example, an ethylene vinyl alcohol copolymer (EVOH) having an ethylene content of 44% is heated and dissolved in a 75% aqueous ethanol solution. As a result, a solution having a concentration of 2.5% by weight was obtained.
  • the above-mentioned porous raw stretched yarn was immersed in the solution kept at 50 ° C. for 100 seconds, kept at 80 ° C. under ethanol saturated steam at 50 ° C. for 80 seconds, and then the solvent was further dried over 80 seconds.
  • the obtained EVOH hydrophilized porous hollow fiber membrane had an inner diameter of 287 ⁇ m and a film thickness of 52 ⁇ m.
  • Example 1 Immobilization of Polyanion to Polyethylene Porous Hollow Fiber According to JP-A-2-0259260, 100 mL of acetone, 80 mL of epichlorohydrin, 21 mL of 40% NaOH aqueous solution were put in a test tube, an inner diameter of 257 ⁇ m, a film thickness of 54 ⁇ m, an average An EVOH hydrophilized porous hollow fiber membrane having a pore size of 183 nm was immersed. The reaction was carried out at 30 to 40 ° C. for 5 hours while applying ultrasonic waves. After completion of the reaction, the reaction product was washed with acetone and water to obtain a hollow fiber having an epoxy group introduced therein.
  • Example 2 Polyacrylic acid having a molecular weight of 25000 was immobilized in the same manner as in Example 1 except that the molecular weight of the polyacrylic acid in Example 1 was changed to 25000. From the value of weight increase, 73 ⁇ g / cm 2 (in terms of inner surface area) was fixed as polyacrylic acid. When the plasma of an HCV patient was filtered with a module obtained by using the above-described polyacrylic acid-immobilized hollow fiber membrane, 63% of HCV was removed. At this time, the albumin permeability was 98%.
  • Example 3 Production of acrylic acid grafted hollow fiber 1.5 g of acrylic acid monomer was dissolved in 100 mL of ethyl acetate, and dissolved oxygen in the solution was removed by reducing the pressure while stirring on an ice bath.
  • a porous raw hollow fiber bundle made of poly-4-methylpentene (hollow fiber inner surface area: 146 cm 2 , manufactured by DIC Corporation) is irradiated with an electron beam of 90 kGy, placed in a glass test tube and sealed with a rubber stopper. The inside of the test tube was evacuated.
  • the properties of the resulting acrylic acid polymer-bonded hollow fiber were an acrylic acid polymer bond amount of 26 mg and a bond density (in monomer conversion) of 2.5 ⁇ mol / cm 2 (inner surface area conversion).
  • Example 4 In the same manner as in Example 3, methacrylic acid was graft-polymerized on the porous raw hollow fiber to obtain a methacrylic acid grafted hollow fiber having a bond density (in terms of monomer) of 2.5 ⁇ mol / cm 2 (in terms of internal surface area).
  • HEMA Hydroxyethyl methacrylate
  • the removal rate was 56% for the acrylic acid grafted hollow fiber (Example 3) and 48% for the methacrylic acid grafted hollow fiber (Example 4). On the other hand, in the hollow fiber grafted with HEMA of Comparative Example 3, the removal rate was 9%.
  • Example 5 A 200 mL three-necked flask was charged with 60 mL of a 0.5N nitric acid aqueous solution and 2.5 g of acrylic acid, and an EVOH hydrophilized porous membrane (inner diameter 257 ⁇ m, film thickness 54 ⁇ m) was immersed therein. After the atmosphere in the flask was replaced with nitrogen on an ice bath, 100 mg of diammonium cerium nitrate was dissolved and reacted at 80 ° C. for 1 hour. After the reaction, unreacted acrylic acid and homopolymer were washed with water. The target polyacrylic acid-immobilized hollow fiber was obtained with a graft ratio of 2.7%, calculated from the weight increase of the hollow fiber. When the plasma of an HCV patient was filtered with a module obtained by using the acrylic acid grafted hollow fiber membrane, 66% of HCV was removed. At this time, the albumin permeability was 99% or more.
  • Example 6 Acrylic acid was grafted in the same manner as in Example 5 except that the amount of acrylic acid in Example 5 was changed to 0.8 g. The graft ratio at this time was 0.4%. When the plasma of an HCV patient was filtered with a module obtained using the acrylic acid grafted hollow fiber membrane, 56% of HCV was removed. At this time, the albumin permeability was 97%.
  • Example 7 An ethylene-acrylic acid copolymer (acrylic acid 15 wt%) was dissolved in heated toluene to prepare a 2.5 wt% solution. The solution was kept warm to such an extent that the resin did not precipitate, the porous stretched yarn was immersed, pulled up and dried to obtain a hollow fiber having acrylic acid fixed on the surface. When the plasma of HCV patients was filtered with a module obtained using the above-described surface acrylic acid-immobilized hollow fiber membrane, 30% of HCV was removed. At this time, the albumin permeability was 98% or more.
  • the instrument using the hollow fiber of the present invention can be used for removing viruses such as hepatitis virus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a polyanion-immobilized polymer substrate for removing viruses, said polyanion-immobilized polymer substrate enabling efficient removal of a virus from a liquid, and a method for removing viruses. In the case of applying to blood of a living organism, in particular, the present invention provides a method whereby a virus can be removed with low invasiveness, i.e., needing only a small amount of the blood to be taken out from the body and removing little useful blood components, and whereby the operation time can be shortened. The polyanion-immobilized polymer substrate for removing viruses according to the present invention is usable as a module that has a function of efficiently removing viruses and a function of not removing useful plasma components.

Description

ポリアニオン固定化ウイルス除去用高分子基材、及びウイルスの除去方法Polymer base material for removing polyanion-immobilized virus, and method for removing virus
本発明は、ポリアニオン固定化ウイルス除去用高分子基材、及びウイルスの除去方法に関する。 The present invention relates to a polymer substrate for removing a polyanion-immobilized virus and a method for removing a virus.
C型肝炎はC型肝炎ウイルス(HCV)の慢性的感染が原因であり、薬剤による治療法としてペグインターフェロン、リバビリンの併用療法が一般的である。ジェノタイプ1bかつ血液中のウイルス量の多い患者では、治療成績は50%程度であり、肝硬変、肝がんへの移行割合が高いことから、より有効な治療法、薬剤の開発が望まれている(非特許文献1)。一般的に薬剤による治療では、血中のウイルス量が低い場合、治療成績が高いことが知られており、血中のHCVを多孔性のフィルターで除去し、薬剤との併用療法を行うと、治療成績が向上するとの報告がある(非特許文献2)。即ち、体内のウイルス量を下げることで、治療成績が向上したものと推定される。 Hepatitis C is caused by chronic infection with hepatitis C virus (HCV), and a combination therapy of peginterferon and ribavirin is common as a therapeutic method using drugs. In patients with genotype 1b and a large amount of virus in the blood, the therapeutic result is about 50%, and the rate of transition to cirrhosis and liver cancer is high, so the development of more effective treatments and drugs is desired. (Non-Patent Document 1). In general, in the treatment with drugs, it is known that when the amount of virus in the blood is low, the treatment results are high, and when HCV in the blood is removed with a porous filter and combined therapy with the drug is performed, There is a report that treatment results are improved (Non-patent Document 2). That is, it is presumed that the treatment results have been improved by reducing the amount of virus in the body.
また、特許文献1には、血液入口、上流側血液回路、血漿分離手段、下流側血液回路がこの順に接続され、さらに血漿分離手段の血漿出口、上流側血漿回路、血漿浄化手段、下流側血漿回路がこの順に接続され、下流側血漿回路の末端は下流側血液回路の途中に設けられた血液血漿混合手段に接続されている血液処理装置であって、下流側血液回路の血液血漿混合手段の下流側に少なくともウイルス及びウイルス感染細胞を除去する水不溶性担体からなる血球処理手段が設けられ血漿浄化手段が最大孔径20nm以上50nm以下の多孔性濾過膜からなる装置が記載されている。 Further, in Patent Document 1, a blood inlet, an upstream blood circuit, a plasma separation unit, and a downstream blood circuit are connected in this order, and further, a plasma outlet of the plasma separation unit, an upstream plasma circuit, a plasma purification unit, and a downstream plasma The circuits are connected in this order, and the end of the downstream plasma circuit is a blood processing apparatus connected to blood plasma mixing means provided in the middle of the downstream blood circuit, and the blood plasma mixing means of the downstream blood circuit A device is described in which a blood cell treatment means comprising a water-insoluble carrier for removing at least viruses and virus-infected cells is provided on the downstream side, and the plasma purification means comprises a porous filtration membrane having a maximum pore diameter of 20 nm to 50 nm.
しかしながら、上記フィルターで除去する方法は、一旦血球と血漿を分離した後、血漿成分からウイルスを除去することから、回路構成は複雑で、より簡便に血中からウイルスを除去する方法が望まれている。 However, the method of removing with the above filter is to remove the virus from the plasma components after separating blood cells and plasma once, so the circuit configuration is complicated, and a method of removing the virus from the blood more easily is desired. Yes.
リガンド等を固定化したC型肝炎ウイルス用の血液浄化用吸着材としては、特許文献2に、免疫グロブリン等と親和性のあるペプチドを水不溶性ゲルに固定化し、免疫複合体型C型肝炎ウイルスを効率良く除去する方法が報告されている。 As an adsorbent for blood purification for hepatitis C virus to which a ligand or the like is immobilized, Patent Document 2 discloses that a peptide having affinity for immunoglobulin or the like is immobilized on a water-insoluble gel, and an immune complex type hepatitis C virus is An efficient removal method has been reported.
一方、HCVに結合するリガンドとしてヘパリンが有効なことが知られている(非特許文献3)。ヘパリンは、化学的にはグリコサミノグリカンであるヘパラン硫酸の一種であり、β-D-グルクロン酸、或いはα-L-イズロン酸とD-グルコサミンが1,4-結合により重合した高分子であって、ヘパラン硫酸と比べて硫酸化の度合いが高いポリアニオン性の糖類として知られている。
よって、血球と血漿を分離することなく全血を通過させることのできる中空糸等の高分子支持体にヘパリンが固定化された基材や血球血漿分離膜の細孔内などにヘパリンを固定化した基材であればより簡便にHCVを除去できる可能性があり、患者への負担の少ないHCV除去モジュール等を提供できることが期待される。もしくは、ヘパリンと同等の作用を有するポリアニオン類が固定化された基材であれば、同様の効果が期待される。
On the other hand, it is known that heparin is effective as a ligand that binds to HCV (Non-patent Document 3). Heparin is a kind of heparan sulfate that is chemically a glycosaminoglycan. It is a polymer in which β-D-glucuronic acid or α-L-iduronic acid and D-glucosamine are polymerized by 1,4-bonds. Thus, it is known as a polyanionic saccharide having a higher degree of sulfation than heparan sulfate.
Therefore, heparin is immobilized in a substrate in which heparin is immobilized on a polymer support such as a hollow fiber that can pass whole blood without separating blood cells and plasma, or in the pores of a blood cell plasma separation membrane. It is expected that HCV can be removed more easily with such a base material, and an HCV removal module or the like with less burden on the patient can be provided. Alternatively, the same effect can be expected if a base material on which polyanions having an action equivalent to that of heparin is immobilized.
ポリアニオンが固定化された基材の形態にはビーズや多孔質中空糸が挙げられる。多孔質中空糸を用いた内部循環型やろ過型の体外循環モジュールは、粒子状ポリアニオン固定化基材の充填された体外循環モジュールと比較して血液の滞留部分が少ないことから、構成上血栓の形成が少ない利点を有する。多孔質中空糸にポリアニオンを固定化する際、表面官能基の種類や固定化密度は基材材質によって異なり、各基材によって最適な方法を見出す必要がある。 Examples of the form of the substrate on which the polyanion is immobilized include beads and porous hollow fibers. The internal circulation type and filtration type extracorporeal circulation modules using porous hollow fibers have less blood retention than the extracorporeal circulation modules filled with the particulate polyanion-immobilized base material, Has the advantage of less formation. When the polyanion is immobilized on the porous hollow fiber, the type of surface functional group and the immobilization density vary depending on the material of the substrate, and it is necessary to find an optimum method for each substrate.
一方、ヒト免疫不全ウイルス(以下HIV)に関しての吸着作用を有する基材については、例えば、特許文献3には、主鎖にメチレン基を有する高分子基材に、エチレン性不飽和結合と糖鎖を有する重合性化合物、又は該重合性化合物を含む重合性組成物を接触させ、電離性放射線を照射するか、又は、前記高分子基材に電離放射線を照射した後、前記重合性化合物、又は該重合性化合物を含む重合性組成物を接触させて得られる、糖鎖を有するHIV吸着用糖鎖固定化高分子基材が記載されている。 On the other hand, for a base material having an adsorption action for human immunodeficiency virus (hereinafter referred to as HIV), for example, Patent Document 3 discloses a polymer base material having a methylene group in the main chain, an ethylenically unsaturated bond and a sugar chain. Or a polymerizable composition containing the polymerizable compound is contacted and irradiated with ionizing radiation, or the polymeric base material is irradiated with ionizing radiation, and then the polymerizable compound or A sugar chain-immobilized polymer substrate for HIV adsorption having a sugar chain, obtained by contacting a polymerizable composition containing the polymerizable compound, is described.
特開2005-230165JP-A-2005-230165 特開平10-323387JP-A-10-323387 特開2010-68910JP 2010-68910
本発明の課題は、従来技術を鑑み、血栓等の生成による目詰まりを起こすことなく、血液等の体液を流すことができ、効率的に体液中のウイルスを除去することが可能な基材、器具を提供することにある。 In view of the prior art, the problem of the present invention is that a body fluid such as blood can flow without causing clogging due to generation of a thrombus and the like, and a substrate capable of efficiently removing viruses in the body fluid, To provide an instrument.
上記課題を解決するために、本発明者らは高分子支持体の選択、ウイルスを除去する機能を有するポリアニオンの高分子支持体への固定化方法、及び該ポリアニオンが固定化された高分子基材について詳細に検討を行った結果、本発明を完成させるに至った。 In order to solve the above problems, the present inventors have selected a polymer support, a method for immobilizing a polyanion having a function of removing a virus on a polymer support, and a polymer group on which the polyanion is immobilized. As a result of examining the materials in detail, the present invention has been completed.
即ち、本発明は、ポリアニオンが固定化されたウイルス除去用高分子基材であって、特に高分子基材がポリオレフィン中空糸であり、該中空糸の表面上にポリアニオンが固定化されている特徴を有するウイルス除去用高分子基材に関する。 That is, the present invention is a virus-removing polymer base material on which a polyanion is immobilized, in particular, the polymer base material is a polyolefin hollow fiber, and the polyanion is immobilized on the surface of the hollow fiber. It relates to a polymer substrate for virus removal having
本発明によれば、除去が好ましくない血液成分を吸着・除去することなく、ウイルスを選択的に除去できる機能を有する高分子基材、及びそれを用いた医療器具を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the polymeric base material which has the function which can selectively remove a virus, without adsorbing and removing the blood component which removal is not preferable, and a medical device using the same can be provided.
本発明の高分子基材を備えてなる医療器具の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the medical device provided with the polymer base material of this invention.
 即ち、本発明は、
1.ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸、無水マレイン酸重合体含有ポリマーの開環体、ポリフマル酸、ポリグルタミン酸、ポリアスパラギン酸、ポリアリルカルボン酸、ポリビニル硫酸、ポリリン酸、ポリビニルリン酸、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアリルリン酸、2-(メタ)アクリロイルオキシエタンスルホン酸塩重合体、2-(メタ)アクリロイルオキシエタンリン酸塩重合体、2-アクリルアミド-2-メチルプロパンスルホン酸重合体、及びポリイソプレンスルホン酸重合体から選ばれるポリアニオンが固定化されたウイルス除去用高分子基材、
2.1.に記載のポリアニオンが固定化されたウイルス除去用高分子基材において、
水酸基を有する高分子材で表面処理された高分子支持体(A)に、水酸基及びポリアニオンと反応し得る基を有する化合物(B)を介して前記ポリアニオンが固定化されたウイルス除去用高分子基材、
3.水酸基を有する高分子材で表面処理された高分子支持体(A)が、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体の部分けん化物、ビニルアルコール-酢酸ビニル共重合体、ヒドロキシメタクリレート共重合体、酢酸セルロースの部分けん化物又はグリセリン誘導体で表面処理された中空糸である2.に記載のウイルス除去用高分子基材、
4.水酸基及びポリアニオンと反応し得る基を有する化合物(B)が、エピクロロヒドリン、又はジエポキシ化合物である2.又は3.に記載のウイルス除去用高分子基材、
5.1.に記載のポリアニオンが固定化されたウイルス除去用高分子基材において、
グラフト重合反応により前記ポリアニオンが高分子支持体(C)に固定化されたウイルス除去用高分子基材、
6.1.に記載のポリアニオンが固定化されたウイルス除去用高分子基材において、
前記ポリアニオンで高分子支持体(C)を表面処理することによりポリアニオンが固定化されたウイルス除去用高分子基材、
7.高分子支持体(C)が、中空糸である5.又は6.に記載のウイルス除去用高分子基材、
8.中空糸が、多孔性中空糸である3.又は7.に記載のウイルス除去用高分子基材、
9.中空糸が、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテンを基質とするものである8.に記載のウイルス除去用高分子基材、
10.多孔性中空糸の平均流量孔径が10~500nmの範囲である8.又は9.に記載のウイルス除去用高分子基材、
11.多孔性中空糸の内径が150~500μmの範囲である8.~10.の何れかに記載のウイルス除去用高分子基材、
12.多孔性中空糸の膜厚が30~100μmの範囲である8.~11.の何れかに記載のウイルス除去用高分子基材、
13.多孔性中空糸のポリアニオンの固定化量が1~100μg/cmの範囲である8.~12.の何れかに記載のウイルス除去用高分子基材、
14.ウイルスが、B型又はC型肝炎ウイルスである1.~13.の何れかに記載のウイルス除去用高分子基材、
15.請求項1.~14.の何れかに記載のウイルス除去用高分子基材を用いたウイルスの除去方法、
16.15.に記載のウイルス除去方法において、ウイルスを含む液を多孔性中空糸に通じることにより、中空糸の有する孔を通過した液と、孔を通過しなかった液とを混合する工程を有することを特徴とするウイルスの除去方法、
17.ウイルスを含む液が、ウイルスを含む血液である16.に記載のウイルスの除去方法、に関する。
That is, the present invention
1. Polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, ring-opened polymer containing maleic anhydride polymer, polyfumaric acid, polyglutamic acid, polyaspartic acid, polyallylcarboxylic acid, polyvinylsulfuric acid, polyphosphoric acid, polyvinylphosphoric acid , Polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyallyl phosphoric acid, 2- (meth) acryloyloxyethane sulfonate polymer, 2- (meth) acryloyloxy ethane phosphate polymer, 2-acrylamide-2 A polymer substrate for virus removal in which a polyanion selected from methylpropanesulfonic acid polymer and polyisoprenesulfonic acid polymer is immobilized;
2.1. In the polymer substrate for virus removal to which the polyanion described in is immobilized,
A polymer group for virus removal, wherein the polyanion is immobilized on a polymer support (A) surface-treated with a polymer material having a hydroxyl group via a compound (B) having a group capable of reacting with a hydroxyl group and a polyanion. Material,
3. Polymer support (A) surface-treated with a polymer material having a hydroxyl group is a partially saponified product of ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer, ethylene-vinyl acetate copolymer 1. A hollow fiber surface-treated with a vinyl alcohol-vinyl acetate copolymer, a hydroxymethacrylate copolymer, a partially saponified cellulose acetate, or a glycerin derivative. A polymer substrate for virus removal according to claim 1,
4). The compound (B) having a group capable of reacting with a hydroxyl group and a polyanion is epichlorohydrin or a diepoxy compound. Or 3. A polymer substrate for virus removal according to claim 1,
5.1. In the polymer substrate for virus removal to which the polyanion described in is immobilized,
A polymer substrate for virus removal in which the polyanion is immobilized on a polymer support (C) by graft polymerization;
6.1. In the polymer substrate for virus removal to which the polyanion described in is immobilized,
A polymer substrate for virus removal, wherein the polyanion is immobilized by surface-treating the polymer support (C) with the polyanion,
7. 4. The polymer support (C) is a hollow fiber. Or 6. A polymer substrate for virus removal according to claim 1,
8). 2. The hollow fiber is a porous hollow fiber. Or 7. A polymer substrate for virus removal according to claim 1,
9. 7. The hollow fiber is based on polyethylene, polypropylene or poly-4-methylpentene A polymer substrate for virus removal according to claim 1,
10. 7. The average flow pore size of the porous hollow fiber is in the range of 10 to 500 nm. Or 9. A polymer substrate for virus removal according to claim 1,
11. 7. The inner diameter of the porous hollow fiber is in the range of 150 to 500 μm. ~ 10. A polymer substrate for virus removal according to any one of
12 7. The film thickness of the porous hollow fiber is in the range of 30 to 100 μm. ~ 11. A polymer substrate for virus removal according to any one of
13. 7. The amount of polyanion immobilized on the porous hollow fiber is in the range of 1 to 100 μg / cm 2 . ~ 12. A polymer substrate for virus removal according to any one of
14 1. The virus is hepatitis B or C virus ~ 13. A polymer substrate for virus removal according to any one of
15. Claim 1. ~ 14. A virus removal method using the polymer substrate for virus removal according to any one of
16.15. In the virus removal method described in the above, it has a step of mixing the liquid that has passed through the holes of the hollow fiber and the liquid that has not passed through the holes by passing the virus-containing liquid through the porous hollow fiber. Virus removal method,
17. The fluid containing virus is blood containing virus. The virus removal method as described in 1. above.
以下、詳細に本発明を説明する。
・ポリアニオン
本発明に用いるポリアニオンは、カルボキシル基、スルホン酸基、硫酸基、リン酸基のようなアニオン性の官能基を繰り返し含んでいるポリマーであれば特に制限はない。このようなポリマーとして、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸、無水マレイン酸重合体含有ポリマーの開環体、ポリフマル酸、ポリグルタミン酸、ポリアスパラギン酸、ポリアリルカルボン酸、ポリビニル硫酸、ポリリン酸、ポリビニルリン酸、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアリルリン酸、2-(メタ)アクリロイルオキシエタンスルホン酸塩重合体、2-(メタ)アクリロイルオキシエタンリン酸塩重合体、2-アクリルアミド-2-メチルプロパンスルホン酸重合体、ポリイソプレンスルホン酸重合体等を例示することができる。表面グラフト重合させる場合は、対応するモノマーを反応させればよい。
Hereinafter, the present invention will be described in detail.
Polyanion The polyanion used in the present invention is not particularly limited as long as it is a polymer repeatedly containing an anionic functional group such as a carboxyl group, a sulfonic acid group, a sulfuric acid group, and a phosphoric acid group. Examples of such polymers include polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, maleic anhydride polymer-containing polymer ring-opened product, polyfumaric acid, polyglutamic acid, polyaspartic acid, polyallylcarboxylic acid, polyvinyl sulfate, Polyphosphoric acid, polyvinyl phosphoric acid, polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyallyl phosphoric acid, 2- (meth) acryloyloxyethane sulfonate polymer, 2- (meth) acryloyloxyethane phosphate polymer And 2-acrylamido-2-methylpropanesulfonic acid polymer, polyisoprenesulfonic acid polymer, and the like. In the case of surface graft polymerization, the corresponding monomer may be reacted.
・多孔性中空糸
 本発明に用いる多孔性中空糸は、公知慣用の方法で調製されるものであれば特に制限はない。例えば、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテンなどのオレフィン系樹脂、スチレン系樹脂、スルホン系樹脂、アクリル系樹脂、ウレタン系樹脂、エステル系樹脂、エーテル系樹脂又はセルロース混合エステル等が挙げられ、より具体的にはポリエチレンテレフタレート、ポリメチルメタクリレート、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル等を挙げることができる。多孔性中空糸は、使用目的に応じて、公知慣用の方法で製造すれば良い。ポリオレフィン中空糸の場合は、紡出糸をアニール処理、冷延伸、熱延伸、熱固定を行うことでさまざまな細孔径、孔径分布を有したものが調製可能である。
-Porous hollow fiber The porous hollow fiber used for this invention will not be restrict | limited especially if prepared by a well-known and usual method. Examples include olefin resins such as polyethylene, polypropylene, and poly-4-methylpentene, styrene resins, sulfone resins, acrylic resins, urethane resins, ester resins, ether resins, and cellulose mixed esters. More specifically, polyethylene terephthalate, polymethyl methacrylate, polysulfone, polyether sulfone, polyacrylonitrile and the like can be mentioned. What is necessary is just to manufacture a porous hollow fiber by a well-known and usual method according to the intended purpose. In the case of a polyolefin hollow fiber, those having various pore diameters and pore diameter distributions can be prepared by subjecting the spun yarn to annealing treatment, cold drawing, hot drawing, and heat setting.
・多孔性中空糸へのグラフト重合
本発明で用いるグラフト重合反応は、電離放射線照射による方法、ラジカル発生試薬を用いる方法など公知慣用の方法を用いることができる。電離放射線照射による方法は、ラジカル発生時に溶媒や試薬等を使わないことから、環境に配慮した重合反応といえる。
-Graft polymerization to porous hollow fiber The graft polymerization reaction used in the present invention may be a known method such as a method using ionizing radiation irradiation or a method using a radical generating reagent. The method using ionizing radiation irradiation can be said to be an environmentally friendly polymerization reaction because no solvent or reagent is used when radicals are generated.
・電離放射線照射によるグラフト重合方法
本発明では、特に、前記中空糸に電離放射線を照射して発生させたラジカルと、ビニル系モノマー等が有するエチレン性不飽和基を反応させることによってグラフト重合させる方法が例示できる。グラフト重合に際して用いる電離放射線源としては、公知慣用のα線、β線、γ線、加速電子線、X線等があげられ、実用的にはγ線、加速電子線が望ましい。実際に行う場合は、前記多孔性中空糸とビニル系モノマーとを接触させて電離放射線を照射する同時照射グラフト重合法と、中空糸に予め電離放射線を照射した後、ビニル系モノマーと接触させる前照射グラフト重合法のいずれでも可能であり、目的に合わせて選択できる。
-Graft polymerization method by ionizing radiation irradiation In the present invention, in particular, a method of graft polymerization by reacting radicals generated by irradiating the hollow fiber with ionizing radiation and an ethylenically unsaturated group of a vinyl monomer or the like. Can be illustrated. Examples of the ionizing radiation source used in the graft polymerization include known and commonly used α-rays, β-rays, γ-rays, accelerated electron beams, X-rays and the like, and practically preferred are γ-rays and accelerated electron beams. When actually performed, the simultaneous irradiation graft polymerization method in which the porous hollow fiber and the vinyl monomer are brought into contact with each other and irradiated with ionizing radiation, and after the hollow fiber has been previously irradiated with ionizing radiation and before being brought into contact with the vinyl monomer. Any of the irradiation graft polymerization methods is possible and can be selected according to the purpose.
本発明に用いる電離放射線を用いたグラフト重合法において、照射線量や加速電圧は中空糸によって異なるため、一概には範囲を決めることができず、中空糸の素材、形態、厚みなどを考慮し適宜調整することが必要である。例えば、照射量が多いと帯電による絶縁破壊が発生し、照射量が少ないと重合反応が進行しない。このため、中空糸の材質や形態などを考慮し、帯電による絶縁破壊が発生せず、かつ重合反応が充分に進む照射量を適宜調整すればよい。また、加速電圧は透過性に関係し、中空糸の厚みによって異なる。フィルムなどの薄い形態の場合、加速電圧は一般には小さくて済み、高分子支持体の形態によって選択すればよい。 In the graft polymerization method using ionizing radiation used in the present invention, since the irradiation dose and the acceleration voltage differ depending on the hollow fiber, it is not possible to determine the range in general, and appropriate considering the material, form, thickness, etc. of the hollow fiber It is necessary to adjust. For example, when the irradiation amount is large, dielectric breakdown due to charging occurs, and when the irradiation amount is small, the polymerization reaction does not proceed. For this reason, in consideration of the material and form of the hollow fiber, the amount of irradiation that does not cause dielectric breakdown due to charging and the polymerization reaction proceeds sufficiently may be adjusted as appropriate. Further, the acceleration voltage is related to the permeability and varies depending on the thickness of the hollow fiber. In the case of a thin form such as a film, the acceleration voltage is generally small and may be selected depending on the form of the polymer support.
例えば、中空糸がポリ-4-メチルペンテンからなる厚さ10(μm)~100(μm)の中空糸の場合においては、10(kGy)以上、300(kGy)以下であり、さらに望ましくは90(kGy)以下であればよく、加速電圧は適宜選択することができる。 For example, in the case of a hollow fiber having a thickness of 10 (μm) to 100 (μm) made of poly-4-methylpentene, the hollow fiber is 10 (kGy) or more and 300 (kGy) or less, and more preferably 90 (KGy) or less, and the acceleration voltage can be selected as appropriate.
前記照射グラフト重合において、照射後の基材中のラジカルは温度の上昇、酸素との接触によって速やかに不活化される。従って、照射後は十分に酸素を除いた状態で低温にて貯蔵し、速やかに重合反応を行うことが好ましい。また前記の理由から、重合反応においては脱酸素下、又は不活性ガス下で実施することが望ましい。 In the irradiation graft polymerization, radicals in the substrate after irradiation are quickly inactivated by temperature increase and contact with oxygen. Therefore, after irradiation, it is preferable to store at a low temperature in a state where oxygen is sufficiently removed, and to carry out the polymerization reaction promptly. For the above reasons, the polymerization reaction is preferably carried out under deoxygenation or under an inert gas.
グラフト重合反応後の中空糸は、溶媒による洗浄など種々の方法で未反応のモノマーやホモポリマーを除去すればよい。 The hollow fiber after the graft polymerization reaction may be removed from unreacted monomers and homopolymers by various methods such as washing with a solvent.
なお、該中空糸へ前記モノマーを重合させる場合には、実施形態に応じて糸の内面、外面のどちらか、又は両方に重合反応することができる。例えば、中空糸内部に血液を灌流させる時は、中空糸内部のみに前記モノマー溶液を接触すればよく、中空糸外部に血液を灌流させる場合には、中空糸外部のみに前記モノマー溶液を接触すれば良い。中空糸の有する孔を通過させようとする場合には、モノマー溶液を孔内部まで接触させて重合すればよい。 In addition, when polymerizing the monomer to the hollow fiber, a polymerization reaction can be performed on either the inner surface or the outer surface of the yarn, or both, depending on the embodiment. For example, when the blood is perfused inside the hollow fiber, the monomer solution may be contacted only inside the hollow fiber. When the blood is perfused outside the hollow fiber, the monomer solution is contacted only outside the hollow fiber. It ’s fine. In order to pass through the hole of the hollow fiber, the monomer solution may be brought into contact with the inside of the hole for polymerization.
・ラジカル発生試薬によるグラフト重合反応
本発明では、特に、水酸基を有する高分子材で表面処理された多孔性中空糸の重合方法を例示できる。この場合、ポリビニルアルコールやセルロースのラジカル発生方法として公知慣用の硝酸二アンモニウムセリウム(CAN)等を開始剤として用いることが可能である。表面処理された多孔性中空糸をビニルモノマー溶液に浸漬し、CANを溶液もしくは固体のまま反応容器に入れて、所定の時間反応させる。ビニルモノマーやCANの濃度は、目的のグラフト率に応じて適宜調整すればよく、概ねモノマー濃度は1~200mg/mLの範囲、CANは0.1~100mMの範囲で行えばよい。反応温度は、概ね室温~100℃で行えばよい。
ラジカルを発生させてグラフト重合反応によりポリアニオンを固定化するには、上述したように、水酸基を有する高分子材で表面処理された高分子支持体(A)の水酸基にラジカルを発生させて重合反応を行っても、或いはポリエチレン、ポリプロピレン又はポリ-4-メチルペンテン等のポリオレフィンで構成された中空糸の表面に直接ラジカルを発生させて重合させてもよい。
-Graft polymerization reaction by radical generating reagent In this invention, the polymerization method of the porous hollow fiber surface-treated with the polymeric material which has a hydroxyl group can be illustrated especially. In this case, it is possible to use diammonium cerium nitrate (CAN), which is known and commonly used as a radical generating method for polyvinyl alcohol and cellulose, as an initiator. The surface-treated porous hollow fiber is immersed in a vinyl monomer solution, and CAN is put in a reaction vessel in the form of a solution or a solid and reacted for a predetermined time. The concentration of the vinyl monomer or CAN may be appropriately adjusted according to the target graft ratio, and the monomer concentration may generally be in the range of 1 to 200 mg / mL, and CAN may be in the range of 0.1 to 100 mM. The reaction temperature may be about room temperature to 100 ° C.
In order to immobilize the polyanion by generating a radical and performing a graft polymerization reaction, as described above, the polymerization reaction is performed by generating a radical at the hydroxyl group of the polymer support (A) surface-treated with the polymer material having a hydroxyl group. Alternatively, polymerization may be performed by generating radicals directly on the surface of a hollow fiber made of polyolefin such as polyethylene, polypropylene or poly-4-methylpentene.
・水酸基を有する高分子材
本発明で使用が可能な水酸基を有する高分子材としては、例えば、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体の部分けん化物、ビニルアルコール-酢酸ビニル共重合体などのビニルアルコール共重合体を含んだもの、ヒドロキシメタクリレート共重合体を含んだもの、酢酸セルロースの部分けん化物又はグリセリン誘導体を例示することができる。ただし、例示したもの以外にも、水酸基を有する樹脂であれば特に制限はない。
水酸基を有する高分子材での表面処理は、公知慣用の方法で行うことができ、例えば、多孔化されたポリオレフィンを、水酸基を有する高分子材を溶解させた溶液中に浸漬し、引き上げた後乾燥する等を好ましい方法として挙げることができる。中でもエチレン-ビニルアルコール共重合体は、特開昭61-271003などにもあるように、ポリオレフィン多孔中空糸を簡便に親水化することができる点で好ましい。もしくは、予めポリオレフィン等と水酸基を有する高分子材を混合させたものを多孔化する手法を用いることも可能である。
-Polymeric material having a hydroxyl group Examples of the polymeric material having a hydroxyl group that can be used in the present invention include an ethylene-vinyl alcohol copolymer, an ethylene-vinyl alcohol-vinyl acetate copolymer, and an ethylene-vinyl acetate copolymer. Examples include partially saponified products of polymers, those containing vinyl alcohol copolymers such as vinyl alcohol-vinyl acetate copolymers, those containing hydroxy methacrylate copolymers, partially saponified products of cellulose acetate, or glycerin derivatives. it can. However, in addition to those exemplified, there is no particular limitation as long as the resin has a hydroxyl group.
The surface treatment with the polymer material having a hydroxyl group can be performed by a known and usual method. For example, after the porous polyolefin is immersed in a solution in which the polymer material having a hydroxyl group is dissolved and pulled up, Drying and the like can be mentioned as a preferable method. Among these, an ethylene-vinyl alcohol copolymer is preferable in that the polyolefin porous hollow fiber can be easily hydrophilized as disclosed in JP-A-61-271003. Alternatively, it is also possible to use a method of making a porous mixture of polyolefin or the like and a polymer material having a hydroxyl group in advance.
・水酸基及びポリアニオンと反応し得る基を有する化合物(B)
本発明では、水酸基を有する高分子材で表面処理された中空糸に、ポリアニオンと反応しうる化合物を固定化し、それを介してポリアニオンを固定化することも例示できる。特に、エピクロロヒドリンや、アルキレン基或いはフェニレン基で結合されたジエポキシ化合物が好ましい(以下、エポキシ化合物)。ここで、ジエポキシ化合物としては、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジエルエーテル、1,3-ブタンジエンジエポキシド、1,5-ヘキサジエンジエポキシド等を例示できる。これらの化合物は、多孔性中空糸に公知慣用の方法で固定化が可能である。さらに、エポキシ基が残存するため、それを介してポリアニオンを固定化することが出来るため、好ましい。なお、該中空糸へエポキシ化合物を固定化する場合には、実施形態に応じて糸の内面、外面のどちらか、又は両方に固定化することができる。例えば、中空糸内部に血液を灌流させる時は、中空糸内部にエポキシ化合物を接触すればよく、逆に、外部灌流時には中空糸外部にエポキシ化合物を接触すれば良い。中空糸の有する孔を通過させようとする場合には、エポキシ化合物を孔内部まで接触させて固定化すればよい。
Compound having a group capable of reacting with hydroxyl group and polyanion (B)
In the present invention, a compound capable of reacting with a polyanion is immobilized on a hollow fiber surface-treated with a polymer material having a hydroxyl group, and the polyanion can be immobilized via the compound. In particular, a diepoxy compound bonded with epichlorohydrin, an alkylene group or a phenylene group is preferable (hereinafter referred to as an epoxy compound). Here, as the diepoxy compound, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether, 1,3-butanediene diepoxide, 1,5 -Hexadiene diepoxide and the like. These compounds can be immobilized on the porous hollow fiber by a known and conventional method. Furthermore, since an epoxy group remains, a polyanion can be immobilized through the epoxy group, which is preferable. In addition, when fixing an epoxy compound to this hollow fiber, according to embodiment, it can fix to either the inner surface of a thread | yarn, an outer surface, or both. For example, when blood is perfused inside the hollow fiber, an epoxy compound may be brought into contact with the inside of the hollow fiber, and conversely, during external perfusion, an epoxy compound may be brought into contact with the outside of the hollow fiber. When trying to pass through the hole of the hollow fiber, the epoxy compound may be brought into contact with the inside of the hole and fixed.
残存したエポキシ基とポリアニオンの反応は、公知慣用の方法を用いれば良い。ポリアニオンを溶解した溶液を調製して、そのまま反応させても良いし、酸、塩基やルイス酸等を触媒量加えて反応させても良い。反応溶液、温度、時間、濃度、触媒などは、ポリアニオンの種類や基材によって適宜選択すればよく、ポリアニオンを固定化できれば特に制限はない。  The reaction between the remaining epoxy group and the polyanion may be performed by a known and conventional method. A solution in which a polyanion is dissolved may be prepared and reacted as it is, or a reaction may be performed by adding a catalytic amount of an acid, a base, a Lewis acid or the like. The reaction solution, temperature, time, concentration, catalyst, and the like may be appropriately selected depending on the type of polyanion and the substrate, and are not particularly limited as long as the polyanion can be immobilized. *
・ポリアニオンによる高分子支持体(C)の表面処理
本発明では、多孔生中空糸をポリアニオン含有高分子材で処理することにより、表面にポリアニオンを固定化する手法も含まれる。処理方法としては、高分子材を溶解させた溶液中に多孔生中空糸を浸漬し、引き上げた後に乾燥する等を好ましい方法としてあげることができる。例えば、ポリオレフィン中空糸にポリアニオン含有樹脂を固定化する場合、アニオン性モノマー単独により形成されたポリアニオンでも良いし、樹脂の溶解性やポリオレフィン中空糸との接着性を勘案し、共重合体であっても良い。そのような樹脂として、単独モノマーより形成されたポリマーであれば、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸、無水マレイン酸重合体含有ポリマーの開環体、ポリフマル酸、ポリグルタミン酸、ポリアスパラギン酸、ポリアリルカルボン酸、ポリビニル硫酸、ポリリン酸、ポリビニルリン酸、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアリルリン酸、2-(メタ)アクリロイルオキシエタンスルホン酸塩重合体、2-(メタ)アクリロイルオキシエタンリン酸塩重合体、2-アクリルアミド-2-メチルプロパンスルホン酸重合体、ポリイソプレンスルホン酸重合体を例示できる。
-Surface treatment of polymer support (C) with polyanion In the present invention, a method of immobilizing a polyanion on the surface by treating a porous raw hollow fiber with a polyanion-containing polymer material is also included. As a treatment method, a preferable method is to immerse the porous hollow fiber in a solution in which the polymer material is dissolved, pull it up and dry it. For example, when a polyanion-containing resin is immobilized on a polyolefin hollow fiber, it may be a polyanion formed solely from an anionic monomer, or may be a copolymer in consideration of the solubility of the resin and the adhesion to the polyolefin hollow fiber. Also good. As such a resin, if it is a polymer formed from a single monomer, polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, a ring-opened polymer of a maleic anhydride polymer, polyfumaric acid, polyglutamic acid, poly Aspartic acid, polyallylcarboxylic acid, polyvinylsulfuric acid, polyphosphoric acid, polyvinylphosphoric acid, polyvinylsulfonic acid, polystyrene sulfonic acid, polyallylsulfonic acid, polyallylphosphoric acid, 2- (meth) acryloyloxyethane sulfonate polymer, 2- Examples include (meth) acryloyloxyethane phosphate polymer, 2-acrylamido-2-methylpropanesulfonic acid polymer, and polyisoprenesulfonic acid polymer.
一方、共重合体であれば、エチレン-アニオン性モノマー共重合体、ブタジエン-アニオン性モノマー共重合体、メチルアクリレート-アニオン性モノマー共重合体、エチルアクリレート-アニオン性モノマー共重合体、ブチルアクリレート-アニオン性モノマー共重合体等が挙げられ、中でも好ましいアニオン性モノマーとして、メタ(アクリル酸)やスチレンスルホン酸などが例示できる。なお、該中空糸をポリアニオン含有高分子材で処理する場合には、実施形態に応じて糸の内面、外面のどちらか、又は両方に固定化することができる。例えば、中空糸内部に血液を灌流させる時は、中空糸内部に高分子材を固定化すればよく、逆に、外部灌流時には中空糸外部に高分子材を接触すれば良い。中空糸の有する孔を通過させようとする場合には、高分子材を孔内部まで接触させて固定化すればよい。
本発明では、多孔生中空糸を作製後に後処理をしたものを例示しているが、予めポリオレフィン等とポリアニオンやポリアニオン含有重合体を混合させたものを多孔化する手法を用いることも可能である。
On the other hand, for copolymers, ethylene-anionic monomer copolymer, butadiene-anionic monomer copolymer, methyl acrylate-anionic monomer copolymer, ethyl acrylate-anionic monomer copolymer, butyl acrylate- An anionic monomer copolymer etc. are mentioned, A meta (acrylic acid), a styrenesulfonic acid, etc. can be illustrated as a preferable anionic monomer especially. In addition, when processing this hollow fiber with a polyanion containing polymeric material, it can fix to either the inner surface of a thread | yarn, an outer surface, or both according to embodiment. For example, when blood is perfused into the hollow fiber, a polymer material may be fixed inside the hollow fiber, and conversely, during external perfusion, the polymer material may be brought into contact with the outside of the hollow fiber. When trying to pass through the hole of the hollow fiber, the polymer material may be brought into contact with the inside of the hole and fixed.
In the present invention, a post-processed post-processed porous hollow fiber is illustrated, but it is also possible to use a method of making a porous mixture of polyolefin or the like and a polyanion or polyanion-containing polymer in advance. .
ウイルスを除去する方法として、ウイルスを含む液にポリアニオン固定化中空糸を浸漬して接触させることにより液中からウイルスを除去することも可能であるが、多孔性中空糸を用いた場合には、ウイルスを含む液を中空糸の有する孔内を通じることにより、効率的にウイルスを除去することができる。体外循環時に血液を処理する場合を考えると、全血を孔内で処理出来ることが簡便で望ましいが、滞留の問題や細孔内に直接血球が接するために高い生体適合性が要求される。 As a method of removing the virus, it is possible to remove the virus from the liquid by immersing and contacting the polyanion-immobilized hollow fiber in a liquid containing the virus, but when using a porous hollow fiber, By passing the virus-containing liquid through the hole of the hollow fiber, the virus can be efficiently removed. Considering the case of processing blood during extracorporeal circulation, it is convenient and desirable that whole blood can be processed in the pores, but high biocompatibility is required because of the problem of stagnation and blood cells directly contacting the pores.
一方、血球と血漿成分を分離し、血漿成分だけを孔内に通過させ、血漿からウイルスを除去する方法が挙げられる。その場合は中空糸の有する孔を通過した液と孔を通過しなかった液とが生成する。ウイルスを含む液中のウイルスの除去率の検討から、下記実施例に記すように中空糸の孔を通過した液中のウイルスの除去率は好成績であり、また、血液中の有用な成分であるアルブミンは除去しないことが明らかとなった。ここで、孔を通過するとは、中空の内表面から外表面側に、もしくは外表面から内表面側に液が通り抜ける状態をさす。 On the other hand, a method of separating blood cells and plasma components, allowing only the plasma components to pass through the pores, and removing viruses from the plasma can be mentioned. In that case, a liquid that has passed through the holes of the hollow fiber and a liquid that has not passed through the holes are produced. From the examination of the virus removal rate in the liquid containing virus, the virus removal rate in the liquid that passed through the hole of the hollow fiber is a good result as described in the following examples, and is a useful component in the blood It became clear that albumin was not removed. Here, passing through the hole means a state in which liquid passes through from the hollow inner surface to the outer surface side or from the outer surface to the inner surface side.
用いられる多孔性中空糸の細孔径は、上記のウイルスを効率的に除去させうる孔径のものであれば、特に制限はない。例えば、体外循環で血漿中からウイルスを効率的に除去する場合は、以下のように設計する必要がある。血球と血漿を分離し、血漿中からウイルスを除去する場合、血漿分離膜としての機能を有する必要がある。したがって、血球成分や血小板が細孔内に入らないように平均流量孔径として500nm以下があることが望ましい。 The pore diameter of the porous hollow fiber used is not particularly limited as long as it has a diameter capable of efficiently removing the virus. For example, in order to efficiently remove viruses from plasma by extracorporeal circulation, it is necessary to design as follows. When blood cells and plasma are separated and virus is removed from the plasma, it must have a function as a plasma separation membrane. Therefore, it is desirable that the mean flow pore size is 500 nm or less so that blood cell components and platelets do not enter the pores.
さらに、血漿中のタンパク成分の透過性が落ちないように設計する必要があるために、平均流量孔径として50nm以上が望ましい。したがって、血漿分離膜としての機能を有するためには、平均流量孔径としては50~500nmに設計する必要がある。本発明では、血液から分離した血漿中から効率的にウイルスを除去する特徴を有するため、ウイルスの除去を想定した場合、ウイルスの大きさによって最適な細孔径が異なる。
C型肝炎ウイルスの場合を例に挙げると、好ましい細孔径は80~250nmさらに好ましくは100~180nmとなる。また、比較的大きいヒト免疫不全ウイルスの場合などは、好ましい細孔径が100~250nm、さらに好ましくは120~200nmとなる。ウイルスを含む液にポリアニオン固定化中空糸を浸漬することによって除去しようとする場合は、特にその制限はなく、目的に応じた細孔径にすればよい。
Furthermore, since it is necessary to design so that the permeability | transmittance of the protein component in plasma does not fall, 50 nm or more is desirable as an average flow hole diameter. Therefore, in order to have a function as a plasma separation membrane, it is necessary to design the average flow pore size to 50 to 500 nm. Since the present invention has a feature of efficiently removing viruses from plasma separated from blood, the optimal pore size varies depending on the size of the virus when virus removal is assumed.
Taking hepatitis C virus as an example, the preferred pore size is 80 to 250 nm, more preferably 100 to 180 nm. In the case of a relatively large human immunodeficiency virus, the preferable pore size is 100 to 250 nm, more preferably 120 to 200 nm. When the polyanion-immobilized hollow fiber is to be removed by immersing it in a virus-containing liquid, there is no particular limitation, and the pore diameter may be adjusted according to the purpose.
 用いられる多孔性中空糸の内径は、上記のウイルスを効率的に除去させうる内径のものであれば、特に制限はない。例えば、体外循環で中空糸を用いる場合は、以下のように設計する必要がある。 The inner diameter of the porous hollow fiber used is not particularly limited as long as it has an inner diameter capable of efficiently removing the virus. For example, when using a hollow fiber in extracorporeal circulation, it is necessary to design as follows.
 人間から取り出して循環させられる血液量は限られているため、循環モジュール等のサイズは過度に大きくすることはできない。内径が大きい場合は、モジュールに入れられる糸の本数が少なくなるため、接触面積が減少してしまうことや線速が劣って血液が滞留してしまう恐れがある。 Since the amount of blood that can be circulated from humans is limited, the size of the circulation module and the like cannot be excessively increased. When the inner diameter is large, the number of yarns that can be put into the module is reduced, so that the contact area may be reduced or the linear velocity may be inferior and blood may be retained.
 一方、内径が小さくなりすぎる場合は、血球成分が詰まりやすくなることが考えられる。それらの点を考慮した場合、内径は150~500μmが好ましく、さらに好ましく160~400μm、さらに好ましくは170~350μmとなる。 On the other hand, if the inner diameter becomes too small, the blood cell component is likely to be clogged. Considering these points, the inner diameter is preferably 150 to 500 μm, more preferably 160 to 400 μm, and further preferably 170 to 350 μm.
 用いられる多孔性中空糸の膜厚は、上記のウイルスを効率的に除去させうる膜厚のものであれば、特に制限はない。例えば、体外循環で血漿中からウイルスを効率的に除去する場合などは、血漿分離性能、接触面積や中空糸の機械強度等を考慮して、30~100μmが好ましく、さらに好ましくは35~80μm、さらに好ましくは40~60μmとなる。 The thickness of the porous hollow fiber used is not particularly limited as long as it has a thickness capable of efficiently removing the virus. For example, when the virus is efficiently removed from the plasma by extracorporeal circulation, it is preferably 30 to 100 μm, more preferably 35 to 80 μm, taking into consideration the plasma separation performance, contact area, mechanical strength of the hollow fiber, etc. More preferably, the thickness is 40 to 60 μm.
更に、中空糸外部に、ウイルスを捕捉し除去させる機能を有する他の基材を組み合わせることで、ウイルスの除去率の向上を図ることも可能である。このような他の基材としては、ウイルスを捕捉し除去させる機能を有するものであれば特に制限はないが、例えば、ゲルや不織布等にウィルスを吸着できる化合物を固定化したものを挙げることができる。
本発明で用いられる多孔性中空糸へのポリアニオンの固定化量は、ウイルスを効率的に除去することを鑑みて、1~100μg/cmの範囲であることが好ましい。
Furthermore, it is also possible to improve the virus removal rate by combining another substrate having a function of capturing and removing viruses outside the hollow fiber. Such other substrate is not particularly limited as long as it has a function of capturing and removing viruses, and examples thereof include a material in which a compound capable of adsorbing viruses is immobilized on a gel or a nonwoven fabric. it can.
The amount of polyanion immobilized on the porous hollow fiber used in the present invention is preferably in the range of 1 to 100 μg / cm 2 in view of efficiently removing viruses.
・ウイルスを含む液
本発明で対象とするウイルスを含む液は、ウイルスを含む液であれば特に制限はない。より具体的には、例えば、ヒトの体内液体成分である体液、ウイルスを含んだ培養液等を挙げることができる。体液のより具体的な例としては、血液、唾液、汗、尿、鼻水、精液、血漿、リンパ液、組織液等を挙げることができる。
-Liquid containing virus The liquid containing virus targeted in the present invention is not particularly limited as long as it contains a virus. More specifically, for example, a body fluid which is a human body fluid component, a culture solution containing a virus, and the like can be mentioned. More specific examples of body fluids include blood, saliva, sweat, urine, runny nose, semen, plasma, lymph, tissue fluid and the like.
本発明の高分子基材を備えてなる医療器具の形態としては、前記用途に適用可能な形状であれば特に限定されるものではないが、例えば中空糸モジュールや濾過カラム、フィルターなどが挙げられる。中空糸モジュールや濾過カラムにおいて、容器の形状及び材質は特に限定されないが、体液(血液)の体外循環に適用する場合、内部容量が10~400mLで外径が2~10cm程度の筒状容器とすることが好ましく、内部容量が20~300mLで外径が2.5~7cm程度の筒状容器とすることがより好ましい。図1にその一例を挙げる。 The form of the medical device comprising the polymer base material of the present invention is not particularly limited as long as it is a shape applicable to the above-mentioned use, and examples thereof include a hollow fiber module, a filtration column, and a filter. . In the hollow fiber module and the filtration column, the shape and material of the container are not particularly limited, but when applied to extracorporeal circulation of body fluid (blood), a cylindrical container having an internal volume of 10 to 400 mL and an outer diameter of about 2 to 10 cm It is preferable to use a cylindrical container having an internal volume of 20 to 300 mL and an outer diameter of about 2.5 to 7 cm. An example is shown in FIG.
本発明の医療器具の使用方法としては、上記ウイルスを含む液と接触させて該液中のウイルスを除去、分離することができればいずれの方法でもよい。 As a method for using the medical device of the present invention, any method may be used as long as it can be removed from and separated from the virus containing the virus.
以下の実施例により本発明を更に詳細に説明する。 The following examples illustrate the invention in more detail.
<多孔性高分子基材の孔径>
ASTM F316-86およびASTM E1294-89に準拠し、Porous Materials,Inc.社製「パームポロメータCFP-200AEX」を用いてハーフドライ法により平均流量孔径(膜の一方から他方に向けて貫通する孔の窄み部分の平均孔径)を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。
<Pore diameter of porous polymer substrate>
In accordance with ASTM F316-86 and ASTM E1294-89, Porous Materials, Inc. Using a “Palm Porometer CFP-200AEX” manufactured by the company, the average flow pore size (average pore size of the constricted portion of the hole penetrating from one side of the membrane to the other) was measured by the half dry method. Perfluoropolyester (trade name “Galwick”) was used as the test solution.
細孔は必ずしも直状の管として膜を貫通している必要はなく、膜の内部で屈曲していても良い。また、幾つかの孔が膜内部で融合していたり、逆に一つの孔が枝分かれしていても良く、これらが混在していても良い。 The pores do not necessarily have to penetrate the membrane as a straight tube, and may be bent inside the membrane. Also, some holes may be fused inside the membrane, or conversely, one hole may be branched, or these may be mixed.
<ポリアニオンの固定化量>
中空糸に固定化されたポリアニオンの量は、重量増加もしくは滴定によって求めた。
<HCV除去試験>
膜面積1.8cmの中空糸モジュールを作製し、HCV患者血漿(原液)0.6mLを通液して、孔を通過した液(ろ液)0.3mL、孔を通過しなかった液(内液)0.3mLを得た。検体をオーソ製HCV抗原ELISAテストで測定し、
HCV除去率(%)=(1-ろ液中のHCV量/原液中のHCV量)×100
を求めた。
<Polyanion immobilized amount>
The amount of polyanion immobilized on the hollow fiber was determined by weight increase or titration.
<HCV removal test>
A hollow fiber module with a membrane area of 1.8 cm 2 was prepared, 0.6 mL of plasma (stock solution) of HCV patient was passed through, 0.3 mL of liquid (filtrate) that passed through the hole, and liquid that did not pass through the hole ( (Inner liquid) 0.3 mL was obtained. Specimen was measured by ortho HCV antigen ELISA test,
HCV removal rate (%) = (1-HCV amount in filtrate / HCV amount in stock solution) × 100
Asked.
<ELISA>
検体を前処理液(SDS)で前処理し、HCVコア抗原を遊離させると同時に共存するHCV抗体を失活させ測定試料とする。測定試料をHCVコア抗原抗体固定化プレートに添加し、インキュベーションする。所定時間反応後、洗浄し、ホールラディッシュ由来ペルオキシダーゼ標識化HCVコア抗原抗体を添加し、インキュベーションする。所定時間反応後、洗浄し、o-フェニレンジアミン試薬を添加し、インキュベーションする。所定時間反応後、反応停止液を添加する。492nmの波長で発色を測光する。標品の吸光度より、濃度を算出する。
<ELISA>
The specimen is pretreated with a pretreatment solution (SDS) to release the HCV core antigen and simultaneously deactivate the coexisting HCV antibody to obtain a measurement sample. A measurement sample is added to an HCV core antigen antibody-immobilized plate and incubated. After the reaction for a predetermined time, washing is performed, and whole radish-derived peroxidase-labeled HCV core antigen antibody is added and incubated. After reacting for a predetermined time, washing is performed, and o-phenylenediamine reagent is added and incubated. After the reaction for a predetermined time, a reaction stop solution is added. Measure the color development at a wavelength of 492 nm. The concentration is calculated from the absorbance of the sample.
<血漿中アルブミン透過量>
検体にブロムクレゾールグリーン試薬を添加し、630nmの波長で発色を測光する。標品の吸光度より、濃度を算出した。
アルブミン透過率(%)=(ろ液中のアルブミン量/ろ過前のアルブミン量)×100
<Plasma albumin permeation amount>
Bromocresol green reagent is added to the specimen, and color development is measured at a wavelength of 630 nm. The concentration was calculated from the absorbance of the sample.
Albumin permeability (%) = (albumin content in filtrate / albumin content before filtration) × 100
・多孔性中空糸の調製例
密度0.968g/cm、メルトインデックス5.5の高密度ポリエチレン(三井石油化学工業株式会社製HIZEX 2200J)を吐出口径16mm、円環スリット幅が2.5mm、吐出断面積が1.06cmの中空糸賦型用紡糸口金を用い、紡糸温度160℃で紡糸し、紡糸ドラフト1427で巻き取った。得られた未延伸中空糸の寸法は内径が308μm、膜厚が64μmであった。この未延伸中空糸を115℃で24時間、定長で熱処理した。つづいて室温で21400%/minの変形速度で1.8倍延伸した後、100℃の加熱炉中で変形速度が330%/minとなるように総延伸倍率が4.8倍になるまで熱延伸を行った、さらに125℃の加熱炉で総延伸倍率が2.8倍になるまで連続的に熱収縮を行い、多孔生延伸糸を得た。
-Preparation example of porous hollow fiber High density polyethylene (HIZEX 2200J manufactured by Mitsui Petrochemical Co., Ltd.) having a density of 0.968 g / cm 3 and a melt index of 5.5 is used. Using a spinneret for hollow fiber shaping having a discharge cross-sectional area of 1.06 cm 2 , spinning was performed at a spinning temperature of 160 ° C. and wound up with a spinning draft 1427. The dimensions of the obtained unstretched hollow fiber were an inner diameter of 308 μm and a film thickness of 64 μm. This unstretched hollow fiber was heat-treated at 115 ° C. for 24 hours at a constant length. Subsequently, the film was stretched 1.8 times at a deformation rate of 21400% / min at room temperature, and then heated in a heating furnace at 100 ° C. until the total stretching ratio was 4.8 times so that the deformation rate was 330% / min. Further, the film was further subjected to thermal shrinkage in a heating furnace at 125 ° C. until the total draw ratio became 2.8 times to obtain a porous raw drawn yarn.
・水酸基を有する高分子材での表面処理例
水酸基を有する高分子材で処理する場合は、例えば、エチレン含有率が44%のエチレンビニルアルコール共重合体(EVOH)を75%エタノール水溶液に加熱溶解し、濃度2.5重量%の溶液を得た。50℃に保温した該溶液に上述の多孔生延伸糸を100秒間浸漬し、50℃のエタノール飽和蒸気下で80秒保温した後、さらに80秒かけて溶剤を乾燥した。得られたEVOH親水化処理多孔性中空糸膜の内径は287μm、膜厚は52μmであった。
Example of surface treatment with a polymer material having a hydroxyl group When treating with a polymer material having a hydroxyl group, for example, an ethylene vinyl alcohol copolymer (EVOH) having an ethylene content of 44% is heated and dissolved in a 75% aqueous ethanol solution. As a result, a solution having a concentration of 2.5% by weight was obtained. The above-mentioned porous raw stretched yarn was immersed in the solution kept at 50 ° C. for 100 seconds, kept at 80 ° C. under ethanol saturated steam at 50 ° C. for 80 seconds, and then the solvent was further dried over 80 seconds. The obtained EVOH hydrophilized porous hollow fiber membrane had an inner diameter of 287 μm and a film thickness of 52 μm.
(実施例1)ポリエチレン多孔性中空糸へのポリアニオン固定化
特開平2-029260に従い、試験管にアセトン100mL、エピクロロヒドリン80mL、40%NaOH水溶液21mLを入れ、内径257μm、膜厚54μm、平均孔径183nmのEVOH親水化処理多孔性中空糸膜を浸漬した。超音波をかけながら、30~40℃で5時間反応させた。反応終了後、アセトンと水で洗浄し、エポキシ基が導入された中空糸を得た。次に、分子量5000のポリアクリル酸の10%水溶液を調製し、エポキシ導入中空糸を浸漬し、40℃で3日間反応させた。重量増加の値から、ポリアクリル酸として31μg/cm(内表面積換算)固定化されていた。上記のポリアクリル酸固定化中空糸膜を用いて得られるモジュールで、HCV患者の血漿をろ過したところ、HCVが53%除去された。このとき、アルブミンの透過率は98%だった。
Example 1 Immobilization of Polyanion to Polyethylene Porous Hollow Fiber According to JP-A-2-0259260, 100 mL of acetone, 80 mL of epichlorohydrin, 21 mL of 40% NaOH aqueous solution were put in a test tube, an inner diameter of 257 μm, a film thickness of 54 μm, an average An EVOH hydrophilized porous hollow fiber membrane having a pore size of 183 nm was immersed. The reaction was carried out at 30 to 40 ° C. for 5 hours while applying ultrasonic waves. After completion of the reaction, the reaction product was washed with acetone and water to obtain a hollow fiber having an epoxy group introduced therein. Next, a 10% aqueous solution of polyacrylic acid having a molecular weight of 5000 was prepared, and the epoxy-introduced hollow fiber was immersed and reacted at 40 ° C. for 3 days. From the value of weight increase, 31 μg / cm 2 (in terms of inner surface area) was immobilized as polyacrylic acid. When the plasma of an HCV patient was filtered with the module obtained using the above-mentioned polyacrylic acid-immobilized hollow fiber membrane, 53% of HCV was removed. At this time, the albumin permeability was 98%.
(比較例1)
実施例1で使用したポリアクリル酸を固定化していないEVOH親水化処理中空糸膜を用いて同様の評価を行ったところ、HCVの除去率は19%であった。したがって、分子量5000のポリアクリル酸を固定化した中空糸は、アルブミンのような生体成分は除去せずに、HCVの除去率を向上させられることがわかった。
(Comparative Example 1)
When the same evaluation was performed using the EVOH hydrophilized hollow fiber membrane in which the polyacrylic acid used in Example 1 was not immobilized, the HCV removal rate was 19%. Therefore, it was found that the hollow fiber in which polyacrylic acid having a molecular weight of 5000 is immobilized can improve the removal rate of HCV without removing biological components such as albumin.
(実施例2)
実施例1のポリアクリル酸の分子量を25000に変えた以外は、実施例1と同様の手法で分子量25000のポリアクリル酸を固定化した。重量増加の値から、ポリアクリル酸として73μg/cm(内表面積換算)固定化されていた。上記のポリアクリル酸固定化中空糸膜を用いて得られるモジュールで、HCV患者の血漿をろ過したところ、HCVが63%除去された。このとき、アルブミンの透過率は98%だった。
(Example 2)
Polyacrylic acid having a molecular weight of 25000 was immobilized in the same manner as in Example 1 except that the molecular weight of the polyacrylic acid in Example 1 was changed to 25000. From the value of weight increase, 73 μg / cm 2 (in terms of inner surface area) was fixed as polyacrylic acid. When the plasma of an HCV patient was filtered with a module obtained by using the above-described polyacrylic acid-immobilized hollow fiber membrane, 63% of HCV was removed. At this time, the albumin permeability was 98%.
(比較例2)
実施例1で使用したポリアクリル酸を固定化していないEVOH親水化処理中空糸膜を用いて同様の評価を行ったところ、HCVの除去率は19%であった。したがって、分子量25000のポリアクリル酸を固定化した中空糸は、アルブミンのような生体成分は除去せずに、HCVの除去率を向上させられることがわかった。
(Comparative Example 2)
When the same evaluation was performed using the EVOH hydrophilized hollow fiber membrane in which the polyacrylic acid used in Example 1 was not immobilized, the HCV removal rate was 19%. Therefore, it was found that the hollow fiber in which polyacrylic acid having a molecular weight of 25000 is immobilized can improve the removal rate of HCV without removing biological components such as albumin.
(実施例3)アクリル酸グラフト中空糸の作製
アクリル酸モノマー1.5gを酢酸エチル100mLに溶解して、氷浴上で撹拌しながら減圧することで溶液中の溶存酸素を除去した。
一方、ポリ-4-メチルペンテン製の多孔生中空糸束(中空糸内表面積:146cm、DIC(株)製)に90kGyの電子線を照射し、ガラス製試験管に入れゴム栓にて密閉し、試験管内部を真空にした。
(Example 3) Production of acrylic acid grafted hollow fiber 1.5 g of acrylic acid monomer was dissolved in 100 mL of ethyl acetate, and dissolved oxygen in the solution was removed by reducing the pressure while stirring on an ice bath.
On the other hand, a porous raw hollow fiber bundle made of poly-4-methylpentene (hollow fiber inner surface area: 146 cm 2 , manufactured by DIC Corporation) is irradiated with an electron beam of 90 kGy, placed in a glass test tube and sealed with a rubber stopper. The inside of the test tube was evacuated.
次に、電子線を照射した中空糸束入り試験管内に、脱酸素したアクリル酸モノマー溶液を加えてグラフト重合を開始した。1時間静置後、中空糸束を取り出し、未反応のモノマー等がGPC測定で検出限界(1μg/mL、以下同様。)以下になるまでメタノール及び水で洗浄を繰り返した。こうして、得られたアクリル酸ポリマー結合中空糸の性状は、アクリル酸ポリマー結合量26mg、結合密度(モノマー換算)2.5μmol/cm(内表面積換算)であった。 Next, a deoxygenated acrylic acid monomer solution was added to a hollow fiber bundle-filled test tube irradiated with an electron beam to start graft polymerization. After standing for 1 hour, the hollow fiber bundle was taken out, and washing with methanol and water was repeated until the unreacted monomer and the like were below the detection limit (1 μg / mL, the same applies hereinafter) by GPC measurement. Thus, the properties of the resulting acrylic acid polymer-bonded hollow fiber were an acrylic acid polymer bond amount of 26 mg and a bond density (in monomer conversion) of 2.5 μmol / cm 2 (inner surface area conversion).
(実施例4)
実施例3と同様の操作でメタクリル酸を多孔生中空糸にグラフト重合し、結合密度(モノマー換算)2.5μmol/cm(内表面積換算)のメタクリル酸グラフト中空糸を得た。
Example 4
In the same manner as in Example 3, methacrylic acid was graft-polymerized on the porous raw hollow fiber to obtain a methacrylic acid grafted hollow fiber having a bond density (in terms of monomer) of 2.5 μmol / cm 2 (in terms of internal surface area).
(比較例3)
実施例3と同様の操作でヒドロキシエチルメタクリレート(HEMA)をグラフト重合を行い、結合密度(モノマー換算)2.7μmol/cm(内表面積換算)のHEMAグラフト中空糸を得た。
<浸漬によるHCV除去試験>
グラフトしたポリ-4-メチルペンテン中空糸を5cmに切り取り、マイクロチューブに入れて、PBSで希釈したHCV患者血清を500μL加え、23℃で60分間ローテートした。ローテート前後のHCVコア抗原量をELISA法にて測定し、HCV除去率を測定した。アクリル酸グラフト中空糸(実施例3)で56%、メタクリル酸グラフト中空糸(実施例4)で48%の除去率であった。
一方、比較例3のHEMAをグラフトした中空糸では除去率は9%であった。
(Comparative Example 3)
Hydroxyethyl methacrylate (HEMA) was graft polymerized in the same manner as in Example 3 to obtain a HEMA graft hollow fiber having a bond density (in terms of monomer) of 2.7 μmol / cm 2 (in terms of internal surface area).
<HCV removal test by immersion>
The grafted poly-4-methylpentene hollow fiber was cut into 5 cm 2 , put in a microtube, added with 500 μL of HCV patient serum diluted with PBS, and rotated at 23 ° C. for 60 minutes. The amount of HCV core antigen before and after rotation was measured by ELISA, and the HCV removal rate was measured. The removal rate was 56% for the acrylic acid grafted hollow fiber (Example 3) and 48% for the methacrylic acid grafted hollow fiber (Example 4).
On the other hand, in the hollow fiber grafted with HEMA of Comparative Example 3, the removal rate was 9%.
(実施例5)
200mL三つ口フラスコに0.5N硝酸水溶液60MLとアクリル酸2.5gを入れ、EVOH親水化処理多孔質膜(内径257μm、膜厚54μm)を浸漬した。フラスコ内を氷浴上にて窒素置換した後、硝酸二アンモニウムセリウム100mgを溶解し、80℃で1時間反応させた。反応終了後、未反応のアクリル酸やホモポリマーを水で洗浄した。中空糸の重量増加から計算し、グラフト率2.7%で目的のポリアクリル酸固定化中空糸が得られた。上記のアクリル酸グラフト中空糸膜を用いて得られるモジュールで、HCV患者の血漿をろ過したところ、HCVが66%除去された。このとき、アルブミンの透過率は99%以上だった。
(Example 5)
A 200 mL three-necked flask was charged with 60 mL of a 0.5N nitric acid aqueous solution and 2.5 g of acrylic acid, and an EVOH hydrophilized porous membrane (inner diameter 257 μm, film thickness 54 μm) was immersed therein. After the atmosphere in the flask was replaced with nitrogen on an ice bath, 100 mg of diammonium cerium nitrate was dissolved and reacted at 80 ° C. for 1 hour. After the reaction, unreacted acrylic acid and homopolymer were washed with water. The target polyacrylic acid-immobilized hollow fiber was obtained with a graft ratio of 2.7%, calculated from the weight increase of the hollow fiber. When the plasma of an HCV patient was filtered with a module obtained by using the acrylic acid grafted hollow fiber membrane, 66% of HCV was removed. At this time, the albumin permeability was 99% or more.
(比較例4)
実施例5で使用したアクリル酸をグラフトしていないEVOH親水化処理中空糸膜を用いて同様の評価を行ったところ、HCVの除去率は17%であった。したがって、アクリル酸をグラフトした中空糸は、アルブミンのような生体成分は除去せずに、HCVの除去率を向上させられることがわかった。
(Comparative Example 4)
When the same evaluation was performed using the EVOH hydrophilized hollow fiber membrane not grafted with acrylic acid used in Example 5, the HCV removal rate was 17%. Therefore, it was found that the hollow fiber grafted with acrylic acid can improve the HCV removal rate without removing biological components such as albumin.
(実施例6)
実施例5のアクリル酸の量を0.8gに変えた以外は、実施例5と同様の手法でアクリル酸をグラフトした。このときのグラフト率は0.4%であった。上記のアクリル酸グラフト中空糸膜を用いて得られるモジュールで、HCV患者の血漿をろ過したところ、HCVが56%除去された。このとき、アルブミンの透過率は97%だった。
(Example 6)
Acrylic acid was grafted in the same manner as in Example 5 except that the amount of acrylic acid in Example 5 was changed to 0.8 g. The graft ratio at this time was 0.4%. When the plasma of an HCV patient was filtered with a module obtained using the acrylic acid grafted hollow fiber membrane, 56% of HCV was removed. At this time, the albumin permeability was 97%.
(実施例7)
エチレン-アクリル酸共重合体(アクリル酸15wt%)を加熱したトルエンに溶解し、2.5wt%の溶液を調製した。樹脂が析出しない程度に溶液を保温し、多孔性延伸糸を浸漬し、引き上げて乾燥することで、表面にアクリル酸を固定化した中空糸が得られた。上記の表面アクリル酸固定化中空糸膜を用いて得られるモジュールで、HCV患者の血漿をろ過したところ、HCVが30%除去された。このとき、アルブミンの透過率は98%以上だった。
(Example 7)
An ethylene-acrylic acid copolymer (acrylic acid 15 wt%) was dissolved in heated toluene to prepare a 2.5 wt% solution. The solution was kept warm to such an extent that the resin did not precipitate, the porous stretched yarn was immersed, pulled up and dried to obtain a hollow fiber having acrylic acid fixed on the surface. When the plasma of HCV patients was filtered with a module obtained using the above-described surface acrylic acid-immobilized hollow fiber membrane, 30% of HCV was removed. At this time, the albumin permeability was 98% or more.
本発明の中空糸を用いた器具は、肝炎ウイルス等のウイルスの除去への利用が可能である。 The instrument using the hollow fiber of the present invention can be used for removing viruses such as hepatitis virus.
1:ウイルスを含む液流入口
2:孔を通過しなかったウイルスの流出口
3:中空糸膜
4:孔を通過したウイルスの流出口
5:容器
6:隔壁
1: Inlet containing virus 2: Outlet of virus not passing through hole 3: Hollow fiber membrane 4: Outlet of virus passing through hole 5: Container 6: Septum

Claims (17)

  1. ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸、無水マレイン酸重合体含有ポリマーの開環体、ポリフマル酸、ポリグルタミン酸、ポリアスパラギン酸、ポリアリルカルボン酸、ポリビニル硫酸、ポリリン酸、ポリビニルリン酸、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアリルリン酸、2-(メタ)アクリロイルオキシエタンスルホン酸塩重合体、2-(メタ)アクリロイルオキシエタンリン酸塩重合体、2-アクリルアミド-2-メチルプロパンスルホン酸重合体、及びポリイソプレンスルホン酸重合体から選ばれるポリアニオンが固定化されたウイルス除去用高分子基材。 Polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid, ring-opened polymer containing maleic anhydride polymer, polyfumaric acid, polyglutamic acid, polyaspartic acid, polyallylcarboxylic acid, polyvinylsulfuric acid, polyphosphoric acid, polyvinylphosphoric acid , Polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyallyl phosphoric acid, 2- (meth) acryloyloxyethane sulfonate polymer, 2- (meth) acryloyloxy ethane phosphate polymer, 2-acrylamide-2 A polymer substrate for virus removal, on which a polyanion selected from a methylpropanesulfonic acid polymer and a polyisoprenesulfonic acid polymer is immobilized;
  2. 請求項1に記載のポリアニオンが固定化されたウイルス除去用高分子基材において、
    水酸基を有する高分子材で表面処理された高分子支持体(A)に、水酸基及びポリアニオンと反応し得る基を有する化合物(B)を介して前記ポリアニオンが固定化されたウイルス除去用高分子基材。
    In the polymer substrate for virus removal to which the polyanion according to claim 1 is immobilized,
    A polymer group for virus removal, wherein the polyanion is immobilized on a polymer support (A) surface-treated with a polymer material having a hydroxyl group via a compound (B) having a group capable of reacting with a hydroxyl group and a polyanion. Wood.
  3. 水酸基を有する高分子材で表面処理された高分子支持体(A)が、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体の部分けん化物、ビニルアルコール-酢酸ビニル共重合体、ヒドロキシメタクリレート共重合体、酢酸セルロースの部分けん化物、又はグリセリン誘導体で表面処理された中空糸である請求項2に記載のウイルス除去用高分子基材。 Polymer support (A) surface-treated with a polymer material having a hydroxyl group is a partially saponified product of ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer, ethylene-vinyl acetate copolymer The polymer substrate for virus removal according to claim 2, which is a hollow fiber surface-treated with a vinyl alcohol-vinyl acetate copolymer, a hydroxymethacrylate copolymer, a partially saponified product of cellulose acetate, or a glycerin derivative.
  4. 水酸基及びポリアニオンと反応し得る基を有する化合物(B)が、エピクロロヒドリン、又はジエポキシ化合物である請求項2又は3に記載のウイルス除去用高分子基材。 The polymer substrate for virus removal according to claim 2 or 3, wherein the compound (B) having a group capable of reacting with a hydroxyl group and a polyanion is epichlorohydrin or a diepoxy compound.
  5. 請求項1に記載のポリアニオンが固定化されたウイルス除去用高分子基材において、
    グラフト重合反応により前記ポリアニオンが高分子支持体(C)に固定化されたウイルス除去用高分子基材。
    In the polymer substrate for virus removal to which the polyanion according to claim 1 is immobilized,
    A polymer substrate for virus removal, wherein the polyanion is immobilized on a polymer support (C) by a graft polymerization reaction.
  6. 請求項1に記載のポリアニオンが固定化されたウイルス除去用高分子基材において、
    前記ポリアニオンで高分子支持体(C)を表面処理することによりポリアニオンが固定化されたウイルス除去用高分子基材。
    In the polymer substrate for virus removal to which the polyanion according to claim 1 is immobilized,
    A polymer substrate for virus removal, wherein the polyanion is immobilized by surface-treating the polymer support (C) with the polyanion.
  7. 高分子支持体(C)が、中空糸である請求項5又は6に記載のウイルス除去用高分子基材。 The polymer substrate for virus removal according to claim 5 or 6, wherein the polymer support (C) is a hollow fiber.
  8. 中空糸が、多孔性中空糸である請求項3又は7に記載のウイルス除去用高分子基材。 The polymer substrate for virus removal according to claim 3 or 7, wherein the hollow fiber is a porous hollow fiber.
  9. 中空糸が、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテンを基質とするものである請求項8に記載のウイルス除去用高分子基材。 9. The polymer substrate for virus removal according to claim 8, wherein the hollow fiber is made of polyethylene, polypropylene or poly-4-methylpentene as a substrate.
  10. 多孔性中空糸の平均流量孔径が10~500nmの範囲である請求項8又は9に記載のウイルス除去用高分子基材。 The polymer substrate for virus removal according to claim 8 or 9, wherein an average flow pore size of the porous hollow fiber is in the range of 10 to 500 nm.
  11. 多孔性中空糸の内径が150~500μmの範囲である請求項8~10の何れかに記載のウイルス除去用高分子基材。 The virus-removable polymer substrate according to any one of claims 8 to 10, wherein the inner diameter of the porous hollow fiber is in the range of 150 to 500 µm.
  12. 多孔性中空糸の膜厚が30~100μmの範囲である請求項8~11の何れかに記載のウイルス除去用高分子基材。 The polymer substrate for virus removal according to any one of claims 8 to 11, wherein the porous hollow fiber has a thickness of 30 to 100 µm.
  13. 多孔性中空糸のポリアニオンの固定化量が1~100μg/cmの範囲である請求項8~12の何れかに記載のウイルス除去用高分子基材。 The polymer substrate for virus removal according to any one of claims 8 to 12, wherein the amount of polyanion immobilized on the porous hollow fiber is in the range of 1 to 100 µg / cm 2 .
  14. ウイルスが、B型又はC型肝炎ウイルスである請求項1~13の何れかに記載のウイルス除去用高分子基材。 The polymer substrate for virus removal according to any one of claims 1 to 13, wherein the virus is a hepatitis B or C virus.
  15. 請求項1~14の何れかに記載のウイルス除去用高分子基材を用いたウイルスの除去方法。 A virus removal method using the virus-removable polymer substrate according to any one of claims 1 to 14.
  16. 請求項15に記載のウイルス除去方法において、ウイルスを含む液を多孔性中空糸に通じることにより、中空糸の有する孔を通過した液と、孔を通過しなかった液とを混合する工程を有することを特徴とするウイルスの除去方法。 The virus removal method according to claim 15, comprising a step of mixing the liquid that has passed through the holes of the hollow fiber and the liquid that has not passed through the holes by passing the virus-containing liquid through the porous hollow fiber. A virus removal method characterized by the above.
  17. ウイルスを含む液が、ウイルスを含む血液である請求項16に記載のウイルスの除去方法。 The method for removing a virus according to claim 16, wherein the liquid containing the virus is blood containing the virus.
PCT/JP2012/056068 2011-03-11 2012-03-09 Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses WO2012124619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-054299 2011-03-11
JP2011054299 2011-03-11

Publications (1)

Publication Number Publication Date
WO2012124619A1 true WO2012124619A1 (en) 2012-09-20

Family

ID=46830691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056068 WO2012124619A1 (en) 2011-03-11 2012-03-09 Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses

Country Status (1)

Country Link
WO (1) WO2012124619A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156017A (en) * 2015-02-23 2016-09-01 株式会社Nbcメッシュテック Antiviral water-absorbing polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260660A (en) * 1988-08-29 1990-03-01 Asahi Medical Co Ltd Adsorbent for treating body fluid
JPH10323387A (en) * 1997-03-25 1998-12-08 Kanegafuchi Chem Ind Co Ltd Adsorbent, adsorber, and adsorbing method for removing c-type hepatitis virus
JP2000334037A (en) * 1999-04-12 2000-12-05 B Braun Melsungen Ag Removal of viral envelope from blood, plasma, or serum
JP2009240508A (en) * 2008-03-31 2009-10-22 Kaneka Corp Modification method of blood contact material and blood contact material with suppressed complement activation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260660A (en) * 1988-08-29 1990-03-01 Asahi Medical Co Ltd Adsorbent for treating body fluid
JPH10323387A (en) * 1997-03-25 1998-12-08 Kanegafuchi Chem Ind Co Ltd Adsorbent, adsorber, and adsorbing method for removing c-type hepatitis virus
JP2000334037A (en) * 1999-04-12 2000-12-05 B Braun Melsungen Ag Removal of viral envelope from blood, plasma, or serum
JP2009240508A (en) * 2008-03-31 2009-10-22 Kaneka Corp Modification method of blood contact material and blood contact material with suppressed complement activation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156017A (en) * 2015-02-23 2016-09-01 株式会社Nbcメッシュテック Antiviral water-absorbing polymer

Similar Documents

Publication Publication Date Title
JP5140211B2 (en) Substrate for removing saccharide-immobilized virus and virus removal instrument
RU2353399C2 (en) Method of isolating virus from blood by lectin hemodialysis
JP4888559B2 (en) Separation membrane for blood purification, separation membrane module for blood purification, hollow fiber membrane for blood purification, and hollow fiber membrane module for blood purification
JP6036882B2 (en) Separation membrane, separation membrane module, method for producing separation membrane, and method for producing separation membrane module
CN109475677B (en) Biological component adhesion inhibiting material
TW201811380A (en) Medical material, medical separation membrane, and blood purifier
WO2015170708A1 (en) Hollow fiber membrane module and manufacturing method thereof
JP2010104984A5 (en)
CN112074340A (en) Porous hollow fiber membrane
WO2014034787A1 (en) Dialyzer capable of removing viruses
WO2012124619A1 (en) Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses
WO2012115021A1 (en) Porous hollow yarn and virus elimination method using same
TW201141887A (en) Substrate for ligand immobilization and method for producing same
JP5673894B2 (en) Sugar chain-immobilized hydrophilic resin compound, polymer substrate for virus removal, and biocompatible material
JP7242167B2 (en) blood processing equipment
JPH0260660A (en) Adsorbent for treating body fluid
WO2014014089A1 (en) Hydrophilic resin compound containing amino group, polymer substrate for virus removal, and gas barrier material
JP2021023928A (en) Separation membrane and method for manufacture thereof
JP2012125556A (en) Polymer substrate for removal or inactivation of human immunodeficiency virus
JP2012229353A (en) Virus-removing material using acrylic acid-immobilized nonwoven fabric, and method for removing virus
CN109046282B (en) Adsorbent for removing endotoxin by hemoperfusion and water solution and preparation method thereof
JP2023121738A (en) Blood component adsorbent
JPH06190032A (en) Anticoagulant method and anticoagualnt polymer material
JP2023081326A (en) Blood purification carrier and blood purification column
JP2010068910A (en) Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP