JP2694647B2 - Distance measuring theodolite - Google Patents

Distance measuring theodolite

Info

Publication number
JP2694647B2
JP2694647B2 JP63083636A JP8363688A JP2694647B2 JP 2694647 B2 JP2694647 B2 JP 2694647B2 JP 63083636 A JP63083636 A JP 63083636A JP 8363688 A JP8363688 A JP 8363688A JP 2694647 B2 JP2694647 B2 JP 2694647B2
Authority
JP
Japan
Prior art keywords
distance measuring
rotation angle
angle
prism
theodolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63083636A
Other languages
Japanese (ja)
Other versions
JPH01254806A (en
Inventor
克昭 清水
Original Assignee
株式会社ソキア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソキア filed Critical 株式会社ソキア
Priority to JP63083636A priority Critical patent/JP2694647B2/en
Publication of JPH01254806A publication Critical patent/JPH01254806A/en
Application granted granted Critical
Publication of JP2694647B2 publication Critical patent/JP2694647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基準点からの測量点の座標を認識できる測
距経緯儀に関する。
TECHNICAL FIELD The present invention relates to a distance measuring theodolite which can recognize the coordinates of a survey point from a reference point.

(従来の技術) 従来、基準点からの測量点の座標を求めるには、先
ず、任意の目標点を視準してその目標点までの距離を測
定し、この位置を基準点とし、次いで、反射プリズムを
所定の測量点に立てて、その測量点までの距離を測定す
ると共に基準点から測量点までの角度を測定し、これを
測量点毎に繰り返す。そして後で必要な場合には、基準
点からの測量点の座標(X1、Y1)(X2、Y2)…を計算し
て求めていた。
(Prior Art) Conventionally, in order to obtain the coordinates of a survey point from a reference point, first, collimate an arbitrary target point, measure the distance to the target point, use this position as the reference point, and then The reflection prism is set up at a predetermined survey point, the distance to the survey point is measured, the angle from the reference point to the survey point is measured, and this is repeated for each survey point. Then, if necessary later, the coordinates (X 1 , Y 1 ) (X 2 , Y 2 ) of the survey point from the reference point were calculated and calculated.

このような場合には、例えば特開昭62−19712号公報
により知られてるように測距手段と測角手段とを備えた
測距経緯儀を用いて、測量点の反射体を視準した状態で
の測距手段及び測角手段からの検知信号を基に測量点の
3次元位置を演算するようにすればよい。
In such a case, for example, as known from Japanese Patent Laid-Open No. 62-19712, a distance measuring theodolite having a distance measuring unit and a angle measuring unit is used to collimate the reflector at the survey point. The three-dimensional position of the surveying point may be calculated based on the detection signals from the distance measuring means and the angle measuring means in this state.

(発明が解決しようとする課題) 上記従来のものでは測量点に設置した反射体が移動す
れば測距経緯儀本体を反射体の移動にあわせて回動させ
視準させる必要があるが、視野から反射体が外れると反
射体を探して再度視準しなければならず、視準に時間を
要していた。この場合に、実願昭59−86068号により知
られるように反射鏡の移動にあわせて測距経緯儀本体自
体を回動させて自動追尾するようにすることも考えられ
るが、測距経緯儀本体自体を回動させるため測距経緯儀
本体が周囲のものにぶつかるおそれがある。
(Problems to be Solved by the Invention) In the above-mentioned conventional apparatus, if the reflector installed at the surveying point moves, it is necessary to rotate and collimate the main body of the distance measuring thelite according to the movement of the reflector. When the reflector comes off, it is necessary to search for the reflector and collimate it again, which takes time to collimate. In this case, as known from Japanese Utility Model Application No. 59-86068, it is conceivable that the distance measuring theodolite body itself is rotated in accordance with the movement of the reflecting mirror to automatically track the distance measuring theodolite. Since the main body itself is rotated, the main body of the distance-measuring theodolite may collide with surrounding objects.

本発明は、従来のこのような問題を解決することをそ
の目的とするものである。
An object of the present invention is to solve such a conventional problem.

(課題を解決するための手段) 本発明は、上記の目的を達成するために、視準手段
と、光波距離測定手段と、測距経緯儀本体の一部を形成
し、測量点を結ぶ光路を屈折させる直角プリズムの水平
方向回転角及び垂直方向回転角を検出する測角手段とを
備えた測距経緯儀において、測距経緯儀本体から送光さ
れ測量点の反射面で反射されて前記光波距離測定手段の
反射光受光面に向う反射光の一部を取り出して集光さ
せ、その集光点の前記測量点を反射面の移動に伴う変位
量を検出する検出手段と、前記直角プリズムを水平方向
及び垂直方向に回動させる駆動手段と、前記検出手段で
検出された変位量が零となるように前記駆動手段を作動
させる制御手段と、前記測角部により検出された直角プ
リズムの回動量に対応するその水平方向回転角及び垂直
方向回転角と前記光波距離測定手段から得られた測距値
から前記測量点の座標値を算出する演算手段とを備える
ことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an optical path that forms a part of a collimation means, a light wave distance measuring means, and a distance measuring theodolite, and connects survey points. In a distance measuring theodolite having angle measuring means for detecting a horizontal rotation angle and a vertical rotation angle of a right-angle prism for refracting, a light is transmitted from a distance measuring theodolite body and reflected by a reflection surface of a surveying point. Detection means for extracting and condensing a part of the reflected light toward the reflected light receiving surface of the light wave distance measuring means, and detecting the amount of displacement of the surveying point of the converging point due to the movement of the reflecting surface, and the rectangular prism. Of the right-angle prism detected by the angle measuring unit, drive means for rotating the drive means in the horizontal direction and the vertical direction, control means for operating the drive means so that the displacement detected by the detection means becomes zero. The horizontal rotation angle corresponding to the amount of rotation And a calculation means for calculating the coordinate value of the surveying point from the vertical rotation angle and the distance measurement value obtained from the lightwave distance measuring means.

(作 用) 望遠鏡で基準点を視準して基準点までの距離を求め、
次に測量点に例えば反射プリズムから成る反射面を移動
させると、検出手段における集光点は、基準点の時の位
置から変移し、該検出手段は該変移量を算出する。次い
で制御手段は該変移量が零になるまで直角プリズムをモ
ータで回動する。
(Operation) Collimate the reference point with the telescope, find the distance to the reference point,
Next, when the reflecting surface formed of, for example, a reflecting prism is moved to the surveying point, the condensing point in the detecting means shifts from the position at the time of the reference point, and the detecting means calculates the shift amount. Next, the control means rotates the rectangular prism by the motor until the displacement amount becomes zero.

該モータの回動量に対応する直角プリズムの水平方向
回転角及び垂直方向回転角は測角手段により測定され、
測量点までの距離は、光波距離測定手段により測定され
る。演算手段は、測定された前記水平方向回転角、及び
垂直方向回転角並びに測距値から測量点の立体座標(x,
y,z)を算出する。かくて、例えば反射プリズムから成
る反射面の位置の座標が直ちに判る。
The horizontal rotation angle and the vertical rotation angle of the right angle prism corresponding to the rotation amount of the motor are measured by the angle measuring means,
The distance to the survey point is measured by the lightwave distance measuring means. From the measured horizontal rotation angle and vertical rotation angle and the measured distance, the calculation means calculates the three-dimensional coordinates (x,
y, z) is calculated. Thus, the coordinates of the position of the reflecting surface, for example a reflecting prism, are immediately known.

(実施例) 以下本発明の実施例を図面につき説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は望遠鏡で、該望遠鏡1は、ビー
ムスプリッタ2、直角プリズム3と協同して測量点に設
置する反射プリズム4を視準する視準光学系(視準手
段)を構成する。前記ビームスプリッタ2及び直角プリ
ズム3は、また、ダイクロイック・プリズム5、レンズ
6及び較正ミラー7と協同して発光ダイオード8が射出
した光を前記反射プリズム4に送光する送光系を構成す
る。レンズ9及びハーフミラー・プリズム10は直角プリ
ズム3、ビームスプリッタ2及びダイクロイック・プリ
ズム5と協同して反射プリズム4から帰ってきてダイク
ロイック・プリズム5で直角に曲げられた光を距離測定
用受光素子11に導く受光系を構成し、較正ミラー12及び
13は較正ミラー7と協同して発光ダイオード8が射出し
較正ミラー7で直角に曲げられた光を、距離測定用受光
素子11に導く光波較正系を構成する。
In FIG. 1, reference numeral 1 denotes a telescope, which cooperates with a beam splitter 2 and a right-angle prism 3 to form a collimating optical system (collimating means) for collimating a reflecting prism 4 installed at a survey point. . The beam splitter 2 and the right-angled prism 3 also cooperate with the dichroic prism 5, the lens 6 and the calibration mirror 7 to form a light transmission system for transmitting the light emitted from the light emitting diode 8 to the reflection prism 4. The lens 9 and the half mirror prism 10 cooperate with the right-angle prism 3, the beam splitter 2 and the dichroic prism 5 to return from the reflection prism 4 and receive the light bent at a right angle by the dichroic prism 5 for receiving distance. A light receiving system that leads to the calibration mirror 12 and
Reference numeral 13 cooperates with the calibration mirror 7 to form a light wave calibration system for guiding the light emitted from the light emitting diode 8 and bent at a right angle by the calibration mirror 7 to the distance measuring light receiving element 11.

前記発光ダイオード8、送光系、光波較正系及び受光
素子11等は光波距離測定手段を構成するもので、該測定
手段は、受光素子11から出力する受光系からの光信号と
光波較正系からの光信号の位相差を測定することにより
測距する。
The light emitting diode 8, the light transmitting system, the light wave calibration system, the light receiving element 11 and the like constitute a light wave distance measuring means, and the measuring means comprises an optical signal from the light receiving system output from the light receiving element 11 and a light wave calibration system. Distance is measured by measuring the phase difference of the optical signal of.

尚、前記直角プリズム3を除く送光系、受光系及び光
波較正系の光学部材、発光ダイオード8及び受光素子11
並びに後に詳述する2次元位置検出用センサ12及び望遠
鏡1はいずれも箱体(図示しない)に設けられている。
It should be noted that the optical members of the light transmitting system, the light receiving system, and the light wave calibration system other than the right-angle prism 3, the light emitting diode 8, and the light receiving element 11 are included.
The two-dimensional position detecting sensor 12 and the telescope 1 which will be described later in detail are both provided in a box (not shown).

15は前記箱体に対し鉛直軸Y回りに回転可能に支承さ
れた水平回転テーブルで、該テーブル15は、これを回転
するモータ(図示せず)を内蔵し、その中心に送光系等
の光軸が貫通する透孔15aを有する。該テーブル15に
は、水平方向回転角測定用エンコーダ16の回転円盤16a
が連結されて一体化され、該回転円盤16aを挾んで該エ
ンコーダ16の発光素子16b及び受光素子16cが設けられて
いる。該水平方向回転角測定用エンコーダ16は、回転円
盤16aに直立された支柱17及びこれに固着されたモータ1
8を介して水平回転テーブル15に支持されている直角プ
リズム3(測距経緯儀本体)の鉛直軸Y回りの回転によ
る水平方向回転角すなわち測量点の水平方向角を測定す
る。
Reference numeral 15 is a horizontal rotary table rotatably supported about the vertical axis Y with respect to the box body, and the table 15 has a motor (not shown) for rotating the table built therein, and has a light transmitting system or the like at the center thereof. It has a through hole 15a through which the optical axis passes. The table 15 has a rotary disk 16a of an encoder 16 for horizontal rotation angle measurement.
Are connected and integrated, and a light emitting element 16b and a light receiving element 16c of the encoder 16 are provided across the rotary disk 16a. The horizontal rotation angle measuring encoder 16 includes a support 17 that is upright on a rotating disk 16a and a motor 1 that is fixed to the support 17.
The horizontal rotation angle of the right-angle prism 3 (main body of the distance measuring theodolite) supported by the horizontal rotary table 15 via 8 around the vertical axis Y, that is, the horizontal angle of the surveying point is measured.

前記支柱17に固着されたモータ18の駆動軸18aの一端
には前述のように直角プリズム3が固定され、該駆動軸
18aの他端には垂直方向回転角測定用エンコーダ19の回
転円盤19aが嵌着され、該回転円盤19aを挾んで該エンコ
ーダ19の発光素子19b及び受光素子19cが設けられてお
り、該垂直方向回転測定用エンコーダ19は直角プリズム
3の水平軸(モータ駆動軸18a)回りの回転により測距
経緯儀本体の垂直方向回転角すなわち測量点の垂直方向
角が測定される。
The right-angle prism 3 is fixed to one end of the drive shaft 18a of the motor 18 fixed to the column 17, as described above.
A rotary disk 19a of a vertical rotation angle measurement encoder 19 is fitted to the other end of 18a, and a light emitting element 19b and a light receiving element 19c of the encoder 19 are provided by sandwiching the rotary disk 19a, and the vertical direction The rotation measurement encoder 19 measures the vertical rotation angle of the main body of the distance measuring theodolite, that is, the vertical angle of the surveying point by rotating the right angle prism 3 around the horizontal axis (motor drive shaft 18a).

12は、前記検出手段としての2次元位置検出用センサ
で、これは例えばシリコンフォトダイオード、CCDを応
用した公知のもので、レンズ9、ハーフミラー・プリズ
ム10の光軸の後方に該光軸に直交しその主面に反射光の
一部が集光するように配置されており、測量点である反
射プリズム4の位置が変化するとき、主面の集光点12a
が移動し、出力端子12bから集光点12aの変移量を出力す
るようになっている。
Reference numeral 12 is a sensor for two-dimensional position detection as the detection means, which is a known sensor to which, for example, a silicon photodiode or CCD is applied, and is located behind the optical axis of the lens 9 and the half mirror / prism 10 to the optical axis. They are arranged so as to be orthogonal to each other and a part of the reflected light is condensed on the main surface thereof.
Is moved, and the displacement amount of the focal point 12a is output from the output terminal 12b.

該センサ12は、第2図示のように、制御手段としての
CPU20に接続されており、該センサ12がCPU20に集光点12
aのずれ量を出力した時、CPU20は、該ずれ量に基づき、
駆動手段としての回転テーブル15内のモータ21及びモー
タ18をそれぞれ回転させるモータ・ドライバー221、222
に、該ずれ量を0にするだけの出力信号を出力するよう
になっており、かくてモータ、ドライバー221、222の出
力により駆動されるモータ21及び18は、測距経緯儀本体
としての直角プリズム3を反射プリズム4に追従させ
る。
The sensor 12 serves as a control means as shown in FIG.
The sensor 12 is connected to the CPU 20, and the sensor 12
When the shift amount of a is output, the CPU 20 determines, based on the shift amount,
Motor drivers 22 1 and 22 2 for respectively rotating the motor 21 and the motor 18 in the rotary table 15 as driving means.
In addition, an output signal for setting the displacement amount to 0 is output. Thus, the motors 21 and 18 driven by the outputs of the motors and drivers 22 1 and 22 2 serve as the main body of the distance measuring theodolite. The right-angled prism 3 is made to follow the reflection prism 4.

前記水平方向回転角測定用エンコーダ16、垂直方向回
転角測定用エンコーダ19及び光波測距測定手段23は、そ
れぞれCPU24に接続されており、該CPU24は、演算手段と
して、該エンコーダ16及び19で検出された反射プリズム
4の動きに追従した直角プリズム3すなわち測距経緯儀
本体の水平方向回転角及び垂直方向回転角並びに前記光
波測距測定手段で測定された基準点及を測定点までの距
離から、該測量点の立体座標値で算出するようになって
おり、この立体座標値はCPU24に接続されたディスプレ
イ25に表示される。
The horizontal direction rotation angle measurement encoder 16, the vertical direction rotation angle measurement encoder 19 and the optical distance measuring means 23 are respectively connected to the CPU 24, and the CPU 24 detects the encoders 16 and 19 as the calculating means. The right angle prism 3 following the movement of the reflected prism 4, that is, the horizontal rotation angle and the vertical rotation angle of the body of the distance measuring theodolite, and the reference point and the reference point measured by the optical distance measuring unit are measured from the distance to the measurement point. The three-dimensional coordinate value of the surveying point is calculated, and this three-dimensional coordinate value is displayed on the display 25 connected to the CPU 24.

第3図は、本測距経緯儀を使用した作業フローを示
す。
FIG. 3 shows a work flow using this distance measuring theodolite.

先ず、直角プリズム3をモータ18及び21により動かし
て基準点の反射プリズム4を視準する(ステップ)。
この視準後には、反射光の集光点は2次元位置検出セン
サ12の中心にくるので、両センサ16及び19で直角プリズ
ム3の水平方向回転角及び垂直方向回転角が、光波測距
測定手段で基準点までの距離がそれぞれ測定される(ス
テップ)。次に、両エンコーダ16及び19はリセット
して零にする。基準点とは別の測量点からその座標値を
得る場合には、その測量点に反射プリズム4を置いて再
び前述と同じように視準する(ステップ)と、再び両
エンコーダ16及び19と光波距離測定手段23で測距と測角
が行われ(ステップ、)、演算手段で基準点からの
水平方向回転角、垂直方向回転角及び測距値並びに基準
点までの測距値から測量点の座標かが計算される(ステ
ップ)。この座標値はディスプレイ25に表示される
(ステップ)。測量点が複数あって(ステップ)、
作業者が反射プリズム4を持って移動すると、直角プリ
ズム3へ戻ってくる反射プリズム4からの反射光の入射
角度が変化するから、2次元位置検出用センサ12に集光
する位置が変移し、該変移量が該センサ12で測定される
(ステップ)。この変移量の入力により、CPU20
は、この変移量を零にするように、すなわち2次元位置
検出用センサ12の中心に集光点がくるようにモータ18及
び21を駆動する(ステップ)。集光点が再び2次元位
置検出用センサ12の中心位置にくると(ステップ)、
再び前記ステップからステップまでの作業が行なわ
れる。以後、複数の測量点に反射プリズム4を設置する
毎に以上の動作が行なわれて各座標が順次表示される。
First, the rectangular prism 3 is moved by the motors 18 and 21, and the reflecting prism 4 at the reference point is collimated (step).
After this collimation, the focal point of the reflected light comes to the center of the two-dimensional position detection sensor 12, so that the horizontal rotation angle and the vertical rotation angle of the right-angle prism 3 are both measured by the sensors 16 and 19. The distance to the reference point is measured by each means (step). Then both encoders 16 and 19 are reset to zero. When the coordinate values are obtained from a surveying point different from the reference point, the reflecting prism 4 is placed at the surveying point and collimation is performed again in the same manner as described above (step). Distance measurement and angle measurement are performed by the distance measuring means 23 (step,), and horizontal rotation angle from the reference point, vertical rotation angle and distance measurement value from the reference point, and distance measurement value from the reference point to the measurement point. Coordinates are calculated (step). This coordinate value is displayed on the display 25 (step). There are multiple survey points (steps),
When the operator moves with the reflection prism 4, the incident angle of the reflected light from the reflection prism 4 returning to the right-angled prism 3 changes, so that the position of condensing on the two-dimensional position detection sensor 12 changes, The displacement amount is measured by the sensor 12 (step). By inputting this displacement amount, CPU20
Drives the motors 18 and 21 so that this displacement amount becomes zero, that is, the converging point is located at the center of the two-dimensional position detecting sensor 12 (step). When the condensing point reaches the center position of the two-dimensional position detecting sensor 12 again (step),
The steps from step to step are performed again. After that, every time the reflecting prism 4 is installed at a plurality of survey points, the above operation is performed and the respective coordinates are sequentially displayed.

尚、前記実施例におけるダイロイック・プリズム5の
代りにハーフミラーと所定波長(送光波と同じ波長)の
みを通過させるフィルタを使用してもよい。
Instead of the diloic prism 5 in the above-described embodiment, a half mirror and a filter that passes only a predetermined wavelength (the same wavelength as the transmitted light) may be used.

(発明の効果) 本発明は、上記の構成を有するので、測量基準点から
の測量点の空間座標を測量時に容易に知ることができ、
また、直角プリズムのみを回動させるので測距経緯儀を
本体ごと回動させる場合に比べ、回動部分が少なく周囲
のものにぶつかるおそれがないという効果を有する。
(Effect of the invention) Since the present invention has the above configuration, it is possible to easily know the spatial coordinates of the surveying point from the surveying reference point during surveying,
Further, since only the right-angle prism is rotated, there is an effect that there is less rotating portion and there is no risk of hitting surrounding objects as compared with the case where the distance measuring theodolite is rotated together with the main body.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例の要部を示す線図、第2図
は、そのブロック図、第3図はその作業フロー図であ
る。 1……望遠鏡 3……直角プリズム 4……反射プリズム 8……発光ダイオード 11……距離測定用受光素子 12……2次元位置検出用センサ 16……水平方向回転角測定用エンコーダ 18、21……モータ 19……垂直方向回転角測定用エンコーダ 20……CPU
FIG. 1 is a diagram showing a main part of an embodiment of the present invention, FIG. 2 is a block diagram thereof, and FIG. 3 is a work flow diagram thereof. 1 …… Telescope 3 …… Right-angle prism 4 …… Reflecting prism 8 …… Light emitting diode 11 …… Distance measuring light receiving element 12 …… Two-dimensional position detection sensor 16 …… Horizontal rotation angle measuring encoder 18, 21… … Motor 19 …… Encoder for vertical rotation angle measurement 20 …… CPU

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】視準手段と、光波距離測定手段と、測距経
緯儀本体の一部を形成し、測量点を結ぶ光路を屈折させ
る直角プリズムの水平方向回転角及び垂直方向回転角を
検出する測角手段とを備えた測距経緯儀において、測距
経緯儀本体から送光され測量点の反射面で反射されて前
記光波距離測定手段の反射光受光面に向う反射光の一部
を取り出して集光させ、その集光点の前記測量点の反射
面の移動に伴う変位量を検出する検出手段と、前記直角
プリズムを水平方向及び垂直方向に回動させる駆動手段
と、前記検出手段で検出された変位量が零となるように
前記駆動手段を作動させる制御手段と、前記測角部によ
り検出された直角プリズムの回動量に対応するその水平
方向回転角及び垂直方向回転角と前記光波距離測定手段
から得られた測距値から前記測量点の座標値を算出する
演算手段とを備えることを特徴とする測距経緯儀。
1. A horizontal rotation angle and a vertical rotation angle of a right-angle prism which forms a part of a collimating means, a light wave distance measuring means and a distance measuring theodolite body and refracts an optical path connecting surveying points. In the distance measuring theodolite equipped with the angle measuring means, a part of the reflected light that is transmitted from the distance measuring theodolite main body and reflected by the reflection surface of the surveying point toward the reflected light receiving surface of the light wave distance measuring means is Detecting means for taking out and condensing and detecting a displacement amount of the converging point due to movement of the reflection surface of the surveying point, driving means for rotating the rectangular prism in the horizontal direction and the vertical direction, and the detecting means. The control means for operating the drive means so that the displacement detected in step 0 becomes zero, the horizontal rotation angle and the vertical rotation angle corresponding to the rotation amount of the rectangular prism detected by the angle measuring unit, and the rotation angle. Distance measurement obtained from lightwave distance measuring means Ranging theodolite, characterized in that it comprises a calculating means for calculating the coordinate value of the surveying points from.
JP63083636A 1988-04-05 1988-04-05 Distance measuring theodolite Expired - Lifetime JP2694647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63083636A JP2694647B2 (en) 1988-04-05 1988-04-05 Distance measuring theodolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083636A JP2694647B2 (en) 1988-04-05 1988-04-05 Distance measuring theodolite

Publications (2)

Publication Number Publication Date
JPH01254806A JPH01254806A (en) 1989-10-11
JP2694647B2 true JP2694647B2 (en) 1997-12-24

Family

ID=13807950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083636A Expired - Lifetime JP2694647B2 (en) 1988-04-05 1988-04-05 Distance measuring theodolite

Country Status (1)

Country Link
JP (1) JP2694647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132060A1 (en) 2005-06-06 2006-12-14 Kabushiki Kaisha Topcon Distance measuring device
US7522268B2 (en) 2005-09-30 2009-04-21 Kabushiki Kaisha Topcon Distance measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617852B2 (en) * 1992-04-06 1997-06-04 極東産機株式会社 Room dimension measuring device
JP6749191B2 (en) * 2016-09-21 2020-09-02 株式会社トプコン Scanner and surveying equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613414U (en) * 1984-06-12 1986-01-10 株式会社ソキア Automatic sighting angle and distance measuring machine
JPS6219712A (en) * 1985-07-17 1987-01-28 Takenaka Komuten Co Ltd Positioning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132060A1 (en) 2005-06-06 2006-12-14 Kabushiki Kaisha Topcon Distance measuring device
US7474388B2 (en) 2005-06-06 2009-01-06 Kabushiki Kaisha Topcon Distance measuring device
US7522268B2 (en) 2005-09-30 2009-04-21 Kabushiki Kaisha Topcon Distance measuring device

Also Published As

Publication number Publication date
JPH01254806A (en) 1989-10-11

Similar Documents

Publication Publication Date Title
EP1411371B1 (en) Surveying and position measuring instrument with a fan-shapped light beam
US5076690A (en) Computer aided positioning system and method
US5137354A (en) Computer aided three dimensional positioning sensing system and method
JP4531965B2 (en) Vibration detection device, rotating laser device with vibration detection device, and position measurement setting system with vibration detection correction device
JP4601798B2 (en) Position measurement setting system
US10895632B2 (en) Surveying system
JP4210792B2 (en) Position detection device
US5301005A (en) Method and apparatus for determining the position of a retroreflective element
US7633609B2 (en) Measuring system
KR20100019576A (en) Distance sensor system and method
JP3647608B2 (en) Surveyor automatic tracking device
JP2020051818A (en) Surveying device and surveying device system
JP2019196983A (en) Surveying system
JP2694647B2 (en) Distance measuring theodolite
JP2001033250A (en) Surveying device
EP0618461B1 (en) Distance measuring method and apparatus
JP3748112B2 (en) Surveying instrument
JP2017187386A (en) Laser range-finder
JP2945467B2 (en) Machine height measuring device
JPH07190773A (en) Optical three-dimensional position detecting device
EP3696499A1 (en) Surveying system having a rotating mirror
JPH03167404A (en) Method for measuring size of large object
JP2591978B2 (en) A method for measuring the verticality of a tower.
JPH07117414B2 (en) Automatic collimating lightwave rangefinder
KR102620781B1 (en) FMCW LiDAR SYSTEM USING HETEROGENEOUS SCANNERS

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11