JP2686118B2 - Glass optical element molding method - Google Patents

Glass optical element molding method

Info

Publication number
JP2686118B2
JP2686118B2 JP63303810A JP30381088A JP2686118B2 JP 2686118 B2 JP2686118 B2 JP 2686118B2 JP 63303810 A JP63303810 A JP 63303810A JP 30381088 A JP30381088 A JP 30381088A JP 2686118 B2 JP2686118 B2 JP 2686118B2
Authority
JP
Japan
Prior art keywords
molding
glass
pressure
optical element
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63303810A
Other languages
Japanese (ja)
Other versions
JPH02149432A (en
Inventor
弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP63303810A priority Critical patent/JP2686118B2/en
Publication of JPH02149432A publication Critical patent/JPH02149432A/en
Application granted granted Critical
Publication of JP2686118B2 publication Critical patent/JP2686118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加圧成形可能に加熱軟化したガラス素材を加
圧してガラス光学素子を成形するガラス光学素子の成形
方法に関する。
TECHNICAL FIELD The present invention relates to a glass optical element molding method for molding a glass optical element by pressurizing a glass material that has been softened by heating so as to be pressure-moldable.

〔従来の技術〕[Conventional technology]

一般的に加熱軟化したガラス素材を加熱プレスにより
変形させながら所望形状に成形してガラス光学素子を得
ることは、例えば特公昭55−116245号公報により知られ
ている。ところで、ガラス光学素子を加熱プレス手段に
よって得る場合はガラスと成形用型の離型性が良いこと
が必要であり、特に像形成用光学レンズに要求される厳
密な表面形状および表面特性を満足するには成形用型の
成形面の全面での離型性が重要となる。この離型性は成
形用型の材料に起因するガラス漏れ性に大きく依存して
いる。
It is known, for example, from Japanese Examined Patent Publication (Kokoku) No. 55-116245 to obtain a glass optical element by molding a glass material which has been softened by heating into a desired shape while deforming it by a heating press. By the way, when the glass optical element is obtained by the hot pressing means, it is necessary that the releasability between the glass and the molding die is good, and in particular, the strict surface shape and surface characteristics required for the optical lens for image formation are satisfied. For this reason, the releasability over the entire molding surface of the molding die is important. This mold releasability depends largely on the glass leakage property due to the material of the molding die.

離型性の良好な成形用型として特許出願人は特開昭62
−87423号公報所載の技術を開示した。すなわち、この
公報所載の成形用型は、光学素子成形面をクロムおよび
窒素を主成分とする化学物質により構成したものであ
る。この成形用型は一般的にはイオンプレーティングま
たはその他のPVD法等で成形面上にクロムおよび窒素を
主成分とする被膜を形成して得るもので、離型性は従来
技術として開示されているものと比較し良好であるが、
成形に用いるにあたって、新品状態のものや、或いは長
く使用した後に型面上の付着物を研磨加工等で除去処理
した後のものでは初期的にガラス素材の変形による成形
時にガラスの融着が生じる場合があった(他の従来例も
同じ)。
As a molding die having good releasability, the patent applicant has disclosed in Japanese Patent Laid-Open No.
The technology disclosed in Japanese Patent Publication No. 87423 has been disclosed. That is, in the molding die described in this publication, the molding surface of the optical element is made of a chemical substance containing chromium and nitrogen as main components. This molding die is generally obtained by forming a coating film containing chromium and nitrogen as the main components on the molding surface by ion plating or other PVD method, and the mold releasability is disclosed as a prior art. It is good compared to the
When used for molding, if the product is in a new state or after long-term use and after removing the deposits on the mold surface by polishing, etc., glass fusion will initially occur due to deformation of the glass material during molding. There were cases (the same applies to other conventional examples).

このことは特に、成形工程の加圧保持時間を短くし生
産性を向上させるために、加圧力を上昇させたときに発
生する。
This particularly occurs when the pressure is increased in order to shorten the pressure holding time in the molding process and improve the productivity.

この発明はこのような問題点に着目して創案したもの
で、とくに新品或いは付着物の除去処理を行った後の成
形用型を用いた連続加圧成形(すなわち連続的に多数個
を加圧成形すること)においてガラス素材の融着防止を
可能とするガラス光学素子の成形方法を提供することを
目的とする。
The present invention was created with attention to such problems, and particularly continuous press molding using a molding die after removing new or adhered substances (that is, continuously pressing a large number of pieces). It is an object of the present invention to provide a method for molding a glass optical element, which makes it possible to prevent fusion of a glass material in molding.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は連続加圧成形前に、該連続加圧成形時の型
温,加圧力および加圧時間の各成形条件中の少なくとも
一つを低い数値の成形条件として適宜数予備加圧成形
し、しかる後、連続加圧成形するもので、さらに、この
予備加圧成形時に例えば重フリント系のガラス素材を用
いるのであって、斯様な予備加圧成形することによっ
て、ガラス素材から析出した微量のガラス成分(特にPb
O等)より成る極く薄い被膜が型面上に形成され、連続
加圧成形時にガラス素材の型面への融着が防止され、特
に新品状態や付着物の除去処理を行った後の活性化した
型面をもつ成形用型を用いる加圧成形に効果がある。こ
のことは、連続加圧成形前に、成形用型の成形面にガラ
ス成分より成る被膜を形成し、しかる後にこの成形用型
により多数個のガラス素材を連続的に加圧成形して多数
個の光学素子を得るというものである。
The present invention, before continuous pressure molding, at least one of the molding conditions of the mold temperature, the pressing force and the pressing time during the continuous pressure molding is appropriately preliminarily pressure molded as a molding condition having a low numerical value, Then, it is subjected to continuous pressure molding, and further, for example, a heavy flint type glass material is used at the time of this preliminary pressure molding. Glass component (especially Pb
A very thin film consisting of (O etc.) is formed on the mold surface to prevent fusion of the glass material to the mold surface during continuous pressure molding, and especially the activity after removing the new condition and removing the adhered substances. It is effective for pressure molding using a molding die having a modified mold surface. This means that a film consisting of glass components is formed on the molding surface of the molding die before continuous pressure molding, and then many glass materials are continuously pressure-molded by this molding die To obtain the optical element of.

また、予備加圧成形に用いるガラス素材を重フリント
系ガラスとすると、前記のガラス成分による被膜を効率
的に生成させることができる。これは、重フリント系ガ
ラスはPbO含有率が多く、ガラスから析出したPbOによる
型面上に生じる極く薄い被膜が効率的に生成することに
よる。
Further, when the glass material used for the preliminary pressure molding is a heavy flint type glass, it is possible to efficiently form a coating film of the above glass component. This is because heavy flint glass has a high PbO content, and an extremely thin coating film formed on the mold surface due to PbO precipitated from the glass is efficiently generated.

〔実施例〕〔Example〕

第1図および第2図は本発明に係るガラス光学素子の
成形方法を用いる成形装置を示すものである。
1 and 2 show a molding apparatus using the method for molding a glass optical element according to the present invention.

図において、1は上型、2は下型をそれぞれ示し、上
型1および下型2は温度制御された加熱ヒータ(図示省
略)により所定の温度に制御されると共に、上型1は上
板10に固定され、下型2は下板11を貫通して図示省略し
た駆動源(例えばシリンダ)により上下方向(矢印A方
向)に移動自在に保持され、上下型1,2はその軸心aが
互に一致するように配置されている。
In the figure, 1 denotes an upper mold, 2 denotes a lower mold, and the upper mold 1 and the lower mold 2 are controlled to a predetermined temperature by a temperature-controlled heater (not shown), and the upper mold 1 is an upper plate. The lower die 2 is fixed to the lower die 2 through the lower plate 11 and is movably held in the vertical direction (direction of arrow A) by a drive source (eg, cylinder) not shown. Are arranged to match each other.

また、上下型1,2は、石英ガラス管7で周囲が囲ま
れ、石英ガラス管7の内部には雰囲気ガス供給装置9に
より窒素ガス,不活性ガス或いは還元性ガス等の非酸化
性ガスが供給され、該非酸化性ガスにより前記上下の各
型1,2の高温となる部分は酸化しないようになってい
る。また、前記上板10および下板11は図示省略した部材
で互に結合され、、相互間の位置関係は一定となってい
る。
Further, the upper and lower molds 1 and 2 are surrounded by a quartz glass tube 7, and a non-oxidizing gas such as nitrogen gas, an inert gas or a reducing gas is provided inside the quartz glass tube 7 by an atmosphere gas supply device 9. The non-oxidizing gas is supplied so that the high temperature portions of the upper and lower molds 1 and 2 are not oxidized. Further, the upper plate 10 and the lower plate 11 are connected to each other by members (not shown), and the positional relationship between them is constant.

図面5は光学ガラス素材3およびプレス成形後のガラ
ス光学素子を載置,搬送する胴型キャリアで、この胴型
キャリアは胴型キャリア搬送用アーム4により支持さ
れ、図示省略した温度制御装置によって所定の温度に設
定し得る加熱炉6中に移送され、前記上下型1,2間に搬
送される。
FIG. 5 shows a barrel-shaped carrier on which the optical glass material 3 and the glass optical element after press molding are placed and transported. The barrel-shaped carrier is supported by the barrel-shaped carrier transporting arm 4 and predetermined by a temperature control device (not shown). It is transferred into the heating furnace 6 which can be set to the temperature of 1 and is conveyed between the upper and lower molds 1 and 2.

次に、この成形装置によりガラス光学素子を成形する
方法について説明する。
Next, a method of molding a glass optical element with this molding apparatus will be described.

まず、胴型キャリア5内に光学ガラス素材3を載置
し、胴型キャリア搬送用アーム4で加熱炉6内に搬送
し、上下のヒータ6a,6aによって該素材3を成形可能状
態になるまで(軟化温度付近まで)加熱軟化処理する。
次に、前記アーム4を作動させて胴型キャリア5を原位
置に復帰させ(すなわち、胴型キャリア5の中心と前記
軸心aとが一致する位置を予め設定しておき、この位置
を基準とする原点位置として搬送アーム4を作動させて
いるので、この原点位置に戻し)、該胴型キャリア5に
載置した光学ガラス素材3を上型1と下型2の間に位置
せしめた後、下型2を上方向に縦動させて上型1の成形
面1aおよび下型2の成形面2aにより光学ガラス素材3を
プレスして光学素子を得る。光学素子プレス成形後は、
下型2を下方向に縦動させて離型し、加熱炉6の反対側
に配設した徐冷炉(図示省略)中に胴型キャリア5に載
置した光学素子を胴型キャリア搬送アーム4によって搬
送して冷却し、冷却後キャリア5より光学素子を取り出
す。なお、光学素子の徐冷炉への搬送は、プレス成形
後、胴型キャリア搬送アーム4から該光学素子を載置し
た胴型キャリア5を別の搬送アームに移動させて(すな
わち、移し換えて)行う場合もある。
First, the optical glass material 3 is placed in the barrel-shaped carrier 5 and is transported into the heating furnace 6 by the barrel-shaped carrier transporting arm 4 until the material 3 can be molded by the upper and lower heaters 6a, 6a. Heat softening treatment (up to near the softening temperature).
Next, the arm 4 is operated to return the barrel-shaped carrier 5 to the original position (that is, a position where the center of the barrel-shaped carrier 5 and the axis a coincide with each other is set in advance, and this position is used as a reference. Since the transfer arm 4 is operated as the origin position, the position is returned to this origin position, and after the optical glass material 3 placed on the barrel mold carrier 5 is positioned between the upper mold 1 and the lower mold 2. Then, the lower mold 2 is vertically moved upward, and the optical glass material 3 is pressed by the molding surface 1a of the upper mold 1 and the molding surface 2a of the lower mold 2 to obtain an optical element. After optical element press molding,
The lower die 2 is vertically moved downward to be released from the mold, and the optical element mounted on the barrel carrier 5 is moved by the barrel carrier transfer arm 4 in an annealing furnace (not shown) provided on the opposite side of the heating furnace 6. It is conveyed and cooled, and after cooling, the optical element is taken out from the carrier 5. The optical element is transferred to the annealing furnace by moving (that is, transferring) the cylinder-shaped carrier transfer arm 4 from the cylinder-shaped carrier transfer arm 4 to another transfer arm after the press molding. In some cases.

なお、上型1および下型2は、ステンレス鋼から成る
金属基材を所望の最終製品に対応した形状に加工し、鏡
面研磨した成形側面にイオンプレーティングにより厚さ
1.5μmのCrN被膜1b,2bを施して成形面1a,2bとしたもの
で、CrN被膜1b,2bは、CrN95モル%以上で、炭素,ケイ
素,ナトリウム等の不純物を含有している。
The upper mold 1 and the lower mold 2 are formed by processing a metal base material made of stainless steel into a shape corresponding to a desired final product, and mirror-polishing the molded side surface to a thickness by ion plating.
The molded surfaces 1a and 2b are formed by applying CrN coatings 1b and 2b of 1.5 μm, and the CrN coatings 1b and 2b contain CrN of 95 mol% or more and impurities such as carbon, silicon and sodium.

本発明は斯様な方法によるガラス光学素材の連続加圧
成形前に、上下の型により適宜数のガラス素材(ガラス
光学素材と同種または異種のガラス素材)を予備加圧成
形し、このガラス素材から析出した微量のガラス成分か
ら成る薄い被膜を型成形面上に形成し、しかる後、この
成形用型により連続加圧成形するもので、第1表には第
1ないし第4の各実施例の予備加圧成形の成形条件を比
較理解し易く纏めて挙示している。第1表中、「成形品
の形状・硝種」は連続加圧成形および予備加圧成形によ
る成形品を示し、第1表で示す加圧条件下で予備加圧成
形を経ないで連続加圧成形すると連続加圧成形初期段階
で融着が生じた。
Prior to continuous pressure molding of a glass optical material by such a method, an appropriate number of glass materials (glass materials of the same kind or different kinds as the glass optical material) are prepress-molded by upper and lower molds, A thin coating film consisting of a trace amount of glass component deposited from the above is formed on the molding surface, and then continuously pressure-molded by this molding die. Table 1 shows the first to fourth examples. The molding conditions of the pre-press molding are summarized and listed for easy understanding. In Table 1, "shape of molded product / glass type" indicates a molded product obtained by continuous pressure molding and preliminary pressure molding, and continuous compression without pre-press molding under the pressure conditions shown in Table 1. Upon molding, fusion occurred at the initial stage of continuous pressure molding.

第1ないし第4の実施例を説明する。なお第1表の中
でLLF6は、ガラス成分がSiO2−PbO−R2O系列で、PbO量
の比較的少ないフリント系ガラスであり、Dは外径、t
は最大肉厚、RA、RBは上下各面の曲率半径を示す。
First to fourth embodiments will be described. In Table 1, LLF6 is a flint glass having a glass component of the SiO 2 —PbO—R 2 O series and a relatively small amount of PbO, and D is the outer diameter, t
Indicates the maximum wall thickness, and R A and R B indicate the radii of curvature of the upper and lower surfaces.

(第1実施例) 第1実施例は連続加圧成形時の型温,加圧力および加
圧時間の各加圧成形条件中、型温の数値のみを低くした
方法である。すなわち、連続加圧成形時の成形条件中型
温が440℃に対し20℃低くした420℃の型温によって5シ
ョット予備成形した後、加圧力500kgf,加圧保持時間17s
ecおよび型温440℃の加圧条件下で連続加圧成形して成
形品を得るものである。
(First Example) The first example is a method in which only the numerical value of the mold temperature is lowered among the pressure molding conditions of the mold temperature, the pressing force, and the pressing time at the time of continuous pressure molding. That is, after 5 shots of pre-molding at a mold temperature of 420 ° C, which is 20 ° C lower than 440 ° C in the molding conditions during continuous pressure molding, a pressing force of 500 kgf and a pressure holding time of 17 s.
A molded product is obtained by continuous pressure molding under a pressure condition of ec and a mold temperature of 440 ° C.

斯様にして連続加圧成形して連続して成形品を得たと
ころ加圧初期においても融着もなく安定した成形品を得
ることを確認した。
Thus, it was confirmed that a continuous molded product was obtained by continuous pressure molding, and a stable molded product was obtained without fusion even in the initial stage of pressing.

(第2実施例) 第2実施例は第1実施例と同様予備加圧成形した後、
連続加圧成形したもので、予備加圧成形条件として加圧
力のみを連続加圧成形の加圧力500kgfに対して200kgf低
くして300kgfとし予備加圧したもので、第1実施例と同
等の効果を確認できた。
(Second Example) In the second example, after prepress molding as in the first example,
Continuous press-molding, the pre-pressurizing condition is 300 kgf, which is 200 kgf lower than the pressurizing force of 500 kgf in the continuous press-molding, and pre-pressurized to have the same effect as the first embodiment. I was able to confirm.

(第3実施例) 第3実施例は予備加圧成形条件として加圧保持時間の
み8sec(連続加圧成形時は17sec、従って、9sec減)と
した例で、第1実施例と同等の効果を確認できた。
(Third Embodiment) The third embodiment is an example in which only the pressure holding time is 8 seconds as the preliminary pressure molding condition (17 seconds in continuous pressure molding, therefore, 9 seconds are reduced), and the same effect as the first embodiment is obtained. I was able to confirm.

(第4実施例) 第1実施例と異なる点は、予備加圧成形条件として型
温を420℃(20℃減),加圧力300kgf(200kgf減)と
し、予備成形数を10ショットとした点であり、第1実施
例と同等の効果を確認した。
(Fourth Embodiment) The point different from the first embodiment is that the pre-pressing molding conditions are a mold temperature of 420 ° C. (20 ° C. decrease), a pressing force of 300 kgf (200 kgf decrease), and a preliminary molding number of 10 shots. Therefore, the same effect as that of the first embodiment was confirmed.

(第5実施例) 予備加圧成形に用いるガラス素材の硝種を重フリント
系光学ガラスのSF7とした例を第2表に示した。予備加
圧成形条件は融着を生じないように第1実施例と同様に
十分型温,加圧力,加圧保持時間を低減させた条件とし
た。予備加圧成形ショット数2ショットによって連続加
圧成形時に融着を起こすことなく安定した成形を行える
ことが確認された。重フリント系ガラスはPbO含有率が
多く、ガラスから析出したPbOによる型面上に生じた極
く薄い被膜の発生が効率的に行われるので予備加圧成形
ショット数を減少させることができ、作業工程数削減等
低コスト化を図ることができる。
(Fifth Example) Table 2 shows an example in which the glass type of the glass material used for the preliminary pressure molding is SF7 of the heavy flint type optical glass. The pre-press molding conditions were set such that the mold temperature, the pressure, and the pressure holding time were sufficiently reduced as in the first embodiment so that fusion did not occur. It was confirmed that the number of pre-press molding shots was 2 and stable molding could be performed without fusion during continuous pressure molding. Heavy flint glass has a high PbO content, and the very thin coating film generated on the mold surface due to PbO precipitated from the glass is efficiently generated, so the number of pre-press molding shots can be reduced. The cost can be reduced by reducing the number of processes.

なお第2表中の比較例で示す通り、予備加圧成形条件
を硝種BaLF3(ガラス成分がSiO2−PbO−BaO−R2O系列の
ガラス),型温460℃,加圧力400kgfおよび加圧保持時
間15secとして予備加圧成形数を2ショットとした後、
連続加圧成形条件および硝種等を第5実施例と同様にし
て連続加圧成形したところ、連続成形初期に融着を生じ
たが、同一条件下で5ショット予備加圧成形して連速加
圧成形したところ融着が生じることがなかった。
Note as shown in Comparative Example in Table 2 in the preliminary pressing condition glass type BaLF3 (glass of the glass component is SiO 2 -PbO-BaO-R 2 O series), mold temperature 460 ° C., pressure 400kgf and pressure After holding for 15 seconds and setting the number of pre-press molding to 2 shots,
When continuous pressure molding was carried out in the same manner as in the fifth embodiment under the conditions of continuous pressure molding and glass type and the like, fusion occurred at the initial stage of continuous molding. When pressure molding was performed, fusion did not occur.

〔発明の効果〕 本発明によれば、予備加圧成形によって成形用型の成
形面にガラス素材から析出した微量のガラス成分より成
る薄い被膜が形成され、この被膜が形成された成形用型
を用いて連続加圧成形するから、連続加圧成形初期に生
じ易いガラス素材の成形面上への融着を防止でき、従っ
て、安定した成形を連続して行うことができ、殊に成形
面が新品状態の場合や、付着物の除去処理を行った後の
成形用型を用いる場合に効果があり、また、予備加圧成
形に用いるガラス素材を重フリント系ガラスとすること
により予備加圧成形ショット数を軽減でき経済的であ
る。
[Effects of the Invention] According to the present invention, a thin coating film is formed on the molding surface of the molding die by preliminary pressure molding, the thin coating film consisting of a small amount of glass component precipitated from the glass material. Since continuous pressure molding is used, it is possible to prevent fusion of the glass material to the molding surface, which tends to occur at the initial stage of continuous pressure molding, and therefore stable molding can be continuously performed, especially when the molding surface is It is effective when it is in a new state or when using a molding die after removing the adhered substances. Also, by using heavy flint glass as the glass material used for pre-press molding, pre-press molding Economical because the number of shots can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明方法を用いるガラス光学素子の成形装置を
示し、第1図は略示図、第2図はガラス素材を上下型で
加圧した状態を示す断面図である。 1……上型 2……下型 3……光学ガラス素材 6……加熱炉
The drawings show a glass optical element molding apparatus using the method of the present invention. FIG. 1 is a schematic view, and FIG. 2 is a cross-sectional view showing a state in which a glass material is pressed by upper and lower molds. 1 …… Upper mold 2 …… Lower mold 3 …… Optical glass material 6 …… Heating furnace

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス素材を加熱軟化して、成形用型にて
加圧成形して連続的に多数個の光学素子を得るガラス光
学素子の成形方法において、 前記成形用型の成形面にガラス成分より成る被膜を形成
し、しかる後、この成形用型により前記ガラス素材の加
圧成形を行って多数個の光学素子を連続的に成形するこ
とを特徴とするガラス光学素子の成形方法。
1. A method for molding a glass optical element, wherein a glass material is softened by heating and pressure-molded by a molding die to obtain a large number of optical elements continuously, wherein a glass is formed on a molding surface of the molding die. A method for molding a glass optical element, comprising forming a coating film comprising the components, and thereafter, pressure-molding the glass material with the molding die to continuously mold a large number of optical elements.
【請求項2】ガラス素材を加熱軟化して、成形用型にて
加圧成形して連続的に多数個の光学素子を得るガラス光
学素子の成形方法において、 連続的な加圧成形前に、該連続的加圧成形時の型温、加
圧力、および加圧時間の各成形条件中の少なくとも一つ
を低い数値の成形条件として前記成形用型にてガラス素
材を予備加圧成形し、 この成形用型の成形面にこのガラス素材から析出したガ
ラス成分より成る被膜を形成し、 しかる後、この成形用型により前記ガラス素材の加圧成
形を行って多数個の光学素子を連続的に成形することを
特徴とするガラス光学素子の成形方法。
2. A method for molding a glass optical element, wherein a glass material is softened by heating and pressure-molded by a molding die to obtain a large number of optical elements continuously, before continuous pressure molding. A glass material is pre-press-molded in the molding die, with at least one of molding conditions of mold temperature, pressure, and pressing time at the time of continuous pressure molding being a molding condition having a low numerical value. A film consisting of the glass component deposited from this glass material is formed on the molding surface of the molding die, and then the glass material is pressure-molded by this molding die to continuously mold a large number of optical elements. A method for molding a glass optical element, comprising:
【請求項3】予備加圧成形するガラス素材は、PbOを含
有するガラス素材であることを特徴とする特許請求の範
囲第2項記載のガラス光学素子の成形方法。
3. The method for molding a glass optical element according to claim 2, wherein the glass material to be pre-press-molded is a glass material containing PbO.
JP63303810A 1988-11-30 1988-11-30 Glass optical element molding method Expired - Fee Related JP2686118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303810A JP2686118B2 (en) 1988-11-30 1988-11-30 Glass optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303810A JP2686118B2 (en) 1988-11-30 1988-11-30 Glass optical element molding method

Publications (2)

Publication Number Publication Date
JPH02149432A JPH02149432A (en) 1990-06-08
JP2686118B2 true JP2686118B2 (en) 1997-12-08

Family

ID=17925574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303810A Expired - Fee Related JP2686118B2 (en) 1988-11-30 1988-11-30 Glass optical element molding method

Country Status (1)

Country Link
JP (1) JP2686118B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214117B2 (en) * 2004-02-12 2009-01-28 Hoya株式会社 Glass optical element manufacturing apparatus and method
CN1331787C (en) 2004-02-12 2007-08-15 Hoya株式会社 Apparatus and method for producing a glass optical element and glass optical element produced thereby

Also Published As

Publication number Publication date
JPH02149432A (en) 1990-06-08

Similar Documents

Publication Publication Date Title
JP2686118B2 (en) Glass optical element molding method
JP2003025100A (en) Die-movable type press-forming machine
JP7476805B2 (en) Method for forming glass sheets
JP2621956B2 (en) Optical element molding method
JPS61251529A (en) Method of high precision molding for glass optical part
JPH05345622A (en) Device for forming glass lens
JPH048374B2 (en)
JPH07330347A (en) Method for forming optical element
JP2718451B2 (en) Optical glass parts molding method
JPS59150728A (en) Forming of optical element
CN116693179A (en) Method and apparatus for manufacturing flat plate-like glass, and method for manufacturing glass substrate
JP2814717B2 (en) Optical element molding method
JP3203402B2 (en) Optical element molding die, method of manufacturing the same, and optical element molding method
JP2504817B2 (en) Optical element molding method
JP3045432B2 (en) Method of forming concave lens-shaped optical element
JP3096321B2 (en) Glass lens molding method
JPS6168331A (en) Press-molding process for glass lens
JP4030799B2 (en) Optical element molding method
JPS6296329A (en) Production of optical element
JP3184584B2 (en) Glass lens molding method
JPH06211530A (en) Method for forming optical element and device therefor
JP2003054968A (en) Method for molding optical element
JPS63265833A (en) Method for molding glass lens
JPH02275722A (en) Forming apparatus for optical element
JPH09227136A (en) Molding of optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees