JPH07330347A - Method for forming optical element - Google Patents

Method for forming optical element

Info

Publication number
JPH07330347A
JPH07330347A JP15284494A JP15284494A JPH07330347A JP H07330347 A JPH07330347 A JP H07330347A JP 15284494 A JP15284494 A JP 15284494A JP 15284494 A JP15284494 A JP 15284494A JP H07330347 A JPH07330347 A JP H07330347A
Authority
JP
Japan
Prior art keywords
molding
optical element
press
glass
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15284494A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Iwasaki
暢喜 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15284494A priority Critical patent/JPH07330347A/en
Publication of JPH07330347A publication Critical patent/JPH07330347A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Abstract

PURPOSE:To mold a high precision optical element free from a crack and a fragment, by preventing formation of a burr at an outer peripheral part of a molded material of glass in the first press molding in molding an optical element by dividedly carrying out the press molding twice. CONSTITUTION:Press molding pressure is controlled in the first press molding and 50-99% of diameters of faces 2a and 2b to be molded of a preform 2 is transferred to a molding face 4a of an upper mold 4 and a molding face 5a of a lower mold 5. Then, in carrying out the second press molding for the preform 2 obtained by the first press molding, since no burr has occurred in the preform 2, the upper mold 4 and the lower mold 5 will not twist the preform 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱、軟化させたガラ
ス成形素材をプレス成形してガラスレンズ等の光学素子
を得る方法に係り、特にガラス成形素材を2回プレス成
形して高精度な光学素子を得る光学素子成形方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for press-molding a glass molding material that has been heated and softened to obtain an optical element such as a glass lens. The present invention relates to an optical element molding method for obtaining an optical element.

【0002】[0002]

【従来の技術】従来、数回のプレスを繰り返して所望の
面精度に仕上げる成形方法としては、数多くの提案がな
されている。たとえば、特開昭62−96329号公報
には、加熱軟化したガラス素材を成形型により押圧して
所望する形状に近似した形状に成形する予備成形工程
と、前記予備成形されたガラス素材を加熱軟化して前記
成形型で所望の最終形状に押圧成形する本成形工程とよ
りなる光学素子の製造方法が開示されており、ガラス素
材としては実施例中に円柱状のガラス素材を用いる旨記
載されている。
2. Description of the Related Art Heretofore, many proposals have been made as a molding method for finishing a desired surface accuracy by repeating pressing several times. For example, in Japanese Unexamined Patent Publication No. 62-96329, a preforming step of pressing a heat-softened glass material with a molding die to form a shape close to a desired shape, and the preformed glass material are heat-softened A method of manufacturing an optical element comprising a main molding step of press-molding into a desired final shape with the molding die is disclosed, and it is described that a cylindrical glass material is used in the examples as the glass material. There is.

【0003】また、特開平3−257030号公報に
は、ガラス素材の転移温度近傍に保持した成形型に溶融
ガラスを投入し、溶融ガラスの温度が軟化点になるまで
押圧および離型を少なくとも2回繰り返して初期成形を
行った後、初期成形したガラス素材が転移点になるまで
連続的に押圧して最終成形を行う光学素子の成形方法が
開示されている。
Further, in Japanese Patent Laid-Open No. 3-257030, molten glass is put into a molding die held near the transition temperature of the glass material, and pressing and releasing are performed at least 2 times until the temperature of the molten glass reaches a softening point. A method for molding an optical element is disclosed, in which after initial molding is repeated a number of times, final molding is performed by continuously pressing the glass material that has been initially molded until it reaches a transition point.

【0004】[0004]

【発明が解決しようとする課題】前記特開昭62−96
329号公報の製造方法では、円柱状のガラス素材を用
いているため、予備成形工程でガラス素材を所望形状に
近似した形状に成形すると、成形型の外周部を包むよう
にガラス素材のはみ出し部分ができ、本成形工程におけ
る成形の際に、前記ガラス素材と成形型とのわずかなズ
レや前記ガラス素材の収縮により、前記はみ出し部分が
成形型の外周部にかじるため、光学素子(成形品)の外
周付近が割れたり引っかかったりして、成形品の外観品
質を大きく損ない所望の面精度が得られないという問題
点があった。また、円柱状のガラス素材を用いない場合
にあっても、予備成形工程で所望形状に近似した形状に
まで押圧成形すると、少なからず成形型の外周部分にガ
ラス素材のはみ出し部分ができ、前述した問題点は避け
られなかった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention JP-A-62-96
In the manufacturing method of Japanese Patent No. 329, since a cylindrical glass material is used, when the glass material is molded into a shape close to a desired shape in the preforming step, the protruding portion of the glass material surrounds the outer peripheral portion of the molding die. When, in the molding in the main molding step, the protruding portion is bitten on the outer peripheral portion of the molding die due to a slight deviation between the glass material and the molding die or the contraction of the glass material, so that the optical element (molded product) There is a problem in that the outer peripheral portion is cracked or caught and the appearance quality of the molded product is greatly impaired, and desired surface accuracy cannot be obtained. Further, even when the cylindrical glass material is not used, if the press molding is performed to a shape close to the desired shape in the preforming step, a glass material protruding portion is formed in the outer peripheral portion of the forming die, not a little. The problem was unavoidable.

【0005】また、特開平3−257030号公報の成
形方法では、ガラス素材に溶融ガラスを用いているため
ガラスの粘度が十分小さく、成形型上に投入した段階で
ガラス素材が成形型の外周部にまで行きわたったり、あ
るいは投入段階で行きわたらずとも、初期成形の段階で
ガラス素材が成形型の外周部まで行きわたるので、前記
特開昭62−96329号公報の製造方法と同様な問題
点が生じていた。
Further, in the molding method disclosed in Japanese Patent Laid-Open No. 3-257030, the viscosity of the glass is sufficiently low because the glass material is made of molten glass. Even if the glass material reaches the outer peripheral portion of the molding die in the initial molding stage even if it does not reach the end of the mold or does not reach the charging step, the same problem as in the manufacturing method of JP-A-62-96329 is encountered. Was occurring.

【0006】本発明は、前記従来技術の問題点に鑑みて
なされたもので、請求項1、2に係る発明は、1回の押
圧成形では所望の品質が得られない、特に超高精度を要
する光学素子、肉厚差の大きな光学素子、押圧成形時の
変形量の大きな非球面を有する光学素子、口径の大きな
光学素子を高精度に成形し得る光学素子成形方法を提供
することを目的とする。また、請求項3に係る発明は、
前記請求項1、2の目的に加え、特に割れやすいガラス
成形素材を高精度に成形し得る光学素子成形方法を提供
することを目的とする。さらに、請求項4に係る発明
は、請求項1、2の目的に加え、特に中肉精度を高精度
に成形し得る光学素子成形方法を提供することを目的と
する。
The present invention has been made in view of the above-mentioned problems of the prior art. The inventions according to claims 1 and 2 cannot obtain a desired quality by a single press molding, and particularly high precision is achieved. It is an object of the present invention to provide an optical element required, an optical element having a large difference in wall thickness, an optical element having a large amount of aspherical deformation during press molding, and an optical element molding method capable of accurately molding an optical element having a large aperture. To do. The invention according to claim 3 is
In addition to the objects of claims 1 and 2, an object of the invention is to provide an optical element molding method capable of molding a glass molding material which is particularly fragile with high accuracy. Further, in addition to the objects of claims 1 and 2, an object of the invention according to claim 4 is to provide an optical element molding method capable of molding medium wall thickness accuracy with high accuracy.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、ガラス成形素材を加熱、軟
化させ、一対の成形型間で挟持して光学素子をプレス成
形する際に、前記成形型の成形面に対して中当りするプ
リフォームを前記ガラス成形素材に用いプレス成形を2
回行って所望形状の光学素子を得る成形方法において、
1回目のプレス成形時に光学素子の被成形面径の50〜
99%を前記成形面に転写させるように構成した。ま
た、請求項2に係る発明は、前記1回目のプレス成形時
において、プレス成形圧力を制御して光学素子の被成形
面の50〜99%を転写するように構成した。さらに、
請求項3に係る発明は、前記1回目のプレス成形におい
て、ガラス成形素材の加熱温度を制御して光学素子の被
成形面の50〜99%を転写するように構成した。そし
て、請求項4に係る発明は、前記1回目のプレス成形に
おいて、成形型の間隔をストッパーにより強制的に制御
して光学素子の被成形面の50〜99%を転写するよう
に構成した。
In order to solve the above-mentioned problems, the invention according to claim 1 is to press and mold an optical element by heating and softening a glass molding material and sandwiching it between a pair of molding dies. In addition, a preform that hits the molding surface of the molding die is used as the glass molding material, and press molding is performed.
In a molding method in which the optical element having a desired shape is obtained by repeating
During the first press molding, the surface diameter of the molded surface of the optical element is 50 to
It was configured to transfer 99% to the molding surface. Further, the invention according to claim 2 is configured such that, during the first press molding, the press molding pressure is controlled to transfer 50 to 99% of the surface to be molded of the optical element. further,
The invention according to claim 3 is configured such that, in the first press molding, the heating temperature of the glass molding material is controlled to transfer 50 to 99% of the molding surface of the optical element. The invention according to claim 4 is configured such that, in the first press molding, the interval of the molding die is forcibly controlled by a stopper to transfer 50 to 99% of the molding surface of the optical element.

【0008】[0008]

【作用】前記請求項1の構成にあっては、1回目のプレ
ス成形において、プレス条件を制御して光学素子の被成
形面径の50〜99%を転写した状態に成形することに
よりガラス成形素材が成形型の外周部にはみ出すのを防
止する。次に、前記被成形面の50〜99%を成形した
ガラス成形素材を所望の最終形状にプレス成形すること
で高精度な光学素子が得られる。すなわち、ガラス成形
素材を加熱軟化させる加熱炉と、対向して配置され所望
の光学素子形状を反転させた成形面を有する一対の成形
型間に加熱軟化されたガラス成形素材を搬送し前記一対
の成形型を相対的に近づけて前記ガラス成形素材をプレ
ス成形する成形機を用いて、まず前記成形型の成形面に
対して中当りするプリフォームを前記ガラス成形素材に
用い、前記加熱炉で加熱軟化された前記ガラス成形素材
を前記成形型間に搬送し1回目のプレス成形する。この
時、プレス成形条件を制御し、光学素子の被成形面径の
50〜99%を前記成形面に転写させたところで前記プ
レス状態を保持し、ガラス成形素材を冷却固化させる。
その後、成形型を相対的に離反させてガラス成形素材を
離型し、このガラス成形素材を再度前記加熱炉で加熱軟
化させ、前記成形型間に搬送してプレス成形する。この
2回目のプレス成形条件を制御することにより光学素子
の被成形面全体を成形型の成形面に転写させ、ガラスが
固化したら成形型を相対的に離反させてガラス成形品
(光学素子)を離型し、収納する。
In the first aspect of the present invention, in the first press molding, the press condition is controlled so that 50 to 99% of the surface diameter of the optical element to be molded is transferred to form the glass. Prevents the material from protruding to the outer periphery of the mold. Next, a glass molding material in which 50 to 99% of the surface to be molded has been molded is press-molded into a desired final shape to obtain a highly accurate optical element. That is, a heating furnace that heats and softens the glass molding material, and conveys the heat-softened glass molding material between a pair of molding dies having a molding surface that is disposed opposite to and has a desired optical element shape inverted, Using a molding machine that press-molds the glass molding material by bringing the molding dies relatively close to each other, first use a preform that hits the molding surface of the molding die as the glass molding material and heat it in the heating furnace. The softened glass forming material is conveyed between the forming dies and press-formed for the first time. At this time, the press molding conditions are controlled so that the pressed state is maintained when 50 to 99% of the surface diameter of the optical element to be molded is transferred to the molding surface, and the glass molding material is cooled and solidified.
After that, the mold is relatively separated to release the glass molding material, and the glass molding material is heated and softened again in the heating furnace and conveyed between the molding dies to be press-molded. By controlling the second press-molding condition, the entire surface to be molded of the optical element is transferred to the molding surface of the molding die, and when the glass is solidified, the molding die is relatively separated to form a glass molded article (optical element). Release and store.

【0009】前記請求項2の構成にあっては、1回目の
プレス成形において、プレス圧力を制御して光学素子の
被成形面径の50〜99%を転写した状態に成形するこ
とによりガラス成形素材が成形型の外周部にはみ出すの
を防止する。次に、前記被成形面の50〜99%を成形
したガラス成形素材を所望の最終形状にプレス成形する
ことで高精度な光学素子が得られる。すなわち、ガラス
成形素材を加熱軟化させる加熱炉と、対向して配置され
所望の光学素子形状を反転させた成形面を有する一対の
成形型間に加熱軟化されたガラス成形素材を搬送し前記
一対の成形型を相対的に近づけて前記ガラス成形素材を
プレス成形する成形機を用いて、まず前記成形型の成形
面に対して中当りするプリフォームを前記ガラス成形素
材に用い、前記加熱炉で加熱軟化された前記ガラス成形
素材を前記成形型間に搬送し1回目のプレス成形する。
この時、プレス圧力を所望の値にすることにより、光学
素子の被成形面径の50〜99%を前記成形面に転写さ
せたところで前記プレス状態を保持し、ガラス成形素材
を冷却固化させる。その後、成形型を相対的に離反させ
てガラス成形素材を離型し、このガラス成形素材を再度
前記加熱炉で加熱軟化させ、前記成形型間に搬送してプ
レス成形する。この2回目のプレス圧力を所望の値にす
ることにより光学素子の被成形面全体を成形型の成形面
に転写させ、ガラスが固化したら成形型を相対的に離反
させてガラス成形品(光学素子)を離型し、収納する。
In the second aspect of the present invention, in the first press molding, the press pressure is controlled so that 50 to 99% of the surface diameter of the optical element to be molded is transferred to form the glass. Prevents the material from protruding to the outer periphery of the mold. Next, a glass molding material in which 50 to 99% of the surface to be molded has been molded is press-molded into a desired final shape to obtain a highly accurate optical element. That is, a heating furnace that heats and softens the glass molding material, and conveys the heat-softened glass molding material between a pair of molding dies having a molding surface that is disposed opposite to and has a desired optical element shape inverted, Using a molding machine that press-molds the glass molding material by bringing the molding dies relatively close to each other, first use a preform that hits the molding surface of the molding die as the glass molding material and heat it in the heating furnace. The softened glass forming material is conveyed between the forming dies and press-formed for the first time.
At this time, by setting the pressing pressure to a desired value, the pressed state is maintained when 50 to 99% of the diameter of the surface to be molded of the optical element is transferred to the molding surface, and the glass molding material is cooled and solidified. After that, the mold is relatively separated to release the glass molding material, and the glass molding material is heated and softened again in the heating furnace and conveyed between the molding dies to be press-molded. By setting the second pressing pressure to a desired value, the entire surface to be molded of the optical element is transferred to the molding surface of the molding die, and when the glass is solidified, the molding die is relatively separated to form a glass molded article (optical element). ) Is released and stored.

【0010】前記請求項3の構成にあっては、1回目の
プレス成形において、ガラス成形素材の加熱温度を制御
して光学素子の被成形面径の50〜99%を転写した状
態に成形することによりガラス成形素材が成形型の外周
部にはみ出すのを防止する。次に、前記被成形面の50
〜99%を成形したガラス成形素材を所望の最終形状に
プレス成形することで高精度な光学素子が得られる。す
なわち、ガラス成形素材を加熱軟化させる加熱炉と、対
向して配置され所望の光学素子形状を反転させた成形面
を有する一対の成形型間に加熱軟化されたガラス成形素
材を搬送し前記一対の成形型を相対的に近づけて前記ガ
ラス成形素材をプレス成形する成形機を用いて、まず前
記成形型の成形面に対して中当りするプリフォームを前
記ガラス成形素材に用い、前記加熱炉で加熱軟化された
前記ガラス成形素材を前記成形型間に搬送し1回目のプ
レス成形する。この時、前記加熱炉を所望の温度にする
ことにより前記ガラス成形素材の加熱温度を制御し、光
学素子の被成形面径の50〜99%を前記成形面に転写
させたところで前記プレス状態を保持し、ガラス成形素
材を冷却固化させる。その後、成形型を相対的に離反さ
せてガラス成形素材を離型し、このガラス成形素材を再
度前記加熱炉で加熱軟化させ、前記成形型間に搬送して
プレス成形する。この2回目のプレス圧力を所望の値に
することにより光学素子の被成形面全体を成形型の成形
面に転写させ、ガラスが固化したら成形型を相対的に離
反させてガラス成形品(光学素子)を離型し、収納す
る。
According to the structure of claim 3, in the first press molding, the heating temperature of the glass molding material is controlled to mold 50 to 99% of the molding surface diameter of the optical element in a transferred state. This prevents the glass molding material from protruding to the outer peripheral portion of the mold. Next, 50 of the molding surface
A highly accurate optical element can be obtained by press-molding a glass molding material having a molding of ˜99% into a desired final shape. That is, a heating furnace that heats and softens the glass molding material, and conveys the heat-softened glass molding material between a pair of molding dies having a molding surface that is disposed opposite to and has a desired optical element shape inverted, Using a molding machine that press-molds the glass molding material by bringing the molding dies relatively close to each other, first use a preform that hits the molding surface of the molding die as the glass molding material and heat it in the heating furnace. The softened glass forming material is conveyed between the forming dies and press-formed for the first time. At this time, the heating temperature of the glass molding material is controlled by setting the heating furnace to a desired temperature, and 50 to 99% of the molding surface diameter of the optical element is transferred to the molding surface, and the pressed state is changed. Hold and allow the glass molding material to cool and solidify. After that, the mold is relatively separated to release the glass molding material, and the glass molding material is heated and softened again in the heating furnace and conveyed between the molding dies to be press-molded. By setting the second pressing pressure to a desired value, the entire surface to be molded of the optical element is transferred to the molding surface of the molding die, and when the glass is solidified, the molding die is relatively separated to form a glass molded article (optical element). ) Is released and stored.

【0011】前記請求項4の構成にあっては、1回目の
プレス成形において、ストッパーにより成形型間の間隔
を制御して光学素子の被成形面径の50〜99%を転写
した状態に成形することによりガラス成形素材が成形型
の外周部にはみ出すのを防止する。次に、前記被成形面
の50〜99%を成形したガラス成形素材を所望の最終
形状にプレス成形することで高精度な光学素子が得られ
る。すなわち、ガラス成形素材を加熱軟化させる加熱炉
と、対向して配置され所望の光学素子形状を反転させた
成形面を有する一対の成形型間に加熱軟化されたガラス
成形素材を搬送し前記一対の成形型を相対的に近づけて
前記ガラス成形素材をプレス成形する成形機を用いて、
まず前記成形型の成形面に対して中当りするプリフォー
ムを前記ガラス成形素材に用い、前記加熱炉で加熱軟化
された前記ガラス成形素材を前記成形型間に搬送し1回
目のプレス成形する。この時、ストッパーにより成形型
間を所望の間隔にすることにより、光学素子の被成形面
径の50〜99%を前記成形面に転写させたところで前
記プレス状態を保持し、ガラス成形素材を冷却固化させ
る。その後、成形型を相対的に離反させてガラス成形素
材を離型し、このガラス成形素材を再度前記加熱炉で加
熱軟化させ、前記成形型間に搬送してプレス成形する。
この2回目のプレス圧力を所望の値にすることにより光
学素子の被成形面全体を成形型の成形面に転写させ、ガ
ラスが固化したら成形型を相対的に離反させてガラス成
形品(光学素子)を離型し、収納する。
According to the structure of claim 4, in the first press molding, the interval between the molding dies is controlled by the stopper to mold 50 to 99% of the surface diameter of the optical element to be molded. By doing so, the glass molding material is prevented from protruding to the outer peripheral portion of the molding die. Next, a glass molding material in which 50 to 99% of the surface to be molded has been molded is press-molded into a desired final shape to obtain a highly accurate optical element. That is, a heating furnace that heats and softens the glass molding material, and conveys the heat-softened glass molding material between a pair of molding dies having a molding surface that is disposed opposite to and has a desired optical element shape inverted, Using a molding machine that press-molds the glass molding material with the molding dies relatively close to each other,
First, a preform that hits the molding surface of the molding die is used as the glass molding material, and the glass molding material that has been softened by heating in the heating furnace is conveyed between the molding dies to perform the first press molding. At this time, by setting a desired gap between the molding dies with a stopper, the pressed state is maintained when 50 to 99% of the surface diameter of the optical element to be molded is transferred to the molding surface, and the glass molding material is cooled. Let it solidify. After that, the mold is relatively separated to release the glass molding material, and the glass molding material is heated and softened again in the heating furnace and conveyed between the molding dies to be press-molded.
By setting the second pressing pressure to a desired value, the entire surface to be molded of the optical element is transferred to the molding surface of the molding die, and when the glass is solidified, the molding die is relatively separated from each other to form a glass molded article (optical element). ) Is released and stored.

【0012】[0012]

【実施例1】図1および図2は本発明の実施例1を示
し、図1は1回目のプレス成形状態を示す断面図、図2
は2回目のプレス成形状態を示す断面図、図3は本発明
の実施例1に使用する成形装置の要部を概略的に示す断
面図である。
Embodiment 1 FIGS. 1 and 2 show Embodiment 1 of the present invention, and FIG. 1 is a sectional view showing a first press-molding state, FIG.
Is a sectional view showing a second press-molding state, and FIG. 3 is a sectional view schematically showing a main part of a molding apparatus used in Example 1 of the present invention.

【0013】まず、図3を用いて、本実施例に用いた成
形装置1を説明する。成形装置1には、プリフォーム
(ガラス成形素材)2を加熱軟化する加熱炉3と、この
加熱炉3に隣接して上型4および下型5と、プリフォー
ム2を搬送する搬送アーム6が備えられている。上型4
と下型5には所望の光学素子の被成形面2a、2bの形
状を反転させた成形面4a、5aがそれぞれ形成され、
この成形面4a、5aを対向させて同軸上で上型4と下
型5が配置されている。下型5は、上型4に対して接近
・離反し得るように、図示を省略した駆動装置により上
下移動可能に設けられるとともに、上型4と下型5との
間に搬送したプリフォーム2に対して所望のプレス圧力
をかけられるようになっている。搬送アーム6は、加熱
炉3内と上下両型4、5間のそれぞれに対して、その外
部から図示を省略した駆動手段により移動自在に設けら
れ、その先端にはプリフォーム2を載置する搬送皿7の
支持部6aがU字状に形成されている。搬送皿7は、リ
ング状に形成され、その内径部のほぼ中央にプリフォー
ム2を載置する段部7aが設けられており、内径部はプ
リフォーム2および光学素子の外周を規制する機能を有
している。段部7aの上方内径部は、段部7aの下方内
径部より大径に形成されるとともに、前記下方内径部
は、前記下型5が挿通し得るように下型5より大径に形
成されている。さらに、搬送皿7の上端外周には鍔部7
bが形成され、前記搬送アーム6の支持部6aで搬送皿
7外周の一部を囲むとともに搬送アーム6の上面に前記
鍔部7bを係止した状態で、搬送皿7が搬送アーム6に
載置し得るようになっている。また、プリフォーム2
は、上下両型4、5の両成形面4a、5aに対して中当
りとなるように、被成形面2a、2bが凸面に形成され
ている。
First, the molding apparatus 1 used in this embodiment will be described with reference to FIG. The molding apparatus 1 includes a heating furnace 3 for heating and softening a preform (glass molding material) 2, an upper mold 4 and a lower mold 5 adjacent to the heating furnace 3, and a transfer arm 6 for transferring the preform 2. It is equipped. Upper mold 4
Molding surfaces 4a and 5a are formed on the lower mold 5 by reversing the shapes of the molding surfaces 2a and 2b of the desired optical element.
The upper die 4 and the lower die 5 are arranged coaxially with the molding surfaces 4a, 5a facing each other. The lower die 5 is provided to be movable up and down by a drive device (not shown) so that it can be moved toward and away from the upper die 4, and the preform 2 conveyed between the upper die 4 and the lower die 5 is also provided. A desired press pressure can be applied to the. The transfer arm 6 is provided movably in the heating furnace 3 and between the upper and lower molds 4 and 5 from the outside by driving means (not shown), and the preform 2 is mounted on the tip thereof. The support portion 6a of the transport tray 7 is formed in a U shape. The transfer tray 7 is formed in a ring shape, and a step portion 7a on which the preform 2 is placed is provided substantially in the center of the inner diameter portion thereof, and the inner diameter portion has a function of restricting the outer circumferences of the preform 2 and the optical element. Have The upper inner diameter portion of the step portion 7a is formed to have a larger diameter than the lower inner diameter portion of the step portion 7a, and the lower inner diameter portion is formed to have a larger diameter than the lower die 5 so that the lower die 5 can be inserted. ing. Further, the collar portion 7 is provided on the outer periphery of the upper end of the transport tray 7.
b is formed, a part of the outer periphery of the transfer tray 7 is surrounded by the supporting portion 6a of the transfer arm 6, and the transfer tray 7 is mounted on the transfer arm 6 in a state in which the flange 7b is locked on the upper surface of the transfer arm 6. It can be placed. Also, preform 2
The molded surfaces 2a, 2b are formed to be convex so as to hit the molding surfaces 4a, 5a of the upper and lower dies 4, 5 with each other.

【0014】次に、上記構成の成形装置1を使用した本
実施例の光学素子成形方法を図1〜図3を用いて説明す
る。まず、図3に示すように、プリフォーム2を載置し
た搬送皿7を搬送アーム6に載置して搬送アーム6によ
り外部から加熱炉3内に搬送し、プリフォーム2を加熱
軟化する。その後、加熱軟化したプリフォーム2を搬送
皿7に載置した状態で搬送アーム6により上下両型4、
5の間に搬送する。そして、下型5を図示を省略した駆
動装置により上昇させ、上下両型4、5の成形面4a、
5aによって搬送皿7に載置したプリフォーム2を所定
の圧力で1回目のプレス成形を行う。このプレス成形
は、図1に示すように、プリフォーム2の被成形面2
a、2b径の50〜99%を上下両型4、5の両成形面
4a、5aに転写したところで、そのまま減圧してプレ
ス成形状態を保持し、プリフォーム2が冷却固化した段
階でプレス成形を終了する。
Next, an optical element molding method of this embodiment using the molding apparatus 1 having the above structure will be described with reference to FIGS. First, as shown in FIG. 3, the transfer tray 7 on which the preform 2 is placed is placed on the transfer arm 6 and transferred from the outside into the heating furnace 3 by the transfer arm 6 to heat and soften the preform 2. After that, while the heat-softened preform 2 is placed on the transfer tray 7, the upper and lower molds 4 are moved by the transfer arm 6.
Transport between 5. Then, the lower die 5 is lifted by a driving device (not shown) to form the molding surfaces 4a of the upper and lower dies 4, 5,
The preform 2 placed on the transport tray 7 by 5a is subjected to the first press molding at a predetermined pressure. As shown in FIG. 1, this press molding is performed on the surface 2 to be molded of the preform 2.
When 50 to 99% of the diameters a and 2b are transferred to both molding surfaces 4a and 5a of the upper and lower molds 4 and 5, the press molding state is maintained as it is, and the press molding is performed when the preform 2 is cooled and solidified. To finish.

【0015】前記1回目のプレス成形が終了した後、図
示を省略した駆動装置により下型5を下降させて、プリ
フォーム2を離型し、搬送アーム6により加熱炉3内に
プリフォーム2を搬送皿7とともに搬送して再び加熱軟
化する。その後、搬送アーム6により再びプリフォーム
2を上下両型4、5の間に搬送し、今度は被成形面2
a、2b径を全て成形面4a、4bに転写し得る圧力で
プリフォーム2をプレス成形し、図2に示すように、被
成形面2a、2bを完全に転写させる。そして、前記プ
レス状態を保持しつつガラスを冷却固化し、光学素子8
のプレス成形が終了した後、図示を省略した駆動装置に
より下型5を下降させて光学素子8を離型し、搬送アー
ム6により外部に光学素子8を外部に回収する。
After the first press-molding is completed, the lower mold 5 is lowered by a driving device (not shown) to release the preform 2, and the transfer arm 6 moves the preform 2 into the heating furnace 3. It is transported together with the transport tray 7 and heated and softened again. After that, the preform 2 is again conveyed between the upper and lower molds 4 and 5 by the conveying arm 6, and this time, the surface to be molded 2 is formed.
The preform 2 is press-molded with a pressure capable of transferring all the diameters a and 2b to the molding surfaces 4a and 4b, and the surfaces 2a and 2b to be molded are completely transferred as shown in FIG. Then, while maintaining the pressed state, the glass is cooled and solidified, and the optical element 8
After the press molding is completed, the lower die 5 is lowered by a driving device (not shown) to release the optical element 8, and the optical element 8 is collected to the outside by the transfer arm 6.

【0016】次に、本実施例を適用し、硝材SF11を
用い、φ20mm、中肉4mm、一方の被成形面を曲率
半径88mmとした球面、他方の被成形面を非球面量7
00μmで近軸曲率半径35mmとした非球面を有する
両凸レンズを成形した場合を図1から図3を用いて説明
する。プリフォーム2は、非球面側被成形面2aの曲率
半径を30mm、球面側被成形面2bの曲率半径を70
mm、中肉4.5mmの両凸形状に形成し、1回目のプ
レス成形の直前における加熱軟化したプリフォーム2の
形状が、球面側被成形面2bの曲率半径が50mm、非
球面側被成形面2aの曲率半径が35mm程度になるよ
うにした。また、上型4に非球面成形面4aを設けかつ
下型5に球面成形面5aを設け、下型5の加圧力を30
0Kgfに設定した。
Next, applying this embodiment, using glass material SF11, φ20 mm, medium thickness 4 mm, one molded surface is a spherical surface with a radius of curvature of 88 mm, and the other molded surface is an aspheric surface amount 7
A case where a biconvex lens having an aspherical surface of 00 μm and a paraxial curvature radius of 35 mm is molded will be described with reference to FIGS. 1 to 3. The preform 2 has a radius of curvature of the aspherical surface-side molded surface 2a of 30 mm and a radius of curvature of the spherical surface-side molded surface 2b of 70 mm.
mm, medium thickness 4.5 mm biconvex shape, and the shape of the preform 2 that has been softened by heating immediately before the first press molding has a spherical surface side molded surface 2b with a radius of curvature of 50 mm and an aspherical surface molded surface. The radius of curvature of the surface 2a was set to about 35 mm. Further, the upper mold 4 is provided with the aspherical molding surface 4a and the lower mold 5 is provided with the spherical molding surface 5a.
It was set to 0 Kgf.

【0017】加熱炉3の加熱温度を700℃、加熱時間
を30秒にしてプリフォーム2を加熱軟化した後、1回
目のプレス成形をしたところ、中肉が4.1mm、転写
径で非球面側被成形面2aが約70%、球面側被成形面
2bが約90%転写し、2回目も同一の加圧条件、加熱
条件でプリフォーム2をプレス成形したところ、両被成
形面2a、2bとも全面を転写するように成形でき、中
肉も4mmとなり、面精度もPV0.5μmと非常に良
い値を得ることができた。また、これにより、両凸レン
ズの外周にバリやカケなどの不具合も発生しなかった。
さらに、前記両凸レンズの成形にあって、1回目のプレ
ス成形で加圧力を250Kgfにして非球面側被成形面
2aの転写径を約50%に下げて(この時、球面側被成
形面2bの転写径は約70%)、2回目のプレス成形で
加圧力を300Kgfにして両被成形面2a、2bの全
面を転写するようにして成形したところ、中肉が4m
m、面精度がPV0.7μmと、公差内の結果が得られ
た。同様にして、1回目のプレス成形における非球面側
被成形面2aの転写径を変化させ、該転写径を有するプ
リフォーム2を用いて2回目のプレス成形した両凸レン
ズの転写精度を調べたところ、図4に示すようになり、
1回目のプレス成形における転写径が約50%以上99
%以下で良好な面精度が得られ、100%で外周にバリ
が発生した。なお、図4は、1回目のプレス成形時にお
ける設定圧力と転写径との関係をも表している。
After heating and softening the preform 2 by setting the heating temperature of the heating furnace 3 to 700 ° C. and the heating time to 30 seconds, the first press molding was performed, the inner wall thickness was 4.1 mm, and the transfer diameter was aspherical. When the preform 2 was press molded under the same pressurizing condition and heating condition for the second time, the side molded surface 2a was transferred by about 70% and the spherical side molded surface 2b was transferred by about 90%. Both 2b could be molded so that the entire surface was transferred, the inner wall thickness was 4 mm, and the surface accuracy was a very good value of 0.5 μm PV. Further, as a result, defects such as burrs and chips did not occur on the outer circumference of the biconvex lens.
Further, in the molding of the biconvex lens, the pressure applied in the first press molding is set to 250 Kgf to reduce the transfer diameter of the aspherical surface-side molded surface 2a to about 50% (at this time, the spherical surface-shaped molded surface 2b). The transfer diameter is about 70%). When the second press molding was performed so that the applied pressure was 300 Kgf and the entire surfaces 2a and 2b to be molded were transferred, the inner wall thickness was 4 m.
m, the surface accuracy was 0.7 μm PV, and the results within the tolerance were obtained. Similarly, when the transfer diameter of the aspherical surface-side molded surface 2a in the first press molding was changed and the transfer accuracy of the second press-molded biconvex lens was examined using the preform 2 having the transfer diameter. , As shown in Figure 4,
Transfer diameter in the first press molding is about 50% or more 99
% Or less, good surface accuracy was obtained, and at 100%, burrs were generated on the outer periphery. Note that FIG. 4 also shows the relationship between the set pressure and the transfer diameter during the first press molding.

【0018】本実施例によれば、1回目のプレス成形で
被成形面2a、2bの全面を転写させないため、プリフ
ォーム2の外周にダ肉が生ずることがないため、プリフ
ォーム2の外周に生じたダ肉を上下両型4、5がかじっ
て光学素子に割れやカケ等を生じさせる不具合が2回目
のプレス成形時に発生せず、高精度な光学素子を得るこ
とができる。
According to the present embodiment, since the entire surfaces 2a, 2b to be molded are not transferred in the first press molding, the outer periphery of the preform 2 does not have a double thickness. It is possible to obtain a highly accurate optical element without causing a problem that the upper and lower molds 4 and 5 bite the resulting double-thickness to cause cracks or chips in the optical element during the second press molding.

【0019】[0019]

【実施例2】本発明の実施例2は、1回目のプレス成形
時にプリフォームの加熱温度を制御して所望の転写径を
得るようにした点に特徴を有する。すなわち、本実施例
は、1回目のプレス成形時での転写径を、実施例1にお
けるプレス圧力で制御する成形方法に代えて、プリフォ
ームの加熱温度にて制御するようにしてあり、その他の
成形方法は実施例1と同様である。なお、本実施例に使
用する成形装置は、実施例1で用いた成形装置1(図3
参照)と同様である。
Second Embodiment A second embodiment of the present invention is characterized in that the heating temperature of the preform is controlled during the first press molding to obtain a desired transfer diameter. That is, in this embodiment, the transfer diameter at the time of the first press molding is controlled by the heating temperature of the preform instead of the molding method of controlling the press pressure in the first embodiment. The molding method is the same as in Example 1. The molding apparatus used in this example is the molding apparatus 1 (see FIG. 3) used in Example 1.
See).

【0020】次に、本実施例の成形方法を適用し、硝材
SF11を用い、φ20mm、中肉4mm、一方の被成
形面を曲率半径88mmとした球面、他方の被成形面を
非球面量700μmで近軸曲率半径35mmとした非球
面を有する両凸レンズを成形した場合を図1から図3を
用いて説明する。プリフォーム2は、非球面側被成形面
2aの曲率半径を30mm、球面側被成形面2bの曲率
半径を70mm、中肉4.5mmの両凸形状に形成した
ものを用い、1回目のプレス成形時におけるプリフォー
ム2の加熱温度を変化させて両凸レンズを成形した。ま
た、上型4に非球面成形面4aを設けかつ下型5に球面
成形面5aを設け、下型5の加圧力を300Kgfに固
定した。
Next, applying the molding method of this embodiment, using glass material SF11, φ20 mm, medium thickness 4 mm, one molded surface is a spherical surface having a curvature radius of 88 mm, and the other molded surface is an aspheric surface amount of 700 μm. A case where a biconvex lens having an aspherical surface with a paraxial curvature radius of 35 mm is molded will be described with reference to FIGS. 1 to 3. As the preform 2, the aspherical surface-side molded surface 2a has a radius of curvature of 30 mm, the spherical surface-side molded surface 2b has a radius of curvature of 70 mm, and a medium thickness of 4.5 mm is used. The biconvex lens was molded by changing the heating temperature of the preform 2 during molding. Further, the upper mold 4 was provided with the aspherical molding surface 4a and the lower mold 5 was provided with the spherical molding surface 5a, and the pressing force of the lower mold 5 was fixed to 300 Kgf.

【0021】まず、加熱炉3の加熱温度設定を600℃
から800℃まで変化させ、1回目のプレス成形時にお
ける転写径を非球面側被成形面2aで30%、65%、
99%、100%変化させた。次に、前記各転写径を有
するプリフォーム2を用い、実施例1と同様に加圧力3
00Kgf、加熱温度700℃の条件で2回目のプレス
成形を行ったところ、両凸レンズは、図5に示すよう
に、実施例1とほぼ同様の転写精度が得られた。すなわ
ち、図8に示すように、1回目のプレス成形時に転写径
を99%以下にすると、外周にバリのない両凸レンズ8
が得られた。なお、図5は、1回目のプレス成形時にお
ける設定加熱温度と転写径との関係をも表している。そ
して、図9に示すように、1回目のプレス成形時におけ
る転写径が100%のときは両凸レンズ8aの外周にバ
リが発生した。なお、本実施例では、1回目のプレス成
形時に加熱設定温度を変化させた場合について説明した
が、たとえば加熱設定温度を一定にし加熱時間を変化さ
せても同様であった。
First, the heating temperature of the heating furnace 3 is set to 600.degree.
To 800 ° C., the transfer diameter at the time of the first press molding is 30%, 65%,
It was changed by 99% and 100%. Next, using the preform 2 having each of the transfer diameters, the pressing force 3 was applied in the same manner as in Example 1.
When press molding was performed a second time under the conditions of 00 Kgf and a heating temperature of 700 ° C., the biconvex lens obtained transfer accuracy almost similar to that of Example 1, as shown in FIG. That is, as shown in FIG. 8, when the transfer diameter is set to 99% or less during the first press molding, the biconvex lens 8 having no burr on the outer periphery is formed.
was gotten. Note that FIG. 5 also shows the relationship between the set heating temperature and the transfer diameter during the first press molding. Then, as shown in FIG. 9, when the transfer diameter in the first press molding was 100%, burrs were generated on the outer periphery of the biconvex lens 8a. In this example, the case where the heating set temperature was changed during the first press molding was described, but the same was true when the heating set temperature was kept constant and the heating time was changed.

【0022】本実施例によれば、前記実施例1の効果に
加え、加熱温度でプリフォーム2の粘度を変えるように
したので、無理なプレス成形圧力によるプリフォーム2
表面の割れや歪みが生じにくくなる。
According to the present embodiment, in addition to the effect of the first embodiment, the viscosity of the preform 2 is changed depending on the heating temperature, so that the preform 2 is subjected to an excessive press molding pressure.
Surface cracks and distortions are less likely to occur.

【0023】[0023]

【実施例3】図6は本発明の実施例3に使用する成形装
置の要部を示す断面図で、他の構成は前記実施例1に用
いた成形装置1(図3参照)と同様であるため、その図
示および説明を省略する。上型4を断熱部材10を介し
て固定する成形室の上面11には、上型4の近傍におい
て成形室外からダイヤルゲージ12が固着されている。
ダイヤルゲージ12には成形室内に延在させた上ストッ
パー13が取り付けられ、その先端13aは成形面4a
の近傍位置に配置されている。この上ストッパー13
は、ダイヤルゲージ12により、その先端13aの位置
を上下方向に調整(移動)自在となっており、その調整
量はダイヤルゲージ12の目盛により計測し得るように
なっている。一方、下型4を固定する可動軸14の先端
付近の外周面には、下ストッパー取付け部材15が固定
され、この下ストッパー取付け部材15の先部に下スト
ッパー16が取付けられている。下ストッパー16は、
下ストッパー取付け部材15との取付け部位を中心にし
て回動自在に設けられ、下ストッパー16を立ち上げた
際に、その先端16aが上ストッパー13の先端13a
と当接し得る位置に配置されるようになっており、下型
5を上昇させるときに両先端13a、16aが当接する
ことにより下型5の上昇を停止させ、上型4と下型5の
間を強制的に制御し得るように構成されている。また、
下ストッパー16を回動して上ストッパー13と当接す
る位置から退避し得るようになっている。
[Embodiment 3] FIG. 6 is a cross-sectional view showing a main part of a molding apparatus used in Embodiment 3 of the present invention. Other configurations are the same as those of the molding apparatus 1 used in Embodiment 1 (see FIG. 3). Therefore, illustration and description thereof are omitted. A dial gauge 12 is fixed to the upper surface 11 of the molding chamber for fixing the upper mold 4 via the heat insulating member 10 from outside the molding chamber in the vicinity of the upper mold 4.
An upper stopper 13 extending in the molding chamber is attached to the dial gauge 12, and the tip 13a thereof has a molding surface 4a.
It is located in the vicinity of. This top stopper 13
The dial gauge 12 allows the position of its tip 13a to be adjusted (moved) in the vertical direction, and the adjustment amount can be measured by the scale of the dial gauge 12. On the other hand, a lower stopper mounting member 15 is fixed to the outer peripheral surface near the tip of the movable shaft 14 for fixing the lower die 4, and a lower stopper 16 is mounted to the tip of the lower stopper mounting member 15. The lower stopper 16
The lower stopper mounting member 15 is provided so as to be rotatable about its mounting portion, and the tip 16a of the lower stopper 16 when the lower stopper 16 is started up is the tip 13a of the upper stopper 13.
The upper mold 4 and the lower mold 5 are stopped by the contact between the tips 13a and 16a when the lower mold 5 is lifted. It is configured to be able to forcibly control the interval. Also,
The lower stopper 16 can be rotated to retract from the position where it abuts against the upper stopper 13.

【0024】本実施例の成形方法では、1回目のプレス
成形を行う際に、上ストッパー13の先端13aと下ス
トッパー16の先端16aを当接させて上下両型4、5
の両成形面4a、5aの間隔を規制し、プリフォーム2
の転写径を制御するとともに、2回目のプレス成形時に
下ストッパー16と上ストッパー13の当接を回避し
て、プリフォーム2の全面を転写して所望の光学素子を
成形する。その他の成形方法は、前記実施例1と同様で
ある。
In the molding method of this embodiment, when the first press molding is carried out, the tip 13a of the upper stopper 13 and the tip 16a of the lower stopper 16 are brought into contact with each other to form the upper and lower molds 4, 5, 5.
The distance between both molding surfaces 4a, 5a of the preform 2 is regulated.
The transfer diameter is controlled and the contact between the lower stopper 16 and the upper stopper 13 is avoided during the second press molding, and the entire surface of the preform 2 is transferred to mold a desired optical element. Other molding methods are the same as in the first embodiment.

【0025】次に、本実施例を適用し、硝材SF11を
用い、φ20mm、中肉4mm、一方の被成形面を曲率
半径88mmとした球面、他方の被成形面を非球面量7
00μmで近軸曲率半径35mmとした非球面を有する
両凸レンズを成形した場合を図1から図3および図6を
用いて説明する。プリフォーム2は、非球面側被成形面
2aの曲率半径を30mm、球面側被成形面2bの曲率
半径を70mm、中肉4.5mmの両凸形状に形成し、
上型4に非球面成形面4aを設けかつ下型5に球面成形
面5aを設けた。
Next, applying this embodiment, using the glass material SF11, φ 20 mm, medium thickness 4 mm, one molded surface is a spherical surface having a curvature radius of 88 mm, and the other molded surface is an aspherical surface amount 7
A case where a biconvex lens having an aspherical surface of 00 μm and a paraxial radius of curvature of 35 mm is molded will be described with reference to FIGS. 1 to 3 and 6. The preform 2 is formed in a biconvex shape having a radius of curvature of the aspherical surface-side molded surface 2a of 30 mm, a radius of curvature of the spherical surface-side molded surface 2b of 70 mm, and a medium thickness of 4.5 mm.
The upper mold 4 was provided with an aspherical molding surface 4a and the lower mold 5 was provided with a spherical molding surface 5a.

【0026】まず、1回目のプレス成形を行う前に、両
凸レンズの中肉が4mmであるから、1回目のプレス成
形後のプリフォーム2の中肉が転写径100%のときに
4.1mmとなるように、予め上ストッパー13の先端
13aと下ストッパー16の先端16aとの間隔をダイ
ヤルゲージ12で調整し、かつ転写径の割合とダイヤル
ゲージ12の目盛との関係を求めておく。そして、下型
5の加圧力を600Kgfに設定するとともに、加熱炉
3の加熱温度を700℃、加熱時間を30秒にしてプリ
フォーム2を加熱軟化し、上ストッパー13の先端13
a位置をダイヤルゲージ12により調整して、転写径を
30%、60%、99%、100%変化させて1回目の
プレス成形を行った。次に、下ストッパー16を回動し
て上下両ストッパー13、16との当接状態を回避し、
前記各転写径を有するプリフォーム2を用いて実施例1
と同様に加圧力300Kgf、加熱温度700℃の条件
で2回目のプレス成形を行ったところ、両凸レンズは、
図7に示すように、実施例1とほぼ同様の転写精度が得
られた。すなわち、図8に示すように、1回目のプレス
成形時に転写径を99%以下にすると、外周にバリのな
い両凸レンズ8が得られた。なお、図7は、1回目のプ
レス成形時におけるダイヤルゲージ12の目盛と転写径
との関係をも表している。そして、図9に示すように、
1回目のプレス成形時における転写径が100%のとき
は両凸レンズ8aの外周にバリが発生した。
First, before the first press-molding, since the inner diameter of the biconvex lens is 4 mm, the thickness of the preform 2 after the first press-molding is 4.1 mm when the transfer diameter is 100%. Therefore, the distance between the tip 13a of the upper stopper 13 and the tip 16a of the lower stopper 16 is adjusted with the dial gauge 12 in advance, and the relationship between the ratio of the transfer diameter and the scale of the dial gauge 12 is obtained. Then, the pressing force of the lower mold 5 is set to 600 Kgf, the heating temperature of the heating furnace 3 is set to 700 ° C., and the heating time is set to 30 seconds to heat and soften the preform 2 and the tip 13 of the upper stopper 13.
The first position was adjusted by adjusting the position a with the dial gauge 12 and changing the transfer diameter by 30%, 60%, 99%, and 100%. Next, the lower stopper 16 is rotated to avoid contact with the upper and lower stoppers 13 and 16,
Example 1 using the preform 2 having the respective transfer diameters
When the second press molding was performed under the conditions of a pressing force of 300 Kgf and a heating temperature of 700 ° C in the same manner as above, the biconvex lens was
As shown in FIG. 7, almost the same transfer accuracy as in Example 1 was obtained. That is, as shown in FIG. 8, when the transfer diameter was set to 99% or less during the first press molding, the biconvex lens 8 having no burr on the outer periphery was obtained. Note that FIG. 7 also shows the relationship between the scale of the dial gauge 12 and the transfer diameter during the first press molding. Then, as shown in FIG.
When the transfer diameter during the first press molding was 100%, burrs were generated on the outer circumference of the biconvex lens 8a.

【0027】本実施例によれば、前記実施例1の効果に
加え、1回目のプレス成形で上下両ストッパー13、1
6によりプリフォーム2の中肉を制御しているため、前
記実施例1、2の時よりも、中肉のバラツキを半減させ
ることができる。
According to this embodiment, in addition to the effects of the first embodiment, the upper and lower stoppers 13, 1 are formed by the first press molding.
Since the inner wall of the preform 2 is controlled by 6, the variation in the inner wall of the preform 2 can be reduced by half as compared with the first and second embodiments.

【0028】なお、本発明は、1回の押圧成形では所望
の品質が得られない、特に超高精度を要する光学素子、
肉厚差の大きな光学素子、押圧成形時の変形量の大きな
非球面を有する光学素子、口径の大きな光学素子を高精
度に成形し得るとともに、中肉精度を高精度に成形し得
る光学素子成形方法を提供することを目的として、以下
のように構成することができる。ガラス成形素材を加
熱、軟化させ、一対の成形型間で挟持して光学素子をプ
レス成形する際に、前記成形型の成形面に対して中当り
するプリフォームを前記ガラス成形素材に用いプレス成
形を2回行って所望形状の光学素子を得る成形方法にお
いて、1回目のプレス成形時に成形型の間隔をストッパ
ーに設けたダイヤルゲージより調整して強制的に制御
し、光学素子の被成形面径の50〜99%を前記成形面
に転写させることを特徴とする光学素子成形方法。前記
構成によれば、1回目のプレス成形において、ストッパ
ーにより成形型間の間隔を制御して光学素子の被成形面
径の50〜99%を転写した状態に成形することにより
ガラス成形素材が成形型の外周部にはみ出すのを防止す
る。次に、前記被成形面の50〜99%を成形したガラ
ス成形素材を所望の最終形状にプレス成形することで高
精度な光学素子が得られる。そして、ダイヤルゲージに
よる調整量と転写径との相関関係を予め調べておくこと
により、光学素子の被成形面径の転写径を容易に制御で
きる。
According to the present invention, an optical element which cannot obtain a desired quality by a single press molding, and which requires particularly high precision,
Optical element molding capable of highly accurately molding an optical element having a large difference in wall thickness, an optical element having an aspherical surface with a large amount of deformation during press molding, and an optical element having a large aperture, and also capable of accurately molding a medium thickness For the purpose of providing the method, it can be configured as follows. When a glass molding material is heated and softened, and is sandwiched between a pair of molding dies to press-mold an optical element, a preform that hits the molding surface of the molding die is used as the glass molding material. In the molding method in which the optical element having the desired shape is obtained by carrying out two times, the gap between the molding dies during the first press molding is adjusted by a dial gauge provided on the stopper to forcibly control the diameter of the molded surface of the optical element. 50-99% of the above is transferred to the molding surface. According to the above configuration, in the first press molding, the glass molding material is molded by controlling the interval between the molding dies by the stopper to mold 50 to 99% of the molding surface diameter of the optical element to be transferred. Prevent it from protruding to the outer periphery of the mold. Next, a glass molding material in which 50 to 99% of the surface to be molded has been molded is press-molded into a desired final shape to obtain a highly accurate optical element. Then, by previously examining the correlation between the adjustment amount by the dial gauge and the transfer diameter, the transfer diameter of the molding surface diameter of the optical element can be easily controlled.

【0029】[0029]

【発明の効果】以上のように、本願の請求項1から請求
項4に係る発明によれば、1回目のプレス成形時におい
て、ガラス成形素材の50〜99%を転写させることに
より、ガラス成形素材の外周部にダ肉が生じないため、
ガラス成形素材の外周部に生じたダ肉を成形型がかじっ
て光学素子に割れやカケ等を生じさせる不具合が2回目
のプレス成形時に発生せず、高精度な光学素子を得るこ
とができる。
As described above, according to the inventions according to claims 1 to 4 of the present application, glass molding is performed by transferring 50 to 99% of the glass molding material during the first press molding. Because there is no meat on the outer periphery of the material,
It is possible to obtain a highly accurate optical element without the problem that the optical element is cracked, chipped or the like due to the molding die biting the outer peripheral portion of the glass molding material during the second press molding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の各実施例における1回目のプレス成形
時を示す断面図である。
FIG. 1 is a cross-sectional view showing a first press molding in each example of the present invention.

【図2】本発明の各実施例における2回目のプレス成形
時を示す断面図である。
FIG. 2 is a cross-sectional view showing a second press molding in each example of the present invention.

【図3】本発明の実施例1および実施例2に使用する成
形装置の要部を概略的に示す断面図である。
FIG. 3 is a sectional view schematically showing a main part of a molding apparatus used in Examples 1 and 2 of the present invention.

【図4】本発明の実施例1における1回目のプレス成形
時において転写径を得るプレス設定圧力の関係と、前記
転写径における2回目のプレス成形時の転写精度を示す
図である。
FIG. 4 is a diagram showing a relationship between a press set pressure for obtaining a transfer diameter at the first press molding and a transfer accuracy at the second press molding at the transfer diameter in Example 1 of the present invention.

【図5】本発明の実施例2における1回目のプレス成形
時において転写径を得る加熱設定温度の関係と、前記転
写径における2回目のプレス成形時の転写精度を示す図
である。
FIG. 5 is a diagram showing a relationship between a heating set temperature for obtaining a transfer diameter at the first press molding and a transfer accuracy at the second press molding at the transfer diameter in Example 2 of the present invention.

【図6】本発明の実施例3に使用する成形装置の要部を
概略的に示す断面図である。
FIG. 6 is a sectional view schematically showing a main part of a molding apparatus used in Example 3 of the present invention.

【図7】本発明の実施例における1回目のプレス成形時
において転写径を得るストッパー位置の関係と、前記転
写径における2回目のプレス成形時の転写精度を示す図
である。
FIG. 7 is a diagram showing a relationship between stopper positions for obtaining a transfer diameter at the first press molding and a transfer accuracy at the second press molding at the transfer diameter in the embodiment of the present invention.

【図8】1回目のプレス成形時に転写径を50〜99%
にしたときの、最終成形品である両凸レンズを示す説明
図である。
FIG. 8: Transfer diameter of 50 to 99% during the first press molding
FIG. 6 is an explanatory view showing a biconvex lens which is a final molded product when the above is set.

【図9】1回目のプレス成形時に転写径を100%にし
たときの、最終成形品である両凸レンズを示す説明図で
ある。
FIG. 9 is an explanatory diagram showing a biconvex lens that is a final molded product when the transfer diameter is 100% during the first press molding.

【符号の説明】[Explanation of symbols]

2 プリフォーム 2a、2b 被成形面 3 加熱炉 4 上型 4a 5a 成形面 5 下型 13 16 ストッパー 2 Preforms 2a, 2b Molded surface 3 Heating furnace 4 Upper mold 4a 5a Molding surface 5 Lower mold 13 16 Stopper

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス成形素材を加熱、軟化させ、一対
の成形型間で挟持して光学素子をプレス成形する際に、
前記成形型の成形面に対して中当りするプリフォームを
前記ガラス成形素材に用いプレス成形を2回行って所望
形状の光学素子を得る成形方法において、1回目のプレ
ス成形時に光学素子の被成形面径の50〜99%を前記
成形面に転写させることを特徴とする光学素子成形方
法。
1. When a glass molding material is heated and softened and sandwiched between a pair of molding dies to press-mold an optical element,
In a molding method for obtaining an optical element having a desired shape by performing press molding twice using a preform that hits the molding surface of the molding die as the glass molding material, the molding of the optical element is performed during the first press molding. An optical element molding method, wherein 50 to 99% of the surface diameter is transferred to the molding surface.
【請求項2】 前記1回目のプレス成形は、プレス成形
圧力を制御して前記転写径に成形することを特徴とする
請求項1記載の光学素子成形方法。
2. The optical element molding method according to claim 1, wherein in the first press molding, a press molding pressure is controlled to form the transfer diameter.
【請求項3】 前記1回目のプレス成形は、ガラス成形
素材の加熱温度を制御して前記転写径に成形することを
特徴とする請求項1記載の光学素子成形方法。
3. The optical element molding method according to claim 1, wherein in the first press molding, the heating temperature of the glass molding material is controlled to mold the glass molding material to the transfer diameter.
【請求項4】 前記1回目のプレス成形は、成形型の間
隔をストッパーにより強制的に制御して前記転写径に成
形することを特徴とする請求項1記載の光学素子成形方
法。
4. The method of molding an optical element according to claim 1, wherein in the first press molding, the interval between the molds is forcibly controlled by a stopper to mold to the transfer diameter.
JP15284494A 1994-06-10 1994-06-10 Method for forming optical element Withdrawn JPH07330347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15284494A JPH07330347A (en) 1994-06-10 1994-06-10 Method for forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15284494A JPH07330347A (en) 1994-06-10 1994-06-10 Method for forming optical element

Publications (1)

Publication Number Publication Date
JPH07330347A true JPH07330347A (en) 1995-12-19

Family

ID=15549371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15284494A Withdrawn JPH07330347A (en) 1994-06-10 1994-06-10 Method for forming optical element

Country Status (1)

Country Link
JP (1) JPH07330347A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343387A (en) * 2005-06-07 2006-12-21 Konica Minolta Opto Inc Optical element and its manufacturing method
WO2022083828A1 (en) * 2020-10-20 2022-04-28 Docter Optics Se Method for producing an optical element made of glass
US11826935B2 (en) 2018-03-20 2023-11-28 Docter Optics Se Method for producing a lens element
US11884570B2 (en) 2021-02-01 2024-01-30 Docter Optics Se Process for manufacturing an optical element from glass
US11932566B2 (en) 2021-03-08 2024-03-19 Docter Optics Se Process for manufacturing an optical element from glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343387A (en) * 2005-06-07 2006-12-21 Konica Minolta Opto Inc Optical element and its manufacturing method
US11826935B2 (en) 2018-03-20 2023-11-28 Docter Optics Se Method for producing a lens element
WO2022083828A1 (en) * 2020-10-20 2022-04-28 Docter Optics Se Method for producing an optical element made of glass
US11884570B2 (en) 2021-02-01 2024-01-30 Docter Optics Se Process for manufacturing an optical element from glass
US11932566B2 (en) 2021-03-08 2024-03-19 Docter Optics Se Process for manufacturing an optical element from glass

Similar Documents

Publication Publication Date Title
US4738703A (en) Method of molding optical lenses
KR101468756B1 (en) Method of producing glass molding product and mold press molding device
KR0175131B1 (en) Molding of optical element
US6761046B2 (en) Cold rolling of glass preforms
JPH07330347A (en) Method for forming optical element
JP3886022B2 (en) Method and apparatus for producing glass molded body
JP2011105559A (en) Mold for optical device and method for molding the optical device
JP2003104741A (en) Press forming apparatus for optical element and method for manufacturing optical element
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JPH09249424A (en) Molding of optical element
JP2621956B2 (en) Optical element molding method
JP2718452B2 (en) Glass optical element molding method
JP2000233934A (en) Method for press-forming glass product and device therefor
JP2005281053A (en) Forming apparatus for mold press, method of manufacturing optical device, and optical device
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JP2718451B2 (en) Optical glass parts molding method
JP2003063832A (en) Mold for forming optical element
JP2001158627A (en) Method for molding into optical glass element and glass raw material for molding
JP3614902B2 (en) Preform for glass molded lens and manufacturing method thereof
JPH0699159B2 (en) Optical element molding method
JPH0524863A (en) Method for forming optical element
JPH0470261B2 (en)
JPH0757697B2 (en) Glass lens molding method
JPH0648749A (en) Production of ring-shaped lens and device therefor
JPH06345464A (en) Mold for optical element molding, production thereof and method of molding optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904