JP2617054B2 - Optical connection module - Google Patents

Optical connection module

Info

Publication number
JP2617054B2
JP2617054B2 JP3271013A JP27101391A JP2617054B2 JP 2617054 B2 JP2617054 B2 JP 2617054B2 JP 3271013 A JP3271013 A JP 3271013A JP 27101391 A JP27101391 A JP 27101391A JP 2617054 B2 JP2617054 B2 JP 2617054B2
Authority
JP
Japan
Prior art keywords
fiber
light
substrate
optical
reflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3271013A
Other languages
Japanese (ja)
Other versions
JPH05107485A (en
Inventor
国夫 小薮
文和 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3271013A priority Critical patent/JP2617054B2/en
Publication of JPH05107485A publication Critical patent/JPH05107485A/en
Application granted granted Critical
Publication of JP2617054B2 publication Critical patent/JP2617054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光通信の分野において、
複数の光ファイバ間で光信号を切り換える光接続モジュ
ールに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the field of optical communications.
The present invention relates to an optical connection module for switching an optical signal between a plurality of optical fibers.

【0002】[0002]

【従来の技術】従来、二次元ファイバアレイ間で光信号
を切り換える空間接続では、図4に示すように、二次元
ファイバアレイを配置した基板1の間に、幾つかのビー
ムシフタ2を設置した構成になっている。この構成で
は、光ファイバ3から出てきた光が、マイクロレンズ4
によって平行な光ビーム5に変換され、すべてのビーム
シフタ2を通過してから、最後に他方のファイバアレイ
に到達する。光ビーム5はビームシフタ2を通過すると
き電気信号の有無によって、その進路が変えられ、進路
変更を受けた光ビーム5は、ビームシフタ2内の幾つか
に分割されているセクションを一つだけ隣に移動する。
したがって、ビームの進路を大きく変えるためには、多
くのビームシフタが必要になる。例えば、図4において
一方の二次元ファイバアレイ1の隅のファイバを、他方
の二次元ファイバアレイ上で対角の位置にあるファイバ
に接続する場合、8個のビームシフタが必要になる。こ
のように空間接続する二つの光ファイバの間に多くの部
品が存在すると、ファイバ間での光の損失が大きくなる
だけでなく、二次元ファイバアレイ1およびビームシフ
タ2の相互の位置合わせに高精度が必要となるといった
問題が起きる。
2. Description of the Related Art Conventionally, in a spatial connection for switching an optical signal between two-dimensional fiber arrays, as shown in FIG. 4, a structure in which several beam shifters 2 are installed between substrates 1 on which two-dimensional fiber arrays are arranged. It has become. In this configuration, light coming out of the optical fiber 3 is
Is converted into a parallel light beam 5, passes through all the beam shifters 2, and finally reaches the other fiber array. When the light beam 5 passes through the beam shifter 2, its path is changed depending on the presence or absence of an electric signal, and the light beam 5 having undergone the change in path is placed next to one section of the beam shifter 2 which is divided into several sections. Moving.
Therefore, in order to largely change the course of the beam, many beam shifters are required. For example, in FIG. 4, when connecting a fiber at a corner of one two-dimensional fiber array 1 to a fiber at a diagonal position on the other two-dimensional fiber array, eight beam shifters are required. If there are many components between the two optical fibers spatially connected as described above, not only the loss of light between the fibers will increase, but also the two-dimensional fiber array 1 and the beam shifter 2 will be required to have high precision in the mutual alignment. Is required.

【0003】[0003]

【発明が解決しようとする課題】本発明は二つの回転反
射ミラーを用いることにより、前記の問題を解消する光
接続モジュールを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical connection module which solves the above-mentioned problem by using two rotating reflection mirrors.

【0004】本発明の光接続モジュールは、光ファイバ
と縦方向及び横方向の2軸に独立に回転可能なミラーと
を二次元配列し、更にそれらの間に受光素子を配列した
基板を用い、一方の基板の光ファイバの端面と他方の基
板の反射ミラーとが互いに向き合うように一定の間隔を
おいて対向させ、受光素子によって光の位置を検出し
て、一方の基板の光ファイバから出た光を他方の基板の
反射ミラーで反射させ、この光を対向する基板上の光フ
ァイバまたは反射ミラーに光を当てることにより、任意
の光ファイバ同士を光接続する。
An optical connection module according to the present invention uses a substrate on which an optical fiber and a mirror which can be independently rotated in two axes in a vertical direction and a horizontal direction are two-dimensionally arranged, and a light receiving element is arranged between them. The end face of the optical fiber of one substrate and the reflection mirror of the other substrate face each other at a fixed interval so as to face each other, the position of light is detected by a light receiving element, and the light exits from the optical fiber of one substrate. The light is reflected by the reflection mirror of the other substrate, and the light is applied to an optical fiber or a reflection mirror on the opposing substrate, thereby optically connecting arbitrary optical fibers to each other.

【0005】[0005]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。図1は光ファイバと回転反射ミラーを二
次元に配列したアレイ基板の基本構成を示す斜視図であ
って、3は光ファイバ、4はマイクロレンズ基板上のマ
イクロレンズ、6はマイクロレンズ基板上で回転反射ミ
ラーを配置するための開孔、7はマイクロレンズを配置
した基板、8は二軸方向に回転できる回転反射ミラー、
9は二次元に配列してファイバ3と回転反射ミラー8を
保持するアレイ基板である。マイクロレンズ4は光ファ
イバ3の端面と対向しており、出射光を平行な光ビーム
に変換する。回転反射ミラー8は縦方向と横方向の二軸
に独立で回転可能であるので、ミラー面を任意の方向に
向けることができる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a perspective view showing a basic configuration of an array substrate in which optical fibers and rotating reflection mirrors are two-dimensionally arranged. 3 is an optical fiber, 4 is a microlens on a microlens substrate, and 6 is a microlens on a microlens substrate. An opening for disposing a rotating reflection mirror, 7 a substrate on which a microlens is disposed, 8 a rotating reflection mirror capable of rotating in two axial directions,
Reference numeral 9 denotes an array substrate that holds the fibers 3 and the rotating reflection mirror 8 in a two-dimensional array. The microlens 4 faces the end face of the optical fiber 3 and converts the outgoing light into a parallel light beam. Since the rotating reflection mirror 8 can be independently rotated about two axes of the vertical direction and the horizontal direction, the mirror surface can be directed to an arbitrary direction.

【0006】図2は光接続モジュールの基本構成を示す
斜視図であって、アレイ基板(マイクロレンズ基板7は
図示せず)AとBによる接続状態をわかり易くするた
め、ファイバアレイを傾けた状態で図示している。本
来、アレイ基板Aは、そのファイバと回転反射ミラー
が、アレイ基板Bの回転反射ミラーとファイバとに一定
の距離をおいて平行に対向するように固定される。
FIG. 2 is a perspective view showing the basic structure of the optical connection module. In order to make the connection state of the array substrates (microlens substrate 7 not shown) A and B easy to understand, the fiber array is tilted. It is illustrated. Originally, the array substrate A is fixed such that the fiber and the rotary reflection mirror face the rotary reflection mirror and the fiber of the array substrate B in parallel at a fixed distance.

【0007】この構成において、アレイ基板Aのi番目
のファイバFa (i) とアレイ基板Bのj番目のファイバ
b (j) を接続する場合、ファイバFa (i) と対向する
位置にあるアレイ基板Bの上の回転ミラーMb (i) は、
ファイバFa (i) から出てきた光が、アレイ基板Aのj
番目にある回転反射ミラーMa (j) に当たるように、そ
の角度を設定し、同様に回転反射ミラーMa (j) は、回
転反射ミラーMb (i)からの反射ビームを、ファイバF
b (j) に伝搬するように調整すればよい。
In this configuration, when connecting the i-th fiber F a (i) of the array substrate A and the j-th fiber F b (j) of the array substrate B, the fiber F a (i) is located at a position facing the fiber F a (i). The rotating mirror M b (i) on a certain array substrate B is
The light emitted from the fiber F a (i)
The angle is set so as to impinge on the second rotating reflecting mirror M a (j). Similarly, the rotating reflecting mirror M a (j) transmits the reflected beam from the rotating reflecting mirror M b (i) to the fiber F
It may be adjusted to propagate to b (j).

【0008】もし回転反射ミラーMa (j) の反射ビーム
をファイバFb (j) ではなく、回転反射ミラーMb (k)
に当て、さらにこのミラーの反射ビームをFa (k) に照
射すると、アレイ基板Aから出た光を、同じ基板上の他
の光ファイバと接続できる。すなわち、2枚の反射ミラ
ーを使うと、出射ビームと対向するアレイ基板上の任意
の光ファイバと、また3枚の反射ミラーを使うと、出射
ビームと同じアレイ基板上の任意の光ファイバと、それ
ぞれ空間接続ができる。なお、反射ミラーを1枚だけ使
う接続も可能で、この場合には、入出射する光ファイバ
が同じ基板上にあり、かつ光が斜め入射になるので、光
伝搬は一方向という制限を受ける。
If the reflected beam from the rotary reflecting mirror M a (j) is not reflected by the fiber F b (j), the rotating reflecting mirror M b (k)
When the reflected beam of the mirror is applied to F a (k), the light emitted from the array substrate A can be connected to another optical fiber on the same substrate. That is, if two reflection mirrors are used, any optical fiber on the array substrate facing the output beam, and if three reflection mirrors are used, any optical fiber on the same array substrate as the output beam, Each can be connected in space. In addition, connection using only one reflection mirror is also possible. In this case, since the optical fibers to enter and exit are on the same substrate and the light is obliquely incident, the light propagation is limited to one direction.

【0009】ファイバFa (i) から出てきた光を、回転
反射ミラーMb (i) で元のファイバFa (i) に反射ビー
ムを戻す空間接続まで含めて考えると、本発明の光接続
モジュールでは、自己を含めモジュールを構成するすべ
ての光ファイバを、相互に空間接続できる。
[0009] The light emerging from the fiber F a (i), considering including a rotating reflecting mirror M b (i) until the reflected beam space connected back to the original fiber F a (i), the light of the present invention In the connection module, all optical fibers constituting the module including itself can be spatially connected to each other.

【0010】この空間接続における光の損失は、光接続
の経路や長さにほとんど関係なく、2枚または3枚の反
射ミラーによる反射率だけを考慮すればよく、これに対
しては、従来から広く使われている高反射膜の採用によ
り、光の損失は小さくなる。なお、マイクロレンズを透
過するときのフレネル反射損に対しても低反射膜を使う
ことで、その影響を低減できる。
[0010] The loss of light in this spatial connection is almost irrespective of the path and length of the optical connection, and it is sufficient to consider only the reflectivity of two or three reflecting mirrors. Light loss is reduced by adopting a widely used high reflection film. In addition, by using a low-reflection film, the influence of Fresnel reflection loss when transmitting through a microlens can be reduced.

【0011】また、アレイ基板A,Bの相対的な位置お
よびアレイ基板上に配列する各ファイバの位置について
は、高精度を必要とせず、ファイバFa (i) から出た光
ビームが、回転反射ミラーMb (i) に確実に当たるだけ
の精度があればよい。この理由は、回転反射ミラーMb
(i) で受けた光ビームを、回転反射ミラーMa (j) で中
断し、ファイバFb (j) に伝搬するとき、いずれも相手
の位置に関係なく、回転反射ミラーを角度調整すること
により接続できるからである。
The relative position of the array substrates A and B and the position of each fiber arranged on the array substrate do not require high precision, and the light beam emitted from the fiber F a (i) rotates. It suffices if there is accuracy enough to reliably hit the reflecting mirror M b (i). The reason is that the rotating reflection mirror M b
When the light beam received in (i) is interrupted by the rotating reflection mirror M a (j) and propagates to the fiber F b (j), the angle of the rotation reflection mirror is adjusted regardless of the position of the other party. This is because the connection can be made by

【0012】しかしながら、この方法では、アレイ基板
上のビームの位置を知るには、ファイバに光ビームを当
てて、その位置を検出することになる。ところが目的の
ファイバ以外、他のすべてのファイバが接続されてい
て、これらのファイバに、もう一つの光ビームを当てる
ことができない場合には、ビームの位置検出が困難にな
るという問題がある。
However, in this method, in order to know the position of the beam on the array substrate, a light beam is applied to the fiber and the position is detected. However, if all other fibers are connected except for the target fiber and it is not possible to apply another light beam to these fibers, there is a problem that beam position detection becomes difficult.

【0013】図3は二次元配列基板上でファイバ端面と
回転反射ミラーの間に、受光素子10を配置し、光ビー
ムの位置検出を可能にしたアレイ基板の正面図であっ
て、モジュールの構成は前記と同様に行う。このアレイ
基板では、以下のようにして、目的のミラーやファイバ
に、光ビームを当てることができる。
FIG. 3 is a front view of an array substrate in which a light receiving element 10 is arranged between a fiber end face and a rotating reflection mirror on a two-dimensional array substrate to enable light beam position detection. Is performed in the same manner as described above. With this array substrate, a light beam can be applied to a target mirror or fiber as follows.

【0014】まず、向かい側にあるアレイ基板上の任意
の受光素子10に光ビーム5を当て、当たっている光ビ
ーム位置P1 を検知する。次に、ここから目的とするフ
ァイバF0 或いはミラーM0 (図示せず)の位置を計算
して、光ビームを走査する。この方法において、この光
ビーム走査の際、ビームを直接目的とする例えばファイ
バF0 に移動するのではなく、先ずその周囲に配置され
ている四つの受光素子10′の一つで光ビームの位置を
検出し、次に光ビームをファイバF0 に走査すると、フ
ァイバF0 と受光素子10′との相対位置が近いことか
ら、目的のファイバF0 に正確に光ビームを当てること
ができる。
First, the light beam 5 is applied to an arbitrary light receiving element 10 on the array substrate on the opposite side, and the position P 1 of the light beam is detected. Next, the position of the target fiber F 0 or mirror M 0 (not shown) is calculated from this, and the light beam is scanned. In this method, when scanning the light beam, the beam is not moved directly to the target, for example, the fiber F 0 , but the position of the light beam is first detected by one of the four light receiving elements 10 ′ arranged around the fiber F 0. detects, then the light beam scanning the fiber F 0, since the relative position of the fiber F 0 and the light receiving element 10 'are close, it is possible to apply accurately light beam to the fiber F 0 purposes.

【0015】[0015]

【発明の効果】以上説明したように、本発明の光接続モ
ジュールは、アレイ基板上の光ファイバを相互接続する
場合、光の進路変更と位置決めには、それぞれのファイ
バに対向する2枚の回転反射ミラーしか使わないので、
操作は簡単であり、光損失も小さい。また、すでに接続
されているファイバ間の組合せを変更する場合も、同様
にすればよい。しかもファイバの配列やアレイ基板の相
対位置に対して高精度を必要としないので、これらの部
品の加工や組立が容易になるという効果が期待できる。
As described above, in the optical connection module of the present invention, when the optical fibers on the array substrate are interconnected, the optical path change and the positioning are performed by two rotations facing each fiber. Since only a reflection mirror is used,
Operation is simple and light loss is small. Further, the same may be applied to a case where the combination between already connected fibers is changed. Moreover, since high precision is not required for the arrangement of the fibers and the relative position of the array substrate, an effect that processing and assembling of these components can be easily expected can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光ファイバと回転反射ミラーを二次元に配列し
たアレイ基板の基本構成を示す斜視図である。
FIG. 1 is a perspective view showing a basic configuration of an array substrate in which an optical fiber and a rotating reflection mirror are two-dimensionally arranged.

【図2】2枚のアレイ基板を用いた光の空間接続状態を
示す図である。
FIG. 2 is a diagram showing a spatial connection state of light using two array substrates.

【図3】二次元配列基板でファイバ端面と回転反射ミラ
ーの間に受光素子を配置し、光ビームの位置検出を可能
にしたアレイ基板の正面図である。
FIG. 3 is a front view of an array substrate in which a light receiving element is disposed between a fiber end face and a rotating reflection mirror on a two-dimensional array substrate, and a light beam position can be detected.

【図4】ビームシフタを用いた二次元の光接続モジュー
ルの構成を示す斜視図である。
FIG. 4 is a perspective view showing a configuration of a two-dimensional optical connection module using a beam shifter.

【符号の説明】[Explanation of symbols]

1 二次元ファイバアレイ基板 2 ビームシフタ 3 光ファイバ 4 マイクロレンズ 5 光ビーム 6 開孔 7 マイクロレンズ基板 8 回転反射ミラー 9 アレイ基板 10,10′ 受光素子 A,B アレイ基板 F0 ,Fa (i) ,Fa (k) ,Fb(i) ファイバ P1 光ビーム位置 Mb (i) ,Ma (j) ,Mb (k) 回転反射ミラーREFERENCE SIGNS LIST 1 two-dimensional fiber array substrate 2 beam shifter 3 optical fiber 4 micro lens 5 light beam 6 aperture 7 micro lens substrate 8 rotating reflection mirror 9 array substrate 10, 10 'light receiving element A, B array substrate F 0 , F a (i) , F a (k), F b (i) Fiber P 1 Light beam position M b (i), M a (j), M b (k) Rotating reflection mirror

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光ファイバと縦方向及び横方向の2軸に
独立に回転可能なミラーとを二次元配列し、更にそれら
の間に受光素子を配列した基板を用い、一方の基板の光
ファイバの端面と他方の基板の反射ミラーとが互いに向
き合うように一定の間隔をおいて対向させ、前記受光素
子によって光の位置を検出して、一方の基板の光ファイ
バから出た光を他方の基板の反射ミラーで反射させ、こ
の光を対向する基板上の光ファイバまたは反射ミラーに
光を当てることにより、任意の光ファイバ同士を光接続
することを特徴とする光接続モジュール。
1. An optical fiber of one of two substrates, wherein a substrate in which an optical fiber and a mirror which can be independently rotated in two axes in a vertical direction and a horizontal direction are two-dimensionally arranged and a light receiving element is arranged therebetween. The end face of the substrate and the reflection mirror of the other substrate are opposed to each other at a fixed interval so as to face each other, the position of light is detected by the light receiving element, and the light emitted from the optical fiber of one substrate is transmitted to the other substrate. An optical connection module, wherein arbitrary optical fibers are optically connected to each other by reflecting the light with a reflection mirror and irradiating the light to an optical fiber or a reflection mirror on an opposing substrate.
JP3271013A 1991-10-18 1991-10-18 Optical connection module Expired - Fee Related JP2617054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3271013A JP2617054B2 (en) 1991-10-18 1991-10-18 Optical connection module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3271013A JP2617054B2 (en) 1991-10-18 1991-10-18 Optical connection module

Publications (2)

Publication Number Publication Date
JPH05107485A JPH05107485A (en) 1993-04-30
JP2617054B2 true JP2617054B2 (en) 1997-06-04

Family

ID=17494196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3271013A Expired - Fee Related JP2617054B2 (en) 1991-10-18 1991-10-18 Optical connection module

Country Status (1)

Country Link
JP (1) JP2617054B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711320B2 (en) 1997-02-13 2004-03-23 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6794793B2 (en) 2001-09-27 2004-09-21 Memx, Inc. Microelectromechnical system for tilting a platform
US6813057B2 (en) 2001-09-27 2004-11-02 Memx, Inc. Configurations for an optical crossconnect switch
US6944365B2 (en) 2002-01-03 2005-09-13 Memx, Inc. Off axis optical signal redirection architectures
US7702194B2 (en) 2006-11-07 2010-04-20 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches
US7720329B2 (en) 2006-11-07 2010-05-18 Olympus Corporation Segmented prism element and associated methods for manifold fiberoptic switches
US7769255B2 (en) 2006-11-07 2010-08-03 Olympus Corporation High port count instantiated wavelength selective switch
US7873246B2 (en) 2006-11-07 2011-01-18 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8000568B2 (en) 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches
US8131123B2 (en) 2006-11-07 2012-03-06 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8190025B2 (en) 2008-02-28 2012-05-29 Olympus Corporation Wavelength selective switch having distinct planes of operation

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295154B1 (en) * 1998-06-05 2001-09-25 Texas Instruments Incorporated Optical switching apparatus
US6320993B1 (en) 1998-06-05 2001-11-20 Astarte Fiber Networks, Inc. Optical switch pathway configuration using control signals
CN1192263C (en) 1998-06-05 2005-03-09 Afn有限责任公司 Planar array optical switch and method
AU6381599A (en) * 1998-06-05 2000-01-10 Astarte Fiber Networks, Inc. Mirror based fiber optic switch and control system
US6690885B1 (en) 1999-10-07 2004-02-10 Lucent Technologies Inc. Optical crossconnect using tilting mirror MEMS array
DE60018883T2 (en) * 1999-11-17 2006-04-13 Lucent Technologies Inc. Optical cross connection system with micro-electromechanical tilting mirror arrangement
CA2325611C (en) * 1999-12-01 2004-04-20 Lucent Technologies Inc. An optical cross connect employing a curved optical component
US6687430B2 (en) * 1999-12-01 2004-02-03 Armand Neukermans Arrangement for multiple 1xn optical switches
US6753638B2 (en) 2000-02-03 2004-06-22 Calient Networks, Inc. Electrostatic actuator for micromechanical systems
CA2300780C (en) * 2000-03-15 2007-08-07 Nortel Networks Corporation Integrated photonic switch
US6456751B1 (en) 2000-04-13 2002-09-24 Calient Networks, Inc. Feedback stabilization of a loss optimized switch
US6449098B1 (en) 2000-05-16 2002-09-10 Calient Networks, Inc. High uniformity lens arrays having lens correction and methods for fabricating the same
US6628041B2 (en) 2000-05-16 2003-09-30 Calient Networks, Inc. Micro-electro-mechanical-system (MEMS) mirror device having large angle out of plane motion using shaped combed finger actuators and method for fabricating the same
US6580846B1 (en) 2000-05-26 2003-06-17 Versatile Optical Networks, Inc. Actively-controllable optical switches based on optical position sensing and applications in optical switching arrays
US6925218B2 (en) 2000-05-26 2005-08-02 Vitesse Semiconductor Corporation Control techniques and devices for an optical switch array
US6516109B2 (en) * 2000-05-30 2003-02-04 Siwave, Inc. Low insertion loss non-blocking optical switch
US6560384B1 (en) * 2000-06-01 2003-05-06 Calient Networks, Inc. Optical switch having mirrors arranged to accommodate freedom of movement
WO2001095007A2 (en) * 2000-06-02 2001-12-13 Calient Networks, Inc. An optical switch using collimated arrays with non-collinear beams
US6483961B1 (en) 2000-06-02 2002-11-19 Calient Networks, Inc. Dual refraction index collimator for an optical switch
US6668108B1 (en) 2000-06-02 2003-12-23 Calient Networks, Inc. Optical cross-connect switch with integrated optical signal tap
WO2001095009A2 (en) * 2000-06-05 2001-12-13 Calient Networks, Inc. Method and apparatus for mirror control in an optical cross-connect switch
US6728016B1 (en) * 2000-06-05 2004-04-27 Calient Networks, Inc. Safe procedure for moving mirrors in an optical cross-connect switch
US6610974B1 (en) * 2000-06-05 2003-08-26 Calient Networks, Inc. Positioning a movable reflector in an optical switch
US6587611B1 (en) 2000-06-06 2003-07-01 Calient Networks, Inc. Maintaining path integrity in an optical switch
WO2001096924A1 (en) * 2000-06-14 2001-12-20 Versatile Optical Networks, Inc. Actively-controllable optical switches based on optical position sensing and applications in optical switching arrays
US6643425B1 (en) 2000-08-17 2003-11-04 Calient Networks, Inc. Optical switch having switch mirror arrays controlled by scanning beams
US6418247B1 (en) * 2000-09-08 2002-07-09 Harris Corporation Fiber optic switch and associated methods
US6825967B1 (en) 2000-09-29 2004-11-30 Calient Networks, Inc. Shaped electrodes for micro-electro-mechanical-system (MEMS) devices to improve actuator performance and methods for fabricating the same
US6792177B2 (en) 2001-03-12 2004-09-14 Calient Networks, Inc. Optical switch with internal monitoring
US6882766B1 (en) 2001-06-06 2005-04-19 Calient Networks, Inc. Optical switch fabric with redundancy
US6898341B2 (en) * 2001-10-24 2005-05-24 Intel Corporation Optical system for calibration and control of an optical fiber switch
US6597825B1 (en) 2001-10-30 2003-07-22 Calient Networks, Inc. Optical tap for an optical switch

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142307A (en) * 1979-04-24 1980-11-06 Matsushita Electric Ind Co Ltd Optical axis position correcting device
JPH0830787B2 (en) * 1987-10-16 1996-03-27 日本電信電話株式会社 Fiber optic connector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711320B2 (en) 1997-02-13 2004-03-23 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6819823B2 (en) 1997-02-13 2004-11-16 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6834136B2 (en) 1997-02-13 2004-12-21 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6922239B2 (en) 1997-02-13 2005-07-26 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6794793B2 (en) 2001-09-27 2004-09-21 Memx, Inc. Microelectromechnical system for tilting a platform
US6813057B2 (en) 2001-09-27 2004-11-02 Memx, Inc. Configurations for an optical crossconnect switch
US6831391B2 (en) 2001-09-27 2004-12-14 Memx, Inc. Microelectromechanical system for tilting a platform
US6847152B2 (en) 2001-09-27 2005-01-25 Memx, Inc. Microelectromechnical system for tilting a platform
US6944365B2 (en) 2002-01-03 2005-09-13 Memx, Inc. Off axis optical signal redirection architectures
US7702194B2 (en) 2006-11-07 2010-04-20 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches
US7720329B2 (en) 2006-11-07 2010-05-18 Olympus Corporation Segmented prism element and associated methods for manifold fiberoptic switches
US7769255B2 (en) 2006-11-07 2010-08-03 Olympus Corporation High port count instantiated wavelength selective switch
US7873246B2 (en) 2006-11-07 2011-01-18 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8000568B2 (en) 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches
US8131123B2 (en) 2006-11-07 2012-03-06 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8190025B2 (en) 2008-02-28 2012-05-29 Olympus Corporation Wavelength selective switch having distinct planes of operation

Also Published As

Publication number Publication date
JPH05107485A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
JP2617054B2 (en) Optical connection module
US5223956A (en) Optical beam scanners for imaging applications
EP1291690B1 (en) Optical switch with converging element
US7054520B2 (en) Planar array optical switch and method
JP7271677B2 (en) Laser measurement modules and laser radar
US6567574B1 (en) Modular three-dimensional optical switch
US5005934A (en) Fiber optics channel selection device
US4733072A (en) Rangefinder for imaging system eliminating effect of rotor rotation
US11714168B2 (en) Optical circulator
JPH02103011A (en) Optical communication network
WO2020135802A1 (en) Laser measurement module and laser radar
JP2005519338A (en) Scanning device
US20220244360A1 (en) Hybrid two-dimensional steering lidar
GB2159015A (en) Detecting apparatus utilizing light beams
WO2022046432A1 (en) Hybrid two-dimensional steering lidar
CN210514694U (en) 2 XN's MEMS photoswitch
US6097554A (en) Multiple dove prism assembly
US6680776B2 (en) Method and apparatus for sensing a power level of a communications beam in a fiber optic switch
JP2563141B2 (en) Scanning method and scanning device for a plurality of optical metrology reflectors
US9720243B1 (en) Wavelength division monolithic optical device
WO2023190069A1 (en) Optical deflection device and measuring device
WO2024082877A1 (en) Scanning module of laser radar, and laser radar
US11515941B2 (en) Free space optical communication terminal with dispersive optical component
US20230251354A1 (en) Compact beam steering mechanism and system
RU2346393C1 (en) Terminal for clear optical communication

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees