JP2551627B2 - Laser magnetic immunoassay device - Google Patents

Laser magnetic immunoassay device

Info

Publication number
JP2551627B2
JP2551627B2 JP63102917A JP10291788A JP2551627B2 JP 2551627 B2 JP2551627 B2 JP 2551627B2 JP 63102917 A JP63102917 A JP 63102917A JP 10291788 A JP10291788 A JP 10291788A JP 2551627 B2 JP2551627 B2 JP 2551627B2
Authority
JP
Japan
Prior art keywords
magnetic
laser
antigen
substance
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63102917A
Other languages
Japanese (ja)
Other versions
JPH01272972A (en
Inventor
幸一 藤原
裕迪 水谷
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63102917A priority Critical patent/JP2551627B2/en
Publication of JPH01272972A publication Critical patent/JPH01272972A/en
Application granted granted Critical
Publication of JP2551627B2 publication Critical patent/JP2551627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、抗原抗体反応を利用した免疫測定装置に関
するものである。更に詳述するならば、本発明は極めて
微量の検体から特定の抗体または抗原を定量的に検出可
能なレーザ磁気免疫測定方法を好適に実施できる測定装
置に関するものである。
TECHNICAL FIELD The present invention relates to an immunoassay device that utilizes an antigen-antibody reaction. More specifically, the present invention relates to a measuring apparatus capable of suitably implementing a laser magnetic immunoassay method capable of quantitatively detecting a specific antibody or antigen from an extremely small amount of sample.

〔従来の技術およびその課題〕[Conventional technology and its problems]

後天性免疫不全症候群、成人T細胞白血病等のような
新型ウイルス性疾病、あるいは各種ガンの早期検査法と
して、抗原抗体反応を利用した免疫測定法の開発が、現
在、世界的規模で推進されている。
The development of immunoassays using antigen-antibody reactions as an early test method for new viral diseases such as acquired immunodeficiency syndrome, adult T-cell leukemia, and various cancers is currently being promoted worldwide. I have.

従来から知られている微量免疫測定方法としては、ラ
ジオイムノアッセイ(以下、RIA法と記す)、酵素イム
ノアッセイ(EIA)、蛍光イムノアッセイ(FIA)法等が
既に実用化されている。これらの方法は、それぞれアイ
ソトープ、酵素、蛍光物質を標識として付加した抗原ま
たは抗体を用い、これと特異的に反応する抗体または抗
原の有無を検出する方法である。
As a conventionally known microimmunoassay method, a radioimmunoassay (hereinafter referred to as RIA method), an enzyme immunoassay (EIA), a fluorescence immunoassay (FIA) method and the like have already been put into practical use. These methods are methods in which the presence or absence of an antibody or an antigen that specifically reacts with an antigen or antibody to which an isotope, an enzyme, or a fluorescent substance is added as a label, respectively.

ところが、RIA法は高い検出感度を有しているもの
の、標識に放射性物質を使用するために、その実施につ
いては多くの制約がある。また、EIA法及びFIA法はいず
れも実施についての制約がRIA法に比べて少なく、その
実施は容易であるが、検出感度が低く、精密な定量的測
定が困難であった。
However, although the RIA method has high detection sensitivity, there are many restrictions on its implementation due to the use of radioactive substances as labels. In addition, both the EIA method and the FIA method have less restrictions on implementation than the RIA method and are easy to implement, but their detection sensitivity is low and precise quantitative measurement is difficult.

また、免疫測定方法にはレーザ光を利用して抗原抗体
反応の有無を検出する方法も知られている。この方法は
主に肝臓癌の検出を目的として開発されたAFP(アルフ
ァ・フェトプロテイン)を利用するもので、AFPに対す
る抗体をプラスチック微粒子に付加し、抗原抗体反応に
よってプラスチック微粒子が凝集して生じる質量変化か
ら調べるものである。この方法によれば、10-10g台の検
出感度で抗原抗体反応の有無を検出でき、従来のレーザ
光を用いた方法の百倍以上の検出感度を達成できるが、
RIA法に比較すると百分の一以下に過ぎず、不純物粒子
の影響を極めて受け易い欠点があった。この方法を含
め、従来のレーザ光散乱法の根本的欠点は、検体が分散
された溶液の1部分のみをレーザ照射して検出するため
に、これ以上に検出感度を高めることは原理的に望外の
ものである。また、このような本質的欠点があるため、
多量の検体を必要としていた。
Further, as an immunoassay method, a method of detecting the presence or absence of an antigen-antibody reaction using laser light is also known. This method uses AFP (alpha-fetoprotein) developed mainly for the detection of liver cancer. An antibody against AFP is added to plastic microparticles, and the mass change caused by the aggregation of plastic microparticles by an antigen-antibody reaction. It is something to look up from. According to this method, the presence or absence of an antigen-antibody reaction can be detected with a detection sensitivity of the order of 10 -10 g, and it is possible to achieve a detection sensitivity 100 times or more that of the conventional method using laser light
Compared to the RIA method, it is only one-hundredth or less, and has a drawback that it is extremely susceptible to the influence of impurity particles. The fundamental drawback of the conventional laser light scattering method, including this method, is that, in principle, it is not desirable to further increase the detection sensitivity because only one part of the solution in which the sample is dispersed is detected by laser irradiation. belongs to. Also, because of these inherent drawbacks,
A large amount of specimen was needed.

本発明者らは、上記の免疫測定方法の欠点を克服すべ
く、上記方法とは原理を異にするレーザ磁気免疫測定方
法及び装置の研究を行ない、その結果を先に特願昭61−
224567,61−252427,61−254164,62−22062,62−22063,6
2−152791,62−152792,62−284902,62−264319,62−267
481として特許出願している。これらの新しい免疫測定
方法は抗原抗体反応の有無の検出レーザ光を利用し、標
識材料として磁性体微粒子を用いる点に特徴があり、ア
イソトープを用いないでピコグラムの超微量検出が可能
である。
In order to overcome the drawbacks of the above-mentioned immunoassay method, the present inventors have conducted research on a laser magnetic immunoassay method and apparatus having a principle different from that of the above-mentioned method, and as a result of that, Japanese Patent Application No. 61-
224567,61-252427,61-254164,62-22062,62-22063,6
2-152791,62-152792,62-284902,62-264319,62-267
A patent application has been filed as 481. These new immunoassays are characterized by using a laser beam for detecting the presence or absence of an antigen-antibody reaction, and using magnetic fine particles as a labeling material, and it is possible to detect an ultratrace amount of picogram without using an isotope.

ところで、上述のレーザ磁気免疫測定方法では、検出
感度が非常に高い方法であるから、検体以外からのバッ
クグランド雑音を拾い易く、このためS/N比の改善が必
要であった。
By the way, in the above-mentioned laser magnetic immunoassay method, since the detection sensitivity is very high, it is easy to pick up background noise from other than the sample, and therefore it is necessary to improve the S / N ratio.

本発明は、上記の事情に鑑みてなされたもので、その
目的とするところは、磁気標識されたのち抗原抗体反応
せしめられた検体(磁性体標識検体複合体)を局部濃縮
するための傾斜磁界を効率よく発生させることのできる
レーザ磁気免疫測定装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a gradient magnetic field for locally concentrating a sample (magnetic substance-labeled sample complex) that has been magnetically labeled and then reacted with an antigen-antibody reaction. It is an object of the present invention to provide a laser magnetic immunoassay device capable of efficiently generating a laser.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に従うと、所定の抗原あるいは抗体に磁性微粒
子を標識として付加した磁性体標識体と、検体たる抗体
あるいは抗原との抗原抗体複合体である磁性体標識検体
複合体を収容する検査容器と、前記磁性体標識検体複合
体を誘導・濃縮する傾斜磁界発生装置と、レーザ光を前
記検査容器の磁性体標識検体複合体の濃縮位置へ導く入
射光学系と、該濃縮位置からの出射光を受光する光学系
とを少なくとも含むレーザ磁気免疫測定装置において、
前記傾斜磁界発生装置が、磁石と、前記検査容器を挟ん
で互いに対向する断面積の異なる2つの磁極と、該両磁
極間に形成された空隙部と、前記両磁極を連結しかつ前
記磁石から出た磁束を一方の磁極から他方の磁極へ導く
継鉄とから構成された磁気回路を具備してなることを特
徴とするレーザ磁気免疫測定装置が提供される。
According to the present invention, a magnetic substance-labeled substance obtained by adding magnetic fine particles to a predetermined antigen or antibody as a label, and a test container containing a magnetic substance-labeled specimen complex which is an antigen-antibody complex with an antibody or antigen as a specimen, A gradient magnetic field generator for guiding and concentrating the magnetic substance-labeled analyte complex, an incident optical system for guiding laser light to a concentration position of the magnetic substance-labeled analyte complex in the inspection container, and light emitted from the concentration position A laser magnetic immunoassay device including at least an optical system,
The gradient magnetic field generator connects a magnet, two magnetic poles having different cross-sectional areas facing each other across the inspection container, a void portion formed between the magnetic poles, the magnetic poles, and the magnetic poles. There is provided a laser magnetic immunoassay device comprising a magnetic circuit configured of a yoke that guides the generated magnetic flux from one magnetic pole to the other magnetic pole.

〔作 用〕[Work]

本発明に従うレーザ磁気免疫測定装置によれば、傾斜
磁界発生装置の磁気回路により磁石から出た磁束が一方
の磁極から他方の磁極へ検査容器を貫通して導かれ、継
鉄により磁石へ戻される。したがって、このような磁気
回路では、磁束の損失が少ないから、磁石から出た磁束
が両磁極間の空隙部に効率よく導かれ、局部濃縮を十分
に行なえる傾斜磁界が発生せしめられる。この傾斜磁界
により、検査容器に収容された磁性体標識検体複合体は
両磁極間の所定位置に効率よく短時間のうちに誘導・濃
縮される。この濃縮位置にレーザ光を照射し、その出射
光を検出することにより、上記複合体以外からのバック
グランド雑音を排除でき、高S/N比で抗原抗体反応の有
無を検出できる。そして、この測定装置を用いれば、濃
縮時間を大幅に短縮できるので、測定時間を短縮できる
とともに、測定の自動化をも極めて容易にしかつ装置設
計の際の自由度も増し、併せて検出感度の向上にも寄与
することができる。
According to the laser magnetic immunoassay apparatus according to the present invention, the magnetic flux of the magnet is guided by the magnetic circuit of the gradient magnetic field generator from one magnetic pole to the other magnetic pole through the inspection container and returned to the magnet by the yoke. . Therefore, in such a magnetic circuit, since the loss of the magnetic flux is small, the magnetic flux emitted from the magnet is efficiently guided to the gap between both magnetic poles, and a gradient magnetic field capable of sufficiently performing local concentration is generated. Due to this gradient magnetic field, the magnetic substance-labeled sample complex accommodated in the inspection container is efficiently guided / concentrated to a predetermined position between both magnetic poles in a short time. By irradiating the concentrated position with laser light and detecting the emitted light, background noise from other than the complex can be eliminated, and the presence or absence of an antigen-antibody reaction can be detected at a high S / N ratio. When this measuring device is used, the concentration time can be greatly shortened, so that the measuring time can be shortened, the automation of the measurement is made extremely easy, and the flexibility in designing the device is increased, and the detection sensitivity is also improved. Can also contribute.

また、傾斜磁界発生装置の両磁極のうち、一方の磁極
の先端形状を鋭利な形状とすれば、両磁極間に導かれる
磁束を磁極の鋭利な先端に集めることができ、より効率
よく局部濃縮を行なうことができる。
Further, if one of the two magnetic poles of the gradient magnetic field generator has a sharp tip, the magnetic flux guided between the two magnetic poles can be collected at the sharp tip of the magnetic pole, and the local concentration can be more efficiently performed. Can be done.

以下に図面を参照して本発明をより具体的に詳述する
が、以下に示すものは本発明の一実施例に過ぎず、本発
明の技術的範囲を何等制限するものではない。
Hereinafter, the present invention will be described in more detail with reference to the drawings. However, what is shown below is merely an example of the present invention, and does not limit the technical scope of the present invention.

〔実施例1〕 第1図は本発明に従うレーザ磁気免疫測定装置の一例
を示すものであって、図中符号1は検査容器、2は電磁
石、3aは磁極、3bは磁極片、4は継鉄、10はレーザ入射
ビーム、11は出射光である。
[Embodiment 1] FIG. 1 shows an example of a laser magnetic immunoassay device according to the present invention. In the figure, reference numeral 1 is an inspection container, 2 is an electromagnet, 3a is a magnetic pole, 3b is a magnetic pole piece, and 4 is a joint. Iron, 10 is a laser incident beam, and 11 is outgoing light.

検査容器1はアクリル樹脂製のもので、この検査容器
1には、磁気標識されたのち抗原抗体反応せしめられた
検体(磁性体標識検体複合体)を含む溶液を収容するた
めのウェル1aが設けられている。この例のウェル1aは直
径15mm、深さ7mmに形成され、このウェル1a内には上記
溶液が1ml収容されている。なお、上記複合体の調整方
法としては、例えば先に本発明者らが出願した特願昭61
−224567,61−254164に記載の方法を適用できる。
The test container 1 is made of acrylic resin, and the test container 1 is provided with a well 1a for containing a solution containing a sample (magnetic substance-labeled sample complex) magnetically labeled and then reacted with an antigen-antibody reaction. Has been. The well 1a in this example is formed to have a diameter of 15 mm and a depth of 7 mm, and 1 ml of the solution is stored in the well 1a. As a method for preparing the above composite, for example, Japanese Patent Application No.
The method described in -224567,61-254164 can be applied.

また、磁極3aと磁極片3bとは互いに対向して配設さ
れ、両者間の空隙部には上記検査容器1が挿入されてい
る。この例の磁極3aは純鉄からなり直径50mmの円柱状の
ものであり、磁極片3bはパーマロイ合金からなり直径5m
mの小片状のもので、鋭利な先端形状を有するものであ
る。そして、磁極3aには電磁石2が固定されている。ま
た、この磁極3aには略C字状の継鉄4の一端が接続さ
れ、この継鉄4の他端は磁極片3bに接続されている。こ
の例の継鉄4な純鉄からなり断面積が8cm2のものであ
る。したがって、この装置には、傾斜磁界発生装置に電
磁石2−磁極3a−空隙部−磁極片3b−継鉄4−電磁石2
からなる磁気回路が構成される。
Further, the magnetic pole 3a and the magnetic pole piece 3b are arranged so as to face each other, and the inspection container 1 is inserted in the space between them. The magnetic pole 3a in this example is made of pure iron and has a cylindrical shape with a diameter of 50 mm, and the magnetic pole piece 3b is made of permalloy alloy and has a diameter of 5 m.
It is a small piece of m and has a sharp tip shape. The electromagnet 2 is fixed to the magnetic pole 3a. Further, one end of a substantially C-shaped yoke 4 is connected to the magnetic pole 3a, and the other end of the yoke 4 is connected to the magnetic pole piece 3b. In this example, the yoke 4 is made of pure iron and has a cross-sectional area of 8 cm 2 . Therefore, in this apparatus, the gradient magnetic field generator includes an electromagnet 2-magnetic pole 3a-gap-pole piece 3b-yoke 4-electromagnet 2.
A magnetic circuit consisting of

この磁気回路では、電磁石2から出た磁束が磁極3aか
ら磁極片3bへ導かれる際に検査容器1を貫通し、磁極片
3bに集められた磁束が継鉄4を通って電磁石2に戻され
る。
In this magnetic circuit, when the magnetic flux emitted from the electromagnet 2 is guided from the magnetic pole 3a to the magnetic pole piece 3b, it penetrates the inspection container 1 and
The magnetic flux collected in 3b is returned to the electromagnet 2 through the yoke 4.

次に、このような構成の測定装置を用いて磁極片3b中
心からの磁界分布を調べてみた。この例では、空隙部の
磁気空隙長を11mmとし、磁極片3bの先端部の直径を0.5m
mとし、その部分の頂角を60度に設定した。そして、磁
極片3b直下0.5mmの位置にガウスメータプローブを設置
して磁界分布を調べたところ、第2図に示すような結果
が得られた。非磁性のステンレス鋼で磁極片3bを支持
し、継鉄を使用しない場合は、磁極中心部の磁界は1.5K
Gであるのに対し、継鉄を使用すると磁界を約2.7倍増加
させることができ、かつ中心部近傍の磁界の変化が急峻
となることから、継鉄の有効性は明らかである。すなわ
ち、電磁石2から出た磁束は継鉄の使用により効果的に
磁極片3bに集められることから、磁極片3bの直下のウェ
ル1a内の複合体が効果的に集められることになる。した
がって、複合体の検出にあたっては、複合体の信号がバ
ックグランドからの信号より増幅されるから高S/N比測
定が可能となる。
Next, the magnetic field distribution from the center of the pole piece 3b was examined by using the measuring device having such a configuration. In this example, the magnetic gap length of the gap is 11 mm and the diameter of the tip of the pole piece 3b is 0.5 m.
m, and the vertical angle of that part was set to 60 degrees. Then, when a Gauss meter probe was installed at a position 0.5 mm directly under the magnetic pole piece 3b and the magnetic field distribution was examined, the results shown in FIG. 2 were obtained. When magnetic pole piece 3b is supported by non-magnetic stainless steel and no yoke is used, the magnetic field at the center of the magnetic pole is 1.5K.
In contrast to G, the use of a yoke makes it possible to increase the magnetic field by about 2.7 times, and the change in the magnetic field near the center becomes steep, so the effectiveness of the yoke is clear. That is, since the magnetic flux generated from the electromagnet 2 is effectively collected in the magnetic pole piece 3b by using the yoke, the complex in the well 1a immediately below the magnetic pole piece 3b is effectively collected. Therefore, in detecting the complex, the signal of the complex is amplified from the signal from the background, and thus high S / N ratio measurement can be performed.

〔実施例2〕 第3図は本発明に従うレーザ磁気免疫測定装置の他の
例を示すものである。この例では、電磁石2が継鉄4に
固定されており、この点が実施例1の構成と異なってい
る。電磁石2は検査容器1の直下に置く必要はなく、こ
の例のように、継鉄4の一部にコイルを巻いて電磁石と
するようにしてもよい。検査容器1は前記磁極片3bと磁
極3aの間に挿入され、出し入れが自由にされるべきであ
るが、この例においては、電磁石2の配置を自由に配置
できるため、検査容器1の移動機構の導入が容易になる
利点がある。
Embodiment 2 FIG. 3 shows another example of the laser magnetic immunoassay device according to the present invention. In this example, the electromagnet 2 is fixed to the yoke 4, and this point is different from the configuration of the first embodiment. The electromagnet 2 does not have to be placed directly below the inspection container 1, and as in this example, a coil may be wound around a part of the yoke 4 to form an electromagnet. The inspection container 1 should be inserted and removed freely between the magnetic pole pieces 3b and the magnetic poles 3a. In this example, however, the electromagnet 2 can be arranged freely, so that the inspection container 1 can be moved. Has the advantage of being easy to introduce.

なお、本発明では磁石として電磁石の代わりに永久磁
石を用いた構成であっても同様の効果を得ることができ
た。
In the present invention, the same effect could be obtained even if a permanent magnet was used as the magnet instead of the electromagnet.

また、本発明に従う測定装置を用いてレーザ磁気免疫
測定を行なう際に、本発明者らが先に出願した特願昭62
−184902に記載の干渉法を適用したところ、顕著な効果
を得ることができた。すなわち、干渉法の場合、干渉縞
は濃縮した複合体を磁力で水面の上方へ吸引する際、磁
力と液体の表面張力の釣合で決まる水面の微小盛り上が
りのため生じるわけであるから、磁力が強いほど干渉縞
は沢山現われる。従って、より微量な検体(複合体)が
検出できることになる。検体からの出射光の内、反射光
をスクリーンに受けて干渉縞を静的に観察する方法で、
磁性体微粒子を標識したインフルエンザウイルスの検出
を試みた結果、1個程度のウイルスでも1分以内に干渉
縞を肉眼で確認できた。
In addition, when performing the laser magnetic immunoassay using the measuring device according to the present invention, the Japanese Patent Application No. 62-62 previously filed by the present inventors.
When the interferometry described in -184902 was applied, a remarkable effect could be obtained. That is, in the case of the interferometric method, the interference fringes are generated due to the small swelling of the water surface determined by the balance between the magnetic force and the surface tension of the liquid when the concentrated complex is attracted above the water surface by the magnetic force. The stronger, the more interference fringes appear. Therefore, a smaller amount of sample (complex) can be detected. Of the light emitted from the specimen, the reflected light is received by the screen and the interference fringes are observed statically.
As a result of an attempt to detect influenza virus labeled with magnetic fine particles, interference fringes could be visually confirmed within 1 minute even with one virus.

また、本発明のレーザ磁気免疫測定装置は検体からの
出射光の内、散乱、投下、回析光を検出した場合にも、
濃縮を短時間に行なえたため、測定時間の大幅短縮を出
来た。
Further, the laser magnetic immunoassay device of the present invention, among the emitted light from the specimen, when scattering, dropping, diffracted light is detected,
Since the concentration can be done in a short time, the measurement time could be greatly shortened.

このように、検体の濃縮を迅速かつ確実に行なえるた
め、本発明者らが先に出願した電磁石を交流的に励磁す
る同期検出法と同程度の検出感度を本発明の装置による
静的測定法でも達成することが出来た。
As described above, in order to quickly and surely concentrate the sample, the static sensitivity of the apparatus of the present invention is as high as the detection sensitivity of the synchronous detection method in which the electromagnets of the present invention were previously applied to excite the electromagnet in an alternating current. I was able to achieve it by law.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明に従うレーザ磁気免疫測
定装置によれば、検査容器を挟んで互いに対向する2つ
の磁極を継鉄で連結して磁気回路を構成するようにした
ので、磁石からの磁束の損失を防止しかつ磁束を磁極に
効率よく集めることができ、検査容器に対して効率よく
傾斜磁界をかけることができ、この傾斜磁界により磁性
体標識検体複合体を局部濃縮できる。したがって、局部
濃縮された上記複合体へレーザ光を照射し、その出射光
を検出することにより、複合体の検出を、バックグラン
ド雑音を排除した高S/N比で行なうことができる。そし
て、この発明に従うレーザ磁気免疫測定装置は、抗原抗
体反応のみに止まらず、従来RIA法が適用されていたペ
プチドホルモン等の種々のホルモンあるいは種々の酵
素、ビタミン、薬剤などの測定にも応用することが可能
である。従って、従来は限定された施設でRIA法によら
なければ実施できなかった精密な測定を、一般的な環境
で広く実施することが可能となる。集団検診等のような
一般的な状況で、各種のウイルス、癌等のスクリーニン
グ検査等の精密な測定が広く実施できれば、癌あるいは
ウイルス性疾患等の早期診断が可能となり、有効な早期
治療を的確に実施することが可能となる。ことように、
本発明が医学・医療の分野で果たす効果は計り知れな
い。
As described above in detail, according to the laser magnetic immunoassay device of the present invention, two magnetic poles facing each other with the inspection container interposed therebetween are connected by yokes to form a magnetic circuit. The loss of the magnetic flux can be prevented and the magnetic flux can be efficiently collected in the magnetic pole, the gradient magnetic field can be efficiently applied to the inspection container, and the magnetic field labeled analyte complex can be locally concentrated by the gradient magnetic field. Therefore, by irradiating the locally concentrated composite with laser light and detecting the emitted light, the composite can be detected with a high S / N ratio in which background noise is eliminated. The laser magnetic immunoassay device according to the present invention is applicable not only to the antigen-antibody reaction but also to the measurement of various hormones such as peptide hormones to which the RIA method has been conventionally applied or various enzymes, vitamins, drugs, etc. It is possible. Therefore, it becomes possible to perform a wide range of precise measurements in a general environment, which could not be performed conventionally in limited facilities without using the RIA method. In general situations such as mass screening, if accurate measurements such as screening tests for various viruses and cancers can be widely performed, early diagnosis of cancer or viral diseases can be made, and effective early treatment can be accurately performed. Can be implemented. Like that
The effects of the present invention in the medical and medical fields are immeasurable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に従うレーザ磁気免疫測定装置の一例を
示す概略断面図、第2図は第1図の測定装置を用いてな
された継鉄の効果を調べるための実験結果で、磁極中心
からの磁界分布を示すグラフ、第3図は本発明に従う測
定装置の他の例を示す概略断面図である。 1……検査容器、 1a……ウェル、 2……電磁石、 3a……磁極、 3b……磁極片、 4……継鉄 10……レーザ入射ビーム、 11……検体からの出射光。
FIG. 1 is a schematic sectional view showing an example of a laser magnetic immunoassay device according to the present invention, and FIG. 2 is an experimental result for examining the effect of a yoke made by using the measuring device of FIG. Fig. 3 is a graph showing the magnetic field distribution of Fig. 3, and Fig. 3 is a schematic sectional view showing another example of the measuring apparatus according to the present invention. 1 ... inspection container, 1a ... well, 2 ... electromagnet, 3a ... magnetic pole, 3b ... pole piece, 4 ... yoke, 10 ... laser incident beam, 11 ... light emitted from specimen.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定の抗原あるいは抗体に磁性微粒子を標
識として付加した磁性体標識体と、検体たる抗体あるい
は抗原との抗原抗体複合体である磁性体標識検体複合体
を収容する検査容器と、前記磁性体標識検体複合体を誘
導・濃縮する傾斜磁界発生装置と、レーザ光を前記検査
容器の磁性体標識検体複合体の濃縮位置へ導く入射光学
系と、該濃縮位置からの出射光を受光する光学系とを少
なくとも含むレーザ磁気免疫測定装置において、前記傾
斜磁界発生装置が、磁石と、前記検査容器を挟んで互い
に対向する断面積の異なる2つの磁極と、該両磁極間に
形成された空隙部と、前記両磁極を連結しかつ前記磁石
から出た磁束を一方の磁極から他方の磁極へ導く継鉄と
から構成された磁気回路を具備してなることを特徴とす
るレーザ磁気免疫測定装置。
1. A magnetic substance-labeled substance obtained by adding magnetic fine particles as a label to a predetermined antigen or antibody, and a test container containing a magnetic substance-labeled specimen complex which is an antigen-antibody complex with an antibody or antigen as a specimen. A gradient magnetic field generator for guiding and concentrating the magnetic substance-labeled analyte complex, an incident optical system for guiding laser light to a concentration position of the magnetic substance-labeled analyte complex in the inspection container, and light emitted from the concentration position In the laser magnetic immunoassay device including at least an optical system, the gradient magnetic field generator is formed between a magnet, two magnetic poles having different cross-sectional areas facing each other with the inspection container interposed therebetween, and between the magnetic poles. A laser magnetic immune system comprising a magnetic circuit including a void portion and a yoke that connects the magnetic poles and guides the magnetic flux emitted from the magnet from one magnetic pole to the other magnetic pole. Constant apparatus.
JP63102917A 1988-04-26 1988-04-26 Laser magnetic immunoassay device Expired - Lifetime JP2551627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102917A JP2551627B2 (en) 1988-04-26 1988-04-26 Laser magnetic immunoassay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102917A JP2551627B2 (en) 1988-04-26 1988-04-26 Laser magnetic immunoassay device

Publications (2)

Publication Number Publication Date
JPH01272972A JPH01272972A (en) 1989-10-31
JP2551627B2 true JP2551627B2 (en) 1996-11-06

Family

ID=14340208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102917A Expired - Lifetime JP2551627B2 (en) 1988-04-26 1988-04-26 Laser magnetic immunoassay device

Country Status (1)

Country Link
JP (1) JP2551627B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
WO2008014223A2 (en) * 2006-07-24 2008-01-31 Becton, Dickinson And Company Assay particle concentration and imaging apparatus and method
NL2016011B1 (en) 2015-12-23 2017-07-03 Besi Netherlands Bv Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators.
CN111153268B (en) * 2018-11-07 2021-12-03 无锡先导智能装备股份有限公司 Feeding system and control method thereof

Also Published As

Publication number Publication date
JPH01272972A (en) 1989-10-31

Similar Documents

Publication Publication Date Title
WO1988002118A1 (en) Laser magnetic immunoassay method and apparatus therefor
JPH054021B2 (en)
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
JPS59147266A (en) High sensitivity immunity analyzer using space pattern
JP2683172B2 (en) Sample measuring method and sample measuring device
JPS6488155A (en) Immunological inspection for detecting antibody against antigen
US5236824A (en) Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
JP2551627B2 (en) Laser magnetic immunoassay device
EP0339623B1 (en) Laser magnetic immunoassay method and apparatus therefor
JPS63108264A (en) Magnetic enzyme measurement method and inspection reagent piece to be used for executing said method
JP2502546B2 (en) Laser magnetic immunoassay method
JPH01109263A (en) Method and apparatus for laser magnetic immunoassay
JPH02151766A (en) Measurement of laser magnetic immunity
JP2599175B2 (en) Laser magnetic immunoassay method and measuring apparatus, superparamagnetic label used for laser magnetic immunoassay, and method for producing the same
JPS63188766A (en) Method and instrument for laser magnetic immunoassay
JPH0820450B2 (en) Laser magnetic immunoassay method and apparatus
JPH07111429B2 (en) Laser magnetic immunoassay
JP2509227B2 (en) Laser magnetic immunoassay device
JPS63106559A (en) Method and apparatus for laser magnetic immunoassay
JPS63315951A (en) Laser magnetic immunoassay instrument
JPH07111433B2 (en) Laser magnetic immunoassay method and measuring apparatus
JPH01107151A (en) Method and apparatus for laser magnetism immunity measuring
JP2502148B2 (en) Non-separable laser magnetic immunoassay method and measuring apparatus
JP2509272B2 (en) Laser magnetic immunoassay method and apparatus
JPH05249114A (en) Method and instrument for immunological measurement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12