JP2509227B2 - Laser magnetic immunoassay device - Google Patents

Laser magnetic immunoassay device

Info

Publication number
JP2509227B2
JP2509227B2 JP15279287A JP15279287A JP2509227B2 JP 2509227 B2 JP2509227 B2 JP 2509227B2 JP 15279287 A JP15279287 A JP 15279287A JP 15279287 A JP15279287 A JP 15279287A JP 2509227 B2 JP2509227 B2 JP 2509227B2
Authority
JP
Japan
Prior art keywords
magnetic
sample
laser
electromagnet
pole piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15279287A
Other languages
Japanese (ja)
Other versions
JPS63315952A (en
Inventor
幸一 藤原
裕迪 水谷
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15279287A priority Critical patent/JP2509227B2/en
Priority to PCT/JP1987/000694 priority patent/WO1988002118A1/en
Priority to DE3751865T priority patent/DE3751865T2/en
Priority to EP87906109A priority patent/EP0287665B1/en
Priority to US07/221,248 priority patent/US5252493A/en
Publication of JPS63315952A publication Critical patent/JPS63315952A/en
Priority to US07/915,022 priority patent/US5238810A/en
Application granted granted Critical
Publication of JP2509227B2 publication Critical patent/JP2509227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、抗原抗体反応を利用した免疫測定装置に関
するものである。更に詳述するならば、本発明は極めて
微量の検体から特定の抗体または抗原を定量的に検出可
能なレーザ磁気免疫測定装置に関するものである。
TECHNICAL FIELD The present invention relates to an immunoassay device that utilizes an antigen-antibody reaction. More specifically, the present invention relates to a laser magnetic immunoassay device capable of quantitatively detecting a specific antibody or antigen from an extremely small amount of sample.

〔従来の技術〕[Conventional technology]

後天性免疫不全症候群、成人T細胞白血病等のような
新型ウイルス性疾病、あるいは各種ガンの早期検査法と
して、抗原抗体反応を利用した免疫測定法の開発が、現
在、世界的規模で推進されている。
The development of immunoassays using antigen-antibody reactions as an early test method for new viral diseases such as acquired immunodeficiency syndrome, adult T-cell leukemia, and various cancers is currently being promoted worldwide. I have.

従来から知られる一次反応を利用した微量免疫測定法
としては、ラジオイムノアッセイ(以下、RIA法と記
す)、酸素イムノアッセイ(EIA)、螢光イムノアッセ
イ法等が既に実用化されている。これらの方法は、それ
ぞれアイソトープ、酵素、蛍光物質を標識として付加し
た抗原または抗体を用い、これと特異的に反応する抗体
または抗原の有無を検出する方法である。
Radioimmunoassay (hereinafter referred to as RIA method), oxygen immunoassay (EIA), fluorescent immunoassay method, and the like have already been put into practical use as conventionally known microimmunoassay methods using a primary reaction. These methods are methods in which the presence or absence of an antibody or an antigen that specifically reacts with an antigen or antibody to which an isotope, an enzyme, or a fluorescent substance is added as a label, respectively.

RIA法は、標識化されたアイソトープの放射線量を測
定することにより抗原抗体反応に寄与した検体量を定量
するものであり、ピコグラム程度の超微量測定が可能な
現在唯一の方法である。しかしながら、この方法は放射
性物質を利用するので、特殊設備を必要とし、また、半
減期等による標識効果の減衰等を考慮しなければならな
いので、実施には大きな制約がある。更に、放射性廃棄
物処理が社会問題となっている現状を考慮すると、その
実施は自ずと制限される。
The RIA method quantifies the amount of the sample that contributed to the antigen-antibody reaction by measuring the radiation dose of the labeled isotope, and is currently the only method capable of measuring an ultratrace amount of picogram. However, since this method uses a radioactive substance, special equipment is required, and attenuation of the labeling effect due to half-life and the like must be taken into consideration, so that there is a large limitation in its implementation. Furthermore, considering the current situation where radioactive waste treatment is a social issue, its implementation is naturally limited.

一方、酵素、蛍光体を標識として用いる方法は、抗原
抗体反応に寄与した検体量を、発色や発光を観測するこ
とにより検出する方法であり、RIA法の如き実施上の制
約はない。しかしながら、発色あるいは発光を精密に定
量することは困難であり、検出限界はナノグラム程度で
ある。
On the other hand, the method of using an enzyme or a fluorescent substance as a label is a method of detecting the amount of a sample that has contributed to the antigen-antibody reaction by observing color development or luminescence, and there is no limitation in practice such as the RIA method. However, it is difficult to accurately quantify the color development or luminescence, and the detection limit is about nanogram.

また、レーザ光を利用して抗原抗体反応の有無を検出
する方法として、主に肝臓癌の検出を目的として開発さ
れたAFP(アルファ・フェトプロテイン)を利用した方
法がある。
Further, as a method of detecting the presence or absence of an antigen-antibody reaction using laser light, there is a method using AFP (alpha-fetoprotein) developed mainly for the purpose of detecting liver cancer.

この方法は、AFPに対する抗体をプラスチック微粒子
に付加し、抗原抗体反応によってプラスチック粒子が凝
集して生じる質量変化から調べる方法であり、10-10
の検出感度を達成している。これは、従来のレーザ光を
用いた方法の百倍以上の感度であるが、RIA法に比較す
ると百分の一以下に過ぎない。更に、この方法が水溶液
中における抗原抗体複合物のブラウン運動の変化を利用
しているために、抗体を含む水溶液の温度、揺乱の影響
あるいは水溶液に混在する不純物粒子の影響を極めて受
け易く、これ以上に検出感度を高めることは原理的に望
外のものである。
This method is a method in which an antibody against AFP is added to plastic microparticles and the mass change caused by aggregation of plastic particles due to an antigen-antibody reaction is examined, and 10 -10 g
The detection sensitivity of is achieved. This is more than 100 times more sensitive than the conventional method using laser light, but is less than 1/100 of that of the RIA method. Furthermore, since this method utilizes the change in Brownian motion of the antigen-antibody complex in the aqueous solution, the temperature of the aqueous solution containing the antibody, the influence of the fluctuation, or the influence of the impurity particles mixed in the aqueous solution is extremely susceptible, In principle, it is unexpected that the detection sensitivity is further increased.

上記のように、上記の免疫測定法においては、高い検
出感度を有するRIA法は、放射性物質を使用するため
に、その実施については多くの制約があり、一方、実施
の容易な酵素イムノアッセイ法、蛍光イムノアッセイ法
等は感度が低く精密な定量的測定ができなかった。
As described above, in the above-mentioned immunoassay method, the RIA method having high detection sensitivity has many restrictions on its implementation because it uses a radioactive substance, while an enzyme immunoassay method that is easy to perform, Fluorescent immunoassays and the like have low sensitivity and cannot perform precise quantitative measurement.

そこで、本発明者らは、上記の欠点を除去した免疫測
定法として、特願昭61−224567号「レーザ磁気免疫測定
法」を提供した。
Therefore, the present inventors have provided Japanese Patent Application No. 61-224567 "Laser Magnetic Immunoassay" as an immunoassay that eliminates the above-mentioned drawbacks.

この方法では、まず、磁性超微粒子を標識として用
い、特定の、又は未知の抗原又は抗体にこの標識を付け
て磁性体標識体とする。次に、検体としての抗体又は抗
原を既知の固相化された抗原又は抗体と抗原抗体反応さ
せ、又は検体としての抗体又は抗原を直接固相化し、前
記磁性体標識体と抗原抗体反応を起こさせる。その後未
反応の前記磁性体標識体を除去した後に、検体を液相中
に分散させる。この場合に前記検体が、前記磁性体標識
体と特定の抗原抗体反応を起こす抗原又は抗体である場
合には、検体を含む液相中に磁性体標識体が残存し、そ
れら以外の場合には、液相中には磁性体標識体は存在し
ない。よって、液相中の磁性体標識体の有無及び存在量
を知ることにより検体の特定及び定量が可能となる。磁
性体標識体の有無及び存在量は、液相中に分散した検体
によるレーザー光の散乱、透過光の強度変化を測定する
ことにより知ることができる。
In this method, first, magnetic ultrafine particles are used as a label, and a specific or unknown antigen or antibody is attached with this label to obtain a magnetic substance-labeled body. Next, the antibody or antigen as a specimen is allowed to undergo an antigen-antibody reaction with a known solid-phased antigen or antibody, or the antibody or antigen as a specimen is directly solid-phased to cause an antigen-antibody reaction with the magnetic substance-labeled body. Let After that, the unreacted magnetic substance-labeled body is removed, and then the sample is dispersed in the liquid phase. In this case, when the sample is an antigen or an antibody that causes a specific antigen-antibody reaction with the magnetic label, the magnetic label remains in the liquid phase containing the sample, and in other cases , There is no magnetic substance label in the liquid phase. Therefore, it is possible to identify and quantify the sample by knowing the presence or absence and the amount of the magnetic substance-labeled substance in the liquid phase. The presence or absence and the amount of the magnetic substance-labeled substance can be known by measuring the scattering of laser light by the sample dispersed in the liquid phase and the change in the intensity of transmitted light.

この方法によれば、RIA法に匹敵する検出感度並びに
精度を有しながら実施上の制限がないという利点があ
る。
According to this method, there is an advantage that the detection sensitivity and accuracy are comparable to those of the RIA method, but there is no practical limitation.

また更に、本発明者らは、上記の測定法をより具体化
したレーザ磁気免疫測定方法及び装置を特願昭61−2524
27号で提供した。この出願ら係るレーザ磁気免疫測定装
置は、上記の磁性体標識体の濃縮と検体の散乱光制御
を、永久磁石を用いて機械的になすか、あるいは複数個
配列した電磁石等を用いることによりなすようにしたも
のである。
Furthermore, the inventors of the present invention have proposed a laser magnetic immunoassay method and apparatus that embody the above-described measurement method in Japanese Patent Application No. 61-2524.
Offered in No. 27. In the laser magnetic immunoassay device according to this application, the concentration of the magnetic substance-labeled substance and the control of scattered light of the specimen are performed mechanically by using a permanent magnet, or by using an electromagnet or the like having a plurality of arrangements. It was done like this.

また、本発明者らは、上記の測定法(特願昭61−2245
67号)をより具体化したレーザ磁気免疫測定方法及び装
置として特願昭62−22062号も提供している。この出願
に係るレーザ磁気免疫測定装置も、磁性超微粒子を標識
した検体の濃縮と磁性体標識体からの散乱光制御を一般
の電磁石、または永久磁石により行うようにしたもので
ある。
In addition, the inventors of the present invention have conducted the above-mentioned measurement method (Japanese Patent Application No. 61-2245).
Japanese Patent Application No. 62-22062 is also provided as a laser magnetic immunoassay method and apparatus which is a more specific version of the Japanese patent No. 67). The laser magnetic immunoassay device according to this application is also one in which the concentration of the specimen labeled with the magnetic ultrafine particles and the control of the scattered light from the magnetic substance labeled body are performed by a general electromagnet or a permanent magnet.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明では、上記のレーザ磁気免疫測定装置が抱える
次の点を問題としている。
The present invention has the following problems with the above-mentioned laser magnetic immunoassay device.

すなわち、特願昭61−252427号の装置においては、永
久磁石を用いる機械的方法では機構が複雑になり、電磁
石を用いる方法では該電磁石の構造が強力な磁場を発生
させるのに適していないものであるため磁界を用いた磁
性体標識体の局部濃縮に長時間を要する欠点があった。
また、特願昭62−22062号の装置においても、一般の電
磁石、または永久磁石を使用するため、局部的に強磁界
を発生させるのが困難であった。例えば、検体の濃縮の
ためには検体容器表面上に高勾配磁界を発生させる必要
があるが、電磁石の磁心径を小さくすると該磁心内の磁
束が飽和する矛盾があった。したがって、検体の濃縮に
長時間を要する欠点があった。
That is, in the apparatus of Japanese Patent Application No. 61-252427, the mechanism is complicated by the mechanical method using a permanent magnet, and the structure of the electromagnet is not suitable for generating a strong magnetic field by the method using an electromagnet. Therefore, there is a drawback that it takes a long time to locally concentrate the magnetic label using a magnetic field.
Also, in the apparatus of Japanese Patent Application No. 62-22062, it is difficult to locally generate a strong magnetic field because a general electromagnet or a permanent magnet is used. For example, in order to concentrate the sample, it is necessary to generate a high gradient magnetic field on the surface of the sample container, but when the magnetic core diameter of the electromagnet is reduced, the magnetic flux in the magnetic core is saturated. Therefore, there is a drawback that it takes a long time to concentrate the sample.

そこで本発明は、構成が簡単で、検体の局部濃縮を短
時間で行うことができるレーザ磁気免疫測定装置を提供
することを目的としている。
Therefore, an object of the present invention is to provide a laser magnetic immunoassay device having a simple structure and capable of locally concentrating a sample in a short time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、磁性超微粒子により標識された検体を収容
する上方に開口を有する検査容器と、レーザ光を前記検
査容器内の検体の液面へ導くレーザ光源と、前記検体に
よるレーザ光の散乱光を受光する受光系と、この受光系
の出力を処理する電子回路部と、前記検体の液面直下に
磁性体標識検体を濃縮する濃縮機構と、濃縮後の磁性体
標識検体を周期的に駆動する駆動機構とを具備してな
り、前記濃縮機構と駆動機構とが、電磁石と該電磁石の
磁心に対向して前記検査容器を挟むように設置された磁
極片と、前記電磁石を励磁する直流電源と間欠パルス電
源とから構成され、前記電子回路部が、間欠パルスに周
期した散乱光のみを選択的に検出し、かつ該散乱光信号
を繰り返し加算・平均化処理するように構成されている
ことを特徴とするものである。
The present invention provides a test container having an opening above which houses a sample labeled with magnetic ultrafine particles, a laser light source that guides laser light to the liquid surface of the sample in the test container, and scattered light of the laser light by the sample. A light receiving system for receiving the light, an electronic circuit section for processing the output of the light receiving system, a concentration mechanism for concentrating the magnetic substance labeled sample just below the liquid surface of the sample, and a periodic drive of the magnetic substance labeled sample after concentration. And a DC power source for exciting the electromagnet, wherein the concentrating mechanism and the drive mechanism are arranged such that the concentrating mechanism and the driving mechanism sandwich an electromagnet and a magnetic core of the electromagnet so as to sandwich the inspection container. And an intermittent pulse power source, and the electronic circuit section is configured to selectively detect only scattered light that is periodic in the intermittent pulse, and repeatedly add and average the scattered light signals. Characterized by A.

本発明の好ましい態様に従うと、前記電磁石の磁心並
びに前記磁極片は残留磁化の小さな高透磁率材料で構成
され、前記検体の液面直上に針状の先端部を有する該磁
極片が設置され、前記レーザ光源が該磁極片直下の該検
査容器内の液面を照射するように取り付けられている。
According to a preferred aspect of the present invention, the magnetic core of the electromagnet and the magnetic pole piece are made of a high-permeability material having a small residual magnetization, and the magnetic pole piece having a needle-like tip portion is installed immediately above the liquid surface of the sample, The laser light source is attached so as to irradiate the liquid surface in the inspection container just below the magnetic pole piece.

また、前記直充電源と間欠パルス電源は定められた時
間大きな直流を連続的に出力した後、周期が0.05Hzから
20Hzの範囲内の間欠パルスであって、かつDCオフセット
の内パルスを出力するように制御されている。
In addition, the direct charging source and the intermittent pulse power source continuously output a large direct current for a predetermined time, and then the cycle is from 0.05 Hz.
It is controlled to output intermittent pulses within the range of 20 Hz and within DC offset.

さらに、前記検査容器または前記電磁石と前記磁極片
のいずれかが、水平面内で移動する機構が具備されてい
る。
Further, a mechanism is provided for moving either the inspection container or the electromagnet and the pole piece in a horizontal plane.

〔実施例〕〔Example〕

以下に図面を参照して本発明をより具体的に詳述する
が、以下に示すものは本発明の一実施例に過ぎず、本発
明の技術的範囲を何等制限するものではない。
Hereinafter, the present invention will be described in more detail with reference to the drawings. However, what is shown below is merely an example of the present invention, and does not limit the technical scope of the present invention.

第1図は本発明の一実施例を説明する、レーザ磁気免
疫測定装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a laser magnetic immunoassay device for explaining an embodiment of the present invention.

1は検査容器、2は該検査容器中の検体収容部、3は
電磁石、4は該電磁石の磁心、5は磁極片、6はレーザ
光源、7はレーザ入射光軸、8は散乱光検出軸、9はス
リット、10は集光レンズ、11は光電子増倍管、12は該磁
極片保持部品、13は該検査容器の移動用案内溝、14は該
電磁石支持台、100は電子回路部である。
1 is an inspection container, 2 is a sample container in the inspection container, 3 is an electromagnet, 4 is a magnetic core of the electromagnet, 5 is a magnetic pole piece, 6 is a laser light source, 7 is a laser incident optical axis, and 8 is a scattered light detection axis. , 9 is a slit, 10 is a condenser lens, 11 is a photomultiplier tube, 12 is the pole piece holding component, 13 is a guide groove for moving the inspection container, 14 is the electromagnet support, and 100 is an electronic circuit section. is there.

前記検査容器1の検体収容部2は上方に開口してお
り、この検体収容部2には、例えば抗原抗体反応後の磁
性体標識検体が収容されている。検査容器1並びに検体
の調整方法は先に本発明者らが発明した特願昭62−2206
3号に記載の検査容器並びに検体の調整方法が好まし
い。検査容器1は案内溝13に沿って水平面内で一方向に
移動できるから、複数の検体の測定が同一容器で連続し
て行うことが出来る。
The sample container 2 of the inspection container 1 is open upward, and the sample container 2 contains, for example, a magnetic substance-labeled sample after an antigen-antibody reaction. The inspection container 1 and the method for adjusting the sample are described in Japanese Patent Application No. 62-2206 previously invented by the present inventors.
The inspection container and the sample preparation method described in No. 3 are preferable. Since the inspection container 1 can move in one direction in the horizontal plane along the guide groove 13, it is possible to continuously measure a plurality of samples in the same container.

前記電磁石磁心4及び磁極片5は残留磁化の少ない高
透磁率材料が好ましく、例えば純度の高い純鉄が推奨さ
れる。該電磁石磁心4の径は検査容器1の検体収容部2
の口径よりも充分大きく、かつ、磁極片5の径は検査容
器1の検体収容部2の口径よりも充分小さいことが必須
である。例えば、検体収容部2の口径が10mmの場合、磁
心4及び磁極片5の直径はそれぞれ、50mm,2mmである。
さらに、磁極片5は磁心4に対向する側の先端が針状等
鋭利であることが好ましい。該磁極片5は磁極片保持部
品12にネジ止めされ、該磁極片5と検査容器1との間隙
が調整可能である。
The electromagnet magnetic core 4 and the pole piece 5 are preferably made of a high magnetic permeability material having a small residual magnetization, for example, pure iron having high purity is recommended. The diameter of the electromagnet core 4 is equal to the specimen container 2 of the inspection container 1.
It is essential that the diameter of the magnetic pole piece 5 is sufficiently larger than the diameter of the sample container 2 and the diameter of the magnetic pole piece 5 is sufficiently smaller than the diameter of the sample container 2 of the inspection container 1. For example, when the diameter of the sample container 2 is 10 mm, the diameters of the magnetic core 4 and the pole piece 5 are 50 mm and 2 mm, respectively.
Furthermore, it is preferable that the pole piece 5 has a sharp tip such as a needle on the side facing the magnetic core 4. The magnetic pole piece 5 is screwed to the magnetic pole piece holding component 12 so that the gap between the magnetic pole piece 5 and the inspection container 1 can be adjusted.

レーザ入射光軸7は検査容器1の水面に対して30度、
散乱光検出軸8は該水面に対して45度の角度に設定され
ている。スリット9及び集光レンズ10は磁極片5の直下
に濃縮された検体からの散乱光のみを光電子増倍管11に
導くために使用されている。これらのスリット9、レン
ズ10、光電子増倍管11はレーザ光の散乱光を受光する受
光系を構成している。散乱光検出軸8は妨害となるレー
ザ照射ビームの水面からの反射光を避けるように設定さ
れ、好ましくはレーザ入射光軸7が散乱光検出軸8より
も低角度である。電子回路部100は光電子増倍管11の出
力を処理するものである。
The laser incident optical axis 7 is 30 degrees to the water surface of the inspection container 1,
The scattered light detection axis 8 is set at an angle of 45 degrees with respect to the water surface. The slit 9 and the condenser lens 10 are used to guide only the scattered light from the specimen concentrated under the magnetic pole piece 5 to the photomultiplier tube 11. These slit 9, lens 10, and photomultiplier tube 11 constitute a light receiving system for receiving scattered light of laser light. The scattered light detection axis 8 is set so as to avoid the reflected light from the water surface of the laser irradiation beam that interferes, and the laser incident light axis 7 is preferably at a lower angle than the scattered light detection axis 8. The electronic circuit section 100 processes the output of the photomultiplier tube 11.

第2図は本発明の装置の動作原理を説明する図であっ
て、15は直流電源、16は間欠パルス電源、20は磁性体標
識検体である。(a)は調整済みの検体が検体収容部2
に入れられた直後の状態、(b)は電磁石3が直流電源
15と接続され、直流励磁された状態、(c)は電磁石3
が間欠パルス電源16と接続され、励磁された状態、
(d)は非励磁状態、における前記磁性体標識検体の分
散状態を模式的に示している。
FIG. 2 is a diagram for explaining the operation principle of the device of the present invention, in which 15 is a DC power supply, 16 is an intermittent pulse power supply, and 20 is a magnetic substance labeled specimen. In (a), the adjusted sample is the sample container 2
Immediately after being placed in the
15 is connected to 15 and is excited by direct current, (c) shows electromagnet 3
Is connected to the intermittent pulse power supply 16 and is excited,
(D) schematically shows the dispersed state of the magnetic substance-labeled specimen in the non-excited state.

工程(a)では電磁石3は非励磁であるから、検体は
容器中で一様に分布している。工程(b)では検査容器
1の直上に置かれた磁極片5に電磁石3の磁界が集中す
るため、磁性体標識検体20は磁極片5の直下の水面に濃
縮される。従って、磁極片5の先端が鋭利であるほど濃
縮は局部的になる。工程(c)、工程(d)は磁極片5
の直下に濃縮された検体を間欠パルス励磁し、該検体か
らのレーザ散乱光を検出する工程である。間欠パルス電
源16を非励磁状態にすると、濃縮されていた検体は溶液
中をブラウン運動のため拡散する。従って、周期的に電
磁石3を間欠励磁すると該検体は励磁周期と同期して濃
縮と拡散を繰り返すことになる。なお、非励磁状態の際
に、速やかな検体の拡散を生じさせるためには電磁石3
の磁心4並びに磁極片5に残留磁化がないことが肝要で
ある。検体の拡散は重力が作用するため、主として、下
方に向かうから、前述のように、レーザ入射光軸7は低
角度に設定し、検体収容部2の水面近傍のみを照射する
方が該検体からの散乱光強度変化は大きくなる。
In step (a), the electromagnet 3 is non-excited, so that the sample is uniformly distributed in the container. In the step (b), since the magnetic field of the electromagnet 3 is concentrated on the magnetic pole piece 5 placed directly above the inspection container 1, the magnetic substance labeled sample 20 is concentrated on the water surface immediately below the magnetic pole piece 5. Therefore, the sharper the tip of the pole piece 5, the more localized the concentration. The pole piece 5 is used in the steps (c) and (d).
Is a step of exciting the concentrated sample immediately below the pulsed pulse, and detecting the laser scattered light from the sample. When the intermittent pulse power supply 16 is de-excited, the concentrated sample diffuses in the solution due to Brownian motion. Therefore, when the electromagnet 3 is intermittently excited, the sample repeats concentration and diffusion in synchronization with the excitation period. In order to cause rapid diffusion of the sample in the non-excited state, the electromagnet 3
It is essential that the magnetic core 4 and the magnetic pole pieces 5 have no residual magnetization. Gravity acts mainly on the diffusion of the sample, so that it mainly goes downward. Therefore, as described above, it is better to set the laser incident optical axis 7 at a low angle and irradiate only the vicinity of the water surface of the sample container 2 from the sample. The change in scattered light intensity becomes large.

この装置では、上記のように濃縮後の磁性体標識検体
を周期的に駆動する。そして、前記検体からの散乱光は
光電子増倍管11によって受光される。光電子増倍管11の
出力は電子回路部100に供給され、電子回路部100は、間
欠パルスに同期した散乱光のみを選択的に検出し、かつ
該散乱光信号を繰り返し加算・平均化処理する。検体か
らの散乱光の検出は、間欠パルス周波数に同期した変動
分のみを繰り返し蓄積し平均化処理を行う方法を取れ
ば、外乱あるいはバックグランドの影響を極めて有効に
除去できる。間欠パルス周波数は0.05Hzから20Hzの範囲
が適当である。0.05Hz以下では測定に長時間を要するこ
と、20Hz以上では検体が追従しないためである。また、
該パルスは波高値が直流励磁電流値より小であって、DC
オフセットがないことが好ましい。しかして、この装置
によれば、ピコグラム台の極微量の磁性体標識体を検出
することができる。
In this device, the magnetic substance-labeled specimen after concentration is periodically driven as described above. The scattered light from the sample is received by the photomultiplier tube 11. The output of the photomultiplier tube 11 is supplied to the electronic circuit unit 100, and the electronic circuit unit 100 selectively detects only the scattered light synchronized with the intermittent pulse, and repeatedly adds and averages the scattered light signals. . For the detection of scattered light from the specimen, the influence of disturbance or background can be removed very effectively by adopting a method of repeatedly accumulating only the fluctuation component synchronized with the intermittent pulse frequency and performing the averaging process. The range of intermittent pulse frequency is 0.05Hz to 20Hz. This is because the measurement takes a long time below 0.05 Hz and the sample does not follow above 20 Hz. Also,
The pulse has a peak value smaller than the DC exciting current value,
There is preferably no offset. Thus, according to this apparatus, it is possible to detect a very small amount of the magnetic substance-labeled body on the picogram level.

なお、上記の実施例においては検査容器1を水平面内
で移動できるように構成したが、この構成に代えて検査
容器に対して電磁石と磁極片を水平面内で移動させるよ
うに構成してもよい。
Although the inspection container 1 is configured to be movable in the horizontal plane in the above embodiment, the electromagnet and the magnetic pole piece may be configured to be moved in the horizontal plane with respect to the inspection container instead of this configuration. .

〔発明の効果〕〔The invention's effect〕

本発明によるレーザ磁気免疫測定装置は、電磁石とこ
れに対向する磁極片を用いる構成であるから、構成が簡
単で、局部的に高勾配磁界を発生させることができる。
したがって、抗原抗体反応後の調整済みの検体を極めて
短時間に局部的に濃縮することができる。
The laser magnetic immunoassay device according to the present invention has a configuration that uses an electromagnet and a magnetic pole piece that faces the electromagnet, and thus has a simple configuration and can locally generate a high gradient magnetic field.
Therefore, the adjusted sample after the antigen-antibody reaction can be locally concentrated in an extremely short time.

また、磁極片直下に濃縮された検体は、間欠パルス磁
界により、上下に移動するため、低角度でレーザを検体
に入射することにより、検体からの散乱光強度変化を大
きくすることが出来る。
Further, since the specimen concentrated just under the magnetic pole piece moves up and down by the intermittent pulsed magnetic field, the intensity of scattered light from the specimen can be increased by making the laser enter the specimen at a low angle.

また、レーザ散乱光測定の際、間欠パルス周期に同期
した散乱光の検出方法に加えて、検体からの散乱光信号
を繰り返し加算・平均化処理を行うことにより、測定感
度と測定の再現性を著しく向上することができる。この
間欠パルスに同期した散乱光を選択的に測定した場合
は、外界の影響、バックグランドの散乱の除去等を極め
て有効に行うことができるので、さらに検出感度の向上
が図られる。
When measuring laser scattered light, in addition to the scattered light detection method synchronized with the intermittent pulse period, the scattered light signals from the sample are repeatedly added and averaged to improve measurement sensitivity and measurement reproducibility. It can be significantly improved. When the scattered light synchronized with the intermittent pulse is selectively measured, the influence of the external environment, the scattering of the background, and the like can be extremely effectively performed, so that the detection sensitivity can be further improved.

これら本発明の特徴的な構成によって、同じレーザ散
乱光測定を利用しながら、AFPを利用した方法の限界を
突破することができる。また、このような特徴は、単に
検出感度の向上に寄与するのみならず測定の自動化をも
極めて容易にする。
With these characteristic configurations of the present invention, it is possible to break through the limit of the method using AFP while using the same laser scattered light measurement. Further, such a feature not only contributes to the improvement of detection sensitivity, but also makes the automation of measurement extremely easy.

標識体として用いる磁性超微粒子は、放射線あるいは
毒性の点では問題なく、検体に対して安定なものを容易
に入手できる。この発明に従うレーザ磁気免疫測定装置
は、抗原抗体反応のみに止まらず、従来RIA法が適用さ
れていたペプチドホルモン等の種々のホルモンあるいは
種々の酵素、ビタミン、薬剤などの測定にも応用するこ
とが可能である。
The magnetic ultrafine particles used as the label have no problem in terms of radiation or toxicity, and those that are stable with respect to the sample can be easily obtained. The laser magnetic immunoassay device according to the present invention can be applied not only to the antigen-antibody reaction but also to the measurement of various hormones such as peptide hormones to which the RIA method has been conventionally applied or various enzymes, vitamins, drugs and the like. It is possible.

従って、従来は限定された施設でRIA法によらなけれ
ば実施できなかった精密な測定を、一般的な環境で広く
実施することが可能となる。集団検診等のような一般的
な状況で、各種のウイルス、癌等のスクリーニング検査
等の精密な測定が広く実施できれば、癌あるいはウイル
ス性疾患等の早期診断が可能となり、有効な早期治療を
的確に実施することが可能となる。このように、本発明
が医学・医療の分野で果たす効果は図り知れない。
Therefore, it becomes possible to perform a wide range of precise measurements in a general environment, which could not be performed conventionally in limited facilities without using the RIA method. In general situations such as mass screening, if accurate measurements such as screening tests for various viruses and cancers can be widely performed, early diagnosis of cancer or viral diseases can be made, and effective early treatment can be accurately performed. Can be implemented. Thus, the effect of the present invention in the medical and medical fields is immeasurable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を説明するレーザ磁気免疫測
定装置の概略構成図、第2図(a)〜(d)は本発明の
装置の動作原理を説明する図であって、同図(a)は調
整済みの検体が検体収容部2に入れられた直後の状態を
示す図、同図(b)は電磁石3が直流電源15と接続さ
れ、直流励磁された状態を示す図、同図(c)は電磁石
が間欠パルス電源16と接続され、励磁された状態を示す
図、同図(d)は非励磁状態おける磁性体標識検体の分
散状態を模式的に示す図である。 1……検査容器、3……電磁石、4……磁心、5……磁
極片、6……レーザ光源、9……スリット(受光系)、
10……集光レンズ(受光系)、11……光電子増倍管(受
光系)、15……直流電源、16……間欠パルス電源、20…
…磁性体標識検体、100……電子回路部。
FIG. 1 is a schematic configuration diagram of a laser magnetic immunoassay device for explaining an embodiment of the present invention, and FIGS. 2 (a) to (d) are diagrams for explaining the operation principle of the device of the present invention. FIG. 7A is a diagram showing a state immediately after the adjusted specimen is put into the specimen container 2, and FIG. 7B is a diagram showing a state in which the electromagnet 3 is connected to the DC power supply 15 and is DC-excited. FIG. 7C is a diagram showing a state where the electromagnet is connected to the intermittent pulse power supply 16 and is excited, and FIG. 7D is a diagram schematically showing a dispersed state of the magnetic substance labeled sample in the non-excited state. 1 ... inspection container, 3 ... electromagnet, 4 ... magnetic core, 5 ... magnetic pole piece, 6 ... laser light source, 9 ... slit (light receiving system),
10 …… Condensing lens (light receiving system), 11 …… Photomultiplier tube (light receiving system), 15 …… DC power supply, 16 …… Intermittent pulse power supply, 20…
… Magnetic substance labeled specimen, 100 …… Electronic circuit.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁性超微粒子により標識された検体を収容
する上方に開口を有する検査容器と、レーザ光を前記検
査容器内の検体の液面へ導くレーザ光源と、前記検体に
よるレーザ光の散乱光を受光する受光系と、この受光系
の出力を処理する電子回路部と、前記検体の液面直下に
磁性体標識検体を濃縮する濃縮機構と、濃縮後の磁性体
標識検体を周期的に駆動する駆動機構とを具備してな
り、前記濃縮機構と駆動機構とが、電磁石と該電磁石の
磁心に対向して前記検査容器を挟むように設置された磁
極片と、前記電磁石を励磁する直流電源と間欠パルス電
源とから構成され、前記電子回路部が、間欠パルスに同
期した散乱光のみを選択的に検出し、かつ該散乱光信号
を繰り返し加算・平均化処理するように構成されている
ことを特徴とするレーザ磁気免疫測定装置。
1. A test container having an opening above which houses a sample labeled with magnetic ultrafine particles, a laser light source that guides laser light to the liquid level of the sample in the test container, and scattering of laser light by the sample. A light-receiving system that receives light, an electronic circuit unit that processes the output of the light-receiving system, a concentration mechanism that concentrates the magnetic substance-labeled sample just below the liquid surface of the sample, and a magnetic substance-labeled sample after concentration periodically. A driving mechanism for driving the concentrating mechanism and the driving mechanism, wherein the concentrating mechanism and the driving mechanism are provided with an electromagnet, a magnetic pole piece disposed so as to sandwich the inspection container so as to face the magnetic core of the electromagnet, and a direct current for exciting the electromagnet. It is composed of a power source and an intermittent pulse power source, and the electronic circuit section is configured to selectively detect only scattered light synchronized with the intermittent pulse and repeatedly add and average the scattered light signals. Characterized by The magnetic immunoassay apparatus.
【請求項2】前記電磁石の磁心並びに前記磁極片は残留
磁化の小さな高透磁率材料で構成され、前記検体の液面
直上に針状の先端部を有する該磁極片が設置され、前記
レーザ光源が該磁極片直下の該検査容器内の液面を照射
するように取り付けられていることを特徴とする特許請
求の範囲第1項記載のレーザ磁気免疫測定装置。
2. The magnetic core of the electromagnet and the magnetic pole piece are made of a high-permeability material having a small residual magnetization, and the magnetic pole piece having a needle-like tip portion is installed directly above the liquid surface of the sample, and the laser light source is provided. 2. The laser magnetic immunoassay device according to claim 1, wherein the laser magnetic immunoassay device is attached so as to irradiate a liquid surface in the inspection container just below the magnetic pole piece.
【請求項3】前記直流電源と間欠パルス電源は、定めら
れた時間大きな直流を連続的に出力した後、周期が0.05
Hzから20Hzの範囲内の間欠パルスであって、かつDCオフ
セットのないパルスを出力するように制御されているこ
とを特徴とする特許請求の範囲第1項記載のレーザ磁気
免疫測定装置。
3. The DC power supply and the intermittent pulse power supply have a cycle of 0.05 when a large DC is continuously output for a predetermined time.
The laser magnetic immunoassay device according to claim 1, wherein the laser magnetic immunoassay device is controlled so as to output a pulse having an intermittent pulse within a range of Hz to 20 Hz and having no DC offset.
【請求項4】前記検査容器または前記電磁石と前記磁極
片のいずれかが、水平面内で移動することを特徴とする
特許請求の範囲第1項記載のレーザ磁気免疫測定装置。
4. The laser magnetic immunoassay device according to claim 1, wherein either the inspection container or the electromagnet and the magnetic pole piece move in a horizontal plane.
JP15279287A 1986-09-22 1987-06-19 Laser magnetic immunoassay device Expired - Lifetime JP2509227B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15279287A JP2509227B2 (en) 1987-06-19 1987-06-19 Laser magnetic immunoassay device
PCT/JP1987/000694 WO1988002118A1 (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor
DE3751865T DE3751865T2 (en) 1986-09-22 1987-09-22 LASER MAGNETIC IMMUNITY TEST METHOD AND DEVICE THEREFOR
EP87906109A EP0287665B1 (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor
US07/221,248 US5252493A (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor
US07/915,022 US5238810A (en) 1986-09-22 1992-07-15 Laser magnetic immunoassay method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15279287A JP2509227B2 (en) 1987-06-19 1987-06-19 Laser magnetic immunoassay device

Publications (2)

Publication Number Publication Date
JPS63315952A JPS63315952A (en) 1988-12-23
JP2509227B2 true JP2509227B2 (en) 1996-06-19

Family

ID=15548248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15279287A Expired - Lifetime JP2509227B2 (en) 1986-09-22 1987-06-19 Laser magnetic immunoassay device

Country Status (1)

Country Link
JP (1) JP2509227B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
EP0339980B1 (en) * 1988-04-26 1994-07-20 Nippon Telegraph And Telephone Corporation Magnetic micro-particles, method and apparatus for collecting specimens for use in labelling immune reactions, and method and device for preparing specimens
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor

Also Published As

Publication number Publication date
JPS63315952A (en) 1988-12-23

Similar Documents

Publication Publication Date Title
WO1988002118A1 (en) Laser magnetic immunoassay method and apparatus therefor
US4725140A (en) Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field
GR3029446T3 (en) Method of preparing a radioactive rhenium complex solution.
US4222744A (en) Assay for ligands
JPS6234039A (en) Fluorescence detector used in immunoassay
JPS62110155A (en) Reagent and method for immunoassay
JP2509227B2 (en) Laser magnetic immunoassay device
JPH01109263A (en) Method and apparatus for laser magnetic immunoassay
JPH0820450B2 (en) Laser magnetic immunoassay method and apparatus
MY102881A (en) Method of automatically detecting agglutination reaction and apparatus therefor
JP2551627B2 (en) Laser magnetic immunoassay device
JPS63188766A (en) Method and instrument for laser magnetic immunoassay
JPS63108265A (en) Magnetic immune measurement method by using laser
JPH07111429B2 (en) Laser magnetic immunoassay
JPH07122636B2 (en) Laser magnetic immunoassay device
JPH02151766A (en) Measurement of laser magnetic immunity
JPH07111433B2 (en) Laser magnetic immunoassay method and measuring apparatus
JPH01107151A (en) Method and apparatus for laser magnetism immunity measuring
JP3353978B2 (en) Optical specific affinity measuring method and specific affinity measuring device used therein
JP2502148B2 (en) Non-separable laser magnetic immunoassay method and measuring apparatus
JPH05249114A (en) Method and instrument for immunological measurement
CN111505267B (en) Time-resolved immunoassay detection system and detection method
JPS63210773A (en) Method for accelerating specific bond reaction
JPH01182755A (en) Method and apparatus for measuring laser magnetism immunity
JPH05288752A (en) Subject measuring apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12