JP2023158983A - Blood pressure measuring apparatus - Google Patents

Blood pressure measuring apparatus Download PDF

Info

Publication number
JP2023158983A
JP2023158983A JP2022069105A JP2022069105A JP2023158983A JP 2023158983 A JP2023158983 A JP 2023158983A JP 2022069105 A JP2022069105 A JP 2022069105A JP 2022069105 A JP2022069105 A JP 2022069105A JP 2023158983 A JP2023158983 A JP 2023158983A
Authority
JP
Japan
Prior art keywords
blood pressure
pressure
compression
pulse wave
diastolic blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022069105A
Other languages
Japanese (ja)
Inventor
直嵩 長谷部
Naotaka Hasebe
昇平 諸留
Shohei Morodome
雅貴 古越
Masaki Furukoshi
和紀 上村
Kazunori Kamimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cerebral and Cardiovascular Center
A&D Holon Holdings Co Ltd
Original Assignee
National Cerebral and Cardiovascular Center
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cerebral and Cardiovascular Center, A&D Co Ltd filed Critical National Cerebral and Cardiovascular Center
Priority to JP2022069105A priority Critical patent/JP2023158983A/en
Priority to PCT/JP2023/015527 priority patent/WO2023204221A1/en
Publication of JP2023158983A publication Critical patent/JP2023158983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers

Abstract

To provide a blood pressure measuring apparatus capable of estimating diastolic pressure with high accuracy.SOLUTION: An intercept β and an inclination α included in a linear regression line expression (2) leading a diastolic pressure estimation equation (5) are mutually in a constant linear relation as shown in equation (4) and are not influenced by a person to be measured, and thus are unlikely to be influenced by individual biological features of a person to be measured, so diastolic pressure value DAPe can be measured with high accuracy. There is a merit that there is no need to perform calibration as a conventional one which performs blood pressure estimation using pulse wave velocity PWV.SELECTED DRAWING: Figure 5

Description

本発明は、生体の一部である被圧迫部位に巻き付けられる圧迫帯を備え、前記圧迫帯による圧迫圧及び圧迫部位を通る動脈血管の脈波伝播速度に基づいて生体の拡張期(最低)血圧を推定する血圧測定装置および血圧測定方法に関するものである。 The present invention includes a compression band that is wrapped around a compressed area that is a part of a living body, and calculates the diastolic (minimum) blood pressure of the living body based on the compression pressure by the compression band and the pulse wave propagation velocity of an arterial blood vessel passing through the compression area. The present invention relates to a blood pressure measuring device and a blood pressure measuring method for estimating blood pressure.

通常、診療においてよく用いられているコロトコフ音聴診法による血圧測定では、たとえば上腕に装着した圧迫帯を用い、圧迫帯の圧迫圧を変化させる過程で心拍に同期して発生する血管音(コロトコフ音)の発生時及び消滅時の圧迫圧Pcに基づいて、収縮期血圧値SAP及び拡張期血圧値DAPが決定される。この聴診法により決定された収縮期血圧値SAP及び拡張期血圧値DAPは、医療従事者の間で最も信頼されている。この聴診法による血圧測定では専門性が高いので、在宅や非医療機関等での日常的な血圧把握には、操作が簡単なオシロメトリック法により血圧値を決定する自動血圧測定装置を用いることが一般的である。 Blood pressure measurement using the Korotkoff sound auscultation method, which is commonly used in clinical practice, uses a compression cuff attached to the upper arm, and during the process of changing the compression pressure of the compression cuff, vascular sounds (Korotkoff sounds) are generated in synchronization with the heartbeat. ), the systolic blood pressure value SAP and the diastolic blood pressure value DAP are determined based on the compression pressure Pc at the time of occurrence and disappearance. The systolic blood pressure value SAP and diastolic blood pressure value DAP determined by this auscultation method are most trusted among medical professionals. Since blood pressure measurement using this auscultation method is highly specialized, automatic blood pressure measurement devices that determine blood pressure values using the oscillometric method, which is easy to operate, are recommended for daily blood pressure monitoring at home or in non-medical institutions. Common.

オシロメトリック法では、聴診法と同様の圧迫帯を用い、収縮期(最高)血圧値よりも高い圧まで加圧後に降圧させる過程で、圧迫帯の圧迫圧に重畳する微小変動成分であるカフ脈波(容積脈波)を抽出し、実験的或いは経験的に予め定められたしきい値を適用して、そのカフ脈波の振幅が急激に変化したときの圧迫帯の圧力を、収縮期血圧および拡張期血圧としている。そして、聴診法とオシロメトリック法との間の物理的関係性は明確でないため、それら収縮期血圧および拡張期血圧の決定に際してカフ脈波の振幅が急激に変化したことの判定に用いられるしきい値は、平均血圧値MAPに対応する圧迫圧にて認められる最大値を基準とした定数を用いて予め設定され、聴診法による測定値に整合するようにされている。たとえば、特許文献1、非特許文献1に記載された血圧測定装置がそれである。 In the oscillometric method, a compression cuff similar to the auscultation method is used, and in the process of increasing the pressure to a pressure higher than the systolic (systolic) blood pressure value and then lowering the blood pressure, the cuff pulse, which is a minute fluctuation component superimposed on the compression pressure of the compression cuff, is used. By extracting the cuff pulse wave (volume pulse wave) and applying a predetermined threshold value experimentally or empirically, the pressure of the compression cuff when the amplitude of the cuff pulse wave suddenly changes can be calculated as the systolic blood pressure. and diastolic blood pressure. Since the physical relationship between the auscultation method and the oscillometric method is not clear, the threshold used to determine a sudden change in the amplitude of the cuff pulse wave when determining systolic and diastolic blood pressure is not clear. The value is preset using a constant based on the maximum value observed in the compression pressure corresponding to the mean blood pressure value MAP, and is made to match the value measured by the auscultation method. For example, the blood pressure measuring devices described in Patent Document 1 and Non-Patent Document 1 are examples thereof.

他の血圧値推定方法としては、生体の血圧値と生体の脈波伝播速度との予め設定された関係から、心電のR波の発生時点から圧迫帯の圧迫圧から得られた脈波の発生時点との時間差(脈波伝播時間)から脈波伝播速度を算出し、予め設定された関係からその実際の脈波伝播速度に基づいて生体の血圧値を推定する方法が知られている。たとえば、特許文献2に記載された血圧監視装置がそれである。 Another method for estimating the blood pressure value is to estimate the pulse wave obtained from the compression pressure of the compression cuff from the time when the R wave of the electrocardiogram occurs, based on the preset relationship between the blood pressure value of the living body and the pulse wave propagation velocity of the living body. A method is known in which the pulse wave propagation velocity is calculated from the time difference (pulse wave propagation time) from the time of occurrence, and the blood pressure value of the living body is estimated based on the actual pulse wave propagation velocity from a preset relationship. For example, the blood pressure monitoring device described in Patent Document 2 is one example.

特開2012-071059号公報Japanese Patent Application Publication No. 2012-071059 特開2000-116608号公報Japanese Patent Application Publication No. 2000-116608

L.A.Geddes, M.Voelz, C.Combs, D.Reiner, C.F.Babbs, ”Characterization of the oscillometric method for measuring indirect blood pressure,”Ann. Biomed Eng., vol. 10, pp. 271-280, 1982L.A.Geddes, M.Voelz, C.Combs, D.Reiner, C.F.Babbs, “Characterization of the oscillometric method for measuring indirect blood pressure,” Ann. Biomed Eng., vol. 10, pp. 271-280, 1982 F. K. Forster and D. Turney, “Oscillometric determination of diastolic, mean, and systric blood pressure-A numerical model,” J. Biomech. Eng., vol. 108, pp. 359-364, Nov. 1986.F. K. Forster and D. Turney, “Oscillometric determination of diastolic, mean, and systric blood pressure-A numerical model,” J. Biomech. Eng., vol. 108, pp. 359-364, Nov. 1986. Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Ratkin I. “Oscillometlic blood pressure estimation: past, present, and future. “IEEE Rev Biomed Eng 2015;8:44-63.Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Ratkin I. “Oscillometlic blood pressure estimation: past, present, and future.”IEEE Rev Biomed Eng 2015;8:44-63.

オシロメトリック法による血圧測定に際して、聴診法による測定値に整合するように平均血圧値MAPを基準とした定数を用いて予め設定されたしきい値が一律に個々の血圧測定に適用されるが、しきい値と実際の血圧値との関係は動脈血管コンプライアンス、脈拍数、脈圧値、動脈脈圧など被測定者による個々の生体的特徴により影響され変わりうるので、血圧測定の精度が低下するという問題があった。このような問題は、非特許文献2において指摘されている。 When measuring blood pressure using the oscillometric method, a preset threshold using a constant based on the average blood pressure value MAP is uniformly applied to each individual blood pressure measurement in order to match the measured value using the auscultation method. The relationship between the threshold value and the actual blood pressure value may be affected by the individual biological characteristics of the subject, such as arterial vascular compliance, pulse rate, pulse pressure value, and arterial pulse pressure, which may reduce the accuracy of blood pressure measurement. There was a problem. Such a problem is pointed out in Non-Patent Document 2.

また、心電のR波から脈波検出までの時間差に基づいて算出した脈波伝播速度を用いた血圧推定では、心電図のR波の発生時点から心臓が血液の駆出を開始するまでの時間(前駆出時間PEP:Pre Ejection Period)がその時間差に含まれていて、厳格な脈波伝播時間PTTではなく、脈波到達時間PAT(Pulse Arrival Time)として計測される。このため、脈波伝播速度の算出に誤差が生じ、結果として大きな血圧測定誤差を生じていた。また、心臓からの脈波は、大動脈血管(弾性動脈)を通じて上腕動脈血管(筋性動脈)へ伝播されるが、血管の組成が異なるため、厳密な意味の伝播時間ではなかった。このような問題は、非特許文献3において指摘されている。 In addition, when estimating blood pressure using the pulse wave velocity calculated based on the time difference between the R wave of the electrocardiogram and the detection of the pulse wave, the time from the generation of the R wave of the electrocardiogram until the heart starts ejecting blood is calculated. (Pre-ejection period PEP) is included in the time difference, and is measured not as a strict pulse wave propagation time PTT but as a pulse wave arrival time PAT (Pulse Arrival Time). Therefore, an error occurs in the calculation of the pulse wave propagation velocity, resulting in a large blood pressure measurement error. In addition, the pulse wave from the heart is propagated to the brachial artery (muscular artery) through the aortic artery (elastic artery), but the propagation time is not in a strict sense because the composition of the blood vessels is different. Such a problem is pointed out in Non-Patent Document 3.

血圧値の測定誤差が大きい血圧測定装置は、不十分な降圧治療で高血圧が持続したり、過度の降圧治療により低血圧を招く可能性を高くし、血管合併症や認知症の誘発リスクを高めるなどの問題の一因となる。これに対して、血圧値を高精度で測定できる血圧測定装置は、高血圧が持続する不十分な降圧治療を減少させ、過度の降圧治療により低血圧を招く可能性を低くし、血管合併症や認知症の誘発リスクを低減することができる。 Blood pressure measuring devices with large blood pressure measurement errors increase the possibility that insufficient antihypertensive treatment will cause hypertension to persist, or excessive antihypertensive treatment will cause hypotension, increasing the risk of vascular complications and dementia. This contributes to problems such as On the other hand, a blood pressure measuring device that can measure blood pressure values with high precision can reduce insufficient antihypertensive treatment that causes hypertension, reduce the possibility of hypotension caused by excessive antihypertensive treatment, and prevent vascular complications. It can reduce the risk of inducing dementia.

本発明は以上の事情を背景として為されたものであり、その目的とするところは、被測定者の個々の生体的特徴に影響され難い、拡張期(最低)血圧値を高精度で測定できる血圧測定方法および血圧測定装置を提供することにある。 The present invention was made against the background of the above circumstances, and its purpose is to be able to measure diastolic (minimum) blood pressure values with high precision, which is not easily influenced by the individual biological characteristics of the subject. An object of the present invention is to provide a blood pressure measuring method and a blood pressure measuring device.

本発明者等は、種々検討するうち、拡張期血圧時点の貫壁圧Pt(=拡張期血圧DAP-圧迫圧Pc)が零であるときの動脈血管の断面積Aoである動脈血管の断面積Aと動脈血管の貫壁圧Ptとの関係を数式で表す血管モデル式に、Bramwell-Hillの式を適用して得た貫壁圧Ptと脈波伝播速度の2乗値PWVとの関係を示す理論的な非線形指数関数曲線(式(1))が、ヤギによる実験で得た貫壁圧Ptと脈波伝播速度の2乗値PWVとの関係を示す指数関数曲線と極めて近似しているという事実を見出した。そして、その指数関数曲線の横軸と縦軸とを入れ替えることで示される関係は、定数bや断面積比Ao/Amによらず、対数関係式(2)に高い精度で近似できることを見出した。その対数関係式(2)は、脈波伝播速度の2乗値PWVの対数を独立変数と見なすと、傾きαと切片βをもつ線形回帰直線式とみなせ、その傾きαと切片βとの間には、被測定者によらず一定の線形関係式(4)にある点、および、その線形回帰直線式(2)は式(3)のように変形できるので、傾きαは、脈波伝播速度PWVの対数および圧迫圧Pcの回帰分析から算出でき、その線形回帰直線式の切片βは線形関係式(4)からその傾きαに基づいて算出でき、それら傾きαおよび切片βが適用された拡張期血圧値推定式(5)から、実際の脈波伝播速度の2乗値PWVおよび圧迫圧Pcに基づいて拡張期血圧値DAPeを推定できることを見出した。 After various studies, the present inventors found that the cross-sectional area of the arterial blood vessel is the cross-sectional area Ao of the arterial blood vessel when the transmural pressure Pt at the time of diastolic blood pressure (= diastolic blood pressure DAP - compression pressure Pc) is zero. The relationship between the transmural pressure Pt and the square value of the pulse wave velocity PWV 2 obtained by applying the Bramwell-Hill formula to the blood vessel model equation that expresses the relationship between A and the transmural pressure Pt of the arterial blood vessel as a mathematical formula. The theoretical nonlinear exponential function curve (Equation (1)) showing I discovered the fact that They also found that the relationship shown by swapping the horizontal and vertical axes of the exponential function curve can be approximated with high accuracy to the logarithmic relational expression (2), regardless of the constant b or the cross-sectional area ratio Ao/Am. . The logarithmic relational expression (2) can be regarded as a linear regression equation with a slope α and an intercept β, if the logarithm of the square value of the pulse wave velocity PWV 2 is considered as an independent variable, and the slope α and the intercept β are In between, there are points in the linear relationship equation (4) that is constant regardless of the person being measured, and the linear regression equation (2) can be transformed as shown in equation (3), so the slope α is the pulse wave It can be calculated from the regression analysis of the logarithm of the propagation velocity PWV 2 and the compression pressure Pc, and the intercept β of the linear regression equation can be calculated from the linear relational expression (4) based on its slope α, and the slope α and intercept β are applied. It has been found that the diastolic blood pressure value DAPe can be estimated from the diastolic blood pressure value estimation formula (5) based on the square value PWV 2 of the actual pulse wave propagation velocity and the compression pressure Pc.

PWV=(1/ρ・b)(1/(1-Ao/Am))・e^(b・Pt)
-(1/ρ・b) ・・・ (1)
Pt=α・ln(PWV)+β ・・・ (2)
-Pc=α・ln(PWV)+(β-DAP) ・・・・ (3)
β=γ・α+δ ・・・ (4)
DAPe=α・ln(PWV)+(β+Pc) ・・・ (5)
PWV 2 = (1/ρ・b) (1/(1-Ao/Am))・e^(b・Pt)
-(1/ρ・b) ... (1)
Pt=α・ln(PWV 2 )+β... (2)
-Pc=α・ln(PWV 2 )+(β-DAP)... (3)
β=γ・α+δ... (4)
DAPe=α・ln(PWV 2 )+(β+Pc)... (5)

すなわち、血管モデル式において、動脈血管の貫壁圧Ptは推定拡張期血圧DAPe-圧迫圧Pcであるので、動脈血管の貫壁圧Ptと脈波伝播速度の2乗値PWVの対数との関係を表す線形回帰直線式(2)は、その貫壁圧Ptについて式(3)のように変形できる。式(3)の傾きαは式(2)と同じで、実測された複数組の圧迫圧Pcおよび脈波伝播速度の2乗値PWVの対数を回帰分析することで、傾きαが求められる。このように、個々の被測定者に特有の傾きα自体は、拡張期血圧DAPが未知であってもつまり貫壁圧Ptが未知であっても算出できる。予め求められた傾きαと切片βとの間で経験的に確立された線形関係(4)に、その算出された傾きαを代入することで個々の被測定者に特有の切片βが求められる。このようにして個々の被測定者に特有の傾きαおよび切片βが求められると、貫壁圧Ptについて式(3)を変形した拡張期血圧推定式(5)で拡張期血圧DAPeが表される。これにより、圧迫圧Pcおよび脈波伝播速度の2乗値PWVを変数とし且つ傾きαおよび切片βを含む拡張期血圧推定式(5)が設定される。この拡張期血圧値推定式(5)から、実際の被測定者の圧迫部位に対する圧迫圧Pcと被測定者の前記圧迫部位を通る動脈血管内の脈波伝播速度に基づいて、被測定者の拡張期血圧を推定することができる。本発明は、斯かる知見に基づいて為されたものである。 That is, in the blood vessel model equation, since the transmural pressure Pt of the arterial blood vessel is the estimated diastolic blood pressure DAPe - compression pressure Pc, the transmural pressure Pt of the arterial blood vessel and the logarithm of the square value of the pulse wave propagation velocity PWV 2 The linear regression equation (2) expressing the relationship can be transformed into equation (3) with respect to the trans-wall pressure Pt. The slope α of Equation (3) is the same as Equation (2), and the slope α is obtained by regression analysis of the logarithm of the actually measured compression pressure Pc and the square value PWV 2 of the pulse wave propagation velocity. . In this way, the slope α itself unique to each subject can be calculated even if the diastolic blood pressure DAP is unknown, that is, even if the transmural pressure Pt is unknown. By substituting the calculated slope α into the empirically established linear relationship (4) between the predetermined slope α and the intercept β, the intercept β unique to each subject can be determined. . Once the slope α and intercept β unique to each subject are determined in this way, the diastolic blood pressure DAPe can be expressed by the diastolic blood pressure estimation formula (5), which is a modification of the formula (3) for the transmural pressure Pt. Ru. As a result, the diastolic blood pressure estimation formula (5) is set, which uses the compression pressure Pc and the square value PWV 2 of the pulse wave velocity as variables, and includes the slope α and the intercept β. From this diastolic blood pressure value estimation formula (5), based on the actual compression pressure Pc for the compression site of the measurement subject and the pulse wave propagation velocity in the arterial blood vessel passing through the compression site of the measurement subject, the dilation of the measurement subject is calculated. Periodic blood pressure can be estimated. The present invention has been made based on this knowledge.

第1発明の要旨とするところは、(a)被測定者の被圧迫部位の動脈血管を圧迫する圧迫帯による圧迫圧と、前記被圧迫部位を通る動脈血管の脈波伝播速度の2乗値とを用いて前記被測定者の拡張期血圧を推定する血圧測定装置であって、(b)前記圧迫帯による圧迫下において、前記被圧迫部位の脈波伝播速度PWVを測定する脈波伝播速度測定部と、(c)前記脈波伝播速度の2乗値の対数と前記動脈血管の貫壁圧との間の線形回帰直線式からの変換式から、前記の圧迫圧と前記圧迫圧において測定された前記被圧迫部位の脈波伝播速度とに基づいて、前記線形回帰直線式の傾きαを算出する傾き算出部と、(d)前記線形回帰直線式に含まれる切片βと傾きαとの間の予め記憶された線形関係から、前記線形回帰直線式の傾きαに基づいて前記線形回帰直線式の切片βを算出する切片算出部と、(e)前記線形回帰直線式に、前記貫壁圧を表す拡張期血圧から差し引くところの前記圧迫圧、前記被圧迫部位の脈波伝播速度、前記傾き算出部において算出された前記線形回帰直線式の傾き、および前記切片算出部において算出された前記線形回帰直線式の切片を代入して、拡張期血圧推定式を設定する拡張期血圧推定式設定部と、(f)前記拡張期血圧推定式から、実際の前記圧迫圧Pcおよび前記被圧迫部位の脈波伝播速度PWVに基づいて前記被測定者の拡張期血圧DAPを推定する拡張期血圧推定部とを、含むことにある。 The gist of the first invention is as follows: (a) the compression pressure by the compression band that compresses the arterial blood vessel at the compressed site of the subject and the square value of the pulse wave propagation velocity of the arterial blood vessel passing through the compressed site; (b) a pulse wave velocity that measures the pulse wave velocity PWV of the compressed area under compression by the compression band; and (c) measurement at the compression pressure and the compression pressure from the conversion equation from the linear regression equation between the logarithm of the square value of the pulse wave propagation velocity and the transmural pressure of the arterial blood vessel. (d) a slope calculation unit that calculates a slope α of the linear regression equation based on the pulse wave propagation velocity of the compressed area; and (d) a slope calculation unit that calculates the slope α of the linear regression equation based on the (e) an intercept calculation unit that calculates an intercept β of the linear regression equation based on the slope α of the linear regression equation from a pre-stored linear relationship between; the compression pressure to be subtracted from the diastolic blood pressure representing pressure, the pulse wave propagation velocity of the compressed area, the slope of the linear regression equation calculated by the slope calculation unit, and the slope of the linear regression equation calculated by the intercept calculation unit. a diastolic blood pressure estimation equation setting unit that sets a diastolic blood pressure estimation equation by substituting the intercept of the linear regression linear equation; and (f) determining the actual compression pressure Pc and the compressed area from the diastolic blood pressure estimation equation. and a diastolic blood pressure estimation unit that estimates the diastolic blood pressure DAP of the subject based on the pulse wave propagation velocity PWV.

第2発明の要旨とするところは、第1発明において、前記線形回帰直線式は、前記式(2)で表されるものである。 The gist of the second invention is that in the first invention, the linear regression equation is expressed by the equation (2).

第3発明の要旨とするところは、第1発明又は第2発明において、前記線形回帰直線式からの変換式は、前記式(3)で表されるものである。 The gist of the third invention is that in the first or second invention, the conversion equation from the linear regression equation is expressed by the equation (3).

第4発明の要旨とするところは、第1発明から第3発明のいずれか1の発明において、前記線形関係は、前記式(4)で表されるものである。 The gist of the fourth invention is that in any one of the first to third inventions, the linear relationship is expressed by the equation (4).

第5発明の要旨とするところは、第1発明から第4発明のいずれか1の発明において、前記拡張期血圧推定式は、前記式(5)で表されるものである。 The gist of the fifth invention is that in any one of the first to fourth inventions, the diastolic blood pressure estimation formula is expressed by the formula (5).

第6発明の要旨とするところは、第1発明から第5発明のいずれか1の発明において、前記拡張期血圧推定部は、前記拡張期血圧推定式から、前記圧迫帯による複数種類の圧迫圧毎に、実際の前記圧迫圧Pcおよび前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧をそれぞれ推定し、前記複数種類の圧迫圧毎に推定し得られた拡張期血圧の平均値を、拡張期血圧として決定するものである。 The gist of the sixth invention is that in the invention according to any one of the first to fifth inventions, the diastolic blood pressure estimating section calculates a plurality of types of compression pressures by the compression band from the diastolic blood pressure estimation formula. Each time, the diastolic blood pressure of the subject is estimated based on the actual compression pressure Pc and the pulse wave propagation velocity of the compressed area, and the diastolic blood pressure obtained by estimating each of the plurality of types of compression pressure is The average value of blood pressure is determined as diastolic blood pressure.

第7発明の要旨とするところは、第1発明から第6発明のいずれか1の発明において、前記拡張期血圧推定部は、前記被測定者の拡張期血圧DAPよりも低く設定された前記圧迫帯による圧迫圧において、実際の前記圧迫圧および前記被圧迫部位の脈波伝播速度PWVに基づいて前記被測定者の拡張期血圧DAPを推定するものである。 The gist of the seventh invention is that, in the invention according to any one of the first to sixth inventions, the diastolic blood pressure estimating unit may set the pressure to be lower than the diastolic blood pressure DAP of the subject. The method estimates the diastolic blood pressure DAP of the subject based on the actual compression pressure and the pulse wave velocity PWV of the compressed area in the compression pressure applied by the band.

第8発明の要旨とするところは、第1発明から第7発明のいずれか1の発明において、前記動脈血管に沿って相互に所定距離だけ離隔した2位置に配置されて脈波を検出する一対の脈波センサを備え、前記脈波伝播速度は、前記一対の脈波センサによりそれぞれ検出された脈波の時間差と前記所定距離とに基づいて算出されるものである。 The gist of the eighth invention is that, in the invention according to any one of the first to seventh inventions, the pair of pairs are arranged at two positions separated by a predetermined distance from each other along the arterial blood vessel to detect pulse waves. The pulse wave sensor includes a pulse wave sensor, and the pulse wave propagation velocity is calculated based on the time difference between the pulse waves respectively detected by the pair of pulse wave sensors and the predetermined distance.

第9発明の要旨とするところは、第1発明から第8発明のいずれか1の発明において、前記圧迫帯による圧迫圧を生体の拡張期血圧よりも低いモニタ圧に維持する圧迫圧制御部と、前記モニタ圧が維持されている期間において測定された前記脈波伝播速度が予め設定された変動判定範囲から外れたことに基づいて血圧変動の発生を判定する血圧変動判定部とを備え、前記拡張期血圧推定部は、前記血圧変動判定部により血圧変動の発生が判定されたときに、前記拡張期血圧推定式から、実際の前記圧迫圧および前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧を推定することにある。 The gist of the ninth invention is that, in the invention according to any one of the first to eighth inventions, the compression pressure control unit maintains the compression pressure by the compression band at a monitored pressure lower than the diastolic blood pressure of the living body. , a blood pressure fluctuation determination unit that determines the occurrence of a blood pressure fluctuation based on the fact that the pulse wave propagation velocity measured during the period in which the monitor pressure is maintained is out of a preset fluctuation determination range, The diastolic blood pressure estimating section calculates, from the diastolic blood pressure estimation equation, the actual compression pressure and the pulse wave velocity of the compressed region when the blood pressure fluctuation determination section determines that a blood pressure fluctuation has occurred. The object of the present invention is to estimate the diastolic blood pressure of the subject.

第1発明の血圧測定装置によれば、前記拡張期血圧推定式を導く前記線形回帰直線式に含まれる切片および傾きは、相互に一定の線形関係にあって被測定者に影響されない。このため、被測定者の個々の生体的特徴に影響され難いので、拡張期血圧値を高精度で測定できる。また、脈波伝播速度を用いる血圧推定を行う従来のもののように、被測定者毎にキャリブレーションを行なう必要がない利点がある。 According to the blood pressure measuring device of the first aspect, the intercept and slope included in the linear regression equation that leads to the diastolic blood pressure estimation equation have a constant linear relationship with each other and are not influenced by the person to be measured. Therefore, the diastolic blood pressure value can be measured with high accuracy because it is not easily influenced by the individual biological characteristics of the subject. Further, there is an advantage that there is no need to perform calibration for each subject, unlike the conventional method of estimating blood pressure using pulse wave propagation velocity.

第2発明の血圧測定装置によれば、前記動脈血管の物理モデル式を示す予め設定された線形回帰直線式は、前記式(2)で表されるものである。その線形回帰直線式は、貫壁圧が零であるときの血管断面積が零よりも大きく、貫壁圧の増加に伴って血管断面積が増加して飽和する、実際の血管の挙動を示す、動脈血管の物理モデル式(a1)と、Bramwell-Hillの式(a3)とに基づくので、拡張期(最低)血圧値を高精度で測定できる。 According to the blood pressure measuring device of the second aspect of the invention, the preset linear regression equation representing the physical model equation of the arterial blood vessel is expressed by the equation (2) above. The linear regression equation shows the actual behavior of blood vessels, in which the blood vessel cross-sectional area is greater than zero when the transmural pressure is zero, and as the transmural pressure increases, the blood vessel cross-sectional area increases and becomes saturated. , the physical model equation (a1) of arterial blood vessels, and the Bramwell-Hill equation (a3), so the diastolic (minimum) blood pressure value can be measured with high accuracy.

第3発明の血圧測定装置によれば、前記線形回帰直線式からの変換式は、前記式(3)で表されるものである。その変換式(3)に基づけば、実測で得られる脈波伝播速度の二乗の対数と圧迫圧とを線形回帰分析することで、拡張期血圧および切片が未知であっても、傾きを算出することができる。 According to the blood pressure measuring device of the third aspect of the invention, the conversion equation from the linear regression equation is expressed by the equation (3) above. Based on the conversion formula (3), even if the diastolic blood pressure and intercept are unknown, the slope can be calculated by linear regression analysis of the logarithm of the square of the pulse wave propagation velocity obtained by actual measurements and the compression pressure. be able to.

第4発明の血圧測定装置によれば、前記線形関係は、前記式(4)で表されるものである。その線形関係は、前記線形回帰直線式に含まれる切片および傾きが、個々によらず相互に一定の線形関係にあることを示し、その関係は被測定者に影響されない。このため、被測定者の個々の生体的特徴に影響を受けないで、拡張期血圧値を高精度で測定できる。 According to the blood pressure measuring device of the fourth invention, the linear relationship is expressed by the equation (4). The linear relationship indicates that the intercept and slope included in the linear regression equation have a fixed linear relationship with each other regardless of the individual values, and this relationship is not influenced by the person being measured. Therefore, the diastolic blood pressure value can be measured with high accuracy without being affected by the individual biological characteristics of the subject.

第5発明の血圧測定装置によれば、前記拡張期血圧推定式は、前記式(5)で表されるものである。その拡張期血圧推定式は、測定可能な圧迫圧および脈波伝播速度と、それら2つの測定可能な変数から算出される前記線形回帰直線式に含まれる切片および傾きとを変数とする式であるので、測定された2つの変数を代入および演算することで、前記被測定者の拡張期血圧を推定することができる。 According to the blood pressure measuring device of the fifth invention, the diastolic blood pressure estimation formula is expressed by the formula (5). The diastolic blood pressure estimation formula is a formula that uses measurable compression pressure and pulse wave velocity as variables, and the intercept and slope included in the linear regression equation calculated from these two measurable variables. Therefore, by substituting and calculating the two measured variables, the diastolic blood pressure of the subject can be estimated.

第6発明の血圧測定装置によれば、前記拡張期血圧推定部は、前記拡張期血圧推定式から、前記圧迫帯による複数種類の圧迫圧毎に、実際の前記圧迫圧Pcおよび前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧DAPをそれぞれ推定し、前記複数種類の圧迫圧毎に推定し、得られた拡張期血圧の平均値を、拡張期血圧として決定するものであるので、拡張期血圧値を一層高精度で測定できる。 According to the blood pressure measurement device of the sixth aspect, the diastolic blood pressure estimating section calculates the actual compression pressure Pc and the compressed site from the diastolic blood pressure estimation formula for each of the plurality of types of compression pressures by the compression band. The diastolic blood pressure DAP of the subject is estimated based on the pulse wave propagation velocity of each of the plurality of compression pressures, and the average value of the obtained diastolic blood pressures is determined as the diastolic blood pressure. Therefore, the diastolic blood pressure value can be measured with higher accuracy.

第7発明の血圧測定装置によれば、前記拡張期血圧推定部は、前記被測定者の拡張期血圧よりも低く設定された前記圧迫帯による圧迫圧において、実際の前記圧迫圧Pcおよび前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧DAPを推定するので、被測定者の圧迫帯による圧迫の負担(ストレス)が軽減され、安定した血圧値が得られて血圧測定の精度が高められる。 According to the blood pressure measurement device of the seventh aspect, the diastolic blood pressure estimating unit is configured to calculate the actual compression pressure Pc and the compression pressure of the compression band set lower than the diastolic blood pressure of the subject. Since the diastolic blood pressure DAP of the subject is estimated based on the pulse wave propagation velocity at the compression site, the burden (stress) of compression by the compression band on the subject is reduced, stable blood pressure values are obtained, and the blood pressure is increased. Measurement accuracy is improved.

第8発明の血圧測定装置によれば、動脈血管に沿って相互に所定距離だけ離隔した2位置に配置された一対の脈波センサによりそれぞれ検出された脈波の時間差と前記所定距離とに基づいて脈波伝播速度が算出される。これにより、心電図のR波の発生時点を基準として算出された脈波伝播速度を血圧推定に用いるものと比較して、R波の発生時点から心臓の駆出開始時点までの遅延時間(前駆出時間)の誤差がないので、高精度に拡張期血圧を推定できる。すなわち、第8発明によれば、純粋に動脈血管の特性のみを反映する脈波伝播時間が計測されるので、心臓の状態にも左右される遅延時間(前駆出時間)の変動に影響されることがなく、血圧測定の再現性が高い。 According to the blood pressure measuring device of the eighth aspect of the invention, the predetermined distance is based on the time difference between the pulse waves respectively detected by a pair of pulse wave sensors arranged at two positions separated by a predetermined distance from each other along the arterial blood vessel. The pulse wave propagation velocity is calculated. As a result, the delay time from the R wave generation point to the start of cardiac ejection (pre-ejection Since there is no error in time), diastolic blood pressure can be estimated with high accuracy. That is, according to the eighth invention, since the pulse wave propagation time is measured which purely reflects only the characteristics of the arterial blood vessels, it is influenced by the fluctuation of the delay time (pre-ejection time) which also depends on the state of the heart. The reproducibility of blood pressure measurements is high.

第9発明の血圧測定装置によれば、前記圧迫帯による圧迫圧を生体の拡張期血圧よりも低いモニタ圧に維持する圧迫圧制御部と、前記モニタ圧が維持されている期間において測定された前記脈波伝播速度が予め設定された変動判定値から外れたことに基づいて血圧変動の発生を判定する血圧変動判定部とを備え、前記拡張期血圧推定部は、前記血圧変動判定部により血圧変動の発生が判定されたときに、前記拡張期血圧推定式から、実際の前記圧迫圧および前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧を推定する。これにより、被測定者に負担が少ない長時間の血圧監視を行なうことができる。 According to the blood pressure measuring device of the ninth aspect of the invention, there is provided a compression pressure control unit that maintains the compression pressure by the compression band at a monitor pressure lower than the diastolic blood pressure of the living body; a blood pressure change determination section that determines the occurrence of blood pressure fluctuation based on the fact that the pulse wave propagation velocity deviates from a preset fluctuation determination value; When it is determined that a fluctuation has occurred, the diastolic blood pressure of the subject is estimated from the diastolic blood pressure estimation formula based on the actual compression pressure and the pulse wave propagation velocity of the compressed area. Thereby, long-term blood pressure monitoring can be performed with less burden on the person being measured.

本発明の一実施例である血圧測定装置の構成を説明するブロック図である。FIG. 1 is a block diagram illustrating the configuration of a blood pressure measuring device that is an embodiment of the present invention. 図1の圧迫帯を外周面の一部を切り欠いて示す図である。FIG. 2 is a diagram illustrating the compression band of FIG. 1 with a part of the outer circumferential surface cut away. 図2の圧迫帯内に備えられた上流側膨張袋、中間膨張袋、及び下流側膨張袋を示す平面図である。FIG. 3 is a plan view showing an upstream inflation bladder, an intermediate inflation bladder, and a downstream inflation bladder provided in the compression band of FIG. 2. FIG. 図3のIV-IV視断面図であって、上流側膨張袋、中間膨張袋、及び下流側膨張袋を幅方向に切断して示した図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3, showing the upstream inflation bag, intermediate inflation bag, and downstream inflation bag cut in the width direction. 図1の電子制御装置に備えられた制御機能の要部を説明するための機能ブロック線図である。2 is a functional block diagram for explaining main parts of control functions provided in the electronic control device of FIG. 1. FIG. 図5の圧迫圧制御部による圧迫圧制御作動の要部を説明するタイムチャートである。6 is a time chart illustrating a main part of the compression pressure control operation by the compression pressure control section of FIG. 5. FIG. 生体の動脈血管の貫壁圧と断面積との関係を表す理論的な血管モデルを示す図である。FIG. 2 is a diagram showing a theoretical blood vessel model expressing the relationship between transmural pressure and cross-sectional area of an arterial blood vessel in a living body. 図7に示す血管モデルの貫壁圧と動脈血管の断面積との関係を示す式とBramwell-Hillの式とをまとめた貫壁圧と脈波伝播速度の2乗値との関係を、数値シミュレーションした図である。The relationship between the transmural pressure and the square value of the pulse wave velocity, which is a summary of the equation showing the relationship between the transmural pressure and the cross-sectional area of the arterial blood vessel in the blood vessel model shown in FIG. 7, and the Bramwell-Hill equation, can be expressed numerically. It is a simulated diagram. 図8の理論的な関係の縦軸および横軸を入れ替えて示す関係において、破線で示す対数関数で近似した状態を示す図である。FIG. 9 is a diagram showing a state approximated by a logarithmic function shown by a broken line in the theoretical relationship shown in FIG. 8 with the vertical and horizontal axes interchanged. ヤギの上腕を用いて実測した脈波伝播速度の2乗値と貫壁圧との関係を示す図である。It is a figure which shows the relationship between the square value of the pulse wave propagation velocity and transmural pressure actually measured using the upper arm of a goat. 図9における6本の対数関係近似式の傾きと切片との関係をプロットして示す図である。10 is a diagram showing a plot of the relationship between the slope and the intercept of the six logarithmic relationship approximations in FIG. 9. FIG. 図10における8本の対数関係近似式の傾きと切片との関係に加え、同じヤギ1頭等の追加実験で得られた15本の対数関係近似式の傾きと切片との関係をプロットして示す図である。In addition to the relationships between the slopes and intercepts of the eight logarithmic relationship approximations in Figure 10, we plotted the relationships between the slopes and intercepts of 15 logarithmic relationship approximations obtained in additional experiments such as one goat. FIG. 7頭のヤギから得られた111個のデータセットの脈波伝播速度の2乗値と貫壁圧との関係を対数関数で近似したときの傾きと切片との関係を示す図である。FIG. 7 is a diagram showing the relationship between the slope and the intercept when the relationship between the square value of the pulse wave propagation velocity and the transmural pressure of 111 data sets obtained from 7 goats is approximated by a logarithmic function. 30名のヒトから得られた90個のデータセットの脈波伝播速度の2乗値と貫壁圧との関係を対数関数で近似したときの傾きと切片との関係を示す図である。FIG. 3 is a diagram showing the relationship between the slope and the intercept when the relationship between the square value of the pulse wave propagation velocity and the transmural pressure of 90 data sets obtained from 30 people is approximated by a logarithmic function. 30名のヒトについて、実際に測定された脈波伝播速度PWVおよび圧迫圧Pcから式(5)により推定された拡張期血圧値DAPと、コロトコフ音聴診法による血圧測定により測定された拡張期血圧DAPとの相関を示す図である。Diastolic blood pressure DAP estimated by formula (5) from actually measured pulse wave velocity PWV and compression pressure Pc for 30 people, and diastolic blood pressure measured by blood pressure measurement using the Korotkoff sound auscultation method. It is a figure showing correlation with DAP. 図5の電子制御装置70の制御作動の要部を説明するフローチャートであって、拡張期血圧推定式を設定し拡張期血圧を算出、推定するための制御を示している。6 is a flowchart illustrating a main part of the control operation of the electronic control device 70 of FIG. 5, and shows control for setting a diastolic blood pressure estimation formula and calculating and estimating the diastolic blood pressure. 図5の電子制御装置70の制御作動の要部を説明するフローチャートであって、図16の拡張期血圧推定式設定ルーチンを示している。17 is a flowchart illustrating a main part of the control operation of the electronic control device 70 of FIG. 5, and shows the diastolic blood pressure estimation formula setting routine of FIG. 16. 図5の電子制御装置70の制御作動の要部を説明するフローチャートであって、図16の拡張期血圧推定ルーチンを示している。17 is a flowchart illustrating a main part of the control operation of the electronic control device 70 of FIG. 5, and shows the diastolic blood pressure estimation routine of FIG. 16. 図5の電子制御装置70の制御作動の要部を説明するフローチャートであって、血圧監視制御を示している。6 is a flowchart illustrating a main part of the control operation of the electronic control device 70 of FIG. 5, and shows blood pressure monitoring control. 図5の電子制御装置70の他の制御作動を説明するタイムチャートであって、図6に相当する図である。7 is a time chart illustrating another control operation of the electronic control device 70 of FIG. 5, and is a diagram corresponding to FIG. 6. FIG. 図5の圧迫圧制御部による圧迫圧の降圧過程において脈波の形状の変化を説明する図である。FIG. 6 is a diagram illustrating a change in the shape of a pulse wave in the process of lowering the compression pressure by the compression pressure control unit in FIG. 5;

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Note that in the following examples, the figures are simplified or modified as appropriate, and the dimensional ratios, shapes, etc. of each part are not necessarily drawn accurately.

図1は、被測定者である生体14の、腕、足首のような生体の肢体である被圧迫部位例えば上腕16に巻き付けられた上腕用の圧迫帯12を備えた本発明の一例の血圧測定装置(拡張期血圧推定装置)10を示している。この血圧測定装置10は、上腕16内の動脈血管18を閉塞するのに十分な値まで昇圧させた圧迫帯12の圧迫圧Pcを降圧させる過程において、動脈血管18の容積変化に応答して発生する圧迫帯12内の圧迫圧Pcの圧力振動である脈波(容積脈波)を逐次抽出し、その脈波から得られる情報に基づいて生体14の収縮期血圧値SAP及び拡張期血圧値DAPを測定するものである。 FIG. 1 shows an example of blood pressure measurement according to the present invention, which is equipped with a compression band 12 for the upper arm, which is wrapped around an arm or an ankle of a living body 14, which is a person to be measured, at a compressed site such as an upper arm 16. A device (diastolic blood pressure estimating device) 10 is shown. This blood pressure measuring device 10 detects the pressure generated in response to a change in the volume of the arterial blood vessel 18 in the process of lowering the compression pressure Pc of the compression band 12, which has been increased to a value sufficient to occlude the arterial blood vessel 18 in the upper arm 16. A pulse wave (volume pulse wave), which is a pressure vibration of the compression pressure Pc in the compression band 12, is sequentially extracted, and the systolic blood pressure value SAP and diastolic blood pressure value DAP of the living body 14 are determined based on information obtained from the pulse wave. It is used to measure.

図2は圧迫帯12を外周側面不織布20aの一部を切り欠いて示す図である。図2に示すように、圧迫帯12は、PVC(polyvinyl chloride)等の合成樹脂により裏面が相互にラミネートされた合成樹脂繊維製の外周側面不織布20a及び内周側面不織布20bから成る帯状外袋20と、その帯状外袋20内において幅方向に順次収容され、例えば軟質ポリ塩化ビニールシートなどの可撓性シートから構成されて独立して上腕16を圧迫可能な上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26と、を備える。この圧迫帯12は、外周側面不織布20aの端部に取り付けられた面ファスナ28aに内周側面不織布20bの端部に取り付けられた起毛パイル28bが着脱可能に接着されることによって、上腕16に着脱可能に装着されるようになっている。 FIG. 2 is a diagram showing the compression band 12 with a part of the outer peripheral side nonwoven fabric 20a cut away. As shown in FIG. 2, the compression band 12 includes a band-shaped outer bag 20 made of an outer peripheral side non-woven fabric 20a and an inner peripheral side non-woven fabric 20b made of synthetic resin fibers whose back surfaces are mutually laminated with synthetic resin such as PVC (polyvinyl chloride). , an upstream inflation bag 22 and an intermediate inflation bag which are housed sequentially in the width direction within the belt-shaped outer bag 20 and are made of a flexible sheet such as a soft polyvinyl chloride sheet and can independently compress the upper arm 16. 24, and a downstream expansion bag 26. This compression band 12 can be attached to and detached from the upper arm 16 by attaching and detaching a raised pile 28b attached to the end of the inner circumferential side nonwoven fabric 20b to a hook and loop fastener 28a attached to the end of the outer circumferential side nonwoven fabric 20a. It is designed so that it can be installed.

上流側膨張袋22、中間膨張袋24及び下流側膨張袋26は、長手状の圧迫帯12の幅方向に連ねられて上腕16を各々圧迫する独立した気室をそれぞれ有するとともに、管接続用コネクタ32、34及び36を外周面側に備えている。それら管接続用コネクタ32、34及び36は、外周側面不織布20aを通して圧迫帯12の外周面に露出されている。 The upstream inflation bag 22, the intermediate inflation bag 24, and the downstream inflation bag 26 each have independent air chambers that are connected in the width direction of the longitudinal compression band 12 and compress the upper arm 16, and each have a tube connection connector. 32, 34 and 36 are provided on the outer peripheral surface side. These tube connectors 32, 34, and 36 are exposed on the outer circumferential surface of the compression band 12 through the outer circumferential side nonwoven fabric 20a.

図3は圧迫帯12内に備えられた上流側膨張袋22、中間膨張袋24、及び、下流側膨張袋26を示す平面図であり、図4は図3のIV-IV視断面図である。上流側膨張袋22、中間膨張袋24及び下流側膨張袋26は、それらにより圧迫された動脈血管18の容積変化に応答して発生する圧力振動である脈波を検出するためのものであり、それぞれ長手状を成している。上流側膨張袋22及び下流側膨張袋26は、中間膨張袋24の両側に隣接した状態で配置され、中間膨張袋24は、上流側膨張袋22及び下流側膨張袋26の間に挟まれた状態で圧迫帯12の幅方向の中央部に配置されている。この上流側膨張袋22の中心と中間膨張袋24の中心とは距離L12だけ離れ、上流側膨張袋22の中心と下流側膨張袋26の中心とは、距離L13だけ離れている。なお、圧迫帯12が上腕16に巻き付けられた状態においては、上流側膨張袋22及び下流側膨張袋26は上腕16の長手方向に所定間隔を隔てて位置させられ、また、中間膨張袋24は上腕16の長手方向において連なるように上流側膨張袋22及び下流側膨張袋26の間に配置されている。 FIG. 3 is a plan view showing the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26 provided in the compression band 12, and FIG. 4 is a sectional view taken along the line IV-IV in FIG. . The upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 are for detecting pulse waves, which are pressure vibrations generated in response to changes in the volume of the arterial blood vessel 18 compressed by them. Each of them is elongated. The upstream expansion bag 22 and the downstream expansion bag 26 are arranged adjacent to both sides of the intermediate expansion bag 24, and the intermediate expansion bag 24 is sandwiched between the upstream expansion bag 22 and the downstream expansion bag 26. It is disposed at the center of the compression band 12 in the width direction. The center of the upstream expansion bag 22 and the center of the intermediate expansion bag 24 are separated by a distance L12, and the center of the upstream expansion bag 22 and the center of the downstream expansion bag 26 are separated by a distance L13. Note that when the compression band 12 is wrapped around the upper arm 16, the upstream inflation bag 22 and the downstream inflation bag 26 are positioned at a predetermined distance in the longitudinal direction of the upper arm 16, and the intermediate inflation bag 24 is It is arranged between the upstream inflation bag 22 and the downstream inflation bag 26 so as to be continuous in the longitudinal direction of the upper arm 16.

中間膨張袋24は所謂マチ構造の側縁部を両側に備えている。すなわち、中間膨張袋24の上腕16の長手方向すなわち圧迫帯12の幅方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24f、24gがそれぞれ形成されている。そして、上流側膨張袋22及び下流側膨張袋26の中間膨張袋24に隣接する側の端部22a及び26aが一対の折込溝24f、24g内にそれぞれ差し入れられて配置されるようになっている。これにより、中間膨張袋24の端部24aと上流側膨張袋22の端部22aとが相互に重ねられ、且つ、中間膨張袋24の端部24bと下流側膨張袋26の端部26aとが相互に重ねられた構造すなわちオーバラップ構造となるので、上流側膨張袋22、中間膨張袋24及び下流側膨張袋26が等圧で上腕16を圧迫したときにそれらの境界付近においても均等な圧力分布が得られる。 The intermediate expansion bag 24 has side edges with a so-called gusset structure on both sides. That is, at both ends of the intermediate inflatable bag 24 in the longitudinal direction of the upper arm 16, that is, in the width direction of the compression band 12, there are a pair of flexible sheets that are folded in the direction toward each other so that the closer they are to each other, the deeper the sheet. Folding grooves 24f and 24g are formed, respectively. Ends 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 adjacent to the intermediate expansion bag 24 are inserted into the pair of folding grooves 24f and 24g, respectively. . As a result, the end 24a of the intermediate inflation bag 24 and the end 22a of the upstream inflation bag 22 are overlapped with each other, and the end 24b of the intermediate inflation bag 24 and the end 26a of the downstream inflation bag 26 are overlapped with each other. Since they have a mutually stacked structure, that is, an overlapping structure, when the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26 press the upper arm 16 with equal pressure, the pressure is also equal near their boundaries. distribution is obtained.

上流側膨張袋22及び下流側膨張袋26も、マチ構造の側縁部を中間膨張袋24とは反対側の端部22b及び26bに備えている。すなわち、上流側膨張袋22の中間膨張袋24とは反対側の端部22bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝22fが形成されている。また、下流側膨張袋26の中間膨張袋24とは反対側の端部26bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝26gが形成されている。圧迫帯12の幅方向に飛び出ないように、折込溝22fを構成するシートは、上流側膨張袋22内に配置された貫通穴を備える接続シート38を介してその反対側部分すなわち中間膨張袋24側の部分に接続されている。同様に、折込溝26gを構成するシートは、下流側膨張袋26内に配置された貫通穴を備える接続シート40を介してその反対側部分すなわち中間膨張袋24側の部分に接続されている。 The upstream inflation bag 22 and the downstream inflation bag 26 also have side edges of a gusset structure at ends 22b and 26b on the opposite side from the intermediate inflation bag 24. That is, at the end 22b of the upstream inflation bag 22 opposite to the intermediate inflation bag 24, there is a folding groove 22f made of flexible sheets that is folded in the direction toward each other so that the closer they are to each other, the deeper the folding groove 22f is. It is formed. In addition, at the end 26b of the downstream inflation bag 26 opposite to the intermediate inflation bag 24, there is a folding groove 26g made of flexible sheets folded in the direction toward each other so that the closer they are to each other, the deeper the groove is. It is formed. In order to prevent the compression band 12 from protruding in the width direction, the sheet forming the folding groove 22f is inserted into the opposite side, that is, the intermediate inflation bag 24, through a connecting sheet 38 having a through hole arranged in the upstream inflation bag 22. connected to the side part. Similarly, the sheet constituting the folding groove 26g is connected to the opposite side, that is, the intermediate expansion bag 24 side, via a connection sheet 40 provided with a through hole arranged in the downstream expansion bag 26.

これにより、上流側膨張袋22及び下流側膨張袋26の端部22b及び26bにおいても上腕16の動脈血管18に対する圧迫圧Pcが他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。圧迫帯12の幅方向は12cm程度であり、その幅方向に3つの上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26が配置された構造であるから、それぞれが実質的に4cm程度の幅寸法とならざるを得ない。このような狭い幅寸法であっても圧迫機能を十分に発生させるために、中間膨張袋24の両端部24a及び24bと上流側膨張袋22の端部22a及び下流側膨張袋26の端部26aとが相互に重ねられたオーバラップ構造とされるとともに、上流側膨張袋22及び下流側膨張袋26の中間膨張袋24とは反対側の端部22bおよび26bが所謂マチ構造の側縁部とされている。 As a result, the compression pressure Pc against the arterial blood vessel 18 of the upper arm 16 can be obtained at the ends 22b and 26b of the upstream inflation bag 22 and the downstream inflation bladder 26 in the same way as in other parts, so that the compression pressure Pc in the width direction of the compression band 12 is The effective compression width becomes equal to the width dimension. The width direction of the compression band 12 is about 12 cm, and since the three upstream inflation bags 22, the intermediate inflation bag 24, and the downstream inflation bladder 26 are arranged in the width direction, each of them is substantially 4 cm. It has no choice but to have a width dimension of approximately In order to sufficiently generate the compression function even with such a narrow width dimension, both ends 24a and 24b of the intermediate inflation bag 24, the end 22a of the upstream inflation bag 22, and the end 26a of the downstream inflation bag 26 are are overlapped with each other, and the ends 22b and 26b of the upstream expansion bag 22 and the downstream expansion bag 26 on the opposite side from the intermediate expansion bag 24 are the side edges of a so-called gusset structure. has been done.

上流側膨張袋22及び下流側膨張袋26の中間膨張袋24側の端部22a及び26aと、それが差し入れられている一対の折込溝24f、24gの内壁面すなわち相対向する溝側面との間には、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42n、42mがそれぞれ介在させられている。遮蔽部材42nは、上流側膨張袋22と中間膨張袋24との重なり寸法と同様の長さ寸法を備えている。同様に、遮蔽部材42mは、下流側膨張袋26と中間膨張袋24との重なり寸法と同様の長さ寸法を備えている。 Between the ends 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 on the intermediate expansion bag 24 side and the inner wall surfaces of the pair of folding grooves 24f and 24g into which they are inserted, that is, the opposing groove side surfaces. are interposed respectively with longitudinal shielding members 42n and 42m having stiffness anisotropy in which the bending stiffness in the width direction of the compression band 12 is higher than the bending stiffness in the longitudinal direction of the compression band 12. The shielding member 42n has a length similar to the overlapping dimension of the upstream inflation bag 22 and the intermediate inflation bag 24. Similarly, the shielding member 42m has a length similar to the overlapping dimension of the downstream expansion bag 26 and the intermediate expansion bag 24.

図3及び図4に示すように、上流側膨張袋22の端部22aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間、及び、下流側膨張袋26の端部26aとそれが差し入れられている折込溝24gとの間の隙間のうちの外周側の隙間には、長手状の遮蔽部材42n、42mがそれぞれ介在させられている。本実施例では、内周側の隙間に比較して外周側の隙間の方が遮蔽効果が大きいので長手状の遮蔽部材42n、42mは外周側の隙間に設けられているが、外周側の隙間と内周側の隙間との両方に設けられていてもよい。 As shown in FIGS. 3 and 4, the outer circumference of the gap between the end 22a of the upstream expansion bag 22 and the folding groove 24f into which it is inserted, and the gap between the downstream expansion bag 26 Longitudinal shielding members 42n and 42m are respectively interposed in the outer peripheral side of the gap between the end portion 26a and the folding groove 24g into which it is inserted. In this embodiment, the shielding effect is greater in the gap on the outer circumference side than in the gap on the inner circumference side, so the longitudinal shielding members 42n and 42m are provided in the gap on the outer circumference side. and the gap on the inner peripheral side.

遮蔽部材42n、42mは、上腕16の長手方向(すなわち圧迫帯12の幅方向)に平行な樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕16の周方向(すなわち圧迫帯12の長手方向)に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。遮蔽部材42nは、上流側膨張袋22の中間膨張袋24側の端部22aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。同様に、遮蔽部材42mは、下流側膨張袋26の中間膨張袋24側の端部26aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。 The shielding members 42n and 42m are arranged so that the plurality of flexible hollow tubes 44 made of resin are parallel to each other in the longitudinal direction of the upper arm 16 (that is, the width direction of the compression band 12), and In other words, the flexible hollow tubes 44 are arranged in series (in the longitudinal direction of the compression band 12), and the flexible hollow tubes 44 are connected directly by molding or adhesive, or indirectly through another member such as a flexible sheet such as an adhesive tape. It is constructed by interconnecting each other. The shielding member 42n is hung on a plurality of hanging sheets 46 provided at a plurality of locations on the outer circumferential side of the end 22a of the upstream inflation bag 22 on the intermediate inflation bag 24 side. Similarly, the shielding member 42m is hung on a plurality of hanging sheets 46 provided at a plurality of locations on the outer circumferential side of the end 26a of the downstream inflation bag 26 on the intermediate inflation bag 24 side.

図1に戻って、血圧測定装置10においては、空気ポンプ50、急速排気弁52、及び、排気制御弁54が主配管56にそれぞれ接続されている。その主配管56からは、上流側膨張袋22に接続された第1分岐管58、中間膨張袋24に接続された第2分岐管62、及び、下流側膨張袋26に接続された第3分岐管64がそれぞれ分岐させられている。第1分岐管58は、空気ポンプ50と上流側膨張袋22との間を直接開閉するための第1開閉弁E1を備えている。第2分岐管62は、空気ポンプ50と中間膨張袋24との間を直接開閉するための第2開閉弁E2を備えている。第3分岐管64は、空気ポンプ50と下流側膨張袋26との間を直接開閉するための第3開閉弁E3を備えている。 Returning to FIG. 1, in the blood pressure measuring device 10, an air pump 50, a rapid exhaust valve 52, and an exhaust control valve 54 are each connected to a main pipe 56. From the main pipe 56, there is a first branch pipe 58 connected to the upstream expansion bag 22, a second branch pipe 62 connected to the intermediate expansion bag 24, and a third branch pipe connected to the downstream expansion bag 26. The tubes 64 are each branched. The first branch pipe 58 includes a first on-off valve E1 for directly opening and closing between the air pump 50 and the upstream expansion bag 22. The second branch pipe 62 includes a second on-off valve E2 for directly opening and closing between the air pump 50 and the intermediate expansion bag 24. The third branch pipe 64 includes a third on-off valve E3 for directly opening and closing between the air pump 50 and the downstream expansion bag 26.

第1分岐管58には、上流側膨張袋22内の圧力値を検出するための第1圧力センサT1が接続され、第2分岐管62には、中間膨張袋24内の圧力値を検出するための第2圧力センサT2が接続され、第3分岐管64には、下流側膨張袋26内の圧力値を検出するための第3圧力センサT3が接続され、主配管56には、圧迫帯12の圧迫圧Pcを検出するための第4圧力センサT4が接続されている。 A first pressure sensor T1 for detecting the pressure value inside the upstream expansion bag 22 is connected to the first branch pipe 58, and a first pressure sensor T1 for detecting the pressure value inside the intermediate expansion bag 24 is connected to the second branch pipe 62. A second pressure sensor T2 is connected to the third branch pipe 64, a third pressure sensor T3 is connected to the third branch pipe 64, and a third pressure sensor T3 is connected to the main pipe 56, for detecting the pressure value inside the downstream inflation bag 26. A fourth pressure sensor T4 for detecting twelve compression pressures Pc is connected.

電子制御装置70には、第1圧力センサT1から上流側膨張袋22内の圧力値すなわち上流側膨張袋22の圧迫圧Pc1を示す出力信号が供給され、第2圧力センサT2から中間膨張袋24内の圧力値すなわち中間膨張袋24の圧迫圧Pc2を示す出力信号が供給され、第3圧力センサT3から下流側膨張袋26内の圧力値すなわち下流側膨張袋26の圧迫圧Pc3を示す出力信号が供給され、第4圧力センサT4から圧迫帯12の圧迫圧Pcを示す出力信号が供給される。 The electronic control device 70 is supplied with an output signal indicating the pressure value inside the upstream inflation bag 22, that is, the compression pressure Pc1 of the upstream inflation bag 22, from the first pressure sensor T1, and an output signal indicating the pressure value Pc1 of the upstream inflation bag 22 from the second pressure sensor T2. An output signal indicating the pressure value within the downstream inflation bag 26, that is, the compression pressure Pc2 of the intermediate inflation bag 24 is supplied from the third pressure sensor T3, and an output signal indicating the pressure value within the downstream inflation bladder 26, that is, the compression pressure Pc3 of the downstream inflation bladder 26. is supplied, and an output signal indicating the compression pressure Pc of the compression band 12 is supplied from the fourth pressure sensor T4.

電子制御装置70は、CPU72、RAM74、ROM76、表示装置78、及び図示しないI/Oポートなどを含む所謂マイクロコンピュータである。この電子制御装置70は、CPU72がRAM74の記憶機能を利用しつつ予めROM76に記憶されたプログラムにしたがって入力信号を処理し、血圧推定開始操作釦80の操作に応答して、電動式の空気ポンプ50、急速排気弁52、排気制御弁54、第1開閉弁E1、第2開閉弁E2、及び第3開閉弁E3をそれぞれ制御することにより、自動血圧測定制御を実行し、測定結果を表示装置78に表示させる。図6は、電子制御装置70の圧迫圧制御部86により制御される圧迫帯12の圧迫圧Pcの変化を示している。 The electronic control device 70 is a so-called microcomputer including a CPU 72, a RAM 74, a ROM 76, a display device 78, an I/O port (not shown), and the like. This electronic control device 70 processes an input signal in accordance with a program stored in advance in a ROM 76 while a CPU 72 utilizes a memory function of a RAM 74, and in response to an operation of a blood pressure estimation start operation button 80, an electric air pump is activated. 50, by controlling the rapid exhaust valve 52, the exhaust control valve 54, the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3, automatic blood pressure measurement control is executed, and the measurement results are displayed on the display device. 78. FIG. 6 shows changes in the compression pressure Pc of the compression band 12 controlled by the compression pressure control section 86 of the electronic control device 70.

(拡張期血圧推定アルゴリズムの説明)
以下において、図5の電子制御装置70の機能により実行される拡張期血圧推定アルゴリズムを説明する。
(Explanation of diastolic blood pressure estimation algorithm)
In the following, a diastolic blood pressure estimation algorithm executed by the functions of the electronic control unit 70 of FIG. 5 will be described.

図7は、貫壁圧Ptと動脈血管18の断面積Aとの関係を示す動脈血管18のモデルを示している。貫壁圧Ptの増加に伴って断面積Aが飽和値Amに向かって指数関数的に増加し、貫壁圧Ptが零であるときには、Ao値を示している。図7の動脈血管18の貫壁圧Ptと動脈血管18の断面積Aとの関係を示す特性は、以下の血管モデル式で表される。貫壁圧Ptとは、動脈内圧APから動脈外圧すなわち圧迫圧(カフ圧)Pcを差し引いた値(AP-Pc)であり、生体の拡張期血圧時点の貫壁圧Ptは、拡張期血圧DAPから圧迫圧Pcを差し引いた値(DAP-Pc)である。式(a1)は、非特許文献3に記載されている。式(a1)において、bは血管硬度(コンプライアンス或いは弾性率)に関連する指標である。
A=Am+(Ao-Am)e^(-b・Pt) ・・・ (a1)
FIG. 7 shows a model of the arterial blood vessel 18 showing the relationship between the transmural pressure Pt and the cross-sectional area A of the arterial blood vessel 18. As the trans-wall pressure Pt increases, the cross-sectional area A increases exponentially toward the saturation value Am, and when the trans-wall pressure Pt is zero, it shows the Ao value. The characteristic showing the relationship between the transmural pressure Pt of the arterial blood vessel 18 and the cross-sectional area A of the arterial blood vessel 18 in FIG. 7 is expressed by the following blood vessel model equation. The transmural pressure Pt is the value obtained by subtracting the external arterial pressure, that is, the compression pressure (cuff pressure) Pc from the intraarterial pressure AP (AP - Pc). It is the value obtained by subtracting the compression pressure Pc from (DAP-Pc). Formula (a1) is described in Non-Patent Document 3. In formula (a1), b is an index related to blood vessel hardness (compliance or elastic modulus).
A=Am+(Ao-Am)e^(-b・Pt)... (a1)

この血管モデル式(a1)に、Bramwell-Hillの式を適用して得た理論的な非線形指数関数曲線式(1)が、ヤギによる実験で得た貫壁圧Ptと脈波伝播速度の2乗値PWVとの関係を示す指数関数曲線と極めて近似している。そして、その指数関数曲線の横軸と縦軸とを入れ替えることで示される関係は、対数関数となり、その対数関数に対して高い精度で近似できる対数関数近似曲線は、定数bや断面積比Ao/Amによらない、線形回帰直線式(2)に変換できる。拡張期血圧時点の動脈血管18の貫壁圧Ptは(推定拡張期血圧DAPe-圧迫圧Pc)であるので、動脈の貫壁圧Ptと脈波伝播速度の2乗値PWVとの関係を表す線形回帰直線式(2)は、その貫壁圧Ptについて式(3)のように変形できる。式(3)の傾きαは式(2)と同じなので、実測された複数組の圧迫圧Pcおよび脈波伝播速度の2乗値PWVの間で回帰分析することで傾きαが求められる。予め求められた傾きαと切片βとの予め求められた線形関係(4)にその傾きαを代入することで切片βが求められる。このようにして傾きαおよび切片βが求められると、貫壁圧Ptについて式(3)を変形した拡張期血圧推定式(5)により拡張期血圧DAPeが表される。この拡張期血圧値推定式(5)から、実際の脈波伝播速度の2乗値PWVおよび圧迫圧Pcに基づいて拡張期血圧値DAPeを推定する。 The theoretical nonlinear exponential curve equation (1) obtained by applying the Bramwell-Hill equation to this blood vessel model equation (a1) is the It is very similar to an exponential function curve showing the relationship with the multiplicative value PWV 2 . The relationship shown by exchanging the horizontal and vertical axes of the exponential function curve becomes a logarithmic function, and the logarithmic function approximation curve that can be approximated with high accuracy to the logarithmic function is the constant b and the cross-sectional area ratio Ao It can be converted into linear regression equation (2) that does not depend on /Am. Since the transmural pressure Pt of the arterial blood vessel 18 at the time of diastolic blood pressure is (estimated diastolic blood pressure DAPe - compression pressure Pc), the relationship between the transmural pressure Pt of the artery and the square value of the pulse wave velocity PWV 2 is expressed as follows: The linear regression equation (2) expressed can be transformed as shown in equation (3) regarding the trans-wall pressure Pt. Since the slope α of Equation (3) is the same as Equation (2), the slope α can be obtained by regression analysis between the plurality of actually measured compression pressures Pc and the square value PWV 2 of the pulse wave propagation velocity. The intercept β is obtained by substituting the slope α into the predetermined linear relationship (4) between the predetermined slope α and the intercept β. When the slope α and the intercept β are determined in this way, the diastolic blood pressure DAPe is expressed by the diastolic blood pressure estimation formula (5), which is a modification of the formula (3) for the transmural pressure Pt. From this diastolic blood pressure value estimation formula (5), the diastolic blood pressure value DAPe is estimated based on the square value PWV 2 of the actual pulse wave propagation velocity and the compression pressure Pc.

PWV=(1/ρ・b)(1/(1-Ao/Am))・e^(b・Pt)
-(1/ρ・b) ・・・ (1)
PWV 2 = (1/ρ・b) (1/(1-Ao/Am))・e^(b・Pt)
-(1/ρ・b) ... (1)

この非線形指数関数式(1)は、図7に示す動脈血管18の拡張期血圧時点の貫壁圧Pt(=DAP-Pc)と動脈血管18の断面積Aとの関係を示す式(a1)に基づくものである。式(1)のρは血液密度を表している。 This nonlinear exponential function equation (1) is the equation (a1) showing the relationship between the transmural pressure Pt (=DAP-Pc) at the diastolic blood pressure of the arterial blood vessel 18 and the cross-sectional area A of the arterial blood vessel 18 shown in FIG. It is based on ρ in equation (1) represents blood density.

この式(a1)の両辺をPtで微分した以下の新たな血管モデル式(a2)と、よく知られたBramwell-Hillの式(a3)および動脈血管18の容積Vの断面積Aに関する微分式(a4)とを使用して3式をまとめると、以下に示す式(a5)となる。式(a4)のLは上腕部の動脈血管18の有効長を表している。
dA/dPt=-b(Ao-Am)e^(-b・Pt) ・・・ (a2)
PWV=(dPt/ρ)・(V/dV) ・・・ (a3)
dV=dA・L ・・・ (a4)
PWV=(1/ρb)(1/(1-Ao/Am))・e^(b・Pt)
-(1/ρb) ・・・ (a5)
The following new blood vessel model equation (a2) is obtained by differentiating both sides of this equation (a1) with respect to Pt, the well-known Bramwell-Hill equation (a3), and the differential equation regarding the cross-sectional area A of the volume V of the arterial blood vessel 18 When the three equations are summarized using (a4), the following equation (a5) is obtained. L in equation (a4) represents the effective length of the arterial blood vessel 18 in the upper arm.
dA/dPt=-b(Ao-Am)e^(-b・Pt)... (a2)
PWV 2 = (dPt/ρ)・(V/dV) ... (a3)
dV=dA・L... (a4)
PWV 2 = (1/ρb) (1/(1-Ao/Am))・e^(b・Pt)
-(1/ρb) ... (a5)

この式(a5)において、断面積Aに関連する変数は、貫壁圧Ptが零であるときの断面積Aoに対する断面積Aの飽和値Amの比Ao/Amであるので、式(a5)のPWVとPtとの関係は、動脈血管18の断面積Aの絶対値に影響されない。つまり、生体個々の体格の影響は受けないと考えられる。式(a5)の関係は、動脈血管18の断面積比Ao/Am、および、動脈血管18の硬度に関連する定数bに依存している。 In this formula (a5), the variable related to the cross-sectional area A is the ratio Ao/Am of the saturation value Am of the cross-sectional area A to the cross-sectional area Ao when the trans-wall pressure Pt is zero, so the formula (a5) The relationship between PWV 2 and Pt is not affected by the absolute value of the cross-sectional area A of the arterial blood vessel 18. In other words, it is considered that it is not affected by the physique of each living organism. The relationship in equation (a5) depends on the cross-sectional area ratio Ao/Am of the arterial blood vessel 18 and the constant b related to the hardness of the arterial blood vessel 18.

先行研究において、b=0.03、Ao/Am=0.25であったという報告があるので、仮に、b=0.03、0.06、0.09、Ao/Am=0.25、0.5として、式(a5)の関係を数値シミュレーションすると、図8のようになった。 In previous research, there is a report that b = 0.03, Ao/Am = 0.25, so hypothetically, b = 0.03, 0.06, 0.09, Ao/Am = 0.25, When the relationship of equation (a5) is numerically simulated with 0.5, the result is as shown in FIG.

定数bと断面積比Ao/Amとの関係を考察するために、式(a2)の両辺を逆数とすると、式(a6)となる。この式(a6)において、定数bが大きくなるほど、所定の貫壁圧Ptについて、所定の範囲では、dPt/dAすなわち弾性率が大きくなることを示している。
dPt/dA=e^(b・Pt)/b(Am-Ao) ・・・ (a6)
In order to consider the relationship between constant b and cross-sectional area ratio Ao/Am, if both sides of equation (a2) are made reciprocals, equation (a6) is obtained. In this formula (a6), it is shown that as the constant b becomes larger, dPt/dA, that is, the elastic modulus becomes larger within a predetermined range for a predetermined transwall pressure Pt.
dPt/dA=e^(b・Pt)/b(Am-Ao)... (a6)

本発明者等は、測定毎に薬剤を用いて血圧値を変えたヤギの前足(上腕)に前述の圧迫帯12を装着し、圧迫帯12による圧力ステップ毎に、圧迫圧Pcと、上流側膨張袋22から得られた脈波と下流側膨張袋26から得られた脈波との時間差に基づく脈波伝播速度PWVを取得する実験を行なった。このとき、得られた脈波伝播速度PWVの2乗値PWVと貫壁圧Ptとの関係は、図8に極めて近似していた。 The present inventors attached the above-mentioned compression band 12 to the front leg (upper arm) of a goat whose blood pressure value was changed using a drug for each measurement, and at each pressure step by the compression band 12, the compression pressure Pc and An experiment was conducted to obtain the pulse wave propagation velocity PWV based on the time difference between the pulse wave obtained from the expansion bag 22 and the pulse wave obtained from the downstream expansion bag 26. At this time, the relationship between the obtained square value PWV 2 of the pulse wave propagation velocity PWV and the transmural pressure Pt was extremely similar to that shown in FIG.

上記図8の理論的関係は、縦軸および横軸を入れ替えると、図9に示す関係となり、定数bや動脈血管18の断面積比Ao/Amによらず、破線に示す対数関数に近似できる。この対数関数近似曲線の決定係数Rは0.97-0.99であり、高い精度で近似できる。上記ヤギを用いて得られた脈波伝播速度PWVの2乗値PWVと貫壁圧Ptとの関係においても、図10に示す関係が得られた。図10の太線では、決定係数Rは0.9615であり、高い精度で近似できる。全23本の対数関数近似曲線の決定係数の平均値は0.91±0.11であり非常に良好な対数関数近似曲線が得られた。このような対数関数近似曲線は、独立変数を脈波伝播速度PWVの2乗値PWVの対数(ln(PWV))とみなせば、線形形式に変換されている線形回帰直線式(2)により表される。ヒトであっても同様である。
Pt=α・ln(PWV)+β ・・・ (2)
The theoretical relationship shown in FIG. 8 above becomes the relationship shown in FIG. 9 when the vertical and horizontal axes are interchanged, and can be approximated to the logarithmic function shown by the broken line, regardless of the constant b or the cross-sectional area ratio Ao/Am of the arterial blood vessel 18. . The coefficient of determination R 2 of this logarithmic function approximation curve is 0.97-0.99, and it can be approximated with high accuracy. The relationship shown in FIG. 10 was also obtained in the relationship between the square value PWV 2 of the pulse wave propagation velocity PWV and the transmural pressure Pt obtained using the goat. In the bold line in FIG. 10, the coefficient of determination R2 is 0.9615, which allows for high accuracy approximation. The average value of the coefficient of determination of all 23 logarithmic function approximation curves was 0.91±0.11, and very good logarithmic function approximation curves were obtained. Such a logarithmic function approximation curve can be obtained by linear regression linear equation (2) converted into a linear form by considering the independent variable as the logarithm (ln(PWV 2 )) of the square value PWV 2 of the pulse wave propagation velocity PWV. Represented by The same applies to humans.
Pt=α・ln(PWV 2 )+β... (2)

ここで、図10のような対数関数近似曲線の傾きαは、ln(PWV)および-Pcの線形回帰直線の傾きと数学的に同値となる。式(2)の左辺に、貫壁圧Pt=DAP-Pcを代入して以下の線形回帰直線-Pcの式(3)に変換することができる。このように線形回帰直線Ptの式(2)から変換された線形回帰直線-Pcの式(3)すなわち変換式(3)は、実測可能な脈波伝播速度PWVと、その脈波伝播速度PWVの実測時の圧迫圧Pcとをそれぞれ表す複数個のデータポイントの線形回帰直線として求めることができ、求められた線形回帰直線の傾きを求めることで、被測定者毎の上記傾きαが算出可能である。
-Pc=α・ln(PWV)+(β-DAP) ・・・ (3)
Here, the slope α of the logarithmic function approximation curve as shown in FIG. 10 is mathematically equivalent to the slope of the linear regression line of ln(PWV 2 ) and -Pc. By substituting transwall pressure Pt=DAP-Pc into the left side of equation (2), it can be converted into equation (3) of the following linear regression line -Pc. In this way, the equation (3) of the linear regression line −Pc converted from the equation (2) of the linear regression line Pt, that is, the conversion equation (3), calculates the measurable pulse wave propagation velocity PWV and the pulse wave propagation velocity PWV. can be obtained as a linear regression line of multiple data points each representing the compression pressure Pc during actual measurement, and by finding the slope of the obtained linear regression line, the above-mentioned slope α can be calculated for each subject. It is.
-Pc=α・ln(PWV 2 )+(β-DAP)... (3)

図9における6本の対数関数の傾きαと切片βとの関係を、それぞれの傾きαおよび切片βを示す6点のデータポイントでプロットすると、図11の破線で示す回帰直線で表される。この結果は、生体状態固有の定数である、血管硬度に関連する指標bや動脈血管18の断面積比Ao/Amを広範囲に変動させても、対数関数の傾きαと切片βは線形に相関することが理論解析的に確認できたと言える。同様に、図10に示すヤギの上腕を用いた実験から得られた23本の対数関数の傾きαと切片βとの関係をプロットすると図12に示す如く、やはり線形相関していることが明らかとなった。これにより、PWVとPtの関係を対数関数で近似したとき、その傾きαと切片βの相互の線形相関関係が生体の状態によらず、安定して得られるならば、対数関数の切片βの推定に利用できると考えられる。 When the relationship between the slope α and the intercept β of the six logarithmic functions in FIG. 9 is plotted using six data points indicating the slope α and the intercept β, it is represented by the regression line shown by the broken line in FIG. 11. This result shows that even if the index b related to vascular hardness and the cross-sectional area ratio Ao/Am of the arterial blood vessel 18, which are constants specific to biological conditions, are varied over a wide range, the slope α and the intercept β of the logarithmic function are linearly correlated. It can be said that this has been confirmed theoretically and analytically. Similarly, when plotting the relationship between the slope α and the intercept β of the 23 logarithmic functions obtained from the experiment using the goat upper arm shown in Figure 10, it is clear that there is a linear correlation as shown in Figure 12. It became. As a result, when the relationship between PWV 2 and Pt is approximated by a logarithmic function, if the mutual linear correlation between the slope α and the intercept β can be stably obtained regardless of the state of the living body, then the intercept β of the logarithmic function It is thought that it can be used for estimating

そこで、ヤギの上腕を用いた実験データを7頭分使用して、111データセットのPWVとPtとの関係を対数関数で近似したときの傾きαと切片βとの間の線形関係を図13に示す。図13の右側に示す数値は7頭のヤギの固体識別番号である。図13において、上記線形関係のyをβ、xをαとしたときの線形回帰直線は、図13の破線の直線に示すように、y=-1.921x+11.4であって、この線形回帰直線の決定係数Rは0.86であった。また、30人のヒトから得られた90データポイントのPWVとPtとの関係を対数関数で近似したときの傾きαと切片βとの間の線形関係を図14に示す。図14の破線の直線で示す線形回帰直線は、y=-3.6137x+14.833であって、この線形回帰直線の決定係数Rは0.7071であった。図13及び図14から明らかなように、生体個々によらず、ほぼ同じ線形関係で近似でき、以下の線形関係式(4)が実験的に得られた。後述の線形関係記憶部84には、この傾きαと切片βとの間の一定の関係を示す線形関係式(4)が予め求められ、記憶されている。線形関係式(4)の傾きγはたとえば-3.6137であり、切片δはたとえば14.833である。
β=γ・α+δ ・・・ (4)
Therefore, using experimental data using the upper arms of seven goats, the linear relationship between the slope α and the intercept β when the relationship between PWV 2 and Pt of 111 data sets is approximated by a logarithmic function is shown in the figure. 13. The numbers shown on the right side of FIG. 13 are the individual identification numbers of the seven goats. In FIG. 13, when y is β and x is α in the above linear relationship, the linear regression line is y=-1.921x+11.4, as shown by the broken line in FIG. The coefficient of determination R2 of the straight line was 0.86. Further, FIG. 14 shows the linear relationship between the slope α and the intercept β when the relationship between PWV 2 and Pt of 90 data points obtained from 30 people is approximated by a logarithmic function. The linear regression line shown by the broken line in FIG. 14 was y=-3.6137x+14.833, and the coefficient of determination R 2 of this linear regression line was 0.7071. As is clear from FIGS. 13 and 14, the approximation can be made using substantially the same linear relationship regardless of the individual living organisms, and the following linear relationship equation (4) was experimentally obtained. A linear relational expression (4) indicating a certain relation between the slope α and the intercept β is previously determined and stored in a linear relational storage unit 84, which will be described later. The slope γ of linear relational expression (4) is, for example, −3.6137, and the intercept δ is, for example, 14.833.
β=γ・α+δ... (4)

このようにして個々の生体の状態によらず、脈波伝播速度PWVの2乗値PWVと貫壁圧Ptとの関係がおおよそ安定して式(2)で近似できるとすると、前述のように実測した圧迫圧Pcと脈波伝播速度PWVとに基づいて式(2)又はその変形式(3)から算出された傾きαを線形関係式(4)に代入することで、切片βを算出することができる。式(3)を変形すると、以下の拡張期血圧推定式(5)が得られる。したがって、この拡張期血圧推定式(5)に、得られた傾きαおよび切片βと、実測したPWVおよびその実測時の圧迫圧Pcとを代入すれば、拡張期血圧推定値DAPeが得られる。
DAPe=α・ln(PWV)+(β+Pc) ・・・(5)
Assuming that the relationship between the square value PWV 2 of the pulse wave velocity PWV and the transmural pressure Pt is approximately stable and can be approximated by equation (2) regardless of the condition of the individual living body, as described above, Calculate the intercept β by substituting the slope α calculated from equation (2) or its modified form (3) based on the compression pressure Pc and pulse wave velocity PWV actually measured in the linear relational equation (4). can do. By transforming equation (3), the following diastolic blood pressure estimation equation (5) is obtained. Therefore, by substituting the obtained slope α and intercept β, the actually measured PWV and the compression pressure Pc at the time of the actual measurement into this diastolic blood pressure estimation formula (5), the diastolic blood pressure estimated value DAPe can be obtained.
DAPe=α・ln(PWV 2 )+(β+Pc)...(5)

図15は、30人のヒトについて、実際に測定された脈波伝播速度PWVおよび圧迫圧Pcから式(5)により推定された拡張期血圧値DAPeと、コロトコフ音聴診法による血圧測定により測定された拡張期血圧DAPとの相関を示している。このとき90個のデータポイントを通る線形回帰直線は、図15の実線に示すように、y=1.0094x-1.2482、この線形回帰直線の決定係数Rは0.6416であった。 FIG. 15 shows the diastolic blood pressure value DAPe estimated by equation (5) from the actually measured pulse wave velocity PWV and compression pressure Pc, and the blood pressure measured by the Korotkoff auscultation method for 30 people. The correlation between diastolic blood pressure and DAP is shown. At this time, the linear regression line passing through the 90 data points was y=1.0094x-1.2482, as shown by the solid line in FIG. 15, and the coefficient of determination R 2 of this linear regression line was 0.6416.

図5に戻って、図5は電子制御装置70に備えられた制御機能の要部を説明するための機能ブロック線図である。図5において、電子制御装置70は、線形回帰直線記憶部82、線形関係記憶部84、圧迫圧制御部86、脈波抽出部88、脈波伝播速度算出部90、固有関係生成部94、血圧推定部102、血圧変動判定部108を、機能的に備えている。 Returning to FIG. 5, FIG. 5 is a functional block diagram for explaining main parts of the control functions provided in the electronic control device 70. In FIG. 5, the electronic control device 70 includes a linear regression straight line storage section 82, a linear relationship storage section 84, a compression pressure control section 86, a pulse wave extraction section 88, a pulse wave velocity calculation section 90, a unique relationship generation section 94, a blood pressure It functionally includes an estimation section 102 and a blood pressure fluctuation determination section 108.

線形回帰直線記憶部82には、線形回帰直線Ptの式(2)から変換された線形回帰直線-Pcの式(3)すなわち変換式(3)が、予め記憶されている。また、線形関係記憶部84には、経験的実験的に得られた一定の傾きγおよび切片δが設定された傾きαと切片βとの間の線形関係式(4)が予め記憶されている。 The linear regression line storage unit 82 stores in advance the equation (3) of the linear regression line −Pc converted from the equation (2) of the linear regression line Pt, that is, the conversion equation (3). Furthermore, the linear relationship storage unit 84 stores in advance a linear relationship equation (4) between the slope α and the intercept β, in which a constant slope γ and an intercept δ obtained empirically and experimentally are set. .

圧迫圧制御部86は、血圧推定開始操作釦80の操作に応答して、まず、圧迫圧Pc下降期間内の拡張期血圧DAP付近の複数の圧迫圧Pc毎に実際の脈波伝播速度PWVを得るために、先ず、急速排気弁52及び排気制御弁54を閉じ、第1開閉弁E1、第2開閉弁E2、及び第3開閉弁E3を開き、空気ポンプ50を作動させることにより、生体14の収縮期血圧値SAPよりも充分に高い圧、例えば180mmHgに予め設定された加圧上限値PCMとなるまで圧迫帯12の生体14に対する圧迫圧Pcを急速昇圧させる。 In response to the operation of the blood pressure estimation start operation button 80, the compression pressure control unit 86 first calculates the actual pulse wave propagation velocity PWV for each of a plurality of compression pressures Pc around the diastolic blood pressure DAP within the compression pressure Pc decreasing period. In order to obtain the biological 14 The compression pressure Pc of the compression band 12 against the living body 14 is rapidly increased until it reaches a pressure upper limit value PCM that is set in advance to a pressure sufficiently higher than the systolic blood pressure value SAP, for example, 180 mmHg.

次いで、圧迫圧制御部86は、排気制御弁54を所定の周期で所定の期間繰り返し開くことで、圧迫帯12の圧迫圧Pcが生体14の拡張期血圧値DAPよりも充分に低い圧、例えば40~60mmHg程度に予め設定された減圧下限値PCEに到達するまでの間で複数の一定のステップ圧P1、P2、P3、・・・Pxが2~5mmHg程度の予め設定された段差で順次維持されるように、予め設定された降圧速度で圧迫帯12の圧迫圧Pcを、圧迫帯12の圧迫圧Pcが予め設定された減圧下限値PCEよりも小さくなるまで、階段(ステップ)状に徐速降圧させる。このように制御された圧迫帯12の圧迫圧Pcは、上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26は同じ圧迫圧Pcで生体14に対して圧迫するが、図6では第4圧力センサにより検出された圧迫帯12の圧迫圧Pcが示されている。 Next, the compression pressure control unit 86 repeatedly opens the exhaust control valve 54 at a predetermined period for a predetermined period, so that the compression pressure Pc of the compression cuff 12 is sufficiently lower than the diastolic blood pressure value DAP of the living body 14, for example. Multiple constant step pressures P1, P2, P3,...Px are maintained sequentially at preset steps of about 2 to 5 mmHg until reaching the lower limit of reduced pressure PCE, which is preset to about 40 to 60 mmHg. As shown in FIG. Rapidly lower blood pressure. The compression pressure Pc of the compression band 12 controlled in this way is such that the upstream expansion bag 22, intermediate expansion bag 24, and downstream expansion bag 26 compress the living body 14 with the same compression pressure Pc, but in FIG. The compression pressure Pc of the compression band 12 detected by the fourth pressure sensor is shown.

そして、圧迫圧制御部86は、後述の固有関係生成部94においてたとえば前述の拡張期血圧推定式(5)が生成された後は、血圧監視開始操作に応答して、生体14の拡張期血圧値を監視するために、圧迫圧Pcを好適には生体14の拡張期血圧値DAPよりも充分に低い圧、例えば20~60mmHgの範囲内において設定されたモニタ用維持圧PcHmに維持するように圧迫圧Pcを制御する。モニタ用維持圧PcHmは、圧迫帯12の圧迫圧Pcに含まれる脈波が確実に得られる範囲で、可及的に低い値に設定される。 After the diastolic blood pressure estimation formula (5) described above is generated by the unique relationship generation unit 94 (described later), the compression pressure control unit 86 controls the diastolic blood pressure of the living body 14 in response to the blood pressure monitoring start operation. In order to monitor the value, the compression pressure Pc is preferably maintained at a pressure sufficiently lower than the diastolic blood pressure value DAP of the living body 14, for example, at a monitoring maintenance pressure PcHm set within the range of 20 to 60 mmHg. Control the compression pressure Pc. The monitoring maintenance pressure PcHm is set to a value as low as possible within a range in which the pulse wave included in the compression pressure Pc of the compression band 12 can be reliably obtained.

圧迫圧制御部86は、モニタ圧維持区間が終了させられると、急速排気弁52を用いて上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26内の圧力をそれぞれ大気圧まで排圧する。 When the monitor pressure maintenance period ends, the compression pressure control unit 86 uses the rapid exhaust valve 52 to exhaust the pressures in the upstream inflation bag 22, intermediate inflation bag 24, and downstream inflation bag 26 to atmospheric pressure. Press.

脈波抽出部88は、圧迫圧Pcが維持される区間において、第1圧力センサT1からの上流側膨張袋22内の圧迫圧Pc1を示す出力信号、及び、第3圧力センサT3からの下流側膨張袋26内の圧迫圧Pc3を示す出力信号から、たとえば0.5Hz~20Hzの脈波弁別用バンドパスフィルタを通して一対の脈波MW1及び脈波MW3をそれぞれ抽出し、記憶させる。一対の脈波MW1及び脈波MW3は、圧迫圧Pcに重畳している脈拍に同期して発生する圧力振動波である。脈波抽出部88は、脈波MW1及び脈波MW3と、それらが発生したときの圧迫圧Pcとを互いに紐付けて記憶する。 The pulse wave extractor 88 outputs an output signal indicating the compression pressure Pc1 in the upstream inflation bag 22 from the first pressure sensor T1 and a downstream signal from the third pressure sensor T3 in the section where the compression pressure Pc is maintained. A pair of pulse waves MW1 and MW3 are respectively extracted from the output signal indicating the compression pressure Pc3 in the expansion bag 26 through a pulse wave discrimination band-pass filter of 0.5 Hz to 20 Hz, and are stored. The pair of pulse waves MW1 and pulse waves MW3 are pressure oscillation waves that are generated in synchronization with the pulse that is superimposed on the compression pressure Pc. The pulse wave extraction unit 88 stores the pulse wave MW1, the pulse wave MW3, and the compression pressure Pc at the time when they are generated in association with each other.

脈波伝播速度算出部90は、圧迫圧Pcが維持される状態において得られた一対の脈波MW1及び脈波MW3の立ち上がり点間あるいはピーク点間の時間差Δtと、上流側膨張袋22及び下流側膨張袋26間の既知の距離L13とから、脈波の発生毎に脈波伝播速度PWV(=L13/Δt)を、予め設定された複数のステップ圧毎に逐次算出する。上記の予め設定された複数のステップ圧とは、圧迫帯12の圧迫圧Pcの降圧に伴って脈波抽出部88により抽出された脈波の振幅が最大値を示すステップ圧の圧力値(平均血圧相当値)に基づいて、その振幅最大値の所定割合の振幅を有するステップ圧から算出される圧力値(最低血圧相当値)から、連続する所定数(たとえば6つ)のステップ圧である。或いは、上記の予め設定された複数のステップ圧とは、圧迫帯12の圧迫圧Pcの降圧に伴って脈波抽出部88により抽出された脈波の振幅が最大値を示すステップ圧から、所定数(たとえば2つ)のステップ圧を経た後の連続する所定数(たとえば6つ)のステップ圧である。 The pulse wave velocity calculation unit 90 calculates the time difference Δt between the rising points or the peak points of the pair of pulse waves MW1 and MW3 obtained while the compression pressure Pc is maintained, and the upstream expansion bag 22 and the downstream side. Based on the known distance L13 between the side inflation bags 26, the pulse wave propagation velocity PWV (=L13/Δt) is calculated every time a pulse wave occurs at each of a plurality of preset step pressures. The above-mentioned plurality of preset step pressures are the pressure values (average These are a predetermined number (for example, six) of consecutive step pressures from a pressure value (diastolic blood pressure equivalent value) calculated from a step pressure having an amplitude of a predetermined proportion of the maximum amplitude value based on the blood pressure equivalent value). Alternatively, the above-mentioned plurality of preset step pressures may be a predetermined step pressure from which the amplitude of the pulse wave extracted by the pulse wave extraction unit 88 shows the maximum value as the compression pressure Pc of the compression cuff 12 decreases. This is a predetermined number (for example, six) of consecutive step pressures after passing through several (for example, two) step pressures.

脈波伝播速度算出部90は、上記所定数のステップ圧毎に、圧迫圧Pcが維持される状態において得られた一対の脈波MW1及び脈波MW3の立ち上がり点間あるいはピーク点間の時間差Δtと上流側膨張袋22及び下流側膨張袋26間の既知の距離L13とから脈波の発生毎に算出した脈波伝播速度PWV(=L13/Δt)と、その脈波が発生したときのステップ圧すなわち圧迫圧Pcとの1組のデータを、所定数のステップ毎に記憶する。 The pulse wave propagation velocity calculation unit 90 calculates the time difference Δt between the rising points or the peak points of the pair of pulse waves MW1 and MW3 obtained in a state where the compression pressure Pc is maintained for each of the predetermined number of step pressures. and the known distance L13 between the upstream expansion bag 22 and the downstream expansion bag 26, the pulse wave propagation velocity PWV (=L13/Δt) calculated each time a pulse wave occurs, and the step when the pulse wave occurs. A set of data including pressure, that is, compression pressure Pc, is stored for each predetermined number of steps.

なお、上記ステップ圧毎の圧迫圧Pcとして、ステップ内の複数の脈波の立ち上がり点に相当するカフ圧Pcの平均値が用いられてもよい。また、脈波伝播速度PWVとして、一対の脈波の立ち上がり点間の時間差を横軸とし、膨張袋間距離を縦軸とした二次元座標において、上流側膨張袋22を基準として、上流側膨張袋22及び中間膨張袋24間の既知の距離L12および脈波立ち上がり点の時間差Δt1と、上流側膨張袋22及び下流側膨張袋26間の既知の距離L13および脈波立ち上がり点の時間差Δt3とを線形回帰し、回帰直線の傾きから求めた脈波伝播速度PWVが用いられてもよい。 Note that the average value of cuff pressures Pc corresponding to the rising points of a plurality of pulse waves within a step may be used as the compression pressure Pc for each step pressure. In addition, as the pulse wave propagation velocity PWV, in two-dimensional coordinates where the horizontal axis is the time difference between the rising points of a pair of pulse waves and the vertical axis is the distance between the inflation bags, the upstream expansion bag 22 is taken as a reference. The known distance L12 between the bag 22 and the intermediate inflation bag 24 and the time difference Δt1 between the pulse wave rise points, and the known distance L13 between the upstream expansion bag 22 and the downstream expansion bag 26 and the time difference Δt3 between the pulse wave rise points. Pulse wave propagation velocity PWV obtained from linear regression and the slope of the regression line may be used.

固有関係生成部94は、傾きα算出部96、切片β算出部98、拡張期血圧推定式設定部100を、備えている。 The unique relationship generation section 94 includes a slope α calculation section 96, an intercept β calculation section 98, and a diastolic blood pressure estimation formula setting section 100.

傾きα算出部96は、ln(PWV)を表す軸と-Pcを表す軸との二次元座標において、前記所定数(たとえば6つ)のステップ圧毎に記憶された、脈波伝播速度PWV(=L13/Δt)の2乗値の対数ln(PWV)と、その脈波が発生したときのステップ圧すなわち圧迫圧Pcとの6組の実測データを示す6点の実測データポイントの線形回帰分析を行なうことで、線形回帰直線-Pcの式(3)の右辺第1項の係数値を、傾きαとして求める。 The inclination α calculation unit 96 calculates the pulse wave propagation velocity PWV stored for each of the predetermined number (for example, six) of step pressures in the two-dimensional coordinates of the axis representing ln(PWV 2 ) and the axis representing −Pc. The linearity of 6 measured data points showing 6 sets of measured data of the logarithm ln (PWV 2 ) of the square value of (=L13/Δt) and the step pressure, that is, the compression pressure Pc when the pulse wave occurs. By performing regression analysis, the coefficient value of the first term on the right side of equation (3) of the linear regression line -Pc is determined as the slope α.

切片β算出部98は、線形関係式(4)から傾きα算出部96により算出された傾きαに基づいて切片βを算出する。すなわち、傾きα算出部96により算出された傾きαを線形関係式(4)に代入することで、切片βを算出する。 The intercept β calculation unit 98 calculates the intercept β based on the slope α calculated by the slope α calculation unit 96 from the linear relational expression (4). That is, the intercept β is calculated by substituting the slope α calculated by the slope α calculation unit 96 into the linear relational expression (4).

拡張期血圧推定式設定部100は、傾きα算出部96により算出された傾きα及び切片β算出部98により算出された切片βを、線形回帰直線式(2)から変換された式(5)に代入し、生体の固有関係を反映する拡張期血圧推定式(5)を設定し、記憶する。 The diastolic blood pressure estimation formula setting unit 100 converts the slope α calculated by the slope α calculation unit 96 and the intercept β calculated by the intercept β calculation unit 98 into the equation (5) converted from the linear regression linear equation (2). A diastolic blood pressure estimation formula (5) reflecting the unique relationship of the living body is set and stored.

血圧推定部102は、たとえば図6の時点t2からt11までの圧迫圧を増減させる区間において、或いはtm1以降のモニタ圧PcHmが維持されるモニタ区間において、血圧推定を実行する拡張期血圧推定部104を、備えている。拡張期血圧推定部104は、たとえば1脈拍周期乃至十数脈拍周期の所定の周期で実測した脈波伝播速度PWVおよび圧迫圧Pcを拡張期血圧推定式(5)に代入することで、拡張期血圧推定値DAPeを繰り返し算出する。算出された拡張期血圧値DAPeの移動平均値を算出してもよい。拡張期血圧推定部104は、算出された拡張期血圧推定値DAPeを表示装置78に時系列的に表示させる。 The blood pressure estimating unit 102 includes a diastolic blood pressure estimating unit 104 that performs blood pressure estimation, for example, in the interval in which the compression pressure is increased or decreased from time t2 to t11 in FIG. 6, or in the monitoring interval in which the monitor pressure PcHm is maintained after tm1. It is equipped with. The diastolic blood pressure estimating unit 104 calculates the diastolic blood pressure by substituting the pulse wave velocity PWV and the compression pressure Pc actually measured at a predetermined period of, for example, one pulse cycle to ten or more pulse cycles into the diastolic blood pressure estimation formula (5). The estimated blood pressure value DAPe is repeatedly calculated. A moving average value of the calculated diastolic blood pressure values DAPe may be calculated. The diastolic blood pressure estimating unit 104 causes the display device 78 to display the calculated diastolic blood pressure estimated value DAPe in chronological order.

血圧変動判定部108は、図6の時点tm1以降のモニタ圧PcHmが維持されるモニタ区間において、脈波伝播速度PWVの変化が予め設定された変動判定範囲PWV1~PWVhから外れたことに基づいて、或いは、推定された拡張期血圧推定値DAPeの変化が予め設定された変動判定範囲DAPe1~DAPehから外れたことに基づいて生体の血圧変動の発生を判定するとともに、その生体の血圧変動の発生を表示装置78に表示させる。 The blood pressure fluctuation determining unit 108 determines based on the fact that the change in pulse wave velocity PWV deviates from the preset fluctuation determination range PWV1 to PWVh in the monitoring period in which the monitored pressure PcHm is maintained after time tm1 in FIG. Alternatively, the occurrence of a blood pressure change in a living body is determined based on the fact that a change in the estimated diastolic blood pressure value DAPe deviates from a preset fluctuation determination range DAPe1 to DAPeh, and the occurrence of a blood pressure change in the living body is determined. is displayed on the display device 78.

図16、図17、図18、図19は、電子制御装置70の制御作動の要部を説明するフローチャートである。図16は、拡張期血圧推定式を設定し、拡張期血圧を算出、推定するための実測データを採取する制御を示し、図17は図16の拡張期血圧推定式設定ルーチンを示し、図18は図16の拡張期血圧推定ルーチンを示し、図19は血圧監視制御を示している。 16, FIG. 17, FIG. 18, and FIG. 19 are flowcharts illustrating main parts of the control operation of the electronic control device 70. FIG. 16 shows control for setting a diastolic blood pressure estimation formula and collecting actual measurement data for calculating and estimating diastolic blood pressure, FIG. 17 shows a diastolic blood pressure estimation formula setting routine of FIG. 16, and FIG. shows the diastolic blood pressure estimation routine in FIG. 16, and FIG. 19 shows blood pressure monitoring control.

拡張期血圧推定式設定を開始する操作釦80がオン操作されると、圧迫圧制御部86に対応するステップ(以下、「ステップ」を省略する)S1では、圧迫帯12の圧迫圧Pcが昇圧される。具体的には、図6に示すように、急速排気弁52および排気制御弁54が閉状態とされるとともに、空気ポンプ50が作動状態とされてその空気ポンプ50から圧送される圧縮空気により主配管56内及びそれに連通された上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26内の圧力が急速に高められ、圧迫帯12による上腕16の圧迫が開始される。 When the operation button 80 that starts setting the diastolic blood pressure estimation formula is turned on, in step S1 corresponding to the compression pressure control section 86 (hereinafter, "step" is omitted), the compression pressure Pc of the compression cuff 12 is increased. be done. Specifically, as shown in FIG. 6, the quick exhaust valve 52 and the exhaust control valve 54 are closed, the air pump 50 is activated, and the compressed air pumped from the air pump 50 is used to discharge the main air. The pressure within the piping 56 and the upstream inflation bladder 22, intermediate inflation bladder 24, and downstream inflation bladder 26 connected thereto is rapidly increased, and compression of the upper arm 16 by the compression band 12 is started.

次いで、圧迫圧制御部86に対応するS2では、圧迫帯12の圧迫圧Pcを示す第4圧力センサT4の出力信号に基づいて、その圧迫圧Pcが生体の収縮期血圧以上の値に予め設定された昇圧目標圧力値PCM(例えば180mmHg)以上であるか否かが判定される。図6の時間t2より前の時点では、上記S2の判定が否定されて図16のS1以下が繰り返し実行される。 Next, in S2 corresponding to the compression pressure control unit 86, based on the output signal of the fourth pressure sensor T4 indicating the compression pressure Pc of the compression band 12, the compression pressure Pc is preset to a value equal to or higher than the systolic blood pressure of the living body. It is determined whether or not the boost target pressure value PCM (for example, 180 mmHg) is equal to or higher than the boost target pressure value PCM (for example, 180 mmHg). At a time point before time t2 in FIG. 6, the determination in S2 is negative, and steps S1 and subsequent steps in FIG. 16 are repeatedly executed.

圧迫圧Pcが昇圧目標圧力値PCMに到達してS2の判定が肯定されると、圧迫圧制御部86に対応するS3では、空気ポンプ50の作動が停止され、圧迫帯12の圧迫圧Pcが、例えば2~5mmHg/sec毎に予め設定された一定のステップ圧P1、P2、P3、・・・Pxのように一定の周期で順次形成されるステップ降圧で徐速排気するように、排気制御弁54、第1開閉弁E1、第2開閉弁E2及び第3開閉弁E3が作動させられる。上記ステップ圧P1、P2、P3、・・・Pxを保持する場合には第1開閉弁E1、第2開閉弁E2、及び第3開閉弁E3がそれぞれ閉状態とされる。図6の時間t2は上記徐速排気の開始時点であり、また時間t3~t4の間は圧迫帯12の圧迫圧Pcがステップ圧P1に所定時間例えば2拍が発生する間維持されている時間である。 When the compression pressure Pc reaches the increased target pressure value PCM and the determination in S2 is affirmed, the operation of the air pump 50 is stopped in S3 corresponding to the compression pressure control section 86, and the compression pressure Pc of the compression band 12 is increased. , Exhaust control is performed so that the exhaust gas is slowly exhausted with step pressure reductions that are sequentially formed at a constant cycle, such as constant step pressures P1, P2, P3, ... Px, which are preset in advance every 2 to 5 mmHg/sec, for example. The valve 54, the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are operated. When maintaining the step pressures P1, P2, P3, . . . Px, the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are each closed. Time t2 in FIG. 6 is the start point of the slow evacuation, and time t3 to t4 is the period during which the compression pressure Pc of the compression band 12 is maintained at the step pressure P1 for a predetermined period of time, for example, while two beats occur. It is.

次いで、脈波抽出部88に対応するS4では、圧迫圧P1、P2、及びP3、・・・Pxがそれぞれ所定時間維持されている区間で、脈波が抽出される。すなわち、第1圧力センサT1、第2圧力センサT2及び第3圧力センサT3からの出力信号に対して、たとえば0.5Hz~20Hz未満の波長帯の信号を弁別する脈波採取用バンドパスフィルタ処理がそれぞれ為されることにより上流側膨張袋22、中間膨張袋24及び下流側膨張袋26からの脈波を示す脈波信号MW1、MW2及びMW3が抽出されるとともに、第4圧力センサT4からの出力信号に対してたとえば数Hz未満の波長帯のローパスフィルタ処理が為されることにより交流成分が除去された圧迫帯12の圧迫圧Pcが抽出される。この圧迫圧Pcはそのときのステップ圧を表すものであり、上記脈波信号MW1、MW2及びMW3は、そのときの圧迫圧Pcと共に、ステップ毎に順次記憶される。各ステップにおいて、脈波信号MW1、MW2及びMW3は、それぞれ複数個記憶される。 Next, in S4 corresponding to the pulse wave extraction section 88, pulse waves are extracted in sections where the compression pressures P1, P2, P3, . . . Px are each maintained for a predetermined time. That is, pulse wave sampling band-pass filter processing is performed to discriminate signals in a wavelength band of, for example, 0.5 Hz to less than 20 Hz with respect to the output signals from the first pressure sensor T1, the second pressure sensor T2, and the third pressure sensor T3. As a result, pulse wave signals MW1, MW2, and MW3 representing pulse waves from the upstream expansion bag 22, intermediate expansion bag 24, and downstream expansion bag 26 are extracted, and pulse wave signals MW1, MW2, and MW3 representing pulse waves from the fourth pressure sensor T4 are The compression pressure Pc of the compression band 12 from which the alternating current component has been removed is extracted by performing low-pass filter processing on the output signal in a wavelength band of less than several Hz, for example. This compression pressure Pc represents the step pressure at that time, and the pulse wave signals MW1, MW2, and MW3 are sequentially stored for each step together with the compression pressure Pc at that time. In each step, a plurality of pulse wave signals MW1, MW2, and MW3 are stored.

圧迫圧制御部86に対応するS5では、圧迫圧Pcが予め設定された測定終了圧力値PCE(例えば60mmHg)以下であるか否かが判定される。このS5の判定が否定される場合、すなわち図6のt11より前の時点では、上記S5の判定が否定されてS3以下が繰り返し実行される。上記S5の判断が肯定されると、t11時点において、S6により急速排気が開始される。 In S5 corresponding to the compression pressure control section 86, it is determined whether the compression pressure Pc is equal to or less than a preset measurement end pressure value PCE (for example, 60 mmHg). If the determination in S5 is negative, that is, before t11 in FIG. 6, the determination in S5 is negative and steps S3 and subsequent steps are repeatedly executed. If the determination in S5 is affirmative, rapid exhaust is started in S6 at time t11.

次いで、脈波伝播速度算出部90或いは脈波伝播速度測定工程に対応するS7では、圧迫帯12の圧迫圧Pcの降圧に伴って脈波抽出部88により抽出された脈波の振幅が最大値を示すステップ圧の圧力値(平均血圧相当値)に基づいて、その振幅最大値の所定割合の振幅を有するステップ圧から算出される圧力値(最低血圧相当値)から、連続する複数(たとえば6つ)のステップ圧において、或いは、圧迫帯12の圧迫圧Pcの降圧に伴って脈波抽出部88により抽出された脈波の振幅が最大値を示すステップ圧から、所定数(たとえば2つ)のステップを経た後の連続する複数(たとえば6つ)のステップ圧において、それぞれ得られた一対の脈波MW1及び脈波MW3の立ち上がり点間あるいはピーク点間の時間差Δtと、上流側膨張袋22及び下流側膨張袋26間の既知の距離L13とから、脈波の発生毎に脈波伝播速度PWV(=L13/Δt)が、順次算出される。そして、それら脈波伝播速度PWVは2乗値の対数ln(PWV)に変換され、その2乗値の対数ln(PWV)と、そのときの脈波伝播速度PWVの算出に用いられた脈波の発生時の圧迫圧Pcとで1組の実測データ〔ln(PWV)、Pc〕を構成し、所定数nのステップ毎に、各1組の実測データ〔ln(PWV1)、Pc1〕・・・・〔ln(PWVn)、Pcn〕が記憶される。 Next, in S7 corresponding to the pulse wave velocity calculating section 90 or the pulse wave velocity measuring step, the amplitude of the pulse wave extracted by the pulse wave extracting section 88 reaches the maximum value as the compression pressure Pc of the compression cuff 12 decreases. Based on the pressure value of the step pressure (value equivalent to mean blood pressure) indicating the step pressure, a continuous plurality (for example, 6 A predetermined number (for example, two) of the step pressures at which the amplitude of the pulse wave extracted by the pulse wave extraction unit 88 shows the maximum value at the step pressure of The time difference Δt between the rise points or the peak points of the pair of pulse waves MW1 and pulse waves MW3 obtained at a plurality of consecutive (for example, six) step pressures after passing through the steps, and the upstream expansion bag 22 and the known distance L13 between the downstream expansion bags 26, the pulse wave propagation velocity PWV (=L13/Δt) is sequentially calculated every time a pulse wave occurs. Then, these pulse wave propagation velocities PWV were converted to the logarithm ln (PWV 2 ) of the square value, and used to calculate the logarithm ln (PWV 2 ) of the square value and the pulse wave propagation velocity PWV at that time. A set of actual measurement data [ln (PWV 2 ), Pc] is formed with the compression pressure Pc when the pulse wave is generated, and each set of actual measurement data [ln (PWV 1 2 ), Pc1]...[ln(PWVn 2 ), Pcn] are stored.

次に、固有関係生成部94或いは固有関係生成工程に対応するS8では、図17に示す拡張期血圧推定式設定ルーチンが開始される。図17において、傾きα算出部96或いは傾き算出工程に対応するS81では、複数組(本実施例では6組)の実測データ〔ln(PWV1)、Pc1〕・・・・〔ln(PWVn)、Pcn〕の回帰分析することで近似的に得た、線形回帰直線-Pcの式(3)の右辺第1項の係数値を、傾きαとして求められる。 Next, in S8 corresponding to the unique relationship generation section 94 or the unique relationship generation step, a diastolic blood pressure estimation formula setting routine shown in FIG. 17 is started. In FIG. 17, the slope α calculation unit 96 or S81 corresponding to the slope calculation process calculates a plurality of sets (six sets in this example) of actually measured data [ln(PWV1 2 ), Pc1]...[ln(PWVn 2 ), Pcn], the coefficient value of the first term on the right side of equation (3) of the linear regression line -Pc is obtained as the slope α.

次いで、切片β算出部98或いは切片算出工程に対応するS82では、線形関係記憶部84に予め記憶された線形関係式(4)のxに、S81により算出された傾きαを代入することで、yすなわち切片βが算出される。 Next, in the intercept β calculation section 98 or S82 corresponding to the intercept calculation step, by substituting the slope α calculated in S81 into x of the linear relational expression (4) stored in advance in the linear relation storage section 84, y, that is, the intercept β is calculated.

拡張期血圧推定式設定部100或いは拡張期血圧推定式設定工程に対応するS83では、S81により算出された傾きα及びS82により算出された切片βとが、拡張期血圧推定式(5)に代入されることで、拡張期血圧DAPeと脈波伝播速度PWVおよびそれが得られたときの圧迫圧Pcとの間の、前記実測データを得た生体の固有の関係を反映する拡張期血圧推定式(5)が設定され、記憶される。 In the diastolic blood pressure estimation formula setting unit 100 or in S83 corresponding to the diastolic blood pressure estimation formula setting step, the slope α calculated in S81 and the intercept β calculated in S82 are substituted into the diastolic blood pressure estimation formula (5). By doing so, a diastolic blood pressure estimation formula is created that reflects the unique relationship of the living body from which the actual measurement data was obtained, between the diastolic blood pressure DAPe, the pulse wave velocity PWV, and the compression pressure Pc when it was obtained. (5) is set and stored.

そして、拡張期血圧推定部104或いは拡張期血圧推定工程に対応するS9では、図18に示す拡張期血圧推定ルーチンが開始される。図18において、S91では、n組の実測データ〔ln(PWV1)、Pc1〕・・・・〔ln(PWVn)、Pcn〕のうちの少なくとも1組の実測データが拡張期血圧推定式(5)に代入されることで、少なくとも1つの拡張期血圧DAPeが算出され、表示装置78に表示される。S92では、複数のステップ毎の複数組の実測データが拡張期血圧推定式(5)に代入されることで、複数個の拡張期血圧DAPeが算出された場合に、それらの平均値が拡張期血圧DAPeとして記憶され、表示装置78に表示される。 Then, in S9 corresponding to the diastolic blood pressure estimation unit 104 or the diastolic blood pressure estimation step, a diastolic blood pressure estimation routine shown in FIG. 18 is started. In FIG. 18, in S91, at least one set of actual measurement data among n sets of actual measurement data [ln (PWV1 2 ), Pc1] ... [ln (PWVn 2 ), Pcn] is calculated using the diastolic blood pressure estimation formula ( 5), at least one diastolic blood pressure DAPe is calculated and displayed on the display device 78. In S92, when a plurality of diastolic blood pressures DAPe are calculated by substituting a plurality of sets of actual measurement data for each of a plurality of steps into the diastolic blood pressure estimation formula (5), their average value is calculated as the diastolic blood pressure. It is stored as blood pressure DAPe and displayed on display device 78.

図19は、拡張期血圧推定式(5)が設定された後に、血圧監視モード開始操作釦81の操作に応答して実行される血圧監視ルーチンを示している。図20において、圧迫圧制御部86に対応するS31では、圧迫帯12の圧迫圧力Pcが拡張期血圧以下の圧、例えば20~60mmHgの範囲内となるように
予め設定された一定のモニタ用維持圧PcHmとなるように制御される。次いで、脈波抽出部88に対応するS32では、上流側膨張袋22から得られる圧迫圧力Pc1および下流側膨張袋26から得られる圧迫圧力Pc3の信号から脈波弁別用のバンドパスフィルタを通して、一対の脈波MW1及び脈波MW3が、それぞれ一拍毎に抽出され、順次記憶される。脈波伝播速度算出部90に対応するS33では、モニタ用維持圧PcHにおいて得られた一対の脈波MW1及び脈波MW3の立ち上がり点間あるいはピーク点間の時間差Δtと、上流側膨張袋22及び下流側膨張袋26間の既知の距離L13とから、脈波の発生毎に脈波伝播速度PWV(=L13/Δt)が逐次算出される。
FIG. 19 shows a blood pressure monitoring routine that is executed in response to the operation of the blood pressure monitoring mode start operation button 81 after the diastolic blood pressure estimation formula (5) is set. In FIG. 20, in S31 corresponding to the compression pressure control unit 86, a constant monitoring maintenance is performed that is preset so that the compression pressure Pc of the compression cuff 12 is below the diastolic blood pressure, for example, within a range of 20 to 60 mmHg. The pressure is controlled to be PcHm. Next, in S32 corresponding to the pulse wave extraction section 88, the signals of the compression pressure Pc1 obtained from the upstream expansion bag 22 and the compression pressure Pc3 obtained from the downstream expansion bag 26 are passed through a bandpass filter for pulse wave discrimination, and a pair of signals are extracted. Pulse wave MW1 and pulse wave MW3 are each extracted for each beat and stored sequentially. In S33 corresponding to the pulse wave propagation velocity calculation unit 90, the time difference Δt between the rising points or the peak points of the pair of pulse waves MW1 and pulse waves MW3 obtained at the monitoring maintenance pressure PcH, the upstream expansion bag 22 and From the known distance L13 between the downstream expansion bags 26, the pulse wave propagation velocity PWV (=L13/Δt) is sequentially calculated every time a pulse wave occurs.

次に、拡張期血圧推定部104および拡張期血圧推定工程に対応するS34では、S33において算出された脈波伝播速度PWVの2乗値の対数ln(PWV)が算出され、モニタ用維持圧PcHmにおける1組の実測データ〔ln(PWV)、PcHm〕が構成される。そして、その1組の実測データ〔ln(PWV)、PcHm〕が拡張期血圧推定式(5)に代入されることで、拡張期血圧推定値DAPeが、脈波抽出周期毎に、或いはその脈波抽出周期の整数倍の周期で繰り返し算出される。そして、S35において、S34で算出された拡張期血圧推定値DAPeが記憶されると共に、表示装置78に出力される。 Next, in S34 corresponding to the diastolic blood pressure estimation unit 104 and the diastolic blood pressure estimation step, the logarithm ln (PWV 2 ) of the square value of the pulse wave propagation velocity PWV calculated in S33 is calculated, and the maintenance pressure for monitoring is A set of actual measurement data [ln(PWV 2 ), PcHm] at PcHm is constructed. Then, by substituting the set of measured data [ln(PWV 2 ), PcHm] into the diastolic blood pressure estimation formula (5), the estimated diastolic blood pressure value DAPe is calculated for each pulse wave extraction cycle or after that. It is repeatedly calculated at a cycle that is an integral multiple of the pulse wave extraction cycle. Then, in S35, the estimated diastolic blood pressure value DAPe calculated in S34 is stored and output to the display device 78.

次いで、S36において、S33で算出された脈波伝播速度PWVの変動幅が、予め設定された変動判定範囲PWVl~PWVhから外れたか否かに基づいて、或いは、S34で算出された拡張期血圧推定値DAPeの変動幅が、予め設定された変動判定範囲DAPel~DAPehから外れたか否かに基づいて、被測定者の血圧変動の発生が判定される。S36の判断が否定される場合は、S37をスキップし、S38以下が実行される。しかし、S36の判断が肯定される場合は、S37において、拡張期血圧推定値DAPeの変動の発生が表示装置78に出力される。 Next, in S36, the fluctuation width of the pulse wave velocity PWV calculated in S33 is outside the preset fluctuation determination range PWVl to PWVh, or based on the diastolic blood pressure estimation calculated in S34. The occurrence of a blood pressure fluctuation of the subject is determined based on whether or not the fluctuation range of the value DAPe deviates from a preset fluctuation determination range DAPel to DAPeh. If the determination in S36 is negative, S37 is skipped and S38 and subsequent steps are executed. However, if the determination in S36 is affirmative, the occurrence of a change in the estimated diastolic blood pressure value DAPe is output to the display device 78 in S37.

次いで、S38において、血圧監視モード操作釦81が再操作されたか否かが判断される。このS38の判断が否定される場合は、S31以下が繰り返し実行されるが、肯定された場合は、S39において、圧迫帯12が急速排気され、血圧監視モードが終了させられる。 Next, in S38, it is determined whether the blood pressure monitoring mode operation button 81 has been operated again. If the determination in S38 is negative, steps S31 and subsequent steps are repeatedly executed, but if the determination is affirmative, the compression cuff 12 is rapidly evacuated in S39, and the blood pressure monitoring mode is ended.

上述のように、本実施例の血圧測定装置10によれば、拡張期血圧推定式(5)を導く線形回帰直線式(2)に含まれる切片βおよび傾きαは、(4)式に示すように相互に一定の線形関係にあって被測定者に影響されない。このため、被測定者の個々の生体的特徴に影響され難いので、拡張期血圧値DAPeを高精度で測定できる。また、脈波伝播速度PWVを用いる血圧推定を行う従来のもののように、被測定者毎にキャリブレーションを行なう必要がない利点がある。 As described above, according to the blood pressure measuring device 10 of the present embodiment, the intercept β and the slope α included in the linear regression equation (2) leading to the diastolic blood pressure estimation equation (5) are shown in equation (4). As such, they have a fixed linear relationship and are not influenced by the person being measured. Therefore, the diastolic blood pressure value DAPe can be measured with high accuracy because it is not easily influenced by the individual biological characteristics of the subject. Further, there is an advantage that there is no need to perform calibration for each subject, unlike the conventional method of estimating blood pressure using pulse wave velocity PWV.

また、本実施例の血圧測定装置10によれば、動脈血管18の物理モデル式を示す予め設定された線形回帰直線式は、前記式(2)で表されるものである。その線形回帰直線式(2)は、貫壁圧が零であるときの血管断面積Aが零よりも大きく、貫壁圧の増加に伴って血管断面積Aが増加して飽和する、実際の血管の挙動を示す動脈血管18の物理モデル式(a1)と、Bramwell-Hillの式(a3)とに基づくので、拡張期血圧値DAPeを高精度で測定できる。 Further, according to the blood pressure measuring device 10 of the present embodiment, the preset linear regression equation representing the physical model equation of the arterial blood vessel 18 is expressed by the above equation (2). The linear regression equation (2) is the actual case in which the blood vessel cross-sectional area A is larger than zero when the transmural pressure is zero, and the blood vessel cross-sectional area A increases and becomes saturated as the transmural pressure increases. Since it is based on the physical model equation (a1) of the arterial blood vessel 18 indicating the behavior of the blood vessel and the Bramwell-Hill equation (a3), the diastolic blood pressure value DAPe can be measured with high accuracy.

また、本実施例の血圧測定装置10によれば、線形回帰直線式(2)からの変換式は、式(3)で表されるものである。その変換式(3)に基づけば、実測で得られた脈波伝播速度PWVの二乗の対数と圧迫圧Pcとを線形回帰分析することで、拡張期血圧DAPおよび切片βが未知であっても、傾きαを算出することができる。 Further, according to the blood pressure measuring device 10 of the present embodiment, the conversion equation from the linear regression equation (2) is expressed by equation (3). Based on the conversion formula (3), even if the diastolic blood pressure DAP and the intercept β are unknown, by linear regression analysis of the logarithm of the square of the pulse wave propagation velocity PWV obtained by actual measurement and the compression pressure Pc, , the slope α can be calculated.

また、本実施例の血圧測定装置10によれば、線形関係は、式(4)で表されるものである。その線形関係(4)は、線形回帰直線式(2)に含まれる切片βおよび傾きαが、個々によらず相互に一定の線形関係にあることを示し、その関係は被測定者に影響されないため、被測定者の個々の生体的特徴に影響を受けないで、拡張期血圧値DAPeを高精度で測定できる。 Further, according to the blood pressure measuring device 10 of this embodiment, the linear relationship is expressed by equation (4). The linear relationship (4) indicates that the intercept β and slope α included in the linear regression linear equation (2) have a constant linear relationship with each other regardless of each individual, and this relationship is not influenced by the person being measured. Therefore, the diastolic blood pressure value DAPe can be measured with high accuracy without being affected by the individual biological characteristics of the subject.

また、本実施例の血圧測定装置10によれば、拡張期血圧推定式は、式(5)で表されるものである。その拡張期血圧推定式(5)は、測定可能な圧迫圧Pcと脈波伝播速度PWVとの2つを変数とする式であるので、測定された2つの変数を代入することで、被測定者の拡張期血圧DAPeを推定することができる。 Further, according to the blood pressure measurement device 10 of the present embodiment, the diastolic blood pressure estimation formula is expressed by equation (5). The diastolic blood pressure estimation formula (5) is a formula that uses two measurable compression pressure Pc and pulse wave velocity PWV as variables, so by substituting the two measured variables, A person's diastolic blood pressure DAPe can be estimated.

また、本実施例の血圧測定装置10によれば、拡張期血圧推定部104は、拡張期血圧推定式(5)から、圧迫帯12による複数種類の圧迫圧(ステップ圧)毎に、実際の圧迫圧Pcおよび前記被圧迫部位の脈波伝播速度PWVに基づいて被測定者の拡張期血圧DAPeをそれぞれ推定し、それらステップ圧毎に得られた拡張期血圧DAPeの平均値を、拡張期血圧DAPeとして決定するものであるので、拡張期血圧値を一層高精度で測定できる。 Further, according to the blood pressure measurement device 10 of the present embodiment, the diastolic blood pressure estimating unit 104 calculates the actual The diastolic blood pressure DAPe of the subject is estimated based on the compression pressure Pc and the pulse wave velocity PWV of the compressed area, and the average value of the diastolic blood pressure DAPe obtained for each step pressure is calculated as the diastolic blood pressure. Since it is determined as DAPe, the diastolic blood pressure value can be measured with higher accuracy.

また、本実施例の血圧測定装置10によれば、拡張期血圧推定部104は、被測定者の拡張期血圧DAPよりも低く設定され圧迫帯12による複数の圧迫圧において得られた、実際の前記圧迫圧Pcおよび前記被圧迫部位の脈波伝播速度PWVに基づいて被測定者の拡張期血圧DAPeを推定するので、被測定者の圧迫帯12による圧迫の負担(ストレス)が軽減され、安定した血圧値が得られて血圧測定の精度が高められる。 Further, according to the blood pressure measuring device 10 of the present embodiment, the diastolic blood pressure estimating unit 104 calculates the actual diastolic blood pressure obtained at a plurality of pressures set by the compression band 12 and set lower than the diastolic blood pressure DAP of the subject. Since the diastolic blood pressure DAPe of the subject is estimated based on the compression pressure Pc and the pulse wave velocity PWV of the compressed area, the burden (stress) of compression by the compression band 12 on the subject is reduced and stable. The accuracy of blood pressure measurement can be improved by obtaining the blood pressure value.

また、本実施例の血圧測定装置10によれば、動脈血管18に沿って相互に所定距離だけ離隔した2位置に配置された一対の脈波センサ(第1圧力センサT1、第3圧力センサT3)によりそれぞれ検出された一対の脈波MW1及び脈波MW3の立ち上がり点間あるいはピーク点間の時間差Δtと、上流側膨張袋22及び下流側膨張袋26間の既知の距離L13とから、脈波の発生毎に脈波伝播速度PWV(=L13/Δt)が算出される。これにより、心電のR波の発生時点を基準として算出された脈波伝播速度を血圧推定に用いるものと比較して、R波の発生時点から心臓の駆出時点までの遅延時間(前駆出期間)の誤差がないので、高精度で拡張期血圧DAPeを推定できる。すなわち、純粋に動脈血管の特性のみを反映する脈波伝播速度PWVが計測されるので、心臓の状態にも左右される遅延時間(前駆出期間)の変動に影響されることがなく、測定の再現性が高い。 Further, according to the blood pressure measuring device 10 of this embodiment, a pair of pulse wave sensors (a first pressure sensor T1, a third pressure sensor T3) are arranged at two positions apart from each other by a predetermined distance along the arterial blood vessel 18. ), the pulse wave can be determined from the time difference Δt between the rising points or peak points of the pair of pulse waves MW1 and MW3 respectively detected by Pulse wave propagation velocity PWV (=L13/Δt) is calculated every time . As a result, the delay time from the R wave generation point to the cardiac ejection point (pre-ejection Since there is no error in the period), the diastolic blood pressure DAPe can be estimated with high accuracy. In other words, since the pulse wave velocity PWV, which purely reflects the characteristics of the arterial blood vessels, is measured, it is not affected by fluctuations in the delay time (pre-ejection period), which also depends on the state of the heart, and the measurement Highly reproducible.

また、本実施例の血圧測定装置10によれば、圧迫帯12による圧迫圧Pcを生体の拡張期血圧よりも低いモニタ圧PcHmに維持する圧迫圧制御部86と、モニタ圧PcHmが維持されている期間において測定された脈波伝播速度PWVが予め設定された変動判定値PWV1~PWVhから外れたことに基づいて血圧変動の発生を判定する血圧変動判定部108とを備え、拡張期血圧推定部104は、血圧変動判定部108により血圧変動の発生が判定されたときに、拡張期血圧推定式(5)から、実際の圧迫圧Pcおよび被圧迫部位の脈波伝播速度PWVに基づいて被測定者の拡張期血圧DAPeを推定する。これにより、被測定者に負担が少ない長時間の血圧監視を行なうことができる。 Further, according to the blood pressure measuring device 10 of the present embodiment, the compression pressure control section 86 maintains the compression pressure Pc by the compression cuff 12 at the monitor pressure PcHm lower than the diastolic blood pressure of the living body, and the monitor pressure PcHm is maintained. A diastolic blood pressure estimating unit includes a blood pressure fluctuation determination unit 108 that determines the occurrence of blood pressure fluctuation based on whether the pulse wave propagation velocity PWV measured during the period deviates from preset fluctuation determination values PWV1 to PWVh, and the diastolic blood pressure estimation unit 104 is a measurement target based on the actual compression pressure Pc and the pulse wave velocity PWV of the compressed area from the diastolic blood pressure estimation formula (5) when the occurrence of blood pressure fluctuation is determined by the blood pressure fluctuation determination unit 108. Estimate the person's diastolic blood pressure DAPe. Thereby, long-term blood pressure monitoring can be performed with less burden on the person being measured.

図20は、電子制御装置70の他の制御作動を説明するタイムチャートであって、図6に相当する図である。本実施例では、前述の実施例と共通する部分には同一の符号を付して説明を省略する。本実施例では、拡張期血圧推定式(5)の設定方法が相違するが、他は同様である。 FIG. 20 is a time chart illustrating another control operation of the electronic control device 70, and is a diagram corresponding to FIG. 6. In this embodiment, parts common to those in the previous embodiment are given the same reference numerals and explanations will be omitted. In this embodiment, the method of setting the diastolic blood pressure estimation formula (5) is different, but the other aspects are the same.

図20において、被測定者となる生体14の拡張期血圧DAPeを推定する式(5)を設定するために、圧迫圧制御部86は、一時的に一定の第1維持圧PcH1を維持する第1維持区間(tk1時点~tk2時点)、第1維持圧PcH1よりも低い第2維持圧PcH2を維持する第2維持区間(tk3時点~tk4時点)、第2維持圧PcH2よりも低い第3維持圧PcH3を維持する第3維持区間(tk5時点~tk6時点)、が順次形成されるように圧迫圧Pcを段階的に降圧させた後、急速排気弁52を用いて上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26内の圧力をそれぞれ大気圧まで排圧する。第1維持圧PcH1、第2維持圧PcH2及び第3維持圧PcH3は、被測定者である生体14の拡張期血圧値DAP以下の低い圧、例えば20~60mmHgの範囲内において予め設定された複数段階(本実施例では3段階)の値である。 In FIG. 20, in order to set the equation (5) for estimating the diastolic blood pressure DAPe of the living body 14 to be measured, the compression pressure control unit 86 controls the 1 maintenance period (from time tk1 to time tk2), a second maintenance period (from time tk3 to time tk4) in which the second maintenance pressure PcH2 is maintained lower than the first maintenance pressure PcH1, and a third maintenance period lower than the second maintenance pressure PcH2. After lowering the compression pressure Pc step by step so that a third maintenance section (time tk5 to time tk6) in which the pressure PcH3 is maintained is sequentially formed, the rapid exhaust valve 52 is used to remove the upstream expansion bag 22, the middle The pressure inside the expansion bag 24 and the downstream expansion bag 26 is exhausted to atmospheric pressure. The first maintenance pressure PcH1, the second maintenance pressure PcH2, and the third maintenance pressure PcH3 are a plurality of preset pressures that are lower than the diastolic blood pressure value DAP of the living body 14 as the subject, for example, within the range of 20 to 60 mmHg. This is a value in stages (three stages in this embodiment).

脈波抽出部88は、圧迫圧Pcが維持される第1維持区間、第2維持区間、第3維持区間において、第1圧力センサT1からの上流側膨張袋22内の圧迫圧Pc1を示す出力信号、及び、第3圧力センサT3からの下流側膨張袋26内の圧迫圧Pc3を示す出力信号から、たとえば0.5Hz~20Hzの脈波弁別用バンドパスフィルタを通して一対の脈波MW1及び脈波MW3をそれぞれ抽出し、記憶させる。 The pulse wave extraction unit 88 outputs an output indicating the compression pressure Pc1 in the upstream inflation bag 22 from the first pressure sensor T1 in the first maintenance interval, the second maintenance interval, and the third maintenance interval in which the compression pressure Pc is maintained. A pair of pulse waves MW1 and pulse waves are obtained from the signal and the output signal from the third pressure sensor T3 indicating the compression pressure Pc3 in the downstream expansion bag 26 through a band pass filter for pulse wave discrimination of, for example, 0.5 Hz to 20 Hz. Each MW3 is extracted and stored.

脈波伝播速度算出部90は、圧迫圧Pcが維持される3つの第1維持区間、第2維持区間、第3維持区間毎に、前述と同様に、圧迫圧Pcが維持される状態において得られた一対の脈波MW1及び脈波MW3の立ち上がり点間あるいはピーク点間の時間差Δtと上流側膨張袋22及び下流側膨張袋26間の既知の距離L13とから脈波の発生毎に算出した脈波伝播速度PWV(=L13/Δt)と、その脈波が発生したときのステップ圧すなわち圧迫圧Pcとの1組の実測データを、3つのステップ毎に算出し、合計3組の実測データを記憶する。3点の実測データポイントであれば、一応の線形回帰分析を行なうことが可能である。 Similarly to the above, the pulse wave velocity calculation unit 90 calculates the obtained value in the state where the compression pressure Pc is maintained, for each of the three first maintenance intervals, the second maintenance interval, and the third maintenance interval in which the compression pressure Pc is maintained. It was calculated every time a pulse wave occurred from the time difference Δt between the rising points or peak points of the pair of pulse waves MW1 and MW3 and the known distance L13 between the upstream expansion bag 22 and the downstream expansion bag 26. One set of measured data of the pulse wave propagation velocity PWV (=L13/Δt) and the step pressure, that is, the compression pressure Pc when the pulse wave is generated, is calculated for each three steps, and a total of three sets of measured data are obtained. remember. With three actually measured data points, it is possible to perform a linear regression analysis.

傾きα算出部96は、脈波伝播速度PWVの2乗値の対数ln(PWV)を表す軸と-Pcを表す軸との二次元座標において、3つのステップ圧毎に記憶された、脈波伝播速度PWV(=L13/Δt)の2乗値の対数ln(PWV)と、その脈波が発生したときのステップ圧すなわち圧迫圧Pcとの3組の実測データを示す3点の実測データポイントの線形回帰分析を行なうことで、脈波伝播速度の2乗値の対数ln(PWV)と動脈血管の貫壁圧Ptとの間の予め求められた線形回帰直線の式(2)から変換した線形回帰直線-Pcの式(3)の右辺第1項の係数値を、傾きαとして求める。 The inclination α calculation unit 96 calculates the pulse rate stored for each three step pressures in two-dimensional coordinates between the axis representing the logarithm ln (PWV 2 ) of the square value of the pulse wave propagation velocity PWV and the axis representing -Pc. Actual measurements at three points showing three sets of actual measurement data: the logarithm ln (PWV 2 ) of the square value of the wave propagation velocity PWV (=L13/Δt) and the step pressure, that is, the compression pressure Pc when the pulse wave is generated. By performing linear regression analysis of the data points, a predetermined linear regression line equation (2) between the logarithm ln of the square value of the pulse wave velocity (PWV 2 ) and the transmural pressure Pt of the arterial blood vessel is obtained. The coefficient value of the first term on the right side of equation (3) of the linear regression line −Pc converted from is determined as the slope α.

切片β算出部98は、線形関係式(4)から傾きα算出部96により算出された傾きαに基づいて切片βを算出する。すなわち、傾きα算出部96により算出された傾きαを線形関係式(4)に代入することで、切片βを算出する。 The intercept β calculation unit 98 calculates the intercept β based on the slope α calculated by the slope α calculation unit 96 from the linear relational expression (4). That is, the intercept β is calculated by substituting the slope α calculated by the slope α calculation unit 96 into the linear relational expression (4).

拡張期血圧推定式設定部100は、傾きα算出部96により算出された傾きα及び切片β算出部98により算出された切片βを、拡張期血圧推定式(5)に代入し、生体の固有関係を反映する拡張期血圧推定式(5)を設定し、記憶する。 The diastolic blood pressure estimation formula setting unit 100 substitutes the slope α calculated by the slope α calculation unit 96 and the intercept β calculated by the intercept β calculation unit 98 into the diastolic blood pressure estimation formula (5), and A diastolic blood pressure estimation formula (5) reflecting the relationship is set and stored.

血圧推定部102は、たとえば図20のtm1時点以降のモニタ圧PcHmが維持されるモニタ区間において、たとえば1脈拍周期乃至十数脈拍周期の所定の周期で実測した脈波伝播速度PWVおよび圧迫圧Pcを拡張期血圧推定式(5)に代入することで、拡張期血圧推定値DAPeを繰り返し算出する。算出された拡張期血圧値DAPeの移動平均値を算出してもよい。拡張期血圧推定部104は、算出された拡張期血圧推定値DAPeを表示装置78に時系列的に表示させる。上記モニタ用維持圧PcHmは、好適には生体の拡張期血圧よりも低く設定されており、第1維持圧PcH1~第3維持圧PcH3のいずれかと同じであってもよいし、異なる維持圧であってもよい。 The blood pressure estimating unit 102 calculates the pulse wave propagation velocity PWV and the compression pressure Pc that are actually measured at a predetermined cycle, for example, from one pulse cycle to more than ten pulse cycles, in a monitor interval in which the monitor pressure PcHm is maintained after time tm1 in FIG. 20, for example. The estimated diastolic blood pressure value DAPe is repeatedly calculated by substituting the value DAPe into the diastolic blood pressure estimation formula (5). A moving average value of the calculated diastolic blood pressure values DAPe may be calculated. The diastolic blood pressure estimating unit 104 causes the display device 78 to display the calculated diastolic blood pressure estimated value DAPe in chronological order. The monitoring maintenance pressure PcHm is preferably set lower than the diastolic blood pressure of the living body, and may be the same as any of the first maintenance pressure PcH1 to third maintenance pressure PcH3, or may be set at a different maintenance pressure. There may be.

本実施例においても、前述の実施例1と同様に、拡張期血圧推定式(5)を導く線形回帰直線式(2)に含まれる切片βおよび傾きαは、(4)式に示すように相互に一定の線形関係にあって被測定者に影響されない。このため、被測定者の個々の生体的特徴に影響され難いので、拡張期血圧値DAPeを高精度で測定できる。また、脈波伝播速度PWVを用いる血圧推定を行う従来のもののように、キャリブレーションを行なう必要がない利点がある。 In this example, as in Example 1, the intercept β and slope α included in the linear regression equation (2) leading to the diastolic blood pressure estimation equation (5) are as shown in equation (4). They have a certain linear relationship with each other and are not influenced by the person being measured. Therefore, the diastolic blood pressure value DAPe can be measured with high accuracy because it is not easily influenced by the individual biological characteristics of the subject. Further, there is an advantage that there is no need to perform calibration unlike the conventional method of estimating blood pressure using pulse wave velocity PWV.

前述の実施例1では、被測定者となる生体14の拡張期血圧DAPeを推定する式(5)を設定するために、脈波抽出部88により抽出された脈波の振幅が最大値を示すステップ圧の圧力値(平均血圧相当値)に基づいて、その振幅最大値の所定割合の振幅を有するステップ圧から算出される圧力値(最低血圧相当値)から、連続する所定数(たとえば6つ)のステップ圧、或いは、上記の予め設定された複数のステップ圧とは、圧迫帯12の圧迫圧Pcの降圧に伴って脈波抽出部88により抽出された脈波の振幅が最大値を示すステップ圧から、所定数(たとえば2つ)のステップ圧を経た後の連続する所定数(たとえば6つ)のステップ圧において、それぞれ得られた脈波から脈波伝播速度算出部90によって脈波伝播速度PWV(=L13/Δt)が算出されていた。しかし、本実施例3では、圧迫圧制御部86は、収縮期血圧SAPから下降する過程で脈波抽出部88により順次得られる脈波形状が順次変化する点に着目し、その脈波形状の変化に基づいて、実測データの採取を開始判定し、以後の複数のステップ圧で採取された脈波から、生体14の拡張期血圧DAPeを推定する式(5)を設定するための脈波伝播速度PWV(=L13/Δt)の算出が開始される。 In the above-mentioned Example 1, in order to set the equation (5) for estimating the diastolic blood pressure DAPe of the living body 14 to be measured, the amplitude of the pulse wave extracted by the pulse wave extraction unit 88 has a maximum value. Based on the pressure value of the step pressure (value equivalent to mean blood pressure), a predetermined number of continuous steps (for example, 6 ) or the plurality of preset step pressures is the amplitude of the pulse wave extracted by the pulse wave extracting unit 88 as the compression pressure Pc of the compression cuff 12 is lowered. Pulse wave propagation is determined by the pulse wave propagation velocity calculation unit 90 from the pulse waves obtained at a predetermined number of consecutive step pressures (for example, six) after passing through a predetermined number of step pressures (for example, two) from the step pressure. Speed PWV (=L13/Δt) was calculated. However, in the third embodiment, the compression pressure control unit 86 focuses on the fact that the pulse wave shape sequentially obtained by the pulse wave extraction unit 88 changes sequentially in the process of decreasing from the systolic blood pressure SAP, and Pulse wave propagation for setting equation (5) for determining the start of collecting actual measurement data based on the change and estimating the diastolic blood pressure DAPe of the living body 14 from the pulse waves collected at subsequent multiple step pressures. Calculation of speed PWV (=L13/Δt) is started.

圧迫帯12の圧迫圧Pcを降圧させる過程において、動脈血管18の容積変化に応答して発生する圧迫帯12内の圧迫圧Pcの圧力振動である脈波(カフ脈波)の形状は、振幅の最大値から最小値へ向かって変化する過程において、図21に示されるように、略一定値を示す下降区間LPが存在し、その下降区間LPは、圧迫圧Pcの低下に伴って短くなり、破線の丸内に示すようにやがて消失する。上記下降区間LPは、1脈波の周期のうち拡張期血圧時点付近の、動脈血管18の完全閉塞により血管容積の変化が抑制されていた区間と考えられる。 In the process of lowering the compression pressure Pc of the compression cuff 12, the shape of the pulse wave (cuff pulse wave), which is the pressure vibration of the compression pressure Pc within the compression cuff 12 that occurs in response to a change in the volume of the arterial blood vessel 18, is determined by the amplitude. In the process of changing from the maximum value to the minimum value, as shown in FIG. 21, there is a descending section LP that shows a substantially constant value, and the descending section LP becomes shorter as the compression pressure Pc decreases. , will soon disappear as shown in the dashed circle. The descending section LP is considered to be a section in the cycle of one pulse wave near the diastolic blood pressure point in which changes in blood vessel volume are suppressed due to complete occlusion of the arterial blood vessel 18.

本実施例では、その下降区間LPが消失したステップ圧若しくはその下降区間LPが消失したステップ圧の次のステップ圧から数ステップたとえば6ステップにおいて、脈波伝播速度算出部90によって、脈波伝播速度PWV(=L13/Δt)が逐次算出され、複数組の圧迫圧Pcおよび脈波伝播速度PWVの実測データ〔ln(PWV1)、Pc1〕・・・・〔ln(PWVn)、Pcn〕が採取され、記憶される。 In this embodiment, the pulse wave velocity calculation unit 90 calculates the pulse wave velocity at several steps, for example, 6 steps, from the step pressure at which the descending section LP disappeared or from the step pressure next to the step pressure at which the descending section LP disappeared. PWV (=L13/Δt) is calculated sequentially, and multiple sets of measured data of compression pressure Pc and pulse wave velocity PWV [ln(PWV1 2 ), Pc1]...[ln(PWVn 2 ), Pcn] collected and stored.

次いで、前述の実施例と同様に、傾きα算出部96により、脈波伝播速度PWVの2乗値の対数ln(PWV)を表す軸と-Pcを表す軸との二次元座標において、複数組の実測データを示す複数点の実測データポイントの線形回帰分析を行なうことで、線形回帰直線の式(2)から変換した線形回帰直線-Pcの式(3)の右辺第1項の係数値を、傾きαとして求められる。また、切片β算出部98により、前述の実施例と同様に、線形関係式(4)から傾きα算出部96により算出された傾きαに基づいて切片βを算出する。すなわち、傾きα算出部96により算出された傾きαを線形関係式(4)に代入することで、切片βが算出される。また、前述の実施例と同様に、拡張期血圧推定式設定部100により、傾きα算出部96により算出された傾きα及び切片β算出部98により算出された切片βが、式(5)に代入され、生体の固有関係を反映する拡張期血圧推定式(5)が設定され、記憶される。そして、前述の実施例と同様に、血圧推定部102により、たとえば図20のtm1時点以降のモニタ圧PcHmが維持されるモニタ区間において、たとえば1脈拍周期乃至十数脈拍周期の所定の周期で実測した脈波伝播速度PWVおよび圧迫圧Pcを拡張期血圧推定式(5)に代入することで、拡張期血圧推定値DAPeが繰り返し算出される。 Next, in the same manner as in the above-described embodiment, the slope α calculation unit 96 calculates a plurality of By performing a linear regression analysis of multiple measured data points representing a set of measured data, the coefficient value of the first term on the right side of the linear regression line - Pc equation (3) converted from the linear regression line equation (2) is obtained as the slope α. Further, the intercept β calculation unit 98 calculates the intercept β based on the slope α calculated by the slope α calculation unit 96 from the linear relational expression (4), as in the above embodiment. That is, the intercept β is calculated by substituting the slope α calculated by the slope α calculation unit 96 into the linear relational expression (4). Further, similarly to the above embodiment, the diastolic blood pressure estimation formula setting unit 100 calculates the slope α calculated by the slope α calculation unit 96 and the intercept β calculated by the intercept β calculation unit 98 into equation (5). The diastolic blood pressure estimation formula (5) that reflects the inherent relationship of the living body is set and stored. Then, as in the above-described embodiment, the blood pressure estimating unit 102 performs actual measurement at a predetermined cycle, for example, from one pulse cycle to more than ten pulse cycles, in the monitor interval in which the monitor pressure PcHm is maintained after time tm1 in FIG. 20, for example. By substituting the pulse wave propagation velocity PWV and compression pressure Pc into the diastolic blood pressure estimation formula (5), the estimated diastolic blood pressure value DAPe is repeatedly calculated.

本実施例においても、前述の実施例1、2と同様に、拡張期血圧推定式(5)を導く線形回帰直線式(2)に含まれる切片βおよび傾きαは、(4)式に示すように相互に一定の線形関係にあって被測定者に影響されない。このため、被測定者の個々の生体的特徴に影響され難いので、拡張期血圧値DAPeを高精度で測定できる。また、脈波伝播速度PWVを用いる血圧推定を行う従来のもののように、キャリブレーションを行なう必要がない利点がある。また、本実施例では、1脈波周期内において血管の閉塞状態を示す下降区間LPがなくなってから、実測データの採取開始が判定されるので、平均血圧と拡張期血圧との差分のばらつきの影響を受けることがなく、脈波伝播速度PWVを解析するステップ圧をより正確に拡張期血圧以下の範囲へ限定し得るので、前述の実施例と比較して被測定者によらず安定した拡張期血圧の推定が可能となる。 In this example, as in Examples 1 and 2 described above, the intercept β and slope α included in the linear regression equation (2) leading to the diastolic blood pressure estimation equation (5) are shown in equation (4). As such, they have a fixed linear relationship and are not influenced by the person being measured. Therefore, the diastolic blood pressure value DAPe can be measured with high accuracy because it is not easily influenced by the individual biological characteristics of the subject. Further, there is an advantage that there is no need to perform calibration unlike the conventional method of estimating blood pressure using pulse wave velocity PWV. In addition, in this embodiment, the start of collecting actual measurement data is determined after the falling section LP indicating the occlusion state of the blood vessel disappears within one pulse wave cycle. The step pressure for analyzing the pulse wave velocity PWV can be more accurately limited to the range below the diastolic blood pressure without being affected by the pulse wave velocity PWV, so compared to the above-mentioned embodiment, stable expansion can be achieved regardless of the subject. Estimation of period blood pressure becomes possible.

以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。 Although one embodiment of the present invention has been described above in detail with reference to the drawings, the present invention is not limited to this embodiment and may be implemented in other forms.

たとえば、実施例において、圧迫帯12は3つの膨張袋すなわち上流側膨張袋22、中間膨張袋24、及び下流側膨張袋26を備えたものであったが、上流側膨張袋22からの脈波と下流側膨張袋26からの脈波との時間差に代えて、一対の圧脈波センサを用いた脈波伝播速度検出手段があれば、少なくとも1つの膨張袋が備えられていればよい。1気室の圧迫帯でもよい。 For example, in the embodiment, the compression band 12 was equipped with three inflation bags, that is, the upstream inflation bag 22, the intermediate inflation bag 24, and the downstream inflation bag 26. As long as there is a pulse wave propagation velocity detection means using a pair of pressure pulse wave sensors instead of the time difference between the pulse wave and the pulse wave from the downstream expansion bag 26, it is sufficient that at least one expansion bag is provided. A compression band with one chamber may be used.

脈波伝播速度PWVは、圧迫帯を通る動脈であればよく、圧迫帯から離れた位置で検知してもよい。また、脈波伝播速度PWVは、圧脈波センサ、インピーダンス脈波、超音波ドップラを用いて検出してもよい。 The pulse wave velocity PWV may be detected in any artery passing through the compression band, and may be detected at a position away from the compression band. Further, the pulse wave propagation velocity PWV may be detected using a pressure pulse wave sensor, an impedance pulse wave, or an ultrasound Doppler.

前述の実施例1では、拡張期血圧推定値DAPeは、第1維持圧PcH1、第2維持圧PcH2、第3位時圧PcH3毎に得られた拡張期血圧DAPe1、DAPe2、DAPe3の平均値が用いられていたが、単一の維持圧で拡張期血圧DAPeが推定されてもよい。 In the above-mentioned Example 1, the estimated diastolic blood pressure value DAPe is the average value of the diastolic blood pressures DAPe1, DAPe2, and DAPe3 obtained for each of the first maintenance pressure PcH1, the second maintenance pressure PcH2, and the third pressure PcH3. Although previously used, diastolic blood pressure DAPe may be estimated with a single maintenance pressure.

前述の実施例において、モニタ用維持圧PcHmが維持されるモニタ区間において、S34の判断が肯定された脈波伝播速度PWVの変化発生時に拡張期血圧DAPeが推定されていたが、一拍毎に常時推定されていてもよい。 In the above-mentioned embodiment, the diastolic blood pressure DAPe was estimated at the time of occurrence of a change in the pulse wave velocity PWV for which the judgment in S34 was affirmative in the monitoring period in which the monitor maintenance pressure PcHm was maintained. It may be estimated all the time.

また、前述の実施例の圧迫帯12は、血圧測定に際して、ステップ降圧を採用していたが、圧迫圧力Pcを連続的に変化させる連続降圧であってもよい。 Moreover, although the compression band 12 of the above-mentioned embodiment employs step pressure reduction when measuring blood pressure, continuous pressure reduction may be adopted in which the compression pressure Pc is continuously changed.

また、前述の実施例の圧迫帯12は、血圧測定に際して、ステップ降圧を採用していたが、圧迫圧力Pcをステップ的に昇圧させるステップ昇圧、あるいは連続的に昇圧させる連続昇圧であってもよい。 Furthermore, although the compression band 12 of the above-described embodiment employs step pressure reduction when measuring blood pressure, it may also be a step pressure increase in which the compression pressure Pc is increased in steps, or a continuous pressure increase in which the pressure is continuously increased. .

なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。 The above-mentioned embodiment is merely one embodiment, and although no other examples are given, the present invention can be implemented with various changes and improvements based on the knowledge of those skilled in the art without departing from the spirit thereof. I can do it.

10:血圧測定装置
12:圧迫帯
14:生体(被測定者)
16:上腕(被圧迫部位)
18:動脈血管
22:上流側膨張袋(膨張袋)
24:中間膨張袋(膨張袋)
26:下流側膨張袋(膨張袋)
82:線形回帰直線式記憶部
84:線形関係記憶部
86:圧迫圧制御部
88:脈波抽出部
90:脈波伝播速度算出部
94:固有関係生成部
102:血圧推定部
104:拡張期血圧推定部
108:血圧変動判定部
10: Blood pressure measuring device 12: Compression band 14: Living body (person to be measured)
16: Upper arm (compressed area)
18: Arterial blood vessel 22: Upstream expansion bag (inflation bag)
24: Intermediate expansion bag (expansion bag)
26: Downstream expansion bag (expansion bag)
82: Linear regression linear equation storage unit 84: Linear relationship storage unit 86: Compression pressure control unit 88: Pulse wave extraction unit 90: Pulse wave velocity calculation unit 94: Unique relationship generation unit 102: Blood pressure estimation unit 104: Diastolic blood pressure Estimation unit 108: Blood pressure change determination unit

Claims (9)

被測定者の被圧迫部位の動脈血管を圧迫する圧迫帯による圧迫圧と、前記被圧迫部位を通る動脈血管の脈波伝播速度の2乗値とを用いて前記被測定者の拡張期血圧を推定する血圧測定装置であって、
前記圧迫帯による圧迫下において、前記被圧迫部位の脈波伝播速度PWVを測定する脈波伝播速度測定部と、
前記脈波伝播速度の2乗値の対数と前記動脈血管の貫壁圧との間の予め求められた線形回帰直線式からの変換式から、前記の圧迫圧と前記圧迫圧において測定された前記被圧迫部位の脈波伝播速度とに基づいて、前記線形回帰直線式の傾きαを算出する傾き算出部と、
前記線形回帰直線式に含まれる切片βと傾きαとの間の予め記憶された線形関係から、前記線形回帰直線式の傾きαに基づいて前記線形回帰直線式の切片βを算出する切片算出部と、
前記線形回帰直線式からの変換式に、前記貫壁圧を表す拡張期血圧から差し引くところの前記圧迫圧、前記被圧迫部位の脈波伝播速度、前記傾き算出部において算出された前記線形回帰直線式の傾き、および前記切片算出部において算出された前記切片を代入して、拡張期血圧推定式を設定する拡張期血圧推定式設定部と、
前記拡張期血圧推定式から、実際の前記圧迫圧Pcおよび前記被圧迫部位の脈波伝播速度PWVに基づいて前記被測定者の拡張期血圧DAPを推定する拡張期血圧推定部とを、含む
ことを特徴とする血圧測定装置。
The diastolic blood pressure of the subject is determined using the pressure applied by a compression band that compresses the arterial blood vessel at the compressed site of the subject and the square value of the pulse wave propagation velocity of the arterial blood vessel passing through the compressed site. A blood pressure measuring device for estimating,
a pulse wave velocity measurement unit that measures pulse wave velocity PWV of the compressed area under compression by the compression band;
From the conversion equation from the linear regression formula determined in advance between the logarithm of the square value of the pulse wave propagation velocity and the transmural pressure of the arterial blood vessel, the compression pressure and the pressure measured at the compression pressure are determined. a slope calculation unit that calculates the slope α of the linear regression equation based on the pulse wave propagation velocity of the compressed region;
an intercept calculation unit that calculates the intercept β of the linear regression equation based on the slope α of the linear regression equation from a pre-stored linear relationship between the intercept β and the slope α included in the linear regression equation; and,
The conversion equation from the linear regression linear equation includes the compression pressure to be subtracted from the diastolic blood pressure representing the transmural pressure, the pulse wave propagation velocity of the compressed area, and the linear regression line calculated by the slope calculation unit. a diastolic blood pressure estimation formula setting unit that sets a diastolic blood pressure estimation formula by substituting the slope of the equation and the intercept calculated by the intercept calculation unit;
a diastolic blood pressure estimation unit that estimates the diastolic blood pressure DAP of the subject based on the actual compression pressure Pc and the pulse wave velocity PWV of the compressed area from the diastolic blood pressure estimation formula; A blood pressure measuring device featuring:
前記線形回帰直線式は、次式(2)で表されるものである
ことを特徴とする請求項1の血圧測定装置。
Pt=α・ln(PWV)+β ・・・ (2)
但し、Ptは貫壁圧(=拡張期血圧DAP-圧迫圧Pc)、PWVは脈波伝播速度である。
The blood pressure measuring device according to claim 1, wherein the linear regression equation is expressed by the following equation (2).
Pt=α・ln(PWV 2 )+β... (2)
However, Pt is transmural pressure (=diastolic blood pressure DAP−compression pressure Pc), and PWV is pulse wave velocity.
前記線形回帰直線式からの変換式は、次式(3)で表されるものである
ことを特徴とする請求項1の血圧測定装置。
-Pc=α・ln(PWV)+(β-DAP) ・・・ (3)
The blood pressure measuring device according to claim 1, wherein the conversion equation from the linear regression equation is expressed by the following equation (3).
-Pc=α・ln(PWV 2 )+(β-DAP)... (3)
前記予め記憶された線形関係は、次式(4)により表されるものである
ことを特徴とする請求項1の血圧測定装置。
β=γ・α+δ ・・・ (4)
但し、γは上記線形関係の傾きを示す定数、δは上記線形関係の切片を示す定数である。
The blood pressure measuring device according to claim 1, wherein the pre-stored linear relationship is expressed by the following equation (4).
β=γ・α+δ... (4)
However, γ is a constant indicating the slope of the above linear relationship, and δ is a constant indicating the intercept of the above linear relationship.
前記拡張期血圧推定式は、次式(5)で表されるものである
ことを特徴とする請求項1の血圧測定装置。
DAPe=α・ln(PWV)+(β+Pc) ・・・ (5)
但し、DAPeは推定血圧値である。
The blood pressure measuring device according to claim 1, wherein the diastolic blood pressure estimation formula is expressed by the following formula (5).
DAPe=α・ln(PWV 2 )+(β+Pc)... (5)
However, DAPe is an estimated blood pressure value.
前記拡張期血圧推定部は、前記拡張期血圧推定式から、前記圧迫帯による複数種類の圧迫圧毎に、実際の前記圧迫圧および前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧を推定し、前記複数種類の圧迫圧毎に得られた拡張期血圧の平均値を、拡張期血圧として推定するものである
ことを特徴とする請求項1の血圧測定装置。
The diastolic blood pressure estimating unit calculates the diastolic blood pressure of the measured person based on the actual compression pressure and the pulse wave propagation velocity of the compressed area for each of the plurality of types of compression pressure by the compression band, from the diastolic blood pressure estimation formula. The blood pressure measuring device according to claim 1, wherein the diastolic blood pressure of the plurality of compression pressures is estimated, and the average value of the diastolic blood pressures obtained for each of the plurality of compression pressures is estimated as the diastolic blood pressure.
前記拡張期血圧推定部は、前記被測定者の拡張期血圧よりも低い、前記圧迫帯による圧迫圧において、実際の前記圧迫圧および前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧を推定するものである
ことを特徴とする請求項1の血圧測定装置。
The diastolic blood pressure estimating unit calculates the diastolic blood pressure of the subject based on the actual compression pressure and the pulse wave propagation velocity of the compressed area at a compression pressure by the compression band that is lower than the diastolic blood pressure of the subject. The blood pressure measuring device according to claim 1, wherein the blood pressure measuring device estimates the diastolic blood pressure of the patient.
前記動脈血管に沿って相互に所定距離だけ離隔した2位置に配置されて脈波を検出する一対の脈波センサを備え、前記脈波伝播速度は、前記一対の脈波センサによりそれぞれ検出された脈波の時間差と前記所定距離とに基づいて算出されるものである
ことを特徴とする請求項1の血圧測定装置。
A pair of pulse wave sensors are arranged at two positions separated by a predetermined distance from each other along the arterial blood vessel to detect pulse waves, and the pulse wave propagation velocity is detected by each of the pair of pulse wave sensors. The blood pressure measuring device according to claim 1, wherein the blood pressure measuring device is calculated based on a time difference between pulse waves and the predetermined distance.
前記圧迫帯による圧迫圧を生体の拡張期血圧よりも低いモニタ圧に維持する圧迫圧制御部と、前記モニタ圧が維持されている期間において測定された前記脈波伝播速度が予め設定された変動判定範囲から外れたことに基づいて血圧変動の発生を判定する血圧変動判定部とを備え、
前記拡張期血圧推定部は、前記血圧変動判定部により血圧変動の発生が判定されたときに、前記拡張期血圧推定式から、実際の前記圧迫圧および前記被圧迫部位の脈波伝播速度に基づいて前記被測定者の拡張期血圧を推定する
ことを特徴とする請求項1の血圧測定装置。
a compression pressure control unit that maintains the compression pressure by the compression band at a monitor pressure lower than the diastolic blood pressure of the living body; and a preset variation in the pulse wave propagation velocity measured during a period in which the monitor pressure is maintained. and a blood pressure fluctuation determination unit that determines the occurrence of blood pressure fluctuation based on deviation from the determination range,
The diastolic blood pressure estimating unit calculates a value based on the actual compression pressure and the pulse wave velocity of the compressed region from the diastolic blood pressure estimation formula when the blood pressure change determining unit determines that a blood pressure fluctuation has occurred. The blood pressure measuring device according to claim 1, wherein the diastolic blood pressure of the subject is estimated by
JP2022069105A 2022-04-19 2022-04-19 Blood pressure measuring apparatus Pending JP2023158983A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022069105A JP2023158983A (en) 2022-04-19 2022-04-19 Blood pressure measuring apparatus
PCT/JP2023/015527 WO2023204221A1 (en) 2022-04-19 2023-04-18 Blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022069105A JP2023158983A (en) 2022-04-19 2022-04-19 Blood pressure measuring apparatus

Publications (1)

Publication Number Publication Date
JP2023158983A true JP2023158983A (en) 2023-10-31

Family

ID=88419802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022069105A Pending JP2023158983A (en) 2022-04-19 2022-04-19 Blood pressure measuring apparatus

Country Status (2)

Country Link
JP (1) JP2023158983A (en)
WO (1) WO2023204221A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801660B2 (en) * 2010-09-29 2015-10-28 株式会社エー・アンド・デイ Automatic blood pressure measurement device
US9396643B2 (en) * 2013-10-23 2016-07-19 Quanttus, Inc. Biometric authentication

Also Published As

Publication number Publication date
WO2023204221A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP3140007B2 (en) Lower limb upper limb blood pressure index measurement device
JP3208066B2 (en) Blood pressure monitoring device
KR100609927B1 (en) - Apparatus for Non-Invasive Cuffless Continuous Blood Pressure Determination
US7029449B2 (en) Arteriosclerosis inspecting apparatus
EP1332715A2 (en) Arteriosclerosis inspecting apparatus
EP0826334A1 (en) Apparatus for evaluating cardiac function of living subject
KR100804454B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
JP3631979B2 (en) Blood pressure measurement device with cardiac function evaluation function
JP2002051995A (en) Instrument for estimation of central aortic pressure waveform
JP2000333910A (en) Cardiac function monitoring device
JP5584077B2 (en) Automatic blood pressure measurement device
EP2598022A1 (en) Diagnostic support apparatus
JP2004105550A (en) Arteriostenosis examination apparatus
CN113226161A (en) Control unit for deriving a measure of arterial compliance
WO2023204221A1 (en) Blood pressure measurement device
JP5049097B2 (en) Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.
JP2012090961A (en) Automatic blood pressure measuring apparatus
JP2001137203A (en) Blood pressure monitoring device
JP2001145606A (en) Filter for pulse wave sensor
KR100585848B1 (en) Non-invasive blood pressure measuring system using peripheral plethysmograph
JPH0375169B2 (en)
JP2002136489A (en) Blood pressure measuring instrument and pulse wave propagation velocity information measuring instrument
EP1057449A2 (en) Apparatus for evaluating cardiac function of living subject
WO2023199990A1 (en) Blood pressure measurement device
JP2000166885A (en) Blood pressure monitoring apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220426