JP2021146252A - Method for producing catalyst for synthesizing unsaturated carboxylic acid - Google Patents

Method for producing catalyst for synthesizing unsaturated carboxylic acid Download PDF

Info

Publication number
JP2021146252A
JP2021146252A JP2020047200A JP2020047200A JP2021146252A JP 2021146252 A JP2021146252 A JP 2021146252A JP 2020047200 A JP2020047200 A JP 2020047200A JP 2020047200 A JP2020047200 A JP 2020047200A JP 2021146252 A JP2021146252 A JP 2021146252A
Authority
JP
Japan
Prior art keywords
catalyst
binder
mass
granulator
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020047200A
Other languages
Japanese (ja)
Other versions
JP7459589B2 (en
Inventor
篤樹 岡田
Atsuki Okada
篤樹 岡田
佳宗 阿部
Yoshimune Abe
佳宗 阿部
成康 嘉糠
Nariyasu Kanuka
成康 嘉糠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020047200A priority Critical patent/JP7459589B2/en
Publication of JP2021146252A publication Critical patent/JP2021146252A/en
Application granted granted Critical
Publication of JP7459589B2 publication Critical patent/JP7459589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a method for producing a catalyst that has an excellent conversion rate of raw materials, has a high selectivity of a desired unsaturated carboxylic acid and can produce in a high yield even under a condition of high load on the catalyst, and, moreover, that has a high mechanical strength and can perform a stable gas-phase catalytic oxidation reaction for a long period of time.SOLUTION: Provided is a method for producing catalyst for synthesizing unsaturated carboxylic acid, which is a method for producing catalyst for synthesizing unsaturated carboxylic acid including a molding step in which, into a granulator, a carrier, a catalyst component element-containing powder, and a binder are introduced in order for the catalyst component element-containing powder to be supported on the carrier and make it as a catalyst precursor, and in which, into the granulator, the carrier is introduced, and then the binder in an amount of 2 mass% or more and 90 mass% or less of the total amount of the binder to be introduced into the granulator is introduced, and, furthermore, the catalyst component element-containing powder and the binder in an amount of 10 mass% or more and 98 mass% or less of the total amount of the binder to be introduced into the granulator are introduced to make it as a catalyst precursor.SELECTED DRAWING: None

Description

本発明は、不飽和カルボン酸合成用触媒の製造方法に関する。詳しくは、不飽和アルデ
ヒドと酸素含有ガスとを気相で接触酸化し、不飽和カルボン酸を製造する際に用いる、不
飽和カルボン酸合成用触媒の製造方法に関する。
The present invention relates to a method for producing a catalyst for synthesizing unsaturated carboxylic acids. More specifically, the present invention relates to a method for producing a catalyst for synthesizing an unsaturated carboxylic acid, which is used in producing an unsaturated carboxylic acid by catalytically oxidizing an unsaturated aldehyde and an oxygen-containing gas in a gas phase.

不飽和アルデヒドと酸素含有ガスとを気相で接触酸化することにより、不飽和カルボン
酸を製造する触媒は、一般にモリブデンを必須成分とする触媒が用いられる。具体的には
アクロレイン等を原料とするアクリル酸、メタクロレイン等を原料とするメタクリル酸を
製造する際に用いる触媒やその製造法の改良は、種々の観点より精力的に取り進められて
いる。
As a catalyst for producing an unsaturated carboxylic acid by catalytically oxidizing an unsaturated aldehyde and an oxygen-containing gas in a gas phase, a catalyst containing molybdenum as an essential component is generally used. Specifically, improvements in the catalyst used for producing acrylic acid made from acrolein or the like and methacrylic acid made from methacrolein or the like and the method for producing the same are being energetically promoted from various viewpoints.

不飽和カルボン酸の製造方法は、触媒が充填された固定床反応器にオレフィンと酸素含
有ガスとを気相で接触酸化することからなる。
固定床反応器に充填された触媒としては、一般的に触媒成分元素の粉体を所定形状に成
形した触媒や、所定形状を有する不活性担体に触媒成分元素を担持した触媒が用いられる
The method for producing an unsaturated carboxylic acid comprises contact-oxidizing an olefin and an oxygen-containing gas in a gas phase in a fixed-bed reactor filled with a catalyst.
As the catalyst filled in the fixed bed reactor, a catalyst obtained by molding a powder of a catalyst component element into a predetermined shape or a catalyst in which the catalyst component element is supported on an inert carrier having a predetermined shape is generally used.

不飽和アルデヒドを気相で接触酸化して不飽和カルボン酸等を製造する際に用いられる
触媒として、モリブデンを必須成分とする触媒成分元素を混合、懸濁、乾燥して粉砕して
粉体を得、次いで、その粉体を担体に担持させて触媒を得る方法が特許文献1〜3に提示
されている。
As a catalyst used when unsaturated aldehyde is catalytically oxidized in the gas phase to produce unsaturated carboxylic acid and the like, a catalyst component element containing molybdenum as an essential component is mixed, suspended, dried and pulverized to form a powder. Patent Documents 1 to 3 show a method of obtaining the catalyst, and then supporting the powder on a carrier to obtain a catalyst.

特許文献1には、球状担体に対して、液状バインダーと触媒活性成分を転動造粒機に供
給して特定の相対遠心加速度で造粒して担持触媒とすることにより、機械的強度と不飽和
カルボン酸製造における触媒性能が得られるとしている。特許文献2には、特定のpHを
有する液状バインダーを用いて、乾燥物を粒塊状の担体に担持してアクリル酸製造用触媒
とすることにより、触媒活性に優れ、高い機械的強度を有するとしている。特許文献3に
は、触媒活性成分を含む粉体を担体に被覆するアクリル酸を製造する工程に使用する触媒
の製造において、触媒活性成分の調製時に特定の原料を使用することにより、高活性でか
つ機械的強度の大きい触媒となるとしている。
According to Patent Document 1, a liquid binder and a catalytically active component are supplied to a rolling granulator and granulated at a specific relative centrifugal acceleration to prepare a supported catalyst for a spherical carrier, thereby resulting in mechanical strength and inconvenience. It is said that catalytic performance in the production of saturated carboxylic acid can be obtained. Patent Document 2 states that by using a liquid binder having a specific pH and supporting a dried product on a carrier in the form of granules to serve as a catalyst for producing acrylic acid, the catalyst activity is excellent and the mechanical strength is high. There is. Patent Document 3 states that in the production of a catalyst used in the step of producing an acrylic acid in which a powder containing a catalytically active ingredient is coated on a carrier, a specific raw material is used at the time of preparing the catalytically active ingredient to obtain high activity. Moreover, it is said to be a catalyst with high mechanical strength.

特開2018−111720号公報JP-A-2018-111720 特開2004−160342号公報Japanese Unexamined Patent Publication No. 2004-160342 特開2001−79408号公報Japanese Unexamined Patent Publication No. 2001-79408

しかしながら、従前知られた不飽和カルボン酸合成用触媒を製造する方法を用いても、
製造された不飽和カルボン酸合成用触媒の機械的強度や、触媒性能である原料転化率や生
成物選択率は必ずしも満足すべきものではなかった。
However, even if a previously known method for producing an unsaturated carboxylic acid synthesis catalyst is used,
The mechanical strength of the produced unsaturated carboxylic acid synthesis catalyst, the raw material conversion rate and the product selectivity, which are the catalytic performance, were not always satisfactory.

本発明は上記問題点を解決するためになされたものである。すなわち、アクロレイン等
の不飽和アルデヒドを酸素含有ガスと気相接触酸化させて対応するアクリル酸等の不飽和
カルボン酸を合成する際に用いる触媒として、触媒にかかる負荷が高い条件下であっても
、原料の転化率に優れ、、所望とする不飽和カルボン酸の選択率が高く、高収率で製造で
き、且つ、機械的強度が高く、長期間安定的な気相接触酸化反応が可能な触媒を提供する
ことを目的とする。
The present invention has been made to solve the above problems. That is, as a catalyst used when synthesizing an unsaturated carboxylic acid such as acrylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde such as achlorine with an oxygen-containing gas, even under conditions where the load on the catalyst is high. , Excellent conversion rate of raw materials, high selectivity of desired unsaturated carboxylic acid, high yield, high mechanical strength, and stable gas-phase catalytic oxidation reaction for a long period of time It is intended to provide a catalyst.

本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、造粒機に、担体、触媒成分
元素を含む粉体及びバインダーを導入し、該担体に該触媒成分元素を含む粉体を担持して
触媒前駆体とする成型工程を含む不飽和カルボン酸合成用触媒を製造する方法において、
該造粒機に、該担体を導入し、次いで該造粒機に導入するバインダーの総量のうちの特定
量のバインダーを導入し、さらに、該触媒成分元素を含む粉体と、該該造粒機に導入する
バインダーの総量のうちの残りの量のバインダーを導入し、触媒前駆体とすることにより
、製造された不飽和カルボン酸合成用触媒は強度が高く、且つ該不飽和カルボン酸合成用
触媒を使用してアクロレインを酸素含有ガスと気相接触酸化すると、触媒にかかる負荷が
高い条件下であっても、アクロレインの転化率に優れ、且つ、アクリル酸等の不飽和カル
ボン酸の選択率が良好であり、結果としてアクリル酸等の不飽和カルボン酸の収率の向上
が可能となることを見いだし、本発明に至った。
As a result of intensive studies to solve the above problems, the present inventors have introduced a carrier, a powder containing the catalyst component element and a binder into the granulator, and the powder containing the catalyst component element is added to the carrier. In a method for producing a catalyst for synthesizing an unsaturated carboxylic acid, which comprises a molding step of supporting and using it as a catalyst precursor.
The carrier is introduced into the granulator, and then a specific amount of binder out of the total amount of the binder to be introduced into the granulator is introduced, and further, a powder containing the catalyst component element and the granule are added. By introducing the remaining amount of the binder out of the total amount of the binder introduced into the machine and using it as a catalyst precursor, the catalyst for unsaturated carboxylic acid synthesis produced has high strength and is used for the synthesis of the unsaturated carboxylic acid. When achlorein is vapor-phase contact oxidized with an oxygen-containing gas using a catalyst, the conversion rate of achlorine is excellent and the selectivity of unsaturated carboxylic acids such as acrylic acid is excellent even under conditions where the load applied to the catalyst is high. As a result, it has been found that the yield of unsaturated carboxylic acids such as acrylic acid can be improved, and the present invention has been reached.

すなわち、本発明は以下を要旨とする。
[1]造粒機に、担体、触媒成分元素を含む粉体及びバインダーを導入し、該担体に該触
媒成分元素を含む粉体を担持して触媒前駆体とする成型工程を含む不飽和カルボン酸合成
用触媒を製造する方法であって、
該造粒機に、該担体を導入し、次いで該造粒機に導入するバインダーの総量の2質量%
以上90質量%以下のバインダーを導入し、さらに、該触媒成分元素を含む粉体と、該造
粒機に導入するバインダーの総量の10質量%以上98質量%以下のバインダーを導入し
、触媒前駆体とする不飽和カルボン酸合成用触媒の製造方法。
[2]前記造粒機に導入する担体の量に対する、前記造粒機に導入するバインダーの総量
が5質量%以上30質量%以下である[1]に記載の不飽和カルボン酸合成用触媒の製造
方法。
[3]前記造粒機に導入する前記触媒成分元素を含む粉体の量に対する、前記造粒機に導
入するバインダーの総量が10質量%以上40質量%以下である[1]又は[2]に記載
の不飽和カルボン酸合成用触媒の製造方法。
That is, the gist of the present invention is as follows.
[1] Unsaturated carboxylic material including a molding step of introducing a carrier, a powder containing a catalyst component element, and a binder into a granulator, and supporting the powder containing the catalyst component element on the carrier to serve as a catalyst precursor. A method for producing a catalyst for acid synthesis.
2% by mass of the total amount of the binder introduced into the granulator and then introduced into the granulator.
A binder containing 90% by mass or more is introduced, and further, a powder containing the catalyst component element and a binder of 10% by mass or more and 98% by mass or less of the total amount of the binder to be introduced into the granulator are introduced to prepare a catalyst precursor. A method for producing a catalyst for synthesizing an unsaturated carboxylic acid as a body.
[2] The catalyst for synthesizing unsaturated carboxylic acid according to [1], wherein the total amount of the binder introduced into the granulator is 5% by mass or more and 30% by mass or less with respect to the amount of the carrier introduced into the granulator. Production method.
[3] The total amount of the binder introduced into the granulator is 10% by mass or more and 40% by mass or less with respect to the amount of the powder containing the catalyst component element introduced into the granulator [1] or [2]. The method for producing a catalyst for synthesizing an unsaturated carboxylic acid according to.

[4]前記バインダーが有機化合物を含む[1]乃至[3]のいずれかに記載の不飽和カ
ルボン酸合成用触媒の製造方法。
[4] The method for producing an unsaturated carboxylic acid synthesis catalyst according to any one of [1] to [3], wherein the binder contains an organic compound.

[5]前記不飽和カルボン酸合成用触媒の触媒成分元素が下記式(1)で表される[1]
乃至[4]のいずれかに記載の不飽和カルボン酸合成用触媒の製造方法。
Mo12CuSbSi (1)
(式(1)中、XはNb及び/又はWを示し、YはMg、Ca、Sr、Ba及びZnから
なる群より選ばれた少なくとも一種の元素を示し、ZはFe、Co、Ni及びBiからな
る群より選ばれた少なくとも一種の元素を示す。a〜iはそれぞれの元素の原子比を示し
、0<a≦12、0≦b≦12、0<c≦12、0≦d≦8、0≦e≦500、0≦f≦
500、0≦g≦500、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足
させる値である。)
[6][1]乃至[5]のいずれかに記載の製造方法により製造された不飽和カルボン酸
合成用触媒を用いて、アクロレインを酸素含有ガスにより気相接触酸化するアクリル酸の
製造方法。
[5] The catalyst component element of the unsaturated carboxylic acid synthesis catalyst is represented by the following formula (1) [1].
The method for producing an unsaturated carboxylic acid synthesis catalyst according to any one of [4].
Mo 12 V a X b Cu c Y d Sb e Z f Si g C h O i (1)
(In formula (1), X represents Nb and / or W, Y represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and Z represents Fe, Co, Ni and Indicates at least one element selected from the group consisting of Bi. A to i indicate the atomic ratio of each element, and 0 <a ≦ 12, 0 ≦ b ≦ 12, 0 <c ≦ 12, 0 ≦ d ≦ 8, 0 ≦ e ≦ 500, 0 ≦ f ≦
It is in the range of 500, 0 ≦ g ≦ 500, 0 ≦ h ≦ 500, and i is a value that satisfies the oxidation state of other elements. )
[6] A method for producing acrylic acid, in which acrolein is vapor-phase catalytically oxidized with an oxygen-containing gas using an unsaturated carboxylic acid synthesis catalyst produced by the production method according to any one of [1] to [5].

本発明の製造方法により製造された不飽和カルボン酸合成用触媒は機械的強度が高く、
且つ該不飽和カルボン酸合成用触媒を使用してアクロレインを酸素含有ガスと気相接触酸
化すると、触媒にかかる負荷が高い条件下であっても、アクロレインの転化率に優れ、且
つ、アクリル酸等の不飽和カルボン酸の選択率が良好であり、アクリル酸等の不飽和カル
ボン酸の収率を向上させることができる。
The catalyst for synthesizing unsaturated carboxylic acid produced by the production method of the present invention has high mechanical strength and has high mechanical strength.
Moreover, when acrolein is vapor-phase contact-oxidized with an oxygen-containing gas using the unsaturated carboxylic acid synthesis catalyst, the acrolein conversion rate is excellent and acrylic acid or the like is excellent even under conditions where the load on the catalyst is high. The selectivity of the unsaturated carboxylic acid is good, and the yield of the unsaturated carboxylic acid such as acrylic acid can be improved.

以下、本発明の実施の形態を詳細に説明する。なお、本発明は、以下の説明に限定され
るものではなく、その要旨の範囲内で種々変形して実施することができる。
Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following description, and can be variously modified and implemented within the scope of the gist thereof.

この発明にかかる不飽和カルボン酸合成用の触媒(以下「触媒」と称する場合がある。
)の製造方法について詳細に説明する。
この発明にかかる触媒は、アクロレイン、メタクロレイン等の不飽和アルデヒドを原料
とし、酸素含有ガスにより気相接触酸化して、アクリル酸、メタクリル酸等の不飽和カル
ボン酸を製造する、不飽和カルボン酸合成用の触媒である。
A catalyst for synthesizing an unsaturated carboxylic acid according to the present invention (hereinafter, may be referred to as a "catalyst".
) Will be described in detail.
The catalyst according to the present invention is an unsaturated carboxylic acid that uses unsaturated aldehydes such as acrolein and methacrolein as raw materials and undergoes vapor phase catalytic oxidation with an oxygen-containing gas to produce unsaturated carboxylic acids such as acrylic acid and methacrolein. It is a catalyst for synthesis.

[触媒の製造方法]
本発明にかかる触媒を製造する方法は、造粒機に、担体、触媒を構成する各成分として
、その成分たる元素(以下、「触媒成分元素」と称する場合がある。)を含む粉体及びバ
インダーを導入して触媒前駆体とする成型工程を含み、該成型工程において、該造粒機に
、該担体を導入し、次いで該造粒機に導入するバインダーの総量のうちの特定量のバイン
ダーを導入し、さらに、該触媒成分元素を含む粉体と、該該造粒機に導入するバインダー
の総量のうちの残りの量のバインダーを導入し、触媒前駆体とすることを特徴とする。
なお、触媒成分元素を含む粉体は、以下の工程を含み、得ることができる。触媒成分元
素を有する化合物を、触媒の供給源となる化合物(以下、「供給源化合物」と称する。)
として用い、この触媒成分元素を有する各供給源化合物を溶媒又は溶液に添加して一体化
し、加熱して調製液を得(調液工程)、次いで、該調製液を乾燥処理して粉体とする(乾
燥工程)ことができる。
又、該成型工程で得られた触媒前駆体は、該触媒前駆体を焼成すること(焼成工程)を
含み、触媒とすることができる。
[Catalyst manufacturing method]
The method for producing a catalyst according to the present invention comprises a granulator, a carrier, a powder containing an element as a component of the catalyst (hereinafter, may be referred to as a "catalyst component element") as each component constituting the catalyst, and a powder. It includes a molding step of introducing a binder to be a catalyst precursor, and in the molding step, a specific amount of binder out of the total amount of the binder introduced into the granulator and then introduced into the granulator. Is further introduced, and the powder containing the catalyst component element and the remaining amount of the binder out of the total amount of the binders to be introduced into the granulator are introduced to prepare a catalyst precursor.
The powder containing the catalyst component element can be obtained by including the following steps. A compound having a catalyst component element is a compound serving as a catalyst supply source (hereinafter, referred to as “source compound”).
Each source compound having this catalytic component element is added to a solvent or solution to integrate the compound, and the mixture is heated to obtain a preparation solution (preparation step), and then the preparation solution is dried to obtain a powder. (Drying step) can be done.
Further, the catalyst precursor obtained in the molding step includes firing the catalyst precursor (calcination step), and can be used as a catalyst.

[調液工程]
前記調製工程は、前記触媒成分元素を含む各供給源化合物を水性系で一体化し、加熱し
て調製液を得る工程である。
前記の水性系で一体化とは、各供給源化合物を水系の溶媒又は溶液に添加して一体化を
行うことをいう。この水系の溶媒は、各供給源化合物を溶解又は懸濁させるための水系媒
体であり、水、若しくはメタノール、エタノール等の水と相溶性を有する有機溶媒、又は
これらの混合物からなる溶媒をいう。また、前記水系の溶液とは、前記の水系の溶媒に1
種又は複数種の供給源化合物を溶解、懸濁又は一体化させた液をいう。
[Liquid preparation process]
The preparation step is a step of integrating each source compound containing the catalyst component element in an aqueous system and heating to obtain a preparation liquid.
The above-mentioned integration in an aqueous system means that each source compound is added to an aqueous solvent or solution to perform integration. This aqueous solvent is an aqueous medium for dissolving or suspending each source compound, and refers to a solvent composed of water, an organic solvent compatible with water such as methanol and ethanol, or a mixture thereof. Further, the aqueous solution is 1 in the aqueous solvent.
A liquid in which a seed or a plurality of source compounds are dissolved, suspended or integrated.

前記の一体化とは、前記各触媒成分元素の供給源化合物の水溶液あるいは水分散液を一
括に、あるいは段階的に混合し、必要に応じて加熱を行うことをいう。具体的には、前記
の各供給源化合物を一括して混合する方法、前記の各供給源化合物を一括して混合し、次
いで加熱する方法、前記の各供給源化合物を段階的に混合する方法、前記の各供給源化合
物を段階的に混合・加熱処理を繰り返す方法、及びこれらの方法を組み合わせる方法があ
げられ、これらのいずれもが、各触媒成分元素の供給源化合物の一体化という概念に含ま
れる。
The above-mentioned integration means that the aqueous solution or the aqueous dispersion of the source compound of each catalyst component element is mixed all at once or stepwise, and heating is performed as necessary. Specifically, a method of collectively mixing the above-mentioned source compounds, a method of collectively mixing the above-mentioned source compounds and then heating, and a method of stepwise mixing of the above-mentioned source compounds. , The method of repeating the mixing and heat treatment of each of the above-mentioned source compounds stepwise, and the method of combining these methods, all of which are based on the concept of integration of the source compounds of each catalyst component element. included.

前記の加熱とは、前記の一体化工程で得られた混合液又は混合分散液を所定温度で所定
時間、撹拌することをいう。この加熱により、混合液又は混合分散液の粘度が上昇し、混
合分散液の場合、その中の固体成分の沈降を緩和し、とりわけ次の乾燥工程での成分の不
均一化を抑制するのに有効となり、得られる最終製品である触媒の原料転化率や生成物選
択率等の触媒活性がより良好となる。
The above-mentioned heating means that the mixed liquid or the mixed dispersion liquid obtained in the above-mentioned integration step is stirred at a predetermined temperature for a predetermined time. By this heating, the viscosity of the mixed liquid or the mixed dispersion liquid is increased, and in the case of the mixed dispersion liquid, the sedimentation of the solid component in the mixed liquid is alleviated, and in particular, the non-uniformity of the component in the next drying step is suppressed. It becomes effective, and the catalytic activity such as the raw material conversion rate and the product selectivity of the obtained final product catalyst becomes better.

前記加熱における温度は、60℃〜100℃が好ましく、60℃〜90℃がより好まし
く、70℃〜90℃がさらに好ましい。加熱温度が前記範囲内であることにより、製造さ
れた触媒の活性が良好となる可能性がある。
The temperature in the heating is preferably 60 ° C. to 100 ° C., more preferably 60 ° C. to 90 ° C., and even more preferably 70 ° C. to 90 ° C. When the heating temperature is within the above range, the activity of the produced catalyst may be improved.

前記加熱にかける時間は、2時間〜12時間が好ましく、3時間〜8時間がより好まし
い。加熱時間が前記範囲内であることにより、製造された触媒の活性が良好となる可能性
がある。
前記撹拌方法としては、任意の方法を採用することができ、例えば、撹拌翼を有する撹
拌機による方法や、ポンプによる外部循環による方法等が挙げられる。
The heating time is preferably 2 hours to 12 hours, more preferably 3 hours to 8 hours. When the heating time is within the above range, the activity of the produced catalyst may be improved.
As the stirring method, any method can be adopted, and examples thereof include a method using a stirrer having a stirring blade, a method using an external circulation using a pump, and the like.

[供給源化合物]
この触媒は、触媒成分元素としてモリブデン(Mo)、バナジウム(V)を含有するこ
とが好ましく、それ以外の触媒成分元素として、銅(Cu)を含有することがより好まし
く、さらに、アンチモン(Sb)、ケイ素(Si)、ニオブ(Nb)、タングステン(W
)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(
Ba)、亜鉛(Zn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、ビスマス(
Bi)等の成分を1種又は複数種含有してもよい。
[Source compound]
This catalyst preferably contains molybdenum (Mo) and vanadium (V) as catalyst component elements, more preferably copper (Cu) as other catalyst component elements, and further, antimony (Sb). , Silicon (Si), Niobium (Nb), Tungsten (W)
), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (
Ba), zinc (Zn), iron (Fe), cobalt (Co), nickel (Ni), bismuth (
One or more components such as Bi) may be contained.

前記モリブデン(Mo)の供給源化合物としては、パラモリブデン酸アンモニウム、三
酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸等が
挙げられる。
Examples of the molybdenum (Mo) source compound include ammonium paramolybdate, molybdenum trioxide, molybdenum acid, ammonium phosphomolybdate, and phosphomolybdic acid.

前記バナジウム(V)の供給源化合物としては、バナジン酸アンモニウム、メタバナジ
ン酸アンモニウム、五酸化バナジウム、シュウ酸バナジウム、硫酸バナジウム等があげら
れる。バナジウムの添加量は、触媒成分元素の原子数比として、モリブデン原子を12と
したとき、0を超えて12以下となるように添加することが好ましく、より好ましくは0
.1以上6以下、更に好ましくは0.5以上5以下、特に好ましくは1以上3以下となる
ように添加する。この範囲内であることにより原料転化率に優れ、高選択率で不飽和カル
ボン酸を製造することができる触媒とすることができる。
Examples of the source compound of vanadium (V) include ammonium vanadate, ammonium metavanadate, vanadium pentoxide, vanadium oxalate, vanadium sulfate and the like. The amount of vanadium added is preferably more than 0 and 12 or less, more preferably 0, when the molybdenum atom is 12 as the atomic number ratio of the catalyst component element.
.. Add so as to be 1 or more and 6 or less, more preferably 0.5 or more and 5 or less, and particularly preferably 1 or more and 3 or less. Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.

前記ニオブ(Nb)の供給源化合物としては、水酸化ニオブ等があげられる。前記タン
グステン(W)の供給源化合物としては、タングステン酸、またはその塩等が挙げられる
。ニオブ及びタングステンから選ばれる少なくとも一種の元素の添加量は、モリブデンが
12のとき、0以上12以下となるように添加することが好ましく、より好ましくは0.
1以上6以下、更に好ましくは0.5以上4以下となるように添加する。この範囲内であ
ることにより原料転化率に優れ、高選択率で不飽和カルボン酸を製造することができる触
媒とすることができる。
Examples of the source compound of niobium (Nb) include niobium hydroxide. Examples of the source compound of tungsten (W) include tungstic acid and salts thereof. When the amount of molybdenum added is 12, the amount of at least one element selected from niobium and tungsten is preferably 0 or more and 12 or less, and more preferably 0.
Add so as to be 1 or more and 6 or less, more preferably 0.5 or more and 4 or less. Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.

前記銅(Cu)の供給源化合物としては、硫酸銅、硝酸銅、塩化第一銅等があげられる

銅の添加量は、触媒成分元素の原子数比として、モリブデン原子を12としたとき、0
を超えて12以下となるように添加することが好ましく、より好ましくは0.1以上6以
下、更に好ましくは0.5以上4以下となるように添加する。この範囲内であることによ
り原料転化率に優れ、高選択率で不飽和カルボン酸を製造することができる触媒とするこ
とができる。
Examples of the copper (Cu) source compound include copper sulfate, copper nitrate, and cuprous chloride.
The amount of copper added is 0 when the molybdenum atom is 12 as the atomic number ratio of the catalyst component element.
It is preferable to add it so as to exceed 12 or less, more preferably 0.1 or more and 6 or less, and further preferably 0.5 or more and 4 or less. Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.

前記マグネシウム(Mg)の供給源化合物としては、酸化マグネシウム、炭酸マグネシ
ウム、または硫酸マグネシウム等が挙げられる。前記カルシウム(Ca)の供給源化合物
としては、酸化カルシウム、炭酸カルシウム、または水酸化カルシウム等が挙げられる。
前記ストロンチウム(Sr)の供給源化合物としては、酸化ストロンチウム、炭酸ストロ
ンチウム、水酸化ストロンチウム、または硝酸ストロンチウム等が挙げられる。前記バリ
ウム(Ba)の供給源化合物としては、酸化バリウム、炭酸バリウム、硝酸バリウム、酢
酸バリウム、または硫酸バリウム等が挙げられる。前記亜鉛(Zn)の供給源化合物とし
ては、酸化亜鉛、炭酸亜鉛、水酸化亜鉛、または硝酸亜鉛等が挙げられる。
マグネシウム、カルシウム、ストロンチウム、バリウム及び亜鉛からなる群より選ばれ
る少なくとも一種の元素の添加量は、触媒成分元素の原子数比として、モリブデンが12
のとき、0以上8以下となるように添加することが好ましく、より好ましくは0以上6以
下、更に好ましくは0以上4以下となるように添加する。この範囲内であることにより原
料転化率に優れ、高選択率で不飽和カルボン酸を製造することができる触媒とすることが
できる。
Examples of the source compound of magnesium (Mg) include magnesium oxide, magnesium carbonate, magnesium sulfate and the like. Examples of the calcium (Ca) source compound include calcium oxide, calcium carbonate, calcium hydroxide and the like.
Examples of the source compound of strontium (Sr) include strontium oxide, strontium carbonate, strontium hydroxide, strontium nitrate and the like. Examples of the barium (Ba) source compound include barium oxide, barium carbonate, barium nitrate, barium acetate, barium sulfate and the like. Examples of the zinc (Zn) source compound include zinc oxide, zinc carbonate, zinc hydroxide, zinc nitrate and the like.
The amount of at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc is 12 for molybdenum as the atomic number ratio of the catalytic component elements.
In the case of, it is preferable to add it so as to be 0 or more and 8 or less, more preferably 0 or more and 6 or less, and further preferably 0 or more and 4 or less. Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.

前記アンチモン(Sb)の供給源化合物としては、三酸化アンチモン、五酸化アンチモ
ン等の酸化アンチモン等や酢酸アンチモン等の3価のアンチモン化合物、5価のアンチモ
ン化合物等があげられる。アンチモンの添加量は、触媒成分元素の原子数比として、モリ
ブデン原子を12としたとき、0以上500以下となるように添加することが好ましく、
より好ましくは0.1以上100以下、更に好ましくは0.2以上50以下となるように
添加する。この範囲内であることにより原料転化率に優れ、高選択率で不飽和カルボン酸
を製造することができる触媒とすることができる。
Examples of the source compound of antimony (Sb) include antimony oxides such as antimony trioxide and antimony pentoxide, trivalent antimony compounds such as antimony acetate, and pentavalent antimony compounds. The amount of antimony added is preferably 0 or more and 500 or less when the molybdenum atom is 12 as the atomic number ratio of the catalyst component element.
Addition is more preferably 0.1 or more and 100 or less, and further preferably 0.2 or more and 50 or less. Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.

前記鉄(Fe)の供給源化合物としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄、酢酸
第二鉄等が挙げられる。前記コバルト(Co)の供給源化合物としては、硝酸コバルト、
硫酸コバルト、塩化コバルト、炭酸コバルト、酢酸コバルト等が挙げられる。前記ニッケ
ル(Ni)の供給源化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸
ニッケル、酢酸ニッケル等が挙げられる。前記ビスマス(Bi)の供給源化合物としては
、塩化ビスマス、硝酸ビスマス、酸化ビスマス、次炭酸ビスマス等が挙げられる。
鉄、コバルト、ニッケル及びビスマスからなる群より選ばれる少なくとも一種の元素の
添加量は、触媒成分元素の原子数比として、モリブデンが12のとき、0以上500以下
となるように添加することが好ましく、より好ましくは0.1以上400以下、更に好ま
しくは1以上300以下となるように添加する。この範囲内であることにより原料転化率
に優れ、高選択率で不飽和カルボン酸を製造することができる触媒とすることができる。
Examples of the iron (Fe) source compound include ferric nitrate, ferric sulfate, ferric chloride, ferric acetate and the like. Examples of the cobalt (Co) source compound include cobalt nitrate.
Examples thereof include cobalt sulfate, cobalt chloride, cobalt carbonate and cobalt acetate. Examples of the nickel (Ni) source compound include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate and the like. Examples of the source compound of bismuth (Bi) include bismuth chloride, bismuth nitrate, bismuth oxide, and bismuth subcarbonate.
The amount of at least one element selected from the group consisting of iron, cobalt, nickel and bismuth is preferably added so as to be 0 or more and 500 or less when molybdenum is 12 as the atomic number ratio of the catalyst component element. , More preferably 0.1 or more and 400 or less, still more preferably 1 or more and 300 or less. Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.

前記ケイ素(Si)の供給源化合物としては、シリカ、粒状シリカ、コロイダルシリカ
、ヒュームドシリカ等が挙げられる。ケイ素の添加量は、触媒成分元素の原子数比として
、モリブデン原子を12としたとき、0以上500以下となるように添加することが好ま
しく、より好ましくは0.1以上400以下、更に好ましくは1以上300以下となるよ
うに添加する。この範囲内であることにより原料転化率に優れ、高選択率で不飽和カルボ
ン酸を製造することができる触媒とすることができる。
前記炭素(C)の供給源化合物としては、該炭素(C)とSiとが一体化した緑色炭化
珪素、黒色炭化珪素などが挙げられ、炭化珪素は微粉末のものが好ましい。
炭素の添加量は、モリブテンが12のとき、hは0以上500以下となるように添加す
ることが好ましく、より好ましくはhが0.1以上400以下、更に好ましくはhが1以
上300以下となるように添加する。この範囲内であることにより原料転化率に優れ、高
選択率で不飽和カルボン酸を製造することができる触媒とすることができる。
Examples of the silicon (Si) source compound include silica, granular silica, colloidal silica, and fumed silica. The amount of silicon added is preferably 0 or more and 500 or less, more preferably 0.1 or more and 400 or less, still more preferably, when the molybdenum atom is 12 as the atomic number ratio of the catalyst component element. Add so as to be 1 or more and 300 or less. Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.
Examples of the carbon (C) source compound include green silicon carbide and black silicon carbide in which the carbon (C) and Si are integrated, and the silicon carbide is preferably fine powder.
When the amount of carbon added is 12, h is preferably 0 or more and 500 or less, more preferably h is 0.1 or more and 400 or less, and further preferably h is 1 or more and 300 or less. Add so that Within this range, it can be used as a catalyst capable of producing an unsaturated carboxylic acid with an excellent raw material conversion rate and a high selectivity.

[供給源化合物の添加方法]
前記の調液工程において、各供給源化合物の全てを1つの調製液としてもよく、各供給
源化合物をそれぞれ単独で又はいくつかのグループに分けて複数の調製液とし、該複数の
調製液を一度に、若しくは順番に混合して1つの調製液としてもよく、また、1つ若しく
は複数の調製液を乾燥、さらには焼成して固形物とし、該固形物を残りの供給源化合物に
よる調製液に添加し、新たな調製液としてもよい。
[Method of adding source compound]
In the above-mentioned liquid preparation step, all of the source compounds may be used as one preparation solution, and each source compound may be used alone or divided into several groups to form a plurality of preparation solutions, and the plurality of preparation solutions may be used. One or more preparations may be mixed at once or in sequence to form a single preparation, or one or more preparations may be dried and then fired to form a solid, which may be prepared with the remaining source compounds. It may be added to a new preparation liquid.

[乾燥工程]
得られた調製液は、乾燥工程にて乾燥処理することにより、触媒成分元素を含む粉体(
以下「粉体」と称する場合がある。)が得られる。この乾燥工程における乾燥処理方法に
ついては特に限定はなく、例えば、通常のスプレードライヤー、スラリードライヤー、ド
ラムドライヤー等を用いて粉体を得てもよい。
前記乾燥処理で得られた粉体は、必要に応じて、さらに加熱処理をしてもよい。この加
熱処理は、空気中で200℃〜400℃、好ましくは250℃〜350℃の温度域で短時
間に行われる処理である。その方法については特に限定はなく、例えば、通常の箱型加熱
炉、トンネル型加熱炉等を用いて粉体を固定した状態で加熱してもよいし、また、ロータ
リーキルン等を用いて粉体を流動させながら加熱してもよい。
また、乾燥した乾燥物を、さらに粉砕等の処理を経たものも本発明における粉体である

尚、該乾燥工程により得られた粉体の触媒成分元素はモリブデン及びバナジウムを含有
することが好ましく、それ以外に銅を含有することがより好ましく、なかでも、下記の一
般式(1)で表されることがさらに好ましい。粉体の触媒成分元素を前記範囲内とするこ
とで、製造された不飽和カルボン酸合成用触媒は機械的強度が高く、且つ高負荷条件であ
っても、原料転化率に優れ、且つ、不飽和カルボン酸の選択率が良好であり、不飽和カル
ボン酸の収率を向上させることが可能となる。
[Drying process]
The obtained preparation liquid is subjected to a drying treatment in a drying step to obtain a powder containing a catalyst component element (
Hereinafter, it may be referred to as "powder". ) Is obtained. The drying treatment method in this drying step is not particularly limited, and for example, a powder may be obtained using a normal spray dryer, slurry dryer, drum dryer or the like.
The powder obtained by the drying treatment may be further heat-treated, if necessary. This heat treatment is a treatment performed in air in a temperature range of 200 ° C. to 400 ° C., preferably 250 ° C. to 350 ° C. for a short time. The method is not particularly limited, and for example, the powder may be heated in a fixed state using a normal box-type heating furnace, a tunnel-type heating furnace, or the like, or the powder may be heated using a rotary kiln or the like. It may be heated while flowing.
Further, the powder in the present invention is also obtained by subjecting a dried dried product to a treatment such as pulverization.
The catalyst component element of the powder obtained by the drying step preferably contains molybdenum and vanadium, and more preferably copper in addition to the molybdenum and vanadium. Among them, it is represented by the following general formula (1). It is more preferable to be done. By setting the catalyst component element of the powder within the above range, the produced catalyst for synthesizing unsaturated carboxylic acid has high mechanical strength, and even under high load conditions, it has an excellent raw material conversion rate and is non-existent. The selectivity of the saturated carboxylic acid is good, and the yield of the unsaturated carboxylic acid can be improved.

Mo12CuSbSi (1) Mo 12 V a X b Cu c Y d Sb e Z f Si g C h O i (1)

(式(1)中、XはNb及び/又はWを示し、YはMg、Ca、Sr、Ba及びZnから
なる群より選ばれた少なくとも一種の元素を示し、ZはFe、Co、Ni及びBiからな
る群より選ばれた少なくとも一種の元素を示す。a〜iはそれぞれの元素の原子比を示し
、0<a≦12、0≦b≦12、0<c≦12、0≦d≦8、0≦e≦500、0≦f≦
500、0≦g≦500、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足
させる値である。)
(In formula (1), X represents Nb and / or W, Y represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and Z represents Fe, Co, Ni and Indicates at least one element selected from the group consisting of Bi. A to i indicate the atomic ratio of each element, and 0 <a ≦ 12, 0 ≦ b ≦ 12, 0 <c ≦ 12, 0 ≦ d ≦ 8, 0 ≦ e ≦ 500, 0 ≦ f ≦
It is in the range of 500, 0 ≦ g ≦ 500, 0 ≦ h ≦ 500, and i is a value that satisfies the oxidation state of other elements. )

[成型工程]
成型工程は、造粒機に、担体、前記の乾燥工程で得られた粉体及びバインダーを導入し
て触媒前駆体とする工程である。
[Molding process]
The molding step is a step of introducing a carrier, a powder obtained in the above-mentioned drying step, and a binder into a granulator to prepare a catalyst precursor.

前記造粒機は、例えば該造粒機内の底部に、平らな又は凹凸のある円盤を有しており、
該円盤を回転することにより、該造粒機内に導入した担体を自転運動と公転運動の繰り返
しにより撹拌させ、ここに触媒成分元素を含む粉体及びバインダーを導入し、場合により
その他の添加物を添加し、該粉体を担体に担持することにより触媒前駆体とする方法(以
下「転動造粒法」と称する場合がある。)である。
The granulator has, for example, a flat or uneven disk at the bottom of the granulator.
By rotating the disk, the carrier introduced into the granulator is agitated by repeating the rotation motion and the revolution motion, and a powder and a binder containing a catalyst component element are introduced therein, and other additives may be added as the case may be. This is a method of adding the powder and supporting the powder on a carrier to obtain a catalyst precursor (hereinafter, may be referred to as "rolling granulation method").

前記担体は、シリカ、炭化珪素、アルミナ、ムライト、アランダム等の長軸径が好まし
くは2.5mm〜10mm、更に好ましくは2.5mm〜6mmの球形担体等が挙げられ
る。これらのうち、担体の気孔率は、好ましくは20%〜60%、より好ましくは30%
〜57%、更に好ましくは40%〜55%である。また、担体の吸水率は、好ましくは1
0%〜60%、より好ましくは12%〜50%、更に好ましくは15%〜40%である。
担体の気孔率及び吸水率を前記範囲内とすることで、触媒成分元素を含む粉体を容易に担
体に担持することができる。尚、担体は不飽和アルデヒドを酸素含有ガスにより気相接触
酸化する反応には不活性であることが好ましい。
Examples of the carrier include spherical carriers having a major axis diameter of preferably 2.5 mm to 10 mm, more preferably 2.5 mm to 6 mm, such as silica, silicon carbide, alumina, mullite, and random. Of these, the porosity of the carrier is preferably 20% to 60%, more preferably 30%.
It is ~ 57%, more preferably 40% ~ 55%. The water absorption rate of the carrier is preferably 1.
It is 0% to 60%, more preferably 12% to 50%, still more preferably 15% to 40%.
By setting the porosity and water absorption of the carrier within the above ranges, the powder containing the catalyst component element can be easily supported on the carrier. The carrier is preferably inactive in the reaction of vapor-phase catalytic oxidation of unsaturated aldehyde with an oxygen-containing gas.

本発明の触媒の製造法では、前記造粒機に、担体を導入し、次いで該造粒機に導入する
バインダーの総量の2質量%以上90質量%以下のバインダー(以下、「バインダーA」
と称する場合がある。)を導入し、さらに、該触媒成分元素を含む粉体と、該造粒機に導
入するバインダーの総量の10質量%以上98質量%以下のバインダー(以下「バインダ
ーB」と称する場合がある。)を導入する。バインダーAの量の上限は85質量%が好ま
しく、80質量%がより好ましく、75質量%がさらに好ましく、70質量%がとりわけ
好ましい。バインダーAの量の下限は3質量%が好ましく、4質量%がより好ましく、5
質量%がさらに好ましい。それに相応し、バインダーBの量の上限は97質量%が好まし
く、96質量%がより好ましく、95質量%がさらに好ましい。バインダーBの量の下限
は15質量%が好ましく、20質量%がより好ましく、25質量%がさらに好ましく、3
0質量%がとりわけ好ましい。バインダーAの量、バインダーBの量が前記範囲内である
ことにより、製造された不飽和カルボン酸合成用触媒は機械的強度が高く、且つ高負荷条
件であっても、原料転化率に優れ、且つ、不飽和カルボン酸の選択率が良好であり、不飽
和カルボン酸の収率を向上させることが可能となる。
該造粒機に、該担体を導入し、次いで該造粒機にバインダーの総量に対して特定量のバ
インダーAを導入することにより、担体表面を適度なバインダーで覆うこととなり、触媒
成分元素を含む粉体と担体との付着性を向上させることが可能となり、さらに、該触媒成
分元素を含む粉体と、バインダーの総量に対して特定量のバインダーBを導入することは
、触媒前駆体として最適な細孔構造を形成する可能性があり、結果として、製造された不
飽和カルボン酸合成用触媒は機械的強度が高く、且つ高負荷条件であっても、原料転化率
に優れ、且つ、不飽和カルボン酸の選択率が良好であり、不飽和カルボン酸の収率を向上
させることが可能となるのである。
In the method for producing a catalyst of the present invention, a binder is introduced into the granulator, and then a binder of 2% by mass or more and 90% by mass or less of the total amount of the binder to be introduced into the granulator (hereinafter, "binder A").
It may be called. ), And a binder containing 10% by mass or more and 98% by mass or less of the total amount of the powder containing the catalyst component element and the binder to be introduced into the granulator (hereinafter referred to as "binder B"). ) Is introduced. The upper limit of the amount of the binder A is preferably 85% by mass, more preferably 80% by mass, further preferably 75% by mass, and particularly preferably 70% by mass. The lower limit of the amount of binder A is preferably 3% by mass, more preferably 4% by mass, and 5
Mass% is more preferred. Correspondingly, the upper limit of the amount of the binder B is preferably 97% by mass, more preferably 96% by mass, and even more preferably 95% by mass. The lower limit of the amount of the binder B is preferably 15% by mass, more preferably 20% by mass, still more preferably 25% by mass, and 3
0% by mass is particularly preferable. When the amount of binder A and the amount of binder B are within the above ranges, the produced catalyst for synthesizing unsaturated carboxylic acid has high mechanical strength and is excellent in raw material conversion rate even under high load conditions. Moreover, the selectivity of the unsaturated carboxylic acid is good, and the yield of the unsaturated carboxylic acid can be improved.
By introducing the carrier into the granulator and then introducing a specific amount of binder A with respect to the total amount of the binder into the granulator, the surface of the carrier is covered with an appropriate binder, and the catalyst component element is covered. It is possible to improve the adhesiveness between the contained powder and the carrier, and further, introducing the powder containing the catalyst component element and a specific amount of binder B with respect to the total amount of the binder is a catalyst precursor. There is a possibility of forming an optimum pore structure, and as a result, the produced catalyst for unsaturated carboxylic acid synthesis has high mechanical strength, excellent raw material conversion rate even under high load conditions, and The selectivity of the unsaturated carboxylic acid is good, and the yield of the unsaturated carboxylic acid can be improved.

前記バインダーとしては、エチレングリコール、グリセリン、プロピオン酸、マレイン
酸、ベンジルアルコール、プロピルアルコール、ブチルアルコール、セルロース、メチル
セルロース、でんぷん、ポリビニルアルコール、ステアリン酸またはフェノール等の有機
化合物、硫酸、硫酸アンモニウム、硝酸、硝酸アンモニウム、炭酸アンモニウム、水等の
無機化合物が挙げられ、有機化合物を含むことが好ましく、水酸基を有する有機化合物を
含むことがより好ましく、グリセリン及び/又はポリビニルアルコールを含むことがさら
に好ましい。バインダーとして前記化合物を含むことにより、製造された不飽和カルボン
酸合成用触媒は機械的強度が高く、且つ高負荷条件であっても、原料転化率に優れ、且つ
、不飽和カルボン酸の選択率が良好であり、不飽和カルボン酸の収率を向上させることが
可能となる。
尚、バインダーのなかでもバインダーAに有機化合物を含むことがとりわけ好ましい。
Examples of the binder include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol, cellulose, methyl cellulose, starch, polyvinyl alcohol, stearic acid or phenol, sulfuric acid, ammonium sulfate, nitrate and ammonium nitrate. , Ammonium carbonate, water and the like, preferably containing an organic compound, more preferably containing an organic compound having a hydroxyl group, and further preferably containing glycerin and / or polyvinyl alcohol. By containing the compound as a binder, the produced catalyst for synthesizing unsaturated carboxylic acid has high mechanical strength, excellent raw material conversion rate even under high load conditions, and selectivity of unsaturated carboxylic acid. Is good, and the yield of unsaturated carboxylic acid can be improved.
Among the binders, it is particularly preferable that the binder A contains an organic compound.

前記バインダーは、造粒機に導入するときは、水溶液であることが好ましく、濃度は、
2質量%以上50質量%以下が好ましい。下限は3質量%がより好ましい。上限は40質
量%がより好ましい。前記範囲であることにより、造粒機内でバインダーを均一に担体や
粉体に分散することが可能となる。
When the binder is introduced into a granulator, it is preferably an aqueous solution, and the concentration is
It is preferably 2% by mass or more and 50% by mass or less. The lower limit is more preferably 3% by mass. The upper limit is more preferably 40% by mass. Within the above range, the binder can be uniformly dispersed in the carrier or powder in the granulator.

前記造粒機に、前記触媒成分元素を含む粉体と、バインダーBを導入する方法としては
、(1)触媒成分元素を含む粉体等とバインダーBとを混合して均一混合物を準備し、該
均一混合物を造粒機に導入する方法、(2)触媒成分元素を含む粉体及びバインダーBを
同時に造粒機に導入する方法、(3)触媒成分元素を含む粉体を造粒機内に導入した後、
該造粒機にバインダ―Bを導入する方法、(4)触媒成分元素を含む粉体にバインダーB
を添加して不均一混合物とし、該不均一混合物を造粒機に導入する方法、(5)触媒成分
元素を含む粉体等とバインダーBをそれぞれ分割して同時、交互又は順不同で造粒機に導
入する方法が挙げられる。(1)〜(5)を適宜組み合わせて全量添加する等の方法が任
意に採用しうる。このうち(5)においては、例えば触媒成分元素を含む粉体等の造粒機
内壁への付着、触媒成分元素を含む粉体同士の凝集がなく担体上に所定量が担持されるよ
うにオートフィーダー等を用いて添加速度を調節して行うのが好ましい。
本発明の触媒の製造方法では、先述した(1)〜(5)を適宜組み合わせる方法をとる
ことができるが、製造された不飽和カルボン酸合成用触媒は機械的強度が高く、且つ高負
荷条件であっても、原料転化率に優れ、且つ、不飽和カルボン酸の選択率が良好であり、
不飽和カルボン酸の収率を向上させることが可能となりやすいことより(5)の方法が好
ましい。
尚、(5)の方法において、触媒活性成分を含む粉体よりも先に造粒機に導入されたバ
インダーがあった場合、そのバインダーはバインダーAに相当する。
As a method for introducing the powder containing the catalyst component element and the binder B into the granulator, (1) the powder or the like containing the catalyst component element and the binder B are mixed to prepare a uniform mixture. A method of introducing the homogeneous mixture into the granulator, (2) a method of simultaneously introducing the powder containing the catalyst component element and the binder B into the granulator, and (3) a method of introducing the powder containing the catalyst component element into the granulator. After introduction
A method of introducing a binder B into the granulator, (4) a binder B in a powder containing a catalyst component element.
Is added to form a heterogeneous mixture, and the heterogeneous mixture is introduced into a granulator. There is a method to introduce it to. A method such as adding the entire amount by appropriately combining (1) to (5) can be arbitrarily adopted. Of these, in (5), for example, the autofeeder so that the powder containing the catalyst component element does not adhere to the inner wall of the granulator and the powder containing the catalyst component element does not agglomerate and a predetermined amount is supported on the carrier. It is preferable to adjust the addition rate by using or the like.
In the method for producing a catalyst of the present invention, the above-mentioned methods (1) to (5) can be appropriately combined, but the produced catalyst for unsaturated carboxylic acid synthesis has high mechanical strength and high load conditions. Even so, the conversion rate of raw materials is excellent, and the selectivity of unsaturated carboxylic acid is good.
The method (5) is preferable because it is easy to improve the yield of unsaturated carboxylic acid.
In the method (5), if there is a binder introduced into the granulator before the powder containing the catalytically active component, the binder corresponds to the binder A.

前記造粒機に導入する担体の量に対する、前記造粒機に導入するバインダーの総量は5
質量%以上30質量%以下であることが好ましい。下限は10質量%がより好ましく、1
3質量%がさらに好ましい。上限は25質量%がより好ましく、22質量%がさらに好ま
しい。前記範囲内とすることで、製造された不飽和カルボン酸合成用触媒は機械的強度が
高く、且つ高負荷条件であっても、原料転化率に優れ、且つ、不飽和カルボン酸の選択率
が良好であり、不飽和カルボン酸の収率を向上させることが可能となる。
The total amount of binder introduced into the granulator is 5 with respect to the amount of carrier introduced into the granulator.
It is preferably mass% or more and 30 mass% or less. The lower limit is more preferably 10% by mass, 1
3% by mass is more preferable. The upper limit is more preferably 25% by mass, further preferably 22% by mass. Within the above range, the produced catalyst for synthesizing unsaturated carboxylic acid has high mechanical strength, is excellent in raw material conversion rate even under high load conditions, and has a selectivity of unsaturated carboxylic acid. It is good and it is possible to improve the yield of unsaturated carboxylic acid.

前記造粒機に導入する前記触媒成分元素を含む粉体の量に対する、前記造粒機に導入す
るバインダーの総量は10質量%以上40質量%以下であることが好ましい。下限は15
質量%がより好ましく、20質量%がさらに好ましい。上限は35質量%がより好ましく
、33質量%がさらに好ましい。前記範囲内とすることで、製造された不飽和カルボン酸
合成用触媒は機械的強度が高く、且つ高負荷条件であっても、原料転化率に優れ、且つ、
不飽和カルボン酸の選択率が良好であり、不飽和カルボン酸の収率を向上させることが可
能となる。
The total amount of the binder introduced into the granulator is preferably 10% by mass or more and 40% by mass or less with respect to the amount of the powder containing the catalyst component element introduced into the granulator. The lower limit is 15
By mass% is more preferred, and 20% by mass is even more preferred. The upper limit is more preferably 35% by mass, further preferably 33% by mass. Within the above range, the produced unsaturated carboxylic acid synthesis catalyst has high mechanical strength, excellent raw material conversion rate even under high load conditions, and
The selectivity of the unsaturated carboxylic acid is good, and the yield of the unsaturated carboxylic acid can be improved.

前記造粒機に導入する担体の量に対する、前記触媒成分元素を含む粉体の量は20質量
%以上100質量%以下であることが好ましい。下限は30質量%がより好ましく40質
量%がさらに好ましい。上限は90質量%がより好ましく、80質量%がさらに好ましい
。前記範囲内とすることで、製造された不飽和カルボン酸合成用触媒は機械的強度が高く
、且つ高負荷条件であっても、原料転化率に優れ、且つ、不飽和カルボン酸の選択率が良
好であり、不飽和カルボン酸の収率を向上させることが可能となる。
The amount of the powder containing the catalyst component element is preferably 20% by mass or more and 100% by mass or less with respect to the amount of the carrier introduced into the granulator. The lower limit is more preferably 30% by mass, further preferably 40% by mass. The upper limit is more preferably 90% by mass, further preferably 80% by mass. Within the above range, the produced catalyst for synthesizing unsaturated carboxylic acid has high mechanical strength, is excellent in raw material conversion rate even under high load conditions, and has a selectivity of unsaturated carboxylic acid. It is good and it is possible to improve the yield of unsaturated carboxylic acid.

成型工程において、担体、粉体及びバインダー以外に、その他の成型助剤を添加しても
よい。その他の成型助剤としては例えば、シリカ、アルミナ、ガラス、炭化珪素、窒化珪
素、グラファイトなどが挙げられる。
In addition to the carrier, powder and binder, other molding aids may be added in the molding step. Examples of other molding aids include silica, alumina, glass, silicon carbide, silicon nitride, graphite and the like.

触媒の強度が低いと、該触媒を、アクロレインを酸素含有ガスにより気相接触酸化して
アクリル酸を製造する反応管等に充填する際に、触媒に粉化が生じたり、割れる可能性が
あり、差圧(反応管入口と出口の圧力差)が大きくなる場合がある。差圧が大きくなると
、アクロレインと酸素含有ガスを含む原料混合ガスを触媒が充填された反応管に送風する
コンプレッサーなどに多大な負荷がかかる場合がある。
更に、触媒の強度が低いと、気相接触酸化の進行に比例し、触媒の粉化が加速する場合
があり、時間と共に差圧がさらに上昇する可能性がある。
よって、触媒の強度の指標となる触媒の粉化率は5.0%以下であることが好ましく、
3.0%以下がより好ましく、2.0%以下がさらに好ましい。なお粉化率とは、触媒を
1mの高さより落下した時の触媒サンプル重量に対する微粒重量の割合を示す。
If the strength of the catalyst is low, the catalyst may be pulverized or cracked when the catalyst is filled in a reaction tube or the like for producing acrylic acid by vapor-phase catalytic oxidation of achlorine with an oxygen-containing gas. , The differential pressure (pressure difference between the inlet and outlet of the reaction tube) may increase. When the differential pressure becomes large, a large load may be applied to a compressor or the like that blows a raw material mixed gas containing acrolein and an oxygen-containing gas into a reaction tube filled with a catalyst.
Further, if the strength of the catalyst is low, the pulverization of the catalyst may be accelerated in proportion to the progress of the vapor phase catalytic oxidation, and the differential pressure may be further increased with time.
Therefore, the pulverization rate of the catalyst, which is an index of the strength of the catalyst, is preferably 5.0% or less.
3.0% or less is more preferable, and 2.0% or less is further preferable. The pulverization rate indicates the ratio of the fine particle weight to the weight of the catalyst sample when the catalyst is dropped from a height of 1 m.

[焼成工程]
前記成型工程で得られた触媒前駆体を、好ましくは300℃〜500℃、より好ましく
は350℃〜450℃の温度条件にて1時間〜16時間程度、適度な酸素雰囲気中で焼成
する。焼成方法としては、前記乾燥工程における加熱処理で用いられる方法を採用するこ
とができる。
以上のようにして、機械的強度が高く、高活性であり、目的とする不飽和カルボン酸収
率に優れる触媒を得ることができる。
得られた触媒は触媒成分元素としてモリブデン及びバナジウムを含有することが好まし
く、それ以外に銅を含有することがより好ましく、なかでも、下記の一般式(2)で表さ
れることがさらに好ましい。触媒の触媒成分元素を前記範囲内とすることで、製造された
不飽和カルボン酸合成用触媒は機械的強度が高く、且つ高負荷条件であっても、原料転化
率に優れ、且つ、不飽和カルボン酸の選択率が良好であり、不飽和カルボン酸の収率を向
上させることが可能となる。
[Baking process]
The catalyst precursor obtained in the molding step is calcined at a temperature condition of preferably 300 ° C. to 500 ° C., more preferably 350 ° C. to 450 ° C. for about 1 hour to 16 hours in an appropriate oxygen atmosphere. As the firing method, the method used in the heat treatment in the drying step can be adopted.
As described above, it is possible to obtain a catalyst having high mechanical strength, high activity, and an excellent yield of the desired unsaturated carboxylic acid.
The obtained catalyst preferably contains molybdenum and vanadium as catalyst component elements, more preferably copper, and more preferably represented by the following general formula (2). By setting the catalyst component element of the catalyst within the above range, the produced catalyst for synthesizing unsaturated carboxylic acid has high mechanical strength, is excellent in raw material conversion rate even under high load conditions, and is unsaturated. The selectivity of the carboxylic acid is good, and the yield of the unsaturated carboxylic acid can be improved.

Mo12CuSbSi (2) Mo 12 V a X b Cu c Y d Sb e Z f Si g C h O i (2)

(式(2)中、XはNb及び/又はWを示し、YはMg、Ca、Sr、Ba及びZnから
なる群より選ばれた少なくとも一種の元素を示し、ZはFe、Co、Ni及びBiからな
る群より選ばれた少なくとも一種の元素を示す。a〜iはそれぞれの元素の原子比を示し
、0<a≦12、0≦b≦12、0<c≦12、0≦d≦8、0≦e≦500、0≦f≦
500、0≦g≦500、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足
させる値である。)
尚、触媒の触媒成分元素とは触媒から担体を除いたものである。
(In formula (2), X represents Nb and / or W, Y represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and Z represents Fe, Co, Ni and Indicates at least one element selected from the group consisting of Bi. A to i indicate the atomic ratio of each element, and 0 <a ≦ 12, 0 ≦ b ≦ 12, 0 <c ≦ 12, 0 ≦ d ≦ 8, 0 ≦ e ≦ 500, 0 ≦ f ≦
It is in the range of 500, 0 ≦ g ≦ 500, 0 ≦ h ≦ 500, and i is a value that satisfies the oxidation state of other elements. )
The catalyst component element of the catalyst is the catalyst obtained by removing the carrier.

[用途]
本発明の製造方法により製造された触媒を用いることにより、機械的強度が高く、原料
転化率や生成物選択率等の触媒性能をより向上させることができ、アクロレイン、メタク
ロレイン等の不飽和アルデヒドを酸素含有ガスにより気相接触酸化して、対応するアクリ
ル酸、メタクロレイン等の不飽和アルデヒドを高収率で製造することができる。
[Use]
By using the catalyst produced by the production method of the present invention, mechanical strength is high, catalytic performance such as raw material conversion rate and product selectivity can be further improved, and unsaturated aldehydes such as acrolein and methacrolein can be used. Can be catalytically oxidized with an oxygen-containing gas to produce the corresponding unsaturated aldehydes such as acrylic acid and methacrolein in high yield.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない
限り、以下の実施例に何ら限定されるものではない。
なお、アクロレイン転化率、アクリル酸選択率、アクリル酸収率は、下記の式(1)〜
(3)のように定義する。
(1)アクロレイン転化率(モル%)=100×(反応したアクロレインのモル数)/(
供給したアクロレインのモル数)
(2)アクリル酸選択率(モル%)=100×(生成したアクリル酸のモル数)/(転化
したアクロレインのモル数)
(3)アクリル酸収率(モル%)=100×(生成したアクリル酸のモル数)/(供給し
たアクロレインのモル数)
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
The acrolein conversion rate, acrylic acid selectivity, and acrylic acid yield are given by the following formulas (1) to.
It is defined as (3).
(1) Acrolein conversion rate (mol%) = 100 × (number of moles of reacted acrolein) / (
Number of moles of acrolein supplied)
(2) Acrylic acid selectivity (mol%) = 100 × (number of moles of produced acrylic acid) / (number of moles of converted acrolein)
(3) Acrylic acid yield (mol%) = 100 × (number of moles of produced acrylic acid) / (number of moles of supplied acrolein)

<アクロレインの気相接触酸化反応>
内径7.5mmの反応管に触媒2.42mlを充填した。プロピレンを気相接触酸化し
て得られたガスに酸素と窒素を追加し、下記の組成の原料混合ガスを該反応管入口より導
入し、空間速度を2340/hrで反応評価を行った。熱媒温度は260℃であった。反
応評価結果を表1に示す。
なお、使用した原料混合ガスの組成は、次の通りである。
・アクロレイン:6容量%、スチーム:17容量%、酸素:7容量%、(窒素含有不活性
ガス+その他のガス):70容量%
<Phase contact oxidation reaction of acrolein>
A reaction tube having an inner diameter of 7.5 mm was filled with 2.42 ml of the catalyst. Oxygen and nitrogen were added to the gas obtained by vapor-phase catalytic oxidation of propylene, a raw material mixed gas having the following composition was introduced from the reaction tube inlet, and the reaction was evaluated at a space velocity of 2340 / hr. The heat medium temperature was 260 ° C. The reaction evaluation results are shown in Table 1.
The composition of the raw material mixed gas used is as follows.
-Acrolein: 6% by volume, steam: 17% by volume, oxygen: 7% by volume, (nitrogen-containing inert gas + other gas): 70% by volume

<触媒の粉化率の測定>
触媒を目開き2.36mmの篩により篩別し、篩上のものを粉化率測定サンプルとした
。アクリル製の高さ1mの円筒(φ66mm)の上部に漏斗(円錐上部口径150mm、
円錐下部口径25mm)を挿入し、円筒下部に受け皿を設置した。該粉化率測定サンプル
約20gを精秤し、漏斗の円錐上部より投入し、該円筒を介して該受け皿に落下させた。
落下した該粉化率測定サンプルを該受け皿より回収し、目開き2.36mmの篩により篩
別した微粒の重量(粉化重量)を測定し、以下の式から触媒粉化率を算出した。
触媒粉化率(%)=(粉化重量/粉化率測定サンプル重量)×100
<Measurement of catalyst pulverization rate>
The catalyst was sieved by a sieve having a mesh size of 2.36 mm, and the sample on the sieve was used as a pulverization rate measurement sample. A funnel (conical upper diameter 150 mm, diameter 150 mm) on top of an acrylic cylinder (φ66 mm) with a height of 1 m.
A cone lower diameter (25 mm) was inserted, and a saucer was installed at the lower part of the cylinder. Approximately 20 g of the pulverization rate measurement sample was precisely weighed, charged from the upper part of the cone of the funnel, and dropped onto the saucer via the cylinder.
The dropped pulverization rate measurement sample was collected from the saucer, the weight of the fine particles sieved by a sieve having a mesh size of 2.36 mm (the pulverization weight) was measured, and the catalytic pulverization rate was calculated from the following formula.
Catalytic pulverization rate (%) = (powder weight / pulverization rate measurement sample weight) x 100

(実施例1)
容器に温水1800mlを入れ、さらにパラタングステン酸アンモニウム28gを加え
て溶解した。次いで、メタバナジン酸アンモニウム60gを加えて溶解した。次いで、モ
リブデン酸アンモニウム454gをさらに加えて、溶解し溶液を得た(以下、「溶液A」
と称する)。
次に、硫酸銅80gを温水100mlに入れ溶解した溶液を、該溶液Aに添加し、均一
になるように混合した。次いで、この混合した液に、更に水酸化ニオブ34g、三酸化ア
ンチモン13gを加えて、撹拌し、出発原料混合液を得た。
この出発原料混合液を150℃で噴霧乾燥し、次いで、大気中で、加熱温度300℃で
1時間、加熱処理して、乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを導入し、次いで該造粒機に導入するバインダーの総量14.2の内21.8質量%の
バインダーAを導入した。尚、バインダーAはグリセリンであり、10質量%の水溶液と
した。さらに、該担持用混合粉体と、該造粒機に導入するバインダー総量14.2gの内
78.2質量%のバインダーBとをそれぞれ分割し、分割した担持用混合粉体から交互に
導入することにより担持し、成形体である触媒前駆体を得た。尚、バインダーBはグリセ
リンと硫酸アンモニウムとの混合物であり、グリセリンと硫酸アンモニウムの質量比は1
:3であった。更にバインダーBは単一の水溶液であり、該水溶液のグリセリン濃度は1
0質量%、硫酸アンモニウム濃度は30質量%とした。この触媒前駆体を、空気を窒素で
希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触媒を得た。この触媒の触媒成
分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Example 1)
1800 ml of warm water was placed in a container, and 28 g of ammonium paratungstate was further added and dissolved. Then, 60 g of ammonium metavanadate was added and dissolved. Then, 454 g of ammonium molybdate was further added and dissolved to obtain a solution (hereinafter, "Solution A").
(Called).
Next, a solution prepared by adding 80 g of copper sulfate to 100 ml of warm water and dissolving the solution was added to the solution A and mixed so as to be uniform. Next, 34 g of niobium hydroxide and 13 g of antimony trioxide were further added to the mixed solution and stirred to obtain a starting material mixed solution.
This starting material mixture was spray-dried at 150 ° C., and then heat-treated in the air at a heating temperature of 300 ° C. for 1 hour to obtain a dried product.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
g was introduced, and then 21.8% by mass of the binder A out of the total amount of 14.2 of the binder to be introduced into the granulator was introduced. The binder A was glycerin, which was a 10% by mass aqueous solution. Further, the supporting mixed powder and 78.2% by mass of the binder B in the total amount of 14.2 g of the binder to be introduced into the granulator are each divided and alternately introduced from the divided supporting mixed powder. As a result, a catalyst precursor which was supported and was a molded product was obtained. Binder B is a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate is 1.
: It was 3. Further, the binder B is a single aqueous solution, and the glycerin concentration of the aqueous solution is 1.
The concentration was 0% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

(実施例2)
実施例1と同様にして乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを導入し、次いで該造粒機に導入するバインダーの総量14.2gの内5.4質量%の
バインダーAを導入した。尚、バインダーAはグリセリンであり、10質量%の水溶液と
した。さらに、該担持用混合粉体と、該造粒機に導入するバインダー総量14.2gの内
94.6質量%のバインダーBとをそれぞれ分割し、分割した担持用混合粉体から交互に
導入することにより担持し、成形体である触媒前駆体を得た。尚、バインダーBはグリセ
リンと硫酸アンモニウムとの混合物であり、グリセリンと硫酸アンモニウムの質量比は1
:3であった。更にバインダーBは単一の水溶液であり、該水溶液のグリセリン濃度は1
0質量%、硫酸アンモニウム濃度は30質量%とした。この触媒前駆体を、空気を窒素で
希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触媒を得た。この触媒の触媒成
分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Example 2)
A dried product was obtained in the same manner as in Example 1.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
g was introduced, and then 5.4% by mass of the binder A was introduced out of the total amount of 14.2 g of the binder to be introduced into the granulator. The binder A was glycerin, which was a 10% by mass aqueous solution. Further, the supporting mixed powder and 94.6% by mass of the binder B in the total amount of 14.2 g of the binder to be introduced into the granulator are divided and alternately introduced from the divided supporting mixed powder. As a result, a catalyst precursor which was supported and was a molded product was obtained. Binder B is a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate is 1.
: It was 3. Further, the binder B is a single aqueous solution, and the glycerin concentration of the aqueous solution is 1.
The concentration was 0% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

(実施例3)
実施例1と同様にして乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを導入し、次いで該造粒機に導入するバインダーの総量14.2gの内55.7質量%
のバインダーAを導入した。尚、バインダーAはグリセリンであり、10質量%の水溶液
とした。さらに、該担持用混合粉体と、該造粒機に導入するバインダー総量14.2gの
内44.3質量%のバインダーBとをそれぞれ分割し、分割した担持用混合粉体から交互
に導入することにより担持し、成形体である触媒前駆体を得た。尚、バインダーBはグリ
セリンと硫酸アンモニウムとの混合物であり、グリセリンと硫酸アンモニウムの質量比は
1:3であった。更にバインダーBは単一の水溶液であり、該水溶液のグリセリン濃度は
10質量%、硫酸アンモニウム濃度は30質量%とした。この触媒前駆体を、空気を窒素
で希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触媒を得た。この触媒の触媒
成分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Example 3)
A dried product was obtained in the same manner as in Example 1.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
55.7% by mass of the total amount of 14.2 g of the binder introduced into the granulator.
Binder A was introduced. The binder A was glycerin, which was a 10% by mass aqueous solution. Further, the supporting mixed powder and 44.3% by mass of the binder B out of the total amount of 14.2 g of the binder to be introduced into the granulator are each divided and alternately introduced from the divided supporting mixed powder. As a result, a catalyst precursor which was supported and was a molded product was obtained. Binder B was a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate was 1: 3. Further, the binder B was a single aqueous solution, and the glycerin concentration of the aqueous solution was 10% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

(実施例4)
実施例1と同様にして乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを導入し、次いで該造粒機に導入するバインダーの総量14.2gの内47.7質量%
のバインダーAを導入した。尚、バインダーAはグリセリンであり、10質量%の水溶液
とした。さらに、該担持用混合粉体と、該造粒機に導入するバインダー総量14.2gの
内52.3質量%のバインダーBとをそれぞれ分割し、分割した担持用混合粉体から交互
に導入することにより担持し、成形体である触媒前駆体を得た。尚、バインダーBはグリ
セリンと硫酸アンモニウムとの混合物であり、グリセリンと硫酸アンモニウムの質量比は
1:3であった。更にバインダーBは単一の水溶液であり、該水溶液のグリセリン濃度は
10質量%、硫酸アンモニウム濃度は30質量%とした。この触媒前駆体を、空気を窒素
で希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触媒を得た。この触媒の触媒
成分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Example 4)
A dried product was obtained in the same manner as in Example 1.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
47.7% by mass of the total amount of 14.2 g of the binder introduced into the granulator.
Binder A was introduced. The binder A was glycerin, which was a 10% by mass aqueous solution. Further, the supporting mixed powder and 52.3% by mass of the binder B out of the total amount of 14.2 g of the binder to be introduced into the granulator are each divided and alternately introduced from the divided supporting mixed powder. As a result, a catalyst precursor which was supported and was a molded product was obtained. Binder B was a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate was 1: 3. Further, the binder B was a single aqueous solution, and the glycerin concentration of the aqueous solution was 10% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

(実施例5)
実施例1と同様にして乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを導入し、次いで該造粒機に導入するバインダーの総量14.2gの内36.9質量%
のバインダーAを導入した。尚、バインダーAはグリセリンであり、10質量%の水溶液
とした。さらに、該担持用混合粉体と、該造粒機に導入するバインダー総量14.2gの
内63.1質量%のバインダーBとをそれぞれ分割し、分割した担持用混合粉体から交互
に導入することにより担持し、成形体である触媒前駆体を得た。尚、バインダーBはグリ
セリンと硫酸アンモニウムとの混合物であり、グリセリンと硫酸アンモニウムの質量比は
1:3であった。更にバインダーBは単一の水溶液であり、該水溶液のグリセリン濃度は
10質量%、硫酸アンモニウム濃度は30質量%とした。この触媒前駆体を、空気を窒素
で希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触媒を得た。この触媒の触媒
成分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Example 5)
A dried product was obtained in the same manner as in Example 1.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
36.9% by mass of the total amount of 14.2 g of the binder introduced into the granulator and then introduced into the granulator.
Binder A was introduced. The binder A was glycerin, which was a 10% by mass aqueous solution. Further, the supporting mixed powder and 63.1% by mass of the binder B in the total amount of 14.2 g of the binder to be introduced into the granulator are each divided and alternately introduced from the divided supporting mixed powder. As a result, a catalyst precursor which was supported and was a molded product was obtained. Binder B was a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate was 1: 3. Further, the binder B was a single aqueous solution, and the glycerin concentration of the aqueous solution was 10% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

(実施例6)
実施例1と同様にして乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを導入し、次いで該造粒機に導入するバインダーの総量14.2gの内73.0質量%
のバインダーAを導入した。尚、バインダーAはグリセリンであり、10質量%の水溶液
とした。さらに、該担持用混合粉体と、該造粒機に導入するバインダー総量14.2gの
内27.0質量%のバインダーBとをそれぞれ分割し、分割した担持用混合粉体から交互
に導入することにより担持し、成形体である触媒前駆体を得た。尚、バインダーBはグリ
セリンと硫酸アンモニウムとの混合物であり、グリセリンと硫酸アンモニウムの質量比は
1:3であった。更にバインダーBは単一の水溶液であり、該水溶液のグリセリン濃度は
10質量%、硫酸アンモニウム濃度は30質量%とした。この触媒前駆体を、空気を窒素
で希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触媒を得た。この触媒の触媒
成分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Example 6)
A dried product was obtained in the same manner as in Example 1.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
73.0% by mass of the total amount of 14.2 g of the binder introduced into the granulator.
Binder A was introduced. The binder A was glycerin, which was a 10% by mass aqueous solution. Further, the supporting mixed powder and 27.0% by mass of the binder B out of the total amount of 14.2 g of the binder to be introduced into the granulator are each divided and alternately introduced from the divided supporting mixed powder. As a result, a catalyst precursor which was supported and was a molded product was obtained. Binder B was a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate was 1: 3. Further, the binder B was a single aqueous solution, and the glycerin concentration of the aqueous solution was 10% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

(比較例1)
実施例1と同様にして乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを担持し、次いで、担持用混合粉体と、バインダー14.2gとをそれぞれ分割し、分
割した担持用混合粉体から交互に導入することにより担持し、成形体である触媒前駆体を
得た。尚、バインダーはグリセリンと硫酸アンモニウムとの混合物であり、グリセリンと
硫酸アンモニウムの質量比は1:3であった。更にバインダーは単一の水溶液であり、該
水溶液のグリセリン濃度は10質量%、硫酸アンモニウム濃度は30質量%とした。この
触媒前駆体を、空気を窒素で希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触
媒を得た。この触媒の触媒成分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Comparative Example 1)
A dried product was obtained in the same manner as in Example 1.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
g is supported, and then the supporting mixed powder and 14.2 g of the binder are each divided and supported by alternately introducing from the divided supporting mixed powder to obtain a catalyst precursor which is a molded product. rice field. The binder was a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate was 1: 3. Further, the binder was a single aqueous solution, and the glycerin concentration of the aqueous solution was 10% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

(比較例2)
実施例1と同様にして乾燥物を得た。
この乾燥物を、攪拌翼式粉砕機を用いて、200μm以下に粉砕し、粉砕物を得た。こ
の粉砕物を担持用粉体として用いた。この担持用粉体50.6gに鱗片ガラスを該担持用
粉体に対して1.5質量%添加し、均一になるように混合し、担持用混合粉体とした。パ
ン型造粒機にアルミナ−シリカを主成分とする直径4.9mmの球状の不活性担体100
gを導入し、次いで該造粒機に導入するバインダーの総量14.2gの内94.9質量%
のバインダーAを導入した。尚、バインダーAはグリセリンであり、10質量%の水溶液
とした。さらに、該担持用混合粉体と、該造粒機に導入するバインダー総量14.2gの
内5.1質量%のバインダーBとをそれぞれ分割し、分割した担持用混合粉体から交互に
導入することにより担持し、成形体である触媒前駆体を得た。尚、バインダーBはグリセ
リンと硫酸アンモニウムとの混合物であり、グリセリンと硫酸アンモニウムの質量比は1
:3であった。更にバインダーBは単一の水溶液であり、該水溶液のグリセリン濃度は1
0質量%、硫酸アンモニウム濃度は30質量%とした。この触媒前駆体を、空気を窒素で
希釈した酸素3体積%雰囲気中で390℃、3時間焼成し触媒を得た。この触媒の触媒成
分元素の組成比(酸素を除く)は、以下であった。
Mo122.40.5Nb1.0Cu1.5Sb0.4
製造された触媒を用いたアクロレインの気相接触酸化反応評価結果を表1に示した。
(Comparative Example 2)
A dried product was obtained in the same manner as in Example 1.
This dried product was pulverized to 200 μm or less using a stirring blade type pulverizer to obtain a pulverized product. This pulverized product was used as a supporting powder. To 50.6 g of this supporting powder, 1.5% by mass of scaly glass was added to the supporting powder and mixed so as to be uniform to obtain a supporting mixed powder. Spherical inert carrier 100 with a diameter of 4.9 mm containing alumina-silica as the main component in a pan-type granulator
94.9% by mass of the total amount of 14.2 g of the binder introduced into the granulator.
Binder A was introduced. The binder A was glycerin, which was a 10% by mass aqueous solution. Further, the supporting mixed powder and 5.1% by mass of the binder B out of the total amount of 14.2 g of the binder to be introduced into the granulator are each divided and alternately introduced from the divided supporting mixed powder. As a result, a catalyst precursor which was supported and was a molded product was obtained. Binder B is a mixture of glycerin and ammonium sulfate, and the mass ratio of glycerin and ammonium sulfate is 1.
: It was 3. Further, the binder B is a single aqueous solution, and the glycerin concentration of the aqueous solution is 1.
The concentration was 0% by mass and the ammonium sulfate concentration was 30% by mass. This catalyst precursor was calcined at 390 ° C. for 3 hours in an atmosphere of 3% by volume of oxygen in which air was diluted with nitrogen to obtain a catalyst. The composition ratio (excluding oxygen) of the catalyst component elements of this catalyst was as follows.
Mo 12 V 2.4 W 0.5 Nb 1.0 Cu 1.5 Sb 0.4
Table 1 shows the evaluation results of the vapor-phase catalytic oxidation reaction of acrolein using the produced catalyst.

Figure 2021146252
Figure 2021146252

以上より、本発明の製造方法によれば、機械的強度が高く、且つ、アクロレイン転化率
及びアクリル酸選択率がいずれも高く、得られるアクリル酸収率に優れる触媒を製造でき
ることが分かる。
From the above, it can be seen that according to the production method of the present invention, it is possible to produce a catalyst having high mechanical strength, high acrolein conversion rate and high acrylic acid selectivity, and excellent yield of acrylic acid obtained.

Claims (6)

造粒機に、担体、触媒成分元素を含む粉体及びバインダーを導入し、該担体に該触媒成
分元素を含む粉体を担持して触媒前駆体とする成型工程を含む不飽和カルボン酸合成用触
媒を製造する方法であって、
該造粒機に、該担体を導入し、次いで該造粒機に導入するバインダーの総量の2質量%
以上90質量%以下のバインダーを導入し、さらに、該触媒成分元素を含む粉体と、該造
粒機に導入するバインダーの総量の10質量%以上98質量%以下のバインダーを導入し
、触媒前駆体とする不飽和カルボン酸合成用触媒の製造方法。
For unsaturated carboxylic acid synthesis including a molding step of introducing a carrier, a powder containing a catalyst component element and a binder into a granulator, and supporting the powder containing the catalyst component element on the carrier to prepare a catalyst precursor. A method of producing a catalyst
2% by mass of the total amount of the binder introduced into the granulator and then introduced into the granulator.
A binder containing 90% by mass or more is introduced, and further, a powder containing the catalyst component element and a binder of 10% by mass or more and 98% by mass or less of the total amount of the binder to be introduced into the granulator are introduced to prepare a catalyst precursor. A method for producing a catalyst for synthesizing an unsaturated carboxylic acid as a body.
前記造粒機に導入する担体の量に対する、前記造粒機に導入するバインダーの総量が5
質量%以上30質量%以下である請求項1に記載の不飽和カルボン酸合成用触媒の製造方
法。
The total amount of binder introduced into the granulator is 5 with respect to the amount of carrier introduced into the granulator.
The method for producing an unsaturated carboxylic acid synthesis catalyst according to claim 1, wherein the content is mass% or more and 30% by mass or less.
前記造粒機に導入する前記触媒成分元素を含む粉体の量に対する、前記造粒機に導入す
るバインダーの総量が10質量%以上40質量%以下である請求項1又は2に記載の不飽
和カルボン酸合成用触媒の製造方法。
The unsaturated according to claim 1 or 2, wherein the total amount of the binder introduced into the granulator is 10% by mass or more and 40% by mass or less with respect to the amount of the powder containing the catalyst component element introduced into the granulator. A method for producing a catalyst for carboxylic acid synthesis.
前記バインダーが有機化合物を含む請求項1乃至3のいずれか1項に記載の不飽和カル
ボン酸合成用触媒の製造方法。
The method for producing an unsaturated carboxylic acid synthesis catalyst according to any one of claims 1 to 3, wherein the binder contains an organic compound.
前記不飽和カルボン酸合成用触媒の触媒成分元素が下記式(1)で表される請求項1乃
至4のいずれか1項に記載の不飽和カルボン酸合成用触媒の製造方法。
Mo12CuSbSi (1)
(式(1)中、XはNb及び/又はWを示し、YはMg、Ca、Sr、Ba及びZnから
なる群より選ばれた少なくとも一種の元素を示し、ZはFe、Co、Ni及びBiからな
る群より選ばれた少なくとも一種の元素を示す。a〜iはそれぞれの元素の原子比を示し
、0<a≦12、0≦b≦12、0<c≦12、0≦d≦8、0≦e≦500、0≦f≦
500、0≦g≦500、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足
させる値である。)
The method for producing an unsaturated carboxylic acid synthesis catalyst according to any one of claims 1 to 4, wherein the catalyst component element of the unsaturated carboxylic acid synthesis catalyst is represented by the following formula (1).
Mo 12 V a X b Cu c Y d Sb e Z f Si g C h O i (1)
(In formula (1), X represents Nb and / or W, Y represents at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and Z represents Fe, Co, Ni and Indicates at least one element selected from the group consisting of Bi. A to i indicate the atomic ratio of each element, and 0 <a ≦ 12, 0 ≦ b ≦ 12, 0 <c ≦ 12, 0 ≦ d ≦ 8, 0 ≦ e ≦ 500, 0 ≦ f ≦
It is in the range of 500, 0 ≦ g ≦ 500, 0 ≦ h ≦ 500, and i is a value that satisfies the oxidation state of other elements. )
請求項1乃至5のいずれか1項に記載の製造方法により製造された不飽和カルボン酸合
成用触媒を用いて、アクロレインを酸素含有ガスにより気相接触酸化するアクリル酸の製
造方法。
A method for producing acrylic acid, in which acrolein is vapor-phase catalytically oxidized with an oxygen-containing gas using a catalyst for synthesizing an unsaturated carboxylic acid produced by the production method according to any one of claims 1 to 5.
JP2020047200A 2020-03-18 2020-03-18 Method for producing catalyst for acrylic acid synthesis Active JP7459589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047200A JP7459589B2 (en) 2020-03-18 2020-03-18 Method for producing catalyst for acrylic acid synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047200A JP7459589B2 (en) 2020-03-18 2020-03-18 Method for producing catalyst for acrylic acid synthesis

Publications (2)

Publication Number Publication Date
JP2021146252A true JP2021146252A (en) 2021-09-27
JP7459589B2 JP7459589B2 (en) 2024-04-02

Family

ID=77850200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047200A Active JP7459589B2 (en) 2020-03-18 2020-03-18 Method for producing catalyst for acrylic acid synthesis

Country Status (1)

Country Link
JP (1) JP7459589B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299797A (en) * 1995-03-03 1996-11-19 Nippon Kayaku Co Ltd Catalyst and its production
JP2001079408A (en) * 1999-09-17 2001-03-27 Nippon Kayaku Co Ltd Catalyst
WO2009147965A1 (en) * 2008-06-02 2009-12-10 日本化薬株式会社 Catalyst and method of producing unsaturated aldehyde and unsaturated carboxylic acid
JP2015096497A (en) * 2013-10-10 2015-05-21 日本化薬株式会社 Unsaturated carboxylic acid production process and supported catalyst
JP2016059898A (en) * 2014-09-19 2016-04-25 株式会社日本触媒 Catalyst for producing acrylic acid and process for producing acrylic acid using the catalyst
JP2019166521A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299797A (en) * 1995-03-03 1996-11-19 Nippon Kayaku Co Ltd Catalyst and its production
JP2001079408A (en) * 1999-09-17 2001-03-27 Nippon Kayaku Co Ltd Catalyst
WO2009147965A1 (en) * 2008-06-02 2009-12-10 日本化薬株式会社 Catalyst and method of producing unsaturated aldehyde and unsaturated carboxylic acid
JP2015096497A (en) * 2013-10-10 2015-05-21 日本化薬株式会社 Unsaturated carboxylic acid production process and supported catalyst
JP2016059898A (en) * 2014-09-19 2016-04-25 株式会社日本触媒 Catalyst for producing acrylic acid and process for producing acrylic acid using the catalyst
JP2019166521A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 catalyst

Also Published As

Publication number Publication date
JP7459589B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP6363464B2 (en) Method for producing unsaturated carboxylic acid, and supported catalyst
JPH08299797A (en) Catalyst and its production
WO2015008815A1 (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2023107848A (en) catalyst
WO2006121100A1 (en) Method for preparing catalyst for production of methacrylic acid
JP2018043197A (en) Catalyst for manufacturing acrylic acid
WO2014181839A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid, method for manufacturing same, and method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JPH067924B2 (en) Propylene oxidation catalyst and method for producing the same with excellent reproducibility
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
JP7347283B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7347282B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7375639B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7375638B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7459589B2 (en) Method for producing catalyst for acrylic acid synthesis
JP4253176B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP7480671B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7480672B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468291B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468290B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
WO2021152916A1 (en) Method for producing catalyst, and method for producing acrylic acid
RU2818248C1 (en) Method of producing catalyst and method of producing acrylic acid
WO2020203789A1 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7459589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150