JP2018043197A - Catalyst for manufacturing acrylic acid - Google Patents

Catalyst for manufacturing acrylic acid Download PDF

Info

Publication number
JP2018043197A
JP2018043197A JP2016180052A JP2016180052A JP2018043197A JP 2018043197 A JP2018043197 A JP 2018043197A JP 2016180052 A JP2016180052 A JP 2016180052A JP 2016180052 A JP2016180052 A JP 2016180052A JP 2018043197 A JP2018043197 A JP 2018043197A
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
active component
solution
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016180052A
Other languages
Japanese (ja)
Other versions
JP6668207B2 (en
Inventor
将吾 保田
Shogo YASUDA
将吾 保田
良太 平岡
Ryota Hiraoka
良太 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2016180052A priority Critical patent/JP6668207B2/en
Publication of JP2018043197A publication Critical patent/JP2018043197A/en
Application granted granted Critical
Publication of JP6668207B2 publication Critical patent/JP6668207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for manufacturing acrylic acid by a gas phase contact oxidation reaction of acrolein, excellent in long term stability and having high activity and a manufacturing method therefor, and a manufacturing method of acrylic acid using the catalyst.SOLUTION: There is provided a catalyst for manufacturing acrylic acid having diffraction peaks at 22.0°±0.3° and 26.5°±0.3° of a value of diffraction angle 2θ in an X ray diffraction pattern using Cu-Kα ray of a catalyst active component, a peak intention rate of maximum peak intensity in a range of 2θ=26.5°±0.3 R1 and maximum peak intensity in a range of 2θ=22.0°±0.3° R2, R1/R2 exhibiting 0.17 to 0.22, and containing molybdenum, vanadium, tungsten, copper and antimony in the catalyst active component.SELECTED DRAWING: Figure 1

Description

本発明はアクロレインを分子状酸素または分子状酸素含有ガスの存在下で気相接触酸化してアクリル酸を高収率で製造する触媒およびその製造方法並びに該触媒を用いたアクリル酸の製造方法に関する。 The present invention relates to a catalyst for producing acrylic acid in high yield by vapor phase catalytic oxidation of acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, a method for producing the catalyst, and a method for producing acrylic acid using the catalyst. .

アクリル酸は、吸水性樹脂、接着剤等の原料としてその重要性がますます高まっている。そのため、近年ではアクロレインを原料とし気相接触酸化反応させてアクリル酸を製造するための触媒の性能向上が求められている。そこで、各社はアクリル酸を高収率かつ長期安定的に製造することができる触媒に関して様々な改良を行っており、例えば、以下のような提案がされている。 Acrylic acid is becoming increasingly important as a raw material for water-absorbing resins and adhesives. Therefore, in recent years, there has been a demand for improving the performance of a catalyst for producing acrylic acid by a gas phase catalytic oxidation reaction using acrolein as a raw material. Accordingly, each company has made various improvements regarding a catalyst that can stably produce acrylic acid in a high yield for a long period of time. For example, the following proposals have been made.

特許文献1では、触媒活性成分の銅のKα線を用いたX線回折の2θ値(θはX線回折における回折角度をさす。)において、22.2°±0.3°のピーク強度が最大であるモリブデン、バナジウム系酸化物触媒が開示されている。 In Patent Document 1, in the 2θ value of X-ray diffraction using the Kα ray of copper as the catalytic active component (θ indicates the diffraction angle in X-ray diffraction), the peak intensity of 22.2 ° ± 0.3 ° is The largest molybdenum and vanadium oxide catalysts are disclosed.

特許文献2では、触媒活性成分の銅のKα線を用いたX線回折の2θ値(θはX線回折における回折角度をさす。)において、回折角2θ=22.2°±0.3°のピーク強度に対する回折角2θ=25.0°±0.3°のピーク強度の比(25.0°/22.2°)が0.1以上0.7未満であるモリブデン、バナジウム系酸化物触媒が開示されている。 In Patent Document 2, the diffraction angle 2θ = 22.2 ° ± 0.3 ° in the 2θ value of X-ray diffraction using the Kα ray of copper as the catalytic active component (θ indicates the diffraction angle in X-ray diffraction). Molybdenum and vanadium-based oxides with a ratio of the peak intensity of diffraction angle 2θ = 25.0 ° ± 0.3 ° (25.0 ° / 22.2 °) to the peak intensity of 0.1 to less than 0.7 A catalyst is disclosed.

特許文献3では、触媒活性成分の銅のKα線を用いたX線回折の2θ値(θはX線回折における回折角度をさす。)において、回折角2θ=28.3°(a1)のピーク強度および回折角2θ=約27.6°(a2)のピーク強度の比(a1/a2)が0.1以下であるモリブデン、バナジウム系酸化物触媒が開示されている。 In Patent Document 3, a peak at a diffraction angle 2θ = 28.3 ° (a1) in an X-ray diffraction 2θ value (θ indicates a diffraction angle in X-ray diffraction) using copper Kα ray as a catalytic active component. A molybdenum and vanadium-based oxide catalyst having a ratio of intensity and diffraction angle 2θ = peak intensity of about 27.6 ° (a2) (a1 / a2) of 0.1 or less is disclosed.

しかしながら、これらの複合酸化物触媒は、現状では実用触媒として性能を発揮しているものの、さらなる性能の向上、特に高活性化が求められている。 However, although these composite oxide catalysts currently exhibit performance as practical catalysts, further improvements in performance, particularly high activation, are required.

特開平8−299797号公報JP-A-8-299797 特開2015−120133号公報JP, 2015-120133, A 特開2003−251184号公報JP 2003-251184 A

本発明は、アクロレインを気相接触酸化反応してアクリル酸を製造する触媒であって、長期安定性に優れた高活性なアクリル酸製造用触媒およびその製造方法並びに該触媒を用いたアクリル酸の製造方法を提供することを目的とする。 The present invention relates to a catalyst for producing acrylic acid by gas phase catalytic oxidation reaction of acrolein, a highly active catalyst for producing acrylic acid having excellent long-term stability, a method for producing the same, and acrylic acid using the catalyst. An object is to provide a manufacturing method.

本発明者らは、アクロレインを分子状酸素または分子状酸素含有ガスの存在下で気相接触酸化反応してアクリル酸を高収率に製造する触媒について鋭意検討した結果、モリブデン、バナジウムおよびアンチモンを含む触媒活性成分のCu−Kα線を使用したX線回折パターンにおける回折角2θの値が22.0°±0.3°及び26.5°±0.3°に回折ピークを有し、2θ=26.5°±0.3の範囲内の最大ピーク強度R1と、2θ=22.0°±0.3°の範囲内の最大ピーク強度R2とのピーク強度比R1/R2が0.17以上0.22以下を示す触媒が上記要求の性能を満たすことを見出した。 As a result of intensive studies on a catalyst for producing acrylic acid in a high yield by gas phase catalytic oxidation reaction of acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, the present inventors have determined that molybdenum, vanadium and antimony The value of the diffraction angle 2θ in the X-ray diffraction pattern using Cu—Kα ray of the catalytically active component contained has diffraction peaks at 22.0 ° ± 0.3 ° and 26.5 ° ± 0.3 °. The peak intensity ratio R1 / R2 between the maximum peak intensity R1 within the range of 26.5 ° ± 0.3 and the maximum peak intensity R2 within the range of 2θ = 22.0 ° ± 0.3 ° is 0.17. It has been found that a catalyst exhibiting 0.22 or less satisfies the above required performance.

すなわち、本発明は、
(1)触媒活性成分のCu−Kα線を使用したX線回折パターンにおける回折角2θの値が22.0°±0.3°及び26.5°±0.3°に回折ピークを有し、2θ=26.5°±0.3の範囲内の最大ピーク強度R1と、2θ=22.0°±0.3°の範囲内の最大ピーク強度R2とのピーク強度比R1/R2が0.17以上0.22以下であるアクリル酸製造用触媒、
(2)触媒活性成分が式(1)
Mo12CuSb (1)
(式中、Mo、V、W、Cu、SbおよびOはそれぞれ、モリブデン、バナジウム、タングステン、銅、アンチモンおよび酸素を示し、Xはアルカリ金属、およびタリウムからなる群より選ばれた少なくとも一種の元素を、Yはマグネシウム、カルシウム、ストロンチウム、バリウムおよび亜鉛からなる群より選ばれた少なくとも一種の元素を、Zはニオブ、セリウム、すず、クロム、マンガン、鉄、コバルト、サマリウム、ゲルマニウム、チタンおよび砒素からなる群より選ばれた少なくとも一種の元素をそれぞれ示す。またa、b、c、d、e、f、gおよびhは各元素の原子比を表し、モリブデン原子12に対して、aは0<a≦10、bは0≦b≦10、cは0<c≦6、dは0<d≦10、eは0≦e≦0.5、fは0≦f≦1、gは0≦g<6を表す。また、hは前記各成分の原子価を満足するのに必要な酸素原子数である。)で示される組成を有する(1)に記載のアクリル酸製造用触媒、
(3)前記触媒活性成分が不活性担体に担持されていることを特徴とする(1)または(2)に記載のアクリル酸製造用触媒、
(4)触媒活性成分が式(1)
Mo12CuSb (1)
(式中、Mo、V、W、Cu、SbおよびOはそれぞれ、モリブデン、バナジウム、タングステン、銅、アンチモンおよび酸素を示し、Xはアルカリ金属、およびタリウムからなる群より選ばれた少なくとも一種の元素を、Yはマグネシウム、カルシウム、ストロンチウム、バリウムおよび亜鉛からなる群より選ばれた少なくとも一種の元素を、Zはニオブ、セリウム、すず、クロム、マンガン、鉄、コバルト、サマリウム、ゲルマニウム、チタンおよび砒素からなる群より選ばれた少なくとも一種の元素をそれぞれ示す。またa、b、c、d、e、f、gおよびhは各元素の原子比を表し、モリブデン原子12に対して、aは0<a≦10、bは0≦b≦10、cは0<c≦6、dは0<d≦10、eは0≦e≦0.5、fは0≦f≦1、gは0≦g<6を表す。また、hは前記各成分の原子価を満足するのに必要な酸素原子数である。)で示される組成を有する(2)または(3)に記載のアクリル酸製造用触媒であって、以下の工程を含むことを特徴とするアクリル酸製造用触媒の製造方法、
工程a)構成元素として、少なくともモリブデンおよびバナジウムを含むスラリー液または水溶液(以下A液)を調製する工程、
工程b)アンチモン含有化合物と塩基性水溶液との混合液(以下B液)を調製する工程、工程c)前記A液とB液を混合してスラリー液(以下、C液という)を調製する工程、
工程d)前記工程c)で得られたC液を乾燥し、得られた触媒活性成分固体Aを予備焼成する工程、
工程e)前記工程d)で得られた予備焼成後の触媒活性成分固体Bを成型する工程、
工程f)前記工程e)で得られた成型体を本焼成する工程。
(5)(1)から(3)のいずれか1項に記載の触媒を用いて、アクロレインを分子状酸素または分子状酸素含有ガスの存在下で気相接触酸化することを特徴とするアクリル酸の製造方法、
に関する。
That is, the present invention
(1) The diffraction angle 2θ has diffraction peaks at 22.0 ° ± 0.3 ° and 26.5 ° ± 0.3 ° in an X-ray diffraction pattern using Cu—Kα ray of the catalytically active component. The peak intensity ratio R1 / R2 between the maximum peak intensity R1 within the range of 2θ = 26.5 ° ± 0.3 and the maximum peak intensity R2 within the range of 2θ = 22.0 ° ± 0.3 ° is 0. A catalyst for producing acrylic acid that is not less than 17 and not more than 0.22;
(2) The catalytically active component is represented by formula (1)
Mo 12 V a W b Cu c Sb d X e Y f Z g O h (1)
(In the formula, Mo, V, W, Cu, Sb and O respectively represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, and X is at least one element selected from the group consisting of alkali metals and thallium. Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z is niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic And at least one element selected from the group consisting of a, b, c, d, e, f, g, and h, each of which represents an atomic ratio of each element. a ≦ 10, b is 0 ≦ b ≦ 10, c is 0 <c ≦ 6, d is 0 <d ≦ 10, e is 0 ≦ e ≦ 0.5, f is 0 ≦ f ≦ 1, Represents 0 ≦ g <6, and h is the number of oxygen atoms necessary to satisfy the valence of each component.) The catalyst for producing acrylic acid according to (1) having a composition represented by: ,
(3) The catalyst for acrylic acid production according to (1) or (2), wherein the catalytically active component is supported on an inert carrier,
(4) The catalytically active component is represented by the formula (1)
Mo 12 V a W b Cu c Sb d X e Y f Z g O h (1)
(In the formula, Mo, V, W, Cu, Sb and O respectively represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, and X is at least one element selected from the group consisting of alkali metals and thallium. Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z is niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic And at least one element selected from the group consisting of a, b, c, d, e, f, g, and h, each of which represents an atomic ratio of each element. a ≦ 10, b is 0 ≦ b ≦ 10, c is 0 <c ≦ 6, d is 0 <d ≦ 10, e is 0 ≦ e ≦ 0.5, f is 0 ≦ f ≦ 1, Represents 0 ≦ g <6, and h is the number of oxygen atoms necessary to satisfy the valence of each component.) The acrylic according to (2) or (3) A method for producing an acrylic acid production catalyst, which is an acid production catalyst comprising the following steps:
Step a) preparing a slurry solution or an aqueous solution (hereinafter referred to as A solution) containing at least molybdenum and vanadium as constituent elements,
Step b) Step of preparing a mixed solution of antimony-containing compound and basic aqueous solution (hereinafter referred to as “B solution”), Step c) Step of preparing a slurry liquid (hereinafter referred to as “C solution”) by mixing the above-mentioned A solution and B solution ,
Step d) A step of drying the liquid C obtained in the step c) and pre-baking the obtained catalytically active component solid A.
Step e) A step of molding the catalytically active component solid B after the preliminary calcination obtained in the step d),
Step f) A step of subjecting the molded body obtained in the step e) to main firing.
(5) Acrylic acid characterized by gas-phase catalytic oxidation of acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas using the catalyst according to any one of (1) to (3) Manufacturing method,
About.

触媒活性成分のCu−Kα線を使用したX線回折パターンにおける回折角2θの値が22.0°±0.3°及び26.5°±0.3°に回折ピークを有し、2θ=26.5°±0.3の範囲内の最大ピーク強度R1と、2θ=22.0°±0.3°の範囲内の最大ピーク強度R2とのピーク強度比R1/R2が0.17以上0.22以下を示す触媒を使用することにより、反応浴温度を抑制することができ、かつ高収率でアクリル酸を製造することができる。 The value of the diffraction angle 2θ in the X-ray diffraction pattern using Cu—Kα ray of the catalytically active component has diffraction peaks at 22.0 ° ± 0.3 ° and 26.5 ° ± 0.3 °, and 2θ = The peak intensity ratio R1 / R2 between the maximum peak intensity R1 within the range of 26.5 ° ± 0.3 and the maximum peak intensity R2 within the range of 2θ = 22.0 ° ± 0.3 ° is 0.17 or more. By using a catalyst exhibiting 0.22 or less, the reaction bath temperature can be suppressed, and acrylic acid can be produced in a high yield.

実施例1に係る本発明の触媒の触媒活性成分のX線回折分析の結果を示す。The result of the X-ray diffraction analysis of the catalytically active component of the catalyst of the present invention relating to Example 1 is shown. 比較例1に係る比較用の触媒の触媒活性成分のX線回折分析の結果を示す。The result of the X-ray diffraction analysis of the catalytically active component of the comparative catalyst according to Comparative Example 1 is shown.

本発明により、モリブデン、バナジウムおよびアンチモンを含む触媒活性成分のCu−Kα線を使用したX線回折パターンにおける回折角2θの値が22.0°±0.3°及び26.5°±0.3°に回折ピークを有し、2θ=26.5°±0.3の範囲内の最大ピーク強度R1と、2θ=22.0°±0.3°の範囲内の最大ピーク強度R2とのピーク強度比R1/R2が0.17以上0.22以下を示すことを特徴とするアクリル酸製造用触媒を提供することができる。 According to the present invention, the values of the diffraction angle 2θ in the X-ray diffraction pattern using Cu—Kα rays of the catalytically active components including molybdenum, vanadium and antimony are 22.0 ° ± 0.3 ° and 26.5 ° ± 0.00. It has a diffraction peak at 3 °, and a maximum peak intensity R1 within a range of 2θ = 26.5 ° ± 0.3 and a maximum peak intensity R2 within a range of 2θ = 22.0 ° ± 0.3 ° A catalyst for producing acrylic acid, characterized in that the peak intensity ratio R1 / R2 is 0.17 or more and 0.22 or less, can be provided.

本発明の触媒は、触媒活性成分が下記の式(1)を満たす触媒が好ましい。
Mo12CuSb (1)
(式中、Mo、V、W、Cu、SbおよびOはそれぞれ、モリブデン、バナジウム、タングステン、銅、アンチモンおよび酸素を示し、Xはアルカリ金属、およびタリウムからなる群より選ばれた少なくとも一種の元素を、Yはマグネシウム、カルシウム、ストロンチウム、バリウムおよび亜鉛からなる群より選ばれた少なくとも一種の元素を、Zはニオブ、セリウム、すず、クロム、マンガン、鉄、コバルト、サマリウム、ゲルマニウム、チタンおよび砒素からなる群より選ばれた少なくとも一種の元素をそれぞれ示す。またa、b、c、d、e、f、gおよびhは各元素の原子比を表し、モリブデン原子12に対して、aは0<a≦10、bは0≦b≦10、cは0<c≦6、dは0<d≦10、eは0≦e≦0.5、fは0≦f≦1、gは0≦g<6を表す。また、hは前記各成分の原子価を満足するのに必要な酸素原子数である。)。
The catalyst of the present invention is preferably a catalyst whose catalytic active component satisfies the following formula (1).
Mo 12 V a W b Cu c Sb d X e Y f Z g O h (1)
(In the formula, Mo, V, W, Cu, Sb and O respectively represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, and X is at least one element selected from the group consisting of alkali metals and thallium. Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z is niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic And at least one element selected from the group consisting of a, b, c, d, e, f, g, and h, each of which represents an atomic ratio of each element. a ≦ 10, b is 0 ≦ b ≦ 10, c is 0 <c ≦ 6, d is 0 <d ≦ 10, e is 0 ≦ e ≦ 0.5, f is 0 ≦ f ≦ 1, Represents 0 ≦ g <6. Also, h is the number of oxygen atoms necessary for satisfying the valency of each component.).

本発明の触媒における触媒活性成分は、さらに好ましくは、式(1)において、aは2≦a≦5、bは0.2≦b≦2、cは0.2≦c≦4、dは0.3≦d≦4、eは0≦e≦0.2、fは0≦f≦0.5、gは0≦g≦3である。 The catalytically active component in the catalyst of the present invention is more preferably the formula (1), wherein a is 2 ≦ a ≦ 5, b is 0.2 ≦ b ≦ 2, c is 0.2 ≦ c ≦ 4, d is 0.3 ≦ d ≦ 4, e is 0 ≦ e ≦ 0.2, f is 0 ≦ f ≦ 0.5, and g is 0 ≦ g ≦ 3.

上記式(1)で示した触媒活性成分を構成するモリブデン成分原料としては三酸化モリブデンのようなモリブデン酸化物、モリブデン酸、モリブデン酸アンモニウムのようなモリブデン酸又はその塩、リンモリブデン酸、ケイモリブデン酸のようなモリブデンを含むヘテロポリ酸又はその塩などを用いることができるが、より好ましくはモリブデン酸アンモニウムを使用した場合に高性能な触媒が得られる傾向がある。特にモリブデン酸アンモニウムには、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム等、複数種類の化合物が存在するが、その中でもヘプタモリブデン酸アンモニウムを使用した場合が最も好ましい。アンチモン成分原料としては特に制限はないが、酢酸アンチモンが好ましい。バナジウム、タングステン、銅等、その他の元素の原料としては通常は酸化物あるいは熱によって酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等又はそれらの混合物を用いることができる。 Molybdenum component raw materials constituting the catalytically active component represented by the above formula (1) include molybdenum oxides such as molybdenum trioxide, molybdic acid such as molybdic acid and ammonium molybdate or salts thereof, phosphomolybdic acid, silicium molybdenum. A heteropolyacid containing molybdenum such as an acid or a salt thereof can be used, but more preferably a high-performance catalyst tends to be obtained when ammonium molybdate is used. In particular, ammonium molybdate includes a plurality of types of compounds such as ammonium dimolybdate, ammonium tetramolybdate, and ammonium heptamolybdate. Among these, ammonium heptamolybdate is most preferable. Although there is no restriction | limiting in particular as an antimony component raw material, Antimony acetate is preferable. As raw materials for other elements such as vanadium, tungsten, copper, etc., it is usually possible to use oxides, nitrates, carbonates, organic acid salts, hydroxides, etc., which can be converted into oxides by heat, or mixtures thereof.

上記式(1)で示した触媒活性成分は担体に担持すると、好ましい触媒を提供することができる。担体の種類は特に制限されないが、用いうる具体例としては、炭化珪素、アルミナ、ムライト、アランダム等の直径2.5mm以上10mm以下の球形担体等が挙げられる。これら担体のうち気孔率が30%以上50%以下、吸水率が10%以上30%以下の担体を用いるのが好ましい。 When the catalytically active component represented by the above formula (1) is supported on a carrier, a preferable catalyst can be provided. The type of carrier is not particularly limited, and specific examples that can be used include spherical carriers having a diameter of 2.5 mm to 10 mm, such as silicon carbide, alumina, mullite, alundum, and the like. Of these carriers, it is preferable to use a carrier having a porosity of 30% to 50% and a water absorption of 10% to 30%.

本発明の触媒は、以下の製造方法によって製造されることが好ましい。
工程a)構成元素として、少なくともモリブデンおよびバナジウムを含むスラリー液または水溶液(以下A液)を調製する工程、
工程b)アンチモン含有化合物と塩基性水溶液との混合液(以下B液)を調製する工程、工程c)前記A液とB液を混合してスラリー液(以下、C液という)を調製する工程、
工程d)前記工程c)で得られたC液を乾燥し、得られた触媒活性成分固体Aを予備焼成する工程、
工程e)前記工程d)で得られた予備焼成後の触媒活性成分固体Bを成型する工程、
工程f)前記工程e)で得られた成型体を本焼成する工程。
The catalyst of the present invention is preferably produced by the following production method.
Step a) preparing a slurry solution or an aqueous solution (hereinafter referred to as A solution) containing at least molybdenum and vanadium as constituent elements,
Step b) Step of preparing a mixed solution of antimony-containing compound and basic aqueous solution (hereinafter referred to as “B solution”), Step c) Step of preparing a slurry liquid (hereinafter referred to as “C solution”) by mixing the above-mentioned A solution and B solution ,
Step d) A step of drying the liquid C obtained in the step c) and pre-baking the obtained catalytically active component solid A.
Step e) A step of molding the catalytically active component solid B after the preliminary calcination obtained in the step d),
Step f) A step of subjecting the molded body obtained in the step e) to main firing.

上記工程b)ではアンチモン含有化合物と塩基性水溶液との混合液(B液)を調製する。使用するアンチモン含有化合物として特に制限はないが、酢酸アンチモンが好ましい。また、使用する塩基性水溶液として特に制限はないが、アンモニア水が好ましい。 In the step b), a mixed solution (solution B) of an antimony-containing compound and a basic aqueous solution is prepared. Although there is no restriction | limiting in particular as an antimony containing compound to be used, Antimony acetate is preferable. Moreover, there is no restriction | limiting in particular as basic aqueous solution to be used, However, Ammonia water is preferable.

上記工程c)ではA液とB液を混合し、C液を調製する。この工程はB液をA液の調製を終えた後混合しても良く、A液を調製する途中でB液を加えても良い。 In step c), liquid A and liquid B are mixed to prepare liquid C. In this step, the liquid B may be mixed after the preparation of the liquid A, or the liquid B may be added during the preparation of the liquid A.

上記工程d)で得られたC液を乾燥する。乾燥方法は、スラリー溶液が完全に乾燥できる方法であれば特に制限はなく、例えばドラム乾燥、凍結乾燥、噴霧乾燥等が挙げられる。これらのうち本発明においては、スラリー溶液状態から短時間に粉末状態に乾燥することができる噴霧乾燥が好ましい。この場合の乾燥温度はスラリー溶液の濃度、送液速度等によって異なるが概ね乾燥機の出口における温度が85℃以上130℃以下である。 The liquid C obtained in step d) is dried. The drying method is not particularly limited as long as the slurry solution can be completely dried, and examples thereof include drum drying, freeze drying, and spray drying. Among these, in the present invention, spray drying which can be dried from a slurry solution state to a powder state in a short time is preferable. The drying temperature in this case varies depending on the concentration of the slurry solution, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 85 ° C. or higher and 130 ° C. or lower.

次いで上記で得られた乾燥粉体を焼成する。焼成は、下記で述べる成型工程前に行う予備焼成と成型後に行う本焼成の2段階に分けて行うのが好ましい。また、予備焼成は公知の方法で可能で特に制限はない。本発明における予備焼成の温度は通常250℃以上500℃以下、好ましくは300℃以上450℃以下、予備焼成の時間は通常1時間以上15時間以下、好ましくは3時間以上6時間以下である。このような予備焼成工程は、出来上がった触媒を反応管に充填する際、触媒活性成分の粉化や剥離を防ぎ、摩損度の小さい触媒が得られ有効である。 Next, the dried powder obtained above is fired. Firing is preferably carried out in two stages: pre-firing performed before the molding step described below and main firing performed after molding. Pre-baking is possible by a known method and is not particularly limited. The pre-baking temperature in the present invention is usually 250 ° C. or higher and 500 ° C. or lower, preferably 300 ° C. or higher and 450 ° C. or lower, and the pre-baking time is usually 1 hour or longer and 15 hours or shorter, preferably 3 hours or longer and 6 hours or shorter. Such a pre-calcination step is effective in preventing powdered or exfoliated catalytically active components and filling a reaction tube with the finished catalyst, and obtaining a catalyst with low friability.

上記工程e)では予備焼成後の顆粒(以下特に断りのない限りこれを予備焼成顆粒という)を成型する。成型には予備焼成顆粒をボールミル等で粉砕した紛体(以下特に断りのない限りこれを予備焼成紛体という)を用いると良い。成型方法として特に制限はなく、必要によりバインダーと混合した予備焼成顆粒を(A)打錠成型する方法、(B)シリカゲル、珪藻土、アルミナ粉末等の成型助剤と混合し球状やリング状に押出成型する方法、(C)球状担体上に担持成型する方法等が挙げられるが、本発明においては(C)の担持触媒が好ましい。 In step e), the pre-fired granules (hereinafter referred to as pre-fired granules unless otherwise specified) are formed. For molding, a powder obtained by pulverizing pre-fired granules with a ball mill or the like (hereinafter referred to as pre-fired powder unless otherwise specified) may be used. There is no particular limitation on the molding method. If necessary, pre-baked granules mixed with a binder are (A) a method of tableting molding, (B) mixing with molding aids such as silica gel, diatomaceous earth, and alumina powder and extruded into a spherical or ring shape. Examples of the molding method include (C) a method of carrying and carrying on a spherical carrier. In the present invention, the carrying catalyst of (C) is preferable.

以下、本発明の触媒の好ましい態様である担持触媒につき詳述する。
担持工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰り返しにより激しく撹拌させ、ここにバインダーと予備焼成顆粒並びに必要により成型助剤及び強度向上材の混合物を添加することにより該混合物を担体に担持する方法である。バインダーは、(1)前記混合物に予め混合しておく、(2)混合物を固定容器内に添加するのと同時に添加、(3)混合物を添加した後に添加、(4)混合物を添加する前に添加、(5)混合物とバインダーをそれぞれ分割し、(2)〜(4)を適宜組み合わせて全量添加する等の方法が任意に採用しうる。このうち(5)においては、例えば混合物の固定容器壁への付着、混合物同士の凝集がなく担体上に所定量が担持されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。
Hereinafter, the supported catalyst which is a preferred embodiment of the catalyst of the present invention will be described in detail.
The supporting step is preferably the rolling granulation method described below. In this method, for example, in a device having a flat or uneven disk at the bottom of a fixed container, the support in the container is vigorously agitated by repeated rotation and revolution movements by rotating the disk at high speed. In this method, a binder, pre-fired granules, and, if necessary, a mixture of a molding aid and a strength improver are added to support the mixture on a carrier. The binder is (1) premixed in the mixture, (2) added at the same time as the mixture is added to the stationary container, (3) added after the mixture is added, (4) before adding the mixture. Addition, (5) A method of dividing the mixture and the binder, respectively, adding (2) to (4) as appropriate, and adding the total amount can be arbitrarily adopted. Of these, (5) is preferably carried out by adjusting the addition rate using an auto-feeder or the like so that the mixture does not adhere to the fixed container wall and the mixture does not aggregate, and a predetermined amount is supported on the carrier.

担体の用いうる具体例としては、炭化珪素、アルミナ、ムライト、アランダム等の直径2.5mm以上10mm以下の球形担体等が挙げられる。これら担体のうち気孔率が30%以上50%以下、吸水率が10%以上30%以下の担体を用いるのが好ましい。担体と担持される粉体の割合は通常、予備焼成粉体/(予備焼成粉体+担体)=10質量%以上75質量%以下、好ましくは15質量%以上50質量%以下となる量使用する。担持される粉体の割合が多い場合、本発明の担持触媒の反応活性は大きくなるが、機械的強度が小さくなる(磨損度は大きくなる)傾向がある。逆に、担持される粉体の割合が少ない場合、機械的強度は大きい(磨損度は小さい)が、反応活性は小さくなる傾向がある。 Specific examples of the carrier that can be used include a spherical carrier having a diameter of 2.5 mm to 10 mm, such as silicon carbide, alumina, mullite, and alundum. Of these carriers, it is preferable to use a carrier having a porosity of 30% to 50% and a water absorption of 10% to 30%. The ratio of the carrier to the supported powder is usually used in such an amount that the pre-fired powder / (pre-fired powder + carrier) = 10% by mass to 75% by mass, preferably 15% by mass to 50% by mass. . When the ratio of the supported powder is large, the reaction activity of the supported catalyst of the present invention increases, but the mechanical strength tends to decrease (the degree of wear increases). On the contrary, when the proportion of the supported powder is small, the mechanical strength is large (the degree of abrasion is small), but the reaction activity tends to be small.

本発明においては、予備焼成粉体を担体に担持する際に好ましくはバインダーを用いる。用いうるバインダーの具体例としては、水やエタノール、多価アルコール、高分子系バインダーのポリビニールアルコール、結晶性セルロース、メチルセルロース、エチルセルロース等のセルロース類、無機系バインダーのシリカゾル水溶液等が挙げられるが、セルロース類及びエチレングリコール等のジオールやグリセリン等のトリオール等が好ましく、特にセルロース類及びグリセリンの濃度5質量%以上の水溶液が好ましい。また、セルロース類の中では結晶性セルロースが特に好ましい。セルロース類、グリセリン水溶液を適量使用することにより成型性が良好となり、機械的強度の高い、高活性な高性能な触媒が得られる。これらバインダーの使用量は、予備焼成粉体100質量部に対して通常2質量部以上60質量部以下であるが、セルロース類の場合好ましくは2質量部以上10質量部以下、より好ましくは3質量部以上6質量部以下、又、グリセリン水溶液の場合は10質量部以上30質量部以下である。 In the present invention, a binder is preferably used when the pre-fired powder is supported on a carrier. Specific examples of the binder that can be used include water, ethanol, polyhydric alcohol, polyvinyl alcohol as a polymeric binder, celluloses such as crystalline cellulose, methylcellulose, and ethylcellulose, and an aqueous silica sol solution of an inorganic binder. Preferred are celluloses and diols such as ethylene glycol and triols such as glycerin, and particularly preferred are aqueous solutions of celluloses and glycerin having a concentration of 5% by mass or more. Among celluloses, crystalline cellulose is particularly preferable. By using appropriate amounts of celluloses and aqueous glycerin solution, the moldability is improved, and a highly active high performance catalyst with high mechanical strength can be obtained. The amount of these binders used is usually 2 parts by weight or more and 60 parts by weight or less based on 100 parts by weight of the pre-fired powder, but in the case of celluloses, it is preferably 2 parts by weight or more and 10 parts by weight or less, more preferably 3 parts by weight. Or more and 6 parts by mass or less, and in the case of an aqueous glycerin solution, they are 10 parts by mass or more and 30 parts by mass or less.

本発明においては、更に必要によりシリカゲル、珪藻土、アルミナ粉末等の成型助剤、を用いてもよい。成型助剤の使用量は、予備焼成粉体100質量部に対して通常5質量部以上60質量部以下である。 In the present invention, if necessary, molding aids such as silica gel, diatomaceous earth, and alumina powder may be used. The amount of the molding aid used is usually 5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the pre-fired powder.

また、更に必要によりセラミックス繊維、ウイスカー等の無機繊維を強度向上材として用いる事は、触媒の機械的強度の向上に有用である。しかし、チタン酸カリウムウイスカーや塩基性炭酸マグネシウムウイスカーの様な触媒成分と反応する繊維は、好ましくなく、セラミック繊維が特に好ましい。これら繊維の使用量は、予備焼成粉体100質量部に対して通常1質量部以上30質量部以下である。上記成型助剤及び強度向上材は、通常予備焼成粉体と混合して用いられる。このようにして予備焼成粉体を担体に担持するが、この際得られる担持品は通常直径が3mm以上15mm以下である。 Further, if necessary, the use of inorganic fibers such as ceramic fibers and whiskers as a strength improving material is useful for improving the mechanical strength of the catalyst. However, fibers that react with catalyst components such as potassium titanate whiskers and basic magnesium carbonate whiskers are not preferred, and ceramic fibers are particularly preferred. The amount of these fibers used is usually 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the pre-fired powder. The molding aid and the strength improving material are usually mixed with a pre-fired powder. In this way, the pre-fired powder is supported on the carrier, and the supported product obtained at this time usually has a diameter of 3 mm to 15 mm.

上記工程f)では上記工程e)を経て得られた成型体を本焼成して目的の担持触媒を得ることがでる。この場合の本焼成温度は通常250℃以上500℃以下、好ましくは300℃以上450℃以下、本焼成時間は1時間以上50時間以下である。尚、打錠その他、担持成型以外の成型方法を採用した場合の本焼成は、通常250℃以上500℃以下で1時間以上50時間以下の条件下に行う。 In the above step f), the molded product obtained through the above step e) can be calcined to obtain the desired supported catalyst. In this case, the main baking temperature is usually 250 ° C. or higher and 500 ° C. or lower, preferably 300 ° C. or higher and 450 ° C. or lower, and the main baking time is 1 hour or longer and 50 hours or shorter. In addition, the main calcination in the case of adopting a molding method other than tableting and other support molding is usually performed under conditions of 250 to 500 ° C. for 1 to 50 hours.

こうして得られた本発明の触媒、殊に担持触媒は、好ましくは不飽和アルデヒドを原料にし、不飽和酸を製造する工程に使用されるが、アクロレインを原料にし、アクリル酸を製造する工程に好ましく使用される。 The catalyst of the present invention thus obtained, particularly a supported catalyst, is preferably used in a process for producing an unsaturated acid using an unsaturated aldehyde as a raw material, but is preferably used for a process for producing acrylic acid using acrolein as a raw material. used.

本発明のアクリル酸製造用触媒は、2θ=26.5°±0.3の範囲内の最大ピーク強度R1と、2θ=22.0°±0.3°の範囲内の最大ピーク強度R2とのピーク強度比R1/R2の値が0.17以上0.22以下である。R1/R2の値がこの範囲であるアクリル酸製造用触媒は高活性かつ高選択率である。 The acrylic acid production catalyst of the present invention has a maximum peak intensity R1 in the range of 2θ = 26.5 ° ± 0.3, and a maximum peak intensity R2 in the range of 2θ = 22.0 ° ± 0.3 °. The peak intensity ratio R1 / R2 is 0.17 or more and 0.22 or less. A catalyst for producing acrylic acid having a value of R1 / R2 within this range has high activity and high selectivity.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では便宜上、「質量部」を「部」と記すことがある。実施例および比較例におけるアクロレイン転化率、アクリル酸選択率およびアクリル酸収率は次式によって求めた。
アクロレイン転化率(モル%)
=(反応したアクロレインのモル数)/(供給したアクロレインのモル数)×100
アクリル酸選択率(モル%)
=(生成したアクリル酸のモル数)/(反応したアクロレインのモル数)×100
アクリル酸収率(モル%)
=(生成したアクリル酸のモル数)/(供給したアクロレインのモル数)×100
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be referred to as “parts”. The acrolein conversion, acrylic acid selectivity and acrylic acid yield in the examples and comparative examples were determined by the following formulas.
Acrolein conversion (mol%)
= (Mole number of reacted acrolein) / (Mole number of supplied acrolein) × 100
Acrylic acid selectivity (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of reacted acrolein) × 100
Acrylic acid yield (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of acrolein supplied) × 100

触媒のX線回折の測定
X線粉末回折スペクトルは、全ての実施例において、リガク社製のUltima IVを用いて、Cu−Kα放射線(X線出力:40kV/30mA、Kα1線波長:1.5406Å)を使用して得られた。
Measurement of X-Ray Diffraction of Catalyst X-ray powder diffraction spectra were measured using Cu-Kα radiation (X-ray output: 40 kV / 30 mA, Kα1-ray wavelength: 1.5406Å) using Ultimate IV manufactured by Rigaku Corporation. ).

実施例1
[触媒調製]
撹拌モーターを備えた調合槽(X)に95℃のイオン交換水520部とタングステン酸アンモニウム14.79部を加え、撹拌した。次に、メタバナジン酸アンモニウム16.56部、モリブデン酸アンモニウム100部を溶解した。次に、常温のイオン交換水10 部が入った調合槽(Y)に酢酸アンチモン7.05部、27.5質量%アンモニア水5.7部を入れ混合液(B液)を得た。得られた混合液を調合槽(X)に加えた。次に、50℃のイオン交換水42.7部が入った調合槽(Z)に硫酸銅14.29部を溶解し、その溶液を調合槽(X)に加えスラリー液を得た。
噴霧乾燥器の出口温度が約110℃になるように送液量を調整して上記で得られたスラリー液を乾燥した。このようにして得られた顆粒を炉の温度を室温より毎時約50℃で昇温させ、350℃で約3時間予備焼成した。次いで、この予備焼成顆粒をボールミルで粉砕し、予備焼成紛体を得た。
上記で得られた24.63部の予備焼成紛体と結晶性セルロース1.23部を均一に混合し、この混合物とグリセリンの20質量%水溶液10部を、転動造粒機を用いて直径約4.9mmのアランダム担体50部に振りかけながら担持させた。得られた成形品を室温で約12時間静置し、その後炉に入れ炉の温度を室温より毎時約50℃昇温させ、390℃で約4時間本焼成し本発明の触媒を得た。
このようにして得られた触媒の酸素を除く活性成分の元素比は
Mo121.2Cu1.2Sb0.5
であった。
この触媒の触媒活性成分のX線回折分析の結果を図1に示す。回折角2θ=22.2°のピーク強度に対する回折角2θ=26.6°のピーク強度の比R1(26.6°)/R2(22.2°)は0.19であった。
Example 1
[Catalyst preparation]
To a preparation tank (X) equipped with a stirring motor, 520 parts of ion-exchanged water at 95 ° C. and 14.79 parts of ammonium tungstate were added and stirred. Next, 16.56 parts of ammonium metavanadate and 100 parts of ammonium molybdate were dissolved. Next, 7.05 parts of antimony acetate and 5.7 parts of 27.5 mass% ammonia water were put into a preparation tank (Y) containing 10 parts of ion-exchanged water at room temperature to obtain a mixed liquid (liquid B). The obtained mixed liquid was added to the preparation tank (X). Next, 14.29 parts of copper sulfate was dissolved in a preparation tank (Z) containing 42.7 parts of ion-exchanged water at 50 ° C., and the solution was added to the preparation tank (X) to obtain a slurry.
The amount of liquid fed was adjusted so that the outlet temperature of the spray dryer was about 110 ° C., and the resulting slurry was dried. The granules thus obtained were preheated at 350 ° C. for about 3 hours by raising the furnace temperature from room temperature at about 50 ° C. per hour. Next, this pre-fired granule was pulverized with a ball mill to obtain a pre-fired powder.
24.63 parts of the pre-fired powder obtained above and 1.23 parts of crystalline cellulose were uniformly mixed, and this mixture and 10 parts of a 20% by weight aqueous solution of glycerin were mixed using a tumbling granulator. It was made to carry, sprinkling on 50 parts of 4.9 mm alundum carriers. The obtained molded article was allowed to stand at room temperature for about 12 hours, and then placed in a furnace, the furnace temperature was raised from room temperature by about 50 ° C. per hour, and main calcination was performed at 390 ° C. for about 4 hours to obtain the catalyst of the present invention.
The element ratio of the active component excluding oxygen in the catalyst thus obtained was Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5
Met.
The result of the X-ray diffraction analysis of the catalytically active component of this catalyst is shown in FIG. The ratio R1 (26.6 °) / R2 (22.2 °) of the peak intensity at the diffraction angle 2θ = 26.6 ° to the peak intensity at the diffraction angle 2θ = 22.2 ° was 0.19.

[酸化反応]
このようにして得られた触媒67.6mlを内径28.4mmの反応管に充填し、モリブデン―ビスマス系触媒を用いてプロピレンを気相接触酸化して得られたガスに酸素と窒素を追加した下記組成のガスを導入し、SV(空間速度;単位時間当たりの原料ガスの流量/充填した触媒の見かけ容量)を1032/hrで反応を行った。
アクロレイン 5.7vol%
未反応プロピレン+その他有機化合物 1.9vol%
酸素 7.3vol%
スチーム 27.9vol%
窒素含有不活性ガス 57.2vol%
反応結果は、反応浴温度が240℃の時、アクロレイン転化率=95.7%、アクリル酸選択率=97.2%、アクリル酸収率=93.0%であった。
[Oxidation reaction]
67.6 ml of the catalyst thus obtained was filled in a reaction tube having an inner diameter of 28.4 mm, and oxygen and nitrogen were added to the gas obtained by vapor-phase catalytic oxidation of propylene using a molybdenum-bismuth catalyst. A gas having the following composition was introduced, and the reaction was carried out at an SV (space velocity; the flow rate of the raw material gas per unit time / the apparent capacity of the filled catalyst) of 1032 / hr.
Acrolein 5.7 vol%
Unreacted propylene + other organic compounds 1.9 vol%
Oxygen 7.3 vol%
Steam 27.9 vol%
Nitrogen-containing inert gas 57.2 vol%
The reaction results were as follows. When the reaction bath temperature was 240 ° C., acrolein conversion = 95.7%, acrylic acid selectivity = 97.2%, and acrylic acid yield = 93.0%.

比較例1
[触媒調製]
撹拌モーターを備えた調合槽(X)に95℃のイオン交換水520部とタングステン酸アンモニウム14.79部を加え、撹拌した。次に、メタバナジン酸アンモニウム16.56部、モリブデン酸アンモニウム100部を溶解した。次に、酢酸アンチモン7.05部を調合槽(X)に加えた。50℃のイオン交換水42.7部が入った調合槽(Y)に硫酸銅14.29部を溶解し、その溶液を調合槽(X)に加えスラリー液を得た。
噴霧乾燥器の出口温度が約110℃になるように送液量を調整して上記で得られたスラリー液を乾燥した。このようにして得られた顆粒を炉の温度を室温より毎時約50℃で昇温させ、350℃で約3時間予備焼成した。次いで、この予備焼成顆粒をボールミルで粉砕し、予備焼成紛体を得た。
上記で得られた24.63部の予備焼成紛体と結晶性セルロース1.23部を均一に混合し、この混合物とグリセリンの20質量%水溶液10部を、転動造粒機を用いて直径約4.9mmのアランダム担体50部に振りかけながら担持させた。得られた成形品を室温で約12時間静置し、その後炉に入れ炉の温度を室温より毎時約50℃昇温させ、390℃で約4時間本焼成し本発明の触媒を得た。
このようにして得られた触媒の酸素を除く活性成分の元素比は
Mo121.2Cu1.2Sb0.5
であった。
この触媒の触媒活性成分のX線回折分析の結果を図2に示す。回折角2θ=22.2°のピーク強度に対する回折角2θ=26.6°のピーク強度の比R1(26.6°)/R2(22.2°)は0.14であった。
Comparative Example 1
[Catalyst preparation]
To a preparation tank (X) equipped with a stirring motor, 520 parts of ion-exchanged water at 95 ° C. and 14.79 parts of ammonium tungstate were added and stirred. Next, 16.56 parts of ammonium metavanadate and 100 parts of ammonium molybdate were dissolved. Next, 7.05 parts of antimony acetate was added to the mixing tank (X). 14.29 parts of copper sulfate was dissolved in a preparation tank (Y) containing 42.7 parts of ion-exchanged water at 50 ° C., and the solution was added to the preparation tank (X) to obtain a slurry liquid.
The amount of liquid fed was adjusted so that the outlet temperature of the spray dryer was about 110 ° C., and the resulting slurry was dried. The granules thus obtained were preheated at 350 ° C. for about 3 hours by raising the furnace temperature from room temperature at about 50 ° C. per hour. Next, this pre-fired granule was pulverized with a ball mill to obtain a pre-fired powder.
24.63 parts of the pre-fired powder obtained above and 1.23 parts of crystalline cellulose were uniformly mixed, and this mixture and 10 parts of a 20% by weight aqueous solution of glycerin were mixed using a tumbling granulator. It was made to carry, sprinkling on 50 parts of 4.9 mm alundum carriers. The obtained molded article was allowed to stand at room temperature for about 12 hours, and then placed in a furnace, the furnace temperature was raised from room temperature by about 50 ° C. per hour, and main calcination was performed at 390 ° C. for about 4 hours to obtain the catalyst of the present invention.
The element ratio of the active component excluding oxygen in the catalyst thus obtained was Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5
Met.
The result of the X-ray diffraction analysis of the catalytically active component of this catalyst is shown in FIG. The ratio R1 (26.6 °) / R2 (22.2 °) of the peak intensity at the diffraction angle 2θ = 26.6 ° to the peak intensity at the diffraction angle 2θ = 22.2 ° was 0.14.

[酸化反応]
このようにして得られた触媒を実施例1と同様の条件で反応を行ったところ、反応浴温度が240℃の時、アクロレイン転化率=89.3%、アクリル酸選択率=96.7%、アクリル酸収率=86.4%であった。
[Oxidation reaction]
The catalyst thus obtained was reacted under the same conditions as in Example 1. As a result, when the reaction bath temperature was 240 ° C., acrolein conversion was 89.3% and acrylic acid selectivity was 96.7%. The acrylic acid yield was 86.4%.

Claims (5)

触媒活性成分のCu−Kα線を使用したX線回折パターンにおける回折角2θの値が22.0°±0.3°及び26.5°±0.3°に回折ピークを有し、2θ=26.5°±0.3の範囲内の最大ピーク強度R1と、2θ=22.0°±0.3°の範囲内の最大ピーク強度R2とのピーク強度比R1/R2が0.17以上0.22以下であるアクリル酸製造用触媒。 The value of the diffraction angle 2θ in the X-ray diffraction pattern using Cu—Kα ray of the catalytically active component has diffraction peaks at 22.0 ° ± 0.3 ° and 26.5 ° ± 0.3 °, and 2θ = The peak intensity ratio R1 / R2 between the maximum peak intensity R1 within the range of 26.5 ° ± 0.3 and the maximum peak intensity R2 within the range of 2θ = 22.0 ° ± 0.3 ° is 0.17 or more. A catalyst for producing acrylic acid that is 0.22 or less. 触媒活性成分が式(1)
Mo12CuSb (1)
(式中、Mo、V、W、Cu、SbおよびOはそれぞれ、モリブデン、バナジウム、タングステン、銅、アンチモンおよび酸素を示し、Xはアルカリ金属、およびタリウムからなる群より選ばれた少なくとも一種の元素を、Yはマグネシウム、カルシウム、ストロンチウム、バリウムおよび亜鉛からなる群より選ばれた少なくとも一種の元素を、Zはニオブ、セリウム、すず、クロム、マンガン、鉄、コバルト、サマリウム、ゲルマニウム、チタンおよび砒素からなる群より選ばれた少なくとも一種の元素をそれぞれ示す。またa、b、c、d、e、f、gおよびhは各元素の原子比を表し、モリブデン原子12に対して、aは0<a≦10、bは0≦b≦10、cは0<c≦6、dは0<d≦10、eは0≦e≦0.5、fは0≦f≦1、gは0≦g<6を表す。また、hは前記各成分の原子価を満足するのに必要な酸素原子数である。)で示される組成を有する請求項1に記載のアクリル酸製造用触媒。
The catalytically active component is formula (1)
Mo 12 V a W b Cu c Sb d X e Y f Z g O h (1)
(In the formula, Mo, V, W, Cu, Sb and O respectively represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, and X is at least one element selected from the group consisting of alkali metals and thallium. Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z is niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic And at least one element selected from the group consisting of a, b, c, d, e, f, g, and h, each of which represents an atomic ratio of each element. a ≦ 10, b is 0 ≦ b ≦ 10, c is 0 <c ≦ 6, d is 0 <d ≦ 10, e is 0 ≦ e ≦ 0.5, f is 0 ≦ f ≦ 1, Represents 0 ≦ g <6, and h is the number of oxygen atoms necessary to satisfy the valence of each component). .
前記触媒活性成分が不活性担体に担持されていることを特徴とする請求項1または請求項2に記載のアクリル酸製造用触媒。 The catalyst for acrylic acid production according to claim 1 or 2, wherein the catalytically active component is supported on an inert carrier. 触媒活性成分が式(1)
Mo12CuSb (1)
(式中、Mo、V、W、Cu、SbおよびOはそれぞれ、モリブデン、バナジウム、タングステン、銅、アンチモンおよび酸素を示し、Xはアルカリ金属、およびタリウムからなる群より選ばれた少なくとも一種の元素を、Yはマグネシウム、カルシウム、ストロンチウム、バリウムおよび亜鉛からなる群より選ばれた少なくとも一種の元素を、Zはニオブ、セリウム、すず、クロム、マンガン、鉄、コバルト、サマリウム、ゲルマニウム、チタンおよび砒素からなる群より選ばれた少なくとも一種の元素をそれぞれ示す。またa、b、c、d、e、f、gおよびhは各元素の原子比を表し、モリブデン原子12に対して、aは0<a≦10、bは0≦b≦10、cは0<c≦6、dは0<d≦10、eは0≦e≦0.5、fは0≦f≦1、gは0≦g<6を表す。また、hは前記各成分の原子価を満足するのに必要な酸素原子数である。)で示される組成を有する請求項2または請求項3に記載のアクリル酸製造用触媒であって、以下の工程を含むことを特徴とするアクリル酸製造用触媒の製造方法、
工程a)構成元素として、少なくともモリブデンおよびバナジウムを含むスラリー液または水分散体(以下A液)を調製する工程、
工程b)アンチモン含有化合物と塩基性水溶液との混合液(以下B液)を調製する工程、工程c)前記A液とB液を混合してスラリー液(以下、C液という)を調製する工程、
工程d)前記工程c)で得られたC液を乾燥し、得られた触媒活性成分固体Aを予備焼成する工程、
工程e)前記工程d)で得られた予備焼成後の触媒活性成分固体Bを成型する工程、
工程f)前記工程e)で得られた成型体を焼成する工程。
The catalytically active component is formula (1)
Mo 12 V a W b Cu c Sb d X e Y f Z g O h (1)
(In the formula, Mo, V, W, Cu, Sb and O respectively represent molybdenum, vanadium, tungsten, copper, antimony and oxygen, and X is at least one element selected from the group consisting of alkali metals and thallium. Y is at least one element selected from the group consisting of magnesium, calcium, strontium, barium and zinc, Z is niobium, cerium, tin, chromium, manganese, iron, cobalt, samarium, germanium, titanium and arsenic And at least one element selected from the group consisting of a, b, c, d, e, f, g, and h, each of which represents an atomic ratio of each element. a ≦ 10, b is 0 ≦ b ≦ 10, c is 0 <c ≦ 6, d is 0 <d ≦ 10, e is 0 ≦ e ≦ 0.5, f is 0 ≦ f ≦ 1, Represents 0 ≦ g <6, and h represents the number of oxygen atoms necessary to satisfy the valence of each component). A method for producing an acrylic acid production catalyst, which is an acid production catalyst comprising the following steps:
Step a) preparing a slurry liquid or an aqueous dispersion (hereinafter referred to as Liquid A) containing at least molybdenum and vanadium as constituent elements,
Step b) Step of preparing a mixed solution of antimony-containing compound and basic aqueous solution (hereinafter referred to as “B solution”), Step c) Step of preparing a slurry liquid (hereinafter referred to as “C solution”) by mixing the above-mentioned A solution and B solution ,
Step d) A step of drying the liquid C obtained in the step c) and pre-baking the obtained catalytically active component solid A.
Step e) A step of molding the catalytically active component solid B after the preliminary calcination obtained in the step d),
Step f) A step of firing the molded body obtained in the step e).
請求項1から請求項3のいずれか1項に記載の触媒を用いて、アクロレインを分子状酸素または分子状酸素含有ガスの存在下で気相接触酸化することを特徴とするアクリル酸の製造方法。 A method for producing acrylic acid, characterized in that acrolein is subjected to gas phase catalytic oxidation in the presence of molecular oxygen or a molecular oxygen-containing gas using the catalyst according to any one of claims 1 to 3. .
JP2016180052A 2016-09-15 2016-09-15 Catalyst for acrylic acid production Active JP6668207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180052A JP6668207B2 (en) 2016-09-15 2016-09-15 Catalyst for acrylic acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180052A JP6668207B2 (en) 2016-09-15 2016-09-15 Catalyst for acrylic acid production

Publications (2)

Publication Number Publication Date
JP2018043197A true JP2018043197A (en) 2018-03-22
JP6668207B2 JP6668207B2 (en) 2020-03-18

Family

ID=61692685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180052A Active JP6668207B2 (en) 2016-09-15 2016-09-15 Catalyst for acrylic acid production

Country Status (1)

Country Link
JP (1) JP6668207B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639536A (en) * 2018-06-27 2020-01-03 中国石油化工股份有限公司 Catalyst for preparing acrylic acid by acrolein oxidation
CN111068711A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Acrylic acid catalyst and application thereof
CN111068675A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Supported catalyst for preparing acrylic acid from acrolein and application thereof
CN111068653A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Catalyst for synthesizing acrylic acid from acrolein and application thereof
WO2021213823A1 (en) 2020-04-21 2021-10-28 Basf Se Method for producing a catalytically active multi-element oxide containing the elements mo, w, v and cu
JPWO2022050110A1 (en) * 2020-09-03 2022-03-10
CN115487817A (en) * 2021-06-18 2022-12-20 中国石油化工股份有限公司 Catalyst for acrylic acid synthesis and preparation method thereof, molded catalyst for acrylic acid synthesis and preparation method thereof, and acrylic acid synthesis method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299797A (en) * 1995-03-03 1996-11-19 Nippon Kayaku Co Ltd Catalyst and its production
JP2001137709A (en) * 1999-10-01 2001-05-22 Rohm & Haas Co Catalyst
JP2005185977A (en) * 2003-12-26 2005-07-14 Nippon Kayaku Co Ltd Method for manufacturing mixed metal oxide catalyst
JP2006502847A (en) * 2002-10-17 2006-01-26 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing multi-metal oxide material
JP2007502319A (en) * 2003-05-27 2007-02-08 アルケマ フランス Oxidation of propane using a catalyst in a mixture of crystalline phases to give acrylic acid
JP2010510882A (en) * 2006-12-01 2010-04-08 エルジー・ケム・リミテッド Novel heteropolyacid catalyst and method for producing the same
JP2012041221A (en) * 2010-08-17 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Hexagonal boron nitride structure and method for heat-treating the same
WO2016098306A1 (en) * 2014-12-15 2016-06-23 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode of lithium ion secondary cell, and method for producing such powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299797A (en) * 1995-03-03 1996-11-19 Nippon Kayaku Co Ltd Catalyst and its production
JP2001137709A (en) * 1999-10-01 2001-05-22 Rohm & Haas Co Catalyst
JP2006502847A (en) * 2002-10-17 2006-01-26 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing multi-metal oxide material
JP2007502319A (en) * 2003-05-27 2007-02-08 アルケマ フランス Oxidation of propane using a catalyst in a mixture of crystalline phases to give acrylic acid
JP2005185977A (en) * 2003-12-26 2005-07-14 Nippon Kayaku Co Ltd Method for manufacturing mixed metal oxide catalyst
JP2010510882A (en) * 2006-12-01 2010-04-08 エルジー・ケム・リミテッド Novel heteropolyacid catalyst and method for producing the same
JP2012041221A (en) * 2010-08-17 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Hexagonal boron nitride structure and method for heat-treating the same
WO2016098306A1 (en) * 2014-12-15 2016-06-23 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode of lithium ion secondary cell, and method for producing such powder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639536A (en) * 2018-06-27 2020-01-03 中国石油化工股份有限公司 Catalyst for preparing acrylic acid by acrolein oxidation
CN111068711A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Acrylic acid catalyst and application thereof
CN111068675A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Supported catalyst for preparing acrylic acid from acrolein and application thereof
CN111068653A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Catalyst for synthesizing acrylic acid from acrolein and application thereof
WO2021213823A1 (en) 2020-04-21 2021-10-28 Basf Se Method for producing a catalytically active multi-element oxide containing the elements mo, w, v and cu
JPWO2022050110A1 (en) * 2020-09-03 2022-03-10
WO2022050110A1 (en) 2020-09-03 2022-03-10 株式会社日本触媒 Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid
KR20230036136A (en) 2020-09-03 2023-03-14 가부시키가이샤 닛폰 쇼쿠바이 Catalyst for producing acrylic acid, method for producing the same, and method for producing acrylic acid
CN116033968A (en) * 2020-09-03 2023-04-28 株式会社日本触媒 Catalyst for acrylic acid production, method for producing same, and method for producing acrylic acid
JP7360557B2 (en) 2020-09-03 2023-10-12 株式会社日本触媒 Catalyst for producing acrylic acid and its production method, and method for producing acrylic acid
CN115487817A (en) * 2021-06-18 2022-12-20 中国石油化工股份有限公司 Catalyst for acrylic acid synthesis and preparation method thereof, molded catalyst for acrylic acid synthesis and preparation method thereof, and acrylic acid synthesis method
CN115487817B (en) * 2021-06-18 2024-01-26 中国石油化工股份有限公司 Catalyst for acrylic acid synthesis, preparation method thereof, molding catalyst for acrylic acid synthesis, preparation method thereof and acrylic acid synthesis method

Also Published As

Publication number Publication date
JP6668207B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP6668207B2 (en) Catalyst for acrylic acid production
JP3883755B2 (en) Catalyst production method
JP6363464B2 (en) Method for producing unsaturated carboxylic acid, and supported catalyst
JP5973999B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JP4756890B2 (en) Catalyst for producing methacrylic acid and method for producing the same
US10300463B2 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JPH08299797A (en) Catalyst and its production
WO2015008815A1 (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2014181839A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid, method for manufacturing same, and method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP6067013B2 (en) Catalyst for producing acrylic acid and process for producing acrylic acid by using this catalyst
JP6452169B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid
JP7480671B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7480672B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468291B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468290B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250