JP2021055077A - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film Download PDF

Info

Publication number
JP2021055077A
JP2021055077A JP2020159795A JP2020159795A JP2021055077A JP 2021055077 A JP2021055077 A JP 2021055077A JP 2020159795 A JP2020159795 A JP 2020159795A JP 2020159795 A JP2020159795 A JP 2020159795A JP 2021055077 A JP2021055077 A JP 2021055077A
Authority
JP
Japan
Prior art keywords
temperature
film
polyester film
biaxially oriented
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020159795A
Other languages
Japanese (ja)
Inventor
中森 ゆか里
Yukari Nakamori
ゆか里 中森
東大路 卓司
Takuji Higashioji
卓司 東大路
敏弘 千代
Toshihiro Sendai
敏弘 千代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2021055077A publication Critical patent/JP2021055077A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

To provide a biaxially oriented polyester film that is excellent in runnability and take-up performance, and, furthermore, is excellent in dimensional stability, and, when used as a magnetic recording medium, that produces a high-density magnetic recording medium having a smooth magnetic layer as well as having a small dimensional change due to the environmental change in temperature or humidity, and the storage, and having a low error rate.SOLUTION: The problem is solved by a biaxially oriented polyester film in which the humidity-expansion coefficient in film width direction is 4.5 to 6.5 ppm/%RH, the temperature-expansion coefficient in the width direction is -3 to 7 ppm/°C, and, on at least one outermost layer surface, the number of protrusions with a height of 60 nm or more is 0 to 200/mm2.SELECTED DRAWING: None

Description

本発明は、寸法安定性および表面性に優れた二軸配向ポリエステルフィルムに関するものであり、データストレージなどの塗布型磁気記録媒体のベースフィルムに好適に用いることができる二軸配向ポリエステルフィルムに関するものである。 The present invention relates to a biaxially oriented polyester film having excellent dimensional stability and surface properties, and relates to a biaxially oriented polyester film that can be suitably used as a base film for a coating type magnetic recording medium such as a data storage. is there.

二軸配向ポリエステルフィルムはその優れた熱特性、寸法安定性、機械特性および表面形態の制御のし易さから各種用途に使用されており、特に磁気記録媒体などの支持体としての有用性がよく知られている。磁気記録媒体には常に高密度記録化が要求される。 Biaxially oriented polyester films are used in various applications due to their excellent thermal properties, dimensional stability, mechanical properties, and easy control of surface morphology, and are particularly useful as supports for magnetic recording media and the like. Are known. High-density recording is always required for magnetic recording media.

高密度記録を達成する方法としては、一般に、トラック数の増加、記録波長の短波長化、テープ長増大の3つの方法がある。 There are generally three methods for achieving high-density recording: increasing the number of tracks, shortening the recording wavelength, and increasing the tape length.

トラック数を多くすると1トラックの幅が狭くなるため、僅かな寸法変化がデータ欠落の原因となるため、テープ幅方向の寸法安定性の制御が重要となる。このような寸法変化は、熱収縮等の不可逆的変化と温度、湿度による膨張、収縮等の可逆的変化に分けられる。不可逆的変化はないことが好ましいが、加工工程でアニール等の処理により取り除くことができる。これに対して、可逆的変化は容易に取り除くことができないために、保存時に温度、湿度が変化するとフィルムの膨張や収縮が起こり、記録データが本来あるべき位置からずれることにより、読み取れなくなることがある。 As the number of tracks increases, the width of one track becomes narrower, and a slight dimensional change causes data loss. Therefore, it is important to control the dimensional stability in the tape width direction. Such dimensional changes can be divided into irreversible changes such as heat shrinkage and reversible changes such as expansion and contraction due to temperature and humidity. It is preferable that there is no irreversible change, but it can be removed by a treatment such as annealing in the processing step. On the other hand, since reversible changes cannot be easily removed, if the temperature and humidity change during storage, the film expands and contracts, and the recorded data deviates from the original position, making it unreadable. is there.

また、記録波長を短波長化した上で、十分な電磁変換特性を実現するためには表面平滑性が求められ、さらに、磁性層の薄膜化や微粒子磁性体を使用し磁性層表面の平滑性をさらに向上させることは有効である。 Further, in order to realize sufficient electromagnetic conversion characteristics after shortening the recording wavelength, surface smoothness is required, and further, thinning of the magnetic layer and smoothness of the surface of the magnetic layer by using a fine particle magnetic material are required. It is effective to further improve.

近年の強磁性六方晶フェライト粉末を用いてなる磁気記録媒体用支持体においては、磁性層や非磁性層、バックコート層、さらには支持体自体の薄膜化に伴い平滑面のみならず走行面の粗面化が制約されている。製造過程で磁気記録媒体としてロール状態で保存する場合、走行面に形成されている突起が磁性面に転写し、平滑な磁性層表面に窪みを形成させたり、支持体の薄膜化に伴い支持体に含有している大きな粒子が平滑面に突き上げられ磁性層表面になだらかな凸状のウネリを発生させ磁性層表面の平滑性が低下することによってエラー信号(ミッシングパルス)が発生するといった問題がある。磁性層表面の平滑性を高めるために支持体に含有する粒子の小径化を図り、超高精細な表面として平滑性を向上させると、走行性や巻き取り、さらには表面の耐久性が不十分となる。したがって、スリット性と表面の平滑性の両立といった特性の改善に対する要求は高密度記録化のためには常に発生する課題といえる。 In recent years, supports for magnetic recording media using ferromagnetic hexagonal ferrite powder have thinned magnetic layers, non-magnetic layers, backcoat layers, and the supports themselves, so that not only smooth surfaces but also running surfaces Roughening is restricted. When stored in a roll state as a magnetic recording medium in the manufacturing process, the protrusions formed on the running surface are transferred to the magnetic surface to form dents on the smooth magnetic layer surface, or the support becomes thinner as the support becomes thinner. There is a problem that an error signal (missing pulse) is generated because the large particles contained in the magnetic layer are pushed up to the smooth surface and a gentle convex swell is generated on the surface of the magnetic layer to reduce the smoothness of the surface of the magnetic layer. .. If the diameter of the particles contained in the support is reduced in order to improve the smoothness of the surface of the magnetic layer and the smoothness is improved as an ultra-high-definition surface, the running performance, winding, and surface durability are insufficient. It becomes. Therefore, it can be said that the demand for improving the characteristics such as both slitting property and surface smoothness is a problem that always occurs for high-density recording.

上記課題を解決するために、あらゆる環境変化に対応できるような温湿度領域で優れた寸法安定性を有するポリエステルフィルム(例えば特許文献1、2)が検討されている。しかしながら、磁性層薄膜化や強磁性六方晶フェライト粉末などの微粒子磁性体を使用した磁性層表面の平滑性を担保できるための支持体の表面を得られていないのが実状である。また、湿度膨張に優れ、かつ特定の高さの突起個数の制御により走行性と平滑性を両立したポリエステルフィルムが(例えば特許文献3、4)、熱に対する寸法安定性とフィルムの剛性を両立させたポリエステルフィルム(例えば特許文献5)がある。 In order to solve the above problems, polyester films having excellent dimensional stability in a temperature and humidity range capable of responding to all environmental changes (for example, Patent Documents 1 and 2) have been studied. However, the actual situation is that the surface of the support for ensuring the smoothness of the surface of the magnetic layer using a thin magnetic layer or a fine particle magnetic material such as ferromagnetic hexagonal ferrite powder has not been obtained. In addition, a polyester film that is excellent in humidity expansion and has both running performance and smoothness by controlling the number of protrusions at a specific height (for example, Patent Documents 3 and 4) has both dimensional stability against heat and rigidity of the film. There is a polyester film (for example, Patent Document 5).

特開2005−163020号公報Japanese Unexamined Patent Publication No. 2005-163020 特開2015−25047号公報Japanese Unexamined Patent Publication No. 2015-25047 特開2016−79410号公報Japanese Unexamined Patent Publication No. 2016-79410 特開2018−150463号公報JP-A-2018-150463 特開2000−141475号公報Japanese Unexamined Patent Publication No. 2000-141475

しかしながら、いずれも温度膨張については全く考慮されておらず、常温から高温多湿の全ての温湿度領域で優れた寸法変化を有するフィルムには至っていない。 However, neither of them considers temperature expansion at all, and has not reached a film having excellent dimensional changes in all temperature and humidity regions from room temperature to high temperature and humidity.

本発明の目的は、低温低湿、低温高湿、高温低湿、高温高湿の全ての温湿度領域で優れた寸法安定性を有し、かつ優れた表面平滑性とスリット性を両立した二軸配向ポリエステルフィルムを安定に提供することにある。 An object of the present invention is biaxial orientation having excellent dimensional stability in all temperature and humidity regions of low temperature and low humidity, low temperature and high humidity, high temperature and low humidity, and high temperature and high humidity, and also having excellent surface smoothness and slit property. The purpose is to provide a stable polyester film.

上記課題を解決するための本発明は、次の各構成を特徴とするものである。 The present invention for solving the above problems is characterized by the following configurations.

(1)幅方向の湿度膨張係数が4.5〜6.5ppm/%RHであり、幅方向の温度膨張係数が−3.0〜7.0ppm/℃であり、少なくとも一方の最外層表面において、高さ60nm以上の突起個数が0〜200個/mmである二軸配向ポリエステルフィルム。 (1) The coefficient of thermal expansion in the width direction is 4.5 to 6.5 ppm /% RH, the coefficient of thermal expansion in the width direction is -3.0 to 7.0 ppm / ° C., and on at least one outermost layer surface. A biaxially oriented polyester film having a height of 60 nm or more and a number of protrusions of 0 to 200 / mm 2.

(2)幅方向の熱収縮率が1.0%以下である上記(1)に記載の二軸配向ポリエステルフィルム。 (2) The biaxially oriented polyester film according to (1) above, wherein the heat shrinkage rate in the width direction is 1.0% or less.

(3)幅方向のヤング率が7.0〜12.0GPaである上記(1)または(2)に記載の二軸配向ポリエステルフィルム。 (3) The biaxially oriented polyester film according to (1) or (2) above, wherein the Young's modulus in the width direction is 7.0 to 12.0 GPa.

(4)微少融解ピーク温度(T−meta)が210〜240℃である上記(1)〜(3)のいずれかに記載の二軸配向ポリエステルフィルム。 (4) The biaxially oriented polyester film according to any one of (1) to (3) above, wherein the minute melting peak temperature (T-meta) is 210 to 240 ° C.

(5)少なくとも一方の表面粗さ(Sa1)が3.0〜7.0nmである、上記(1)〜(4)のいずれかに記載の二軸配向ポリエステルフィルム。 (5) The biaxially oriented polyester film according to any one of (1) to (4) above, wherein at least one surface roughness (Sa1) is 3.0 to 7.0 nm.

(6)Sa1を構成する面とは反対側の最外層表面の表面粗さ(Sa2)が0.5〜5.0nmである、上記(5)に記載の二軸配向ポリエステルフィルム。 (6) The biaxially oriented polyester film according to (5) above, wherein the surface roughness (Sa2) of the outermost layer surface on the side opposite to the surface constituting Sa1 is 0.5 to 5.0 nm.

(7)塗布型デジタル記録方式の磁気記録媒体用ベースフィルムに用いられる、上記(1)〜(6)のいずれかに記載の二軸配向ポリエステルフィルム。 (7) The biaxially oriented polyester film according to any one of (1) to (6) above, which is used as a base film for a magnetic recording medium of a coating type digital recording method.

本発明の二軸配向ポリエステルフィルムは、スリット性、低温低湿、低温高湿、高温低湿、高温高湿の全ての温湿度領域での寸法安定性に優れた二軸配向ポリエステルフィルムであって、磁気記録媒体とした際に平滑な磁性層を有すると共に温度や湿度の環境変化や保存による寸法変化が小さい、ミッシングパルスの発生が抑制された高密度磁気記録媒体となる二軸配向ポリエステルフィルムを得ることができる。 The biaxially oriented polyester film of the present invention is a biaxially oriented polyester film having excellent dimensional stability in all temperature and humidity regions such as slit property, low temperature and low humidity, low temperature and high humidity, high temperature and low humidity, and high temperature and high humidity, and is magnetic. To obtain a biaxially oriented polyester film that has a smooth magnetic layer when used as a recording medium, has a small dimensional change due to environmental changes in temperature and humidity and storage, and is a high-density magnetic recording medium in which the generation of missing pulses is suppressed. Can be done.

フィルム寸法測定装置の概略図である。It is the schematic of the film dimension measuring apparatus.

本発明において用いるポリエステルとしては、例えば、芳香族ジカルボン酸、脂環族ジカルボン酸または脂肪族ジカルボン酸などの酸成分やジオール成分を構成単位(重合単位)とするポリマーで構成されたものを用いることができる。また、本発明でいうポリエステルフィルムとは、フィルムを構成する主成分がポリエステルであるフィルムを表す。 As the polyester used in the present invention, for example, a polymer composed of an acid component such as an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aliphatic dicarboxylic acid, or a polymer having a diol component as a constituent unit (polymerization unit) is used. Can be done. Further, the polyester film referred to in the present invention represents a film in which the main component constituting the film is polyester.

芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸等を用いることができ、なかでも好ましくは、テレフタル酸、フタル酸、2,6−ナフタレンジカルボン酸を用いることができる。脂環族ジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸等を用いることができる。脂肪族ジカルボン酸成分としては、例えば、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸等を用いることができる。これらの酸成分は一種のみを用いてもよく、二種以上を併用してもよい。 Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4'-diphenyldicarboxylic acid. Acids, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylsulfone dicarboxylic acid and the like can be used, and among them, terephthalic acid, phthalic acid and 2,6-naphthalenedicarboxylic acid can be used. .. As the alicyclic dicarboxylic acid component, for example, cyclohexanedicarboxylic acid or the like can be used. As the aliphatic dicarboxylic acid component, for example, adipic acid, suberic acid, sebacic acid, dodecandioic acid and the like can be used. Only one kind of these acid components may be used, or two or more kinds thereof may be used in combination.

ジオール成分としては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2’−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン等を用いることができ、なかでも、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール等を好ましく用いることができ、特に好ましくは、エチレングリコール等を用いることができる。これらのジオール成分は一種のみを用いてもよく、二種以上を併用してもよい。 Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, and 1 , 6-Hexanediol, 1,2-Cyclohexanedimethanol, 1,3-Cyclohexanedimethanol, 1,4-Cyclohexanedimethanol, Diethylene glycol, Triethylene glycol, Polyalkylene glycol, 2,2'-bis (4'-) β-Hydroxyethoxyphenyl) propane and the like can be used, and among them, ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, diethylene glycol and the like can be preferably used, and ethylene glycol is particularly preferable. Etc. can be used. Only one kind of these diol components may be used, or two or more kinds thereof may be used in combination.

ポリエステルには、ラウリルアルコール、イソシアン酸フェニル等の単官能化合物が共重合されていてもよいし、トリメリット酸、ピロメリット酸、グリセロール、ペンタエリスリトール、2,4−ジオキシ安息香酸、等の3官能化合物などが、過度に分枝や架橋をせずポリマーが実質的に線状である範囲内で共重合されていてもよい。さらに酸成分、ジオール成分以外に、p−ヒドロキシ安息香酸、m−ヒドロキシ安息香酸、2,6−ヒドロキシナフトエ酸などの芳香族ヒドロキシカルボン酸およびp−アミノフェノール、p−アミノ安息香酸などを本発明の効果が損なわれない程度の少量であればさらに共重合せしめることができる。 The polyester may be copolymerized with a monofunctional compound such as lauryl alcohol or phenyl isocyanate, or may be trifunctional such as trimellitic acid, pyromellitic acid, glycerol, pentaerythritol and 2,4-dioxybenzoic acid. Compounds and the like may be copolymerized within a range in which the polymer is substantially linear without excessive branching or cross-linking. Further, in addition to the acid component and the diol component, the present invention comprises aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid, m-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid, and p-aminophenol and p-aminobenzoic acid. If the amount is so small that the effect of the above is not impaired, further copolymerization can be performed.

ポリマーの共重合割合はNMR法(核磁気共鳴法)や顕微FT−IR法(フーリエ変換顕微赤外分光法)を用いて調べることができる。 The copolymerization ratio of the polymer can be examined by using an NMR method (nuclear magnetic resonance method) or a microscopic FT-IR method (Fourier transform microinfrared spectroscopy).

ポリエステルは、二軸延伸を施せること、および、寸法安定性などの本発明の効果を発現するために、ガラス転移温度が150℃未満のものを好適に使用できる。本発明において用いるポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート(ポリエチレン−2,6−ナフタレート)が好ましく、また、これらの共重合体や変性体でもよく、他の熱可塑性樹脂とのポリマーアロイでもよい。ここでいうポリマーアロイとは高分子多成分系のことであり、共重合によるブロックコポリマーであってもよいし、混合などによるポリマーブレンドでもよい。本発明で用いるポリエステルとしては特に、結晶子サイズや結晶配向度を高めるプロセスが適用しやすいことから主成分がポリエチレンテレフタレートであることがより好ましい。ここで、主成分とはフィルム組成中80質量%以上であることをいう。 As the polyester, a polyester having a glass transition temperature of less than 150 ° C. can be preferably used in order to be able to perform biaxial stretching and to exhibit the effects of the present invention such as dimensional stability. The polyester used in the present invention is preferably polyethylene terephthalate or polyethylene naphthalate (polyethylene-2,6-naphthalate), and may be a copolymer or modified product thereof, or may be a polymer alloy with another thermoplastic resin. .. The polymer alloy referred to here is a polymer multi-component system, and may be a block copolymer by copolymerization or a polymer blend by mixing or the like. As the polyester used in the present invention, it is more preferable that the main component is polyethylene terephthalate because a process for increasing the crystallite size and the degree of crystal orientation can be easily applied. Here, the main component means that it is 80% by mass or more in the film composition.

本発明で用いるポリエチレンテレフタレートをポリマーアロイとする場合、他の熱可塑性樹脂は、ポリエステルと相溶するポリマーが好ましく、ポリエーテルイミド樹脂などがより好ましい。ポリエーテルイミド樹脂としては、例えば以下で示すものを用いることができる。 When the polyethylene terephthalate used in the present invention is a polymer alloy, the other thermoplastic resin is preferably a polymer compatible with polyester, more preferably a polyetherimide resin or the like. As the polyetherimide resin, for example, those shown below can be used.

Figure 2021055077
Figure 2021055077

(ただし、上記式中Rは、6〜30個の炭素原子を有する2価の芳香族または脂肪族残基、Rは6〜30個の炭素原子を有する2価の芳香族残基、2〜20個の炭素原子を有するアルキレン基、2〜20個の炭素原子を有するシクロアルキレン基、および2〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
(However, in the above formula, R 1 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms, and R 2 is a divalent aromatic residue having 6 to 30 carbon atoms. From the group consisting of an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 2 to 20 carbon atoms, and a polydiorganosiloxane group chain-terminated with an alkylene group having 2 to 8 carbon atoms. It is a selected divalent organic group.)
Examples of the above R 1 and R 2 include aromatic residues represented by the following formula group.

Figure 2021055077
Figure 2021055077

(nは2以上の整数、好ましくは20〜50の整数である。)
本発明では、ポリエステルとの親和性、コスト、溶融成形性等の観点から、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミン、またはp−フェニレンジアミンとの縮合物である、下記式で示される繰り返し単位を有するポリマーが好ましい。
(N is an integer of 2 or more, preferably an integer of 20 to 50.)
In the present invention, from the viewpoint of affinity with polyester, cost, melt moldability, etc., 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine, or A polymer having a repeating unit represented by the following formula, which is a condensate with p-phenylenediamine, is preferable.

Figure 2021055077
Figure 2021055077

または Or

Figure 2021055077
Figure 2021055077

このポリエーテルイミドは、“ウルテム”の商品名で、SABICイノベーティブプラスチック社より入手可能であり、「Ultem(登録商標)1000」、「Ultem(登録商標)1010」、「Ultem(登録商標)1040」、「Ultem(登録商標)5000」、「Ultem(登録商標)6000」および「Ultem(登録商標)XH6050」シリーズや「Extem(登録商標) XH」および「Extem(登録商標) UH」の登録商標名等で知られているものである。 This polyetherimide is available from SABIC Innovative Plastics under the trade name of "Ultem", and is "Ultem® 1000", "Ultem® 1010", "Ultem® 1040". , "Ultem® 5000", "Ultem® 6000" and "Ultem® XH6050" series and registered trademark names of "Extem® XH" and "Extem® UH" Etc. are known.

本発明において、例えば、ポリエステルとポリイミドとを混合する方法としては、溶融押出前に、ポリエステルとポリイミドの混合物を予備溶融混練(ペレタイズ)してマスターチップ化する方法や、溶融押出時に混合して溶融混練させる方法などがある。中でも、二軸押出機などのせん断応力のかかる高せん断混合機を用いて予備混練してマスターチップ化する方法などが好ましく例示される。その場合、通常の一軸押出機に該混合されたマスターチップ原料を投入して溶融製膜してもよいし、高せん断を付加した状態でマスターチップ化せずに直接にシーティングしてもよい。二軸押出機で混合する場合、分散不良物を低減させる観点から、3条二軸タイプまたは2条二軸タイプのスクリューを装備したものが好ましい。また、ポリエステルとポリイミドとを混合する場合、溶融粘度の差があるため、ポリイミド樹脂を高濃度に混合したマスターチップを作製することが好ましく、特に、ポリエステル/ポリイミドの混合重量比率を10/90〜70/30とするのが好ましく、より好ましい範囲は30/70〜60/40の範囲である。 In the present invention, for example, as a method of mixing polyester and polyimide, a method of pre-melting and kneading (pelletizing) a mixture of polyester and polyimide to form a master chip before melt extrusion, or a method of mixing and melting during melt extrusion. There is a method of kneading. Among them, a method of pre-kneading using a high shear mixer such as a twin-screw extruder to which a shear stress is applied to form a master chip is preferably exemplified. In that case, the mixed master chip raw material may be put into a normal uniaxial extruder to form a melt film, or the sheet may be directly seated without being made into a master chip with high shear added. When mixing with a twin-screw extruder, those equipped with a three-row twin-screw type screw or a two-screw twin-screw type screw are preferable from the viewpoint of reducing defective dispersion. Further, when polyester and polyimide are mixed, it is preferable to prepare a master chip in which a polyimide resin is mixed at a high concentration because there is a difference in melt viscosity. In particular, the mixed weight ratio of polyester / polyimide is 10/90 to It is preferably 70/30, and a more preferable range is the range of 30/70 to 60/40.

本発明において、ポリエステルフィルム中のポリイミド樹脂の含有量は、フィルム全体に対して0.1重量%20重量%以下であることが好ましく、より好ましくは3重量%以上15重量%以下、さらに好ましくは5重量%以上10重量%以下である。上限値を超えて含有すると本発明の幅方向の湿度膨張係数が得られない場合がある。 In the present invention, the content of the polyimide resin in the polyester film is preferably 0.1% by weight or 20% by weight, more preferably 3% by weight or more and 15% by weight or less, still more preferably, based on the entire film. It is 5% by weight or more and 10% by weight or less. If the content exceeds the upper limit, the coefficient of thermal expansion in the width direction of the present invention may not be obtained.

本発明の二軸配向ポリエステルフィルムの幅方向の湿度膨張係数は4.5〜6.5ppm/%RH、好ましくは5.0〜6.0ppm/%RHである。湿度膨張係数が6.5ppm/%RHより大きいと磁気データを記録・再生する環境において、湿度変化に対してフィルムが幅方向に膨張するため再生不良を起こしやすくなる。また、湿度膨張係数が4.5ppm/%RHより小さい場合は、フィルムの温度膨張係数を本願の範囲内に制御することが困難となることがある。幅方向の湿度膨張係数は、後述に示す幅方向の延伸倍率によって制御が可能である。延伸倍率を高倍率化すると湿度膨張係数は低下する。しかしながら、幅方向の延伸倍率を高倍率化すると湿度膨張係数とともに温度膨張係数が小さくなりすぎる場合があるため、延伸倍率と熱固定温度の調節が重要である。 The humidity expansion coefficient in the width direction of the biaxially oriented polyester film of the present invention is 4.5 to 6.5 ppm /% RH, preferably 5.0 to 6.0 ppm /% RH. If the coefficient of thermal expansion is larger than 6.5 ppm /% RH, the film expands in the width direction in response to changes in humidity in an environment in which magnetic data is recorded and reproduced, so that reproduction failure is likely to occur. Further, when the coefficient of thermal expansion is smaller than 4.5 ppm /% RH, it may be difficult to control the coefficient of thermal expansion of the film within the range of the present application. The coefficient of expansion of humidity in the width direction can be controlled by the stretching ratio in the width direction shown later. When the stretching ratio is increased, the coefficient of thermal expansion decreases. However, if the stretching ratio in the width direction is increased, the temperature expansion coefficient may become too small together with the humidity expansion coefficient, so it is important to adjust the stretching ratio and the heat-fixing temperature.

本発明の二軸配向ポリエステルフィルムの幅方向の温度膨張係数は−3.0〜7.0ppm/℃、好ましくは−2.0〜5.0ppm/℃である。温度膨張係数が−3.0ppm/℃を下回ると磁気データを記録・再生する環境の温度変化に対してフィルムが幅方向への収縮が大きくなる。一方、磁気ヘッドは温度変化に対して膨張(通常7ppm/℃)するため、相互の寸法変化が大きくなりすぎる再生不良を起こしやすくなる。温度膨張係数が7.0ppm/℃を超えると、湿度膨張係数を本願の範囲内に制御できなくなり、磁気データを記録・再生する環境の温湿度変化に対してフィルムが幅方向に膨張するため再生不良を起こしやすくなる。幅方向の温度膨張係数は、後述に示す幅方向の延伸倍率によって制御が可能である。延伸倍率を高倍率化すると温度膨張係数は低下する。本発明の幅方向の温度および湿度膨張係数を本発明の範囲内にするには、幅方向の延伸倍率、熱固定温度の調節が重要である。また、フィルム中にポリエーテルイミドを2〜20重量%以下、好ましくは3〜15重量%以下、さらに好ましくは5〜10重量%以下の割合で含有することは、本発明の幅方向の温度および湿度膨張係数を得られやすくなり好ましい。 The coefficient of thermal expansion in the width direction of the biaxially oriented polyester film of the present invention is −3.0 to 7.0 ppm / ° C., preferably −2.0 to 5.0 ppm / ° C. When the coefficient of thermal expansion is less than −3.0 ppm / ° C., the film shrinks in the width direction with respect to the temperature change in the environment for recording / reproducing magnetic data. On the other hand, since the magnetic head expands (usually 7 ppm / ° C.) with respect to a temperature change, mutual dimensional changes become too large, and reproduction defects are likely to occur. If the coefficient of thermal expansion exceeds 7.0 ppm / ° C, the coefficient of thermal expansion cannot be controlled within the range of the present application, and the film expands in the width direction in response to changes in the temperature and humidity of the environment in which magnetic data is recorded and reproduced. It is easy to cause defects. The coefficient of thermal expansion in the width direction can be controlled by the stretching ratio in the width direction shown later. When the stretching ratio is increased, the coefficient of thermal expansion decreases. In order to keep the temperature and the coefficient of thermal expansion in the width direction of the present invention within the range of the present invention, it is important to adjust the stretching ratio in the width direction and the heat-fixing temperature. Further, containing the polyetherimide in a proportion of 2 to 20% by weight or less, preferably 3 to 15% by weight or less, more preferably 5 to 10% by weight or less in the film is the temperature in the width direction of the present invention. It is preferable because the humidity expansion coefficient can be easily obtained.

本発明の二軸配向ポリエステルフィルムの少なくとも一方の最外層表面において、高さ60nm以上の突起個数は0〜200個/mm、好ましくは0〜150個/mm、さらに好ましくは0〜100個/mmである。高さ60nm以上の突起個数が200個/mmを超えると表面の平滑性が悪化しミッシングパルスが発生する場合がある。 On the surface of at least one outermost layer of the biaxially oriented polyester film of the present invention, the number of protrusions having a height of 60 nm or more is 0 to 200 / mm 2 , preferably 0 to 150 / mm 2 , and more preferably 0 to 100. / Mm 2 . If the number of protrusions having a height of 60 nm or more exceeds 200 / mm 2 , the smoothness of the surface may deteriorate and a missing pulse may be generated.

なお、上記した本発明の高さ60nmの突起個数は、走査型白色干渉顕微鏡測定により求められる基準面からの高さ60nmにおける突起個数である。該突起個数が200個/mmを超えると、例えば、磁気記録テープとして巻き取った際にバックコート層表面の凹凸が磁性層表面へ転写するために転写痕の数が多くなりミッシングパルスの発生頻度が増加する場合がある。 The number of protrusions at a height of 60 nm in the present invention described above is the number of protrusions at a height of 60 nm from the reference plane determined by scanning white interference microscope measurement. When the number of protrusions exceeds 200 / mm 2 , for example, when the tape is wound as a magnetic recording tape, the unevenness on the surface of the backcoat layer is transferred to the surface of the magnetic layer, so that the number of transfer marks increases and a missing pulse is generated. The frequency may increase.

本発明の二軸配向ポリエステルフィルムの幅方向の熱収縮率は1.0%以下であることが好ましい。幅方向の熱収縮率が1.0%を超えると、磁気記録媒体の加工工程においてフィルムが幅方向に収縮し、磁気記録媒体表面にシワが発生したり、磁性層表面の平滑性が低下することがある。 The heat shrinkage in the width direction of the biaxially oriented polyester film of the present invention is preferably 1.0% or less. When the heat shrinkage rate in the width direction exceeds 1.0%, the film shrinks in the width direction in the processing process of the magnetic recording medium, wrinkles are generated on the surface of the magnetic recording medium, and the smoothness of the surface of the magnetic layer is lowered. Sometimes.

本発明の二軸配向ポリエステルフィルムは、幅方向のヤング率が7.0〜12.0GPaであることが好ましく、7.0〜11.0GPaであることが幅方向の湿度膨張係数の制御の観点からより好ましい。幅方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の記録再生時の環境変化による寸法安定性が良好となる傾向にある。幅方向のヤング率は後述するTD延伸1、2の温度や倍率によって制御することができる。特にトータルのTD倍率が影響し、トータルのTD倍率が高いほどTDヤング率が高くなる。 The biaxially oriented polyester film of the present invention preferably has a Young's modulus in the width direction of 7.0 to 12.0 GPa, and the Young's modulus in the width direction is 7.0 to 11.0 GPa from the viewpoint of controlling the coefficient of thermal expansion in the width direction. More preferred from. When the Young's modulus in the width direction is within the above range, the dimensional stability tends to be good due to environmental changes during recording and reproduction of the magnetic recording medium when used for a magnetic recording medium. Young's modulus in the width direction can be controlled by the temperature and magnification of TD stretching 1 and 2 described later. In particular, the total TD magnification has an effect, and the higher the total TD magnification, the higher the TD Young's modulus.

本発明の二軸配向ポリエステルフィルムは、長手方向のヤング率が3.5〜8.0GPaであることが好ましい。長手方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の保管時の張力による保存安定性がより良好となる。長手方向のヤング率のさらに好ましい範囲は3.8〜7.0GPa、さらにより好ましい範囲は4.0〜6.0GPaである。長手方向のヤング率はMD延伸倍率で制御することができる。MD倍率が高いほどMDヤング率が高くなる。 The biaxially oriented polyester film of the present invention preferably has a Young's modulus in the longitudinal direction of 3.5 to 8.0 GPa. When the Young's modulus in the longitudinal direction is within the above range, the storage stability due to the tension during storage of the magnetic recording medium becomes better when used for the magnetic recording medium. A more preferable range of Young's modulus in the longitudinal direction is 3.8 to 7.0 GPa, and a further preferable range is 4.0 to 6.0 GPa. Young's modulus in the longitudinal direction can be controlled by the MD draw ratio. The higher the MD magnification, the higher the MD Young's modulus.

本発明の二軸配向ポリエステルフィルムの微少融解ピーク温度(T−meta)は210〜240℃であることが好ましく、より好ましくは220〜235℃である。微少融解ピーク温度が210℃未満であると二軸配向ポリエステルフィルムの構造固定が不十分となり温度膨張係数を本願の範囲内に制御することが困難となる場合がある。また、微少融解ピーク温度が240℃を超えるとTD配向緩和が促進されすぎるために湿度膨張係数が大きくなりすぎ寸法安定性が低下する。さらに、表面の平滑性が低下するため本発明の表面粗さや突起高さを制御できにくくなる。 The micromelting peak temperature (T-meta) of the biaxially oriented polyester film of the present invention is preferably 210 to 240 ° C, more preferably 220 to 235 ° C. If the minute melting peak temperature is less than 210 ° C., the structure of the biaxially oriented polyester film may be insufficiently fixed, and it may be difficult to control the coefficient of thermal expansion within the range of the present application. Further, when the minute melting peak temperature exceeds 240 ° C., the TD orientation relaxation is promoted too much, so that the coefficient of thermal expansion becomes too large and the dimensional stability deteriorates. Further, since the smoothness of the surface is lowered, it becomes difficult to control the surface roughness and the height of protrusions of the present invention.

本発明の二軸配向ポリエステルフィルムの少なくとも一方の最外層表面の表面粗さ(Sa1)は3.0〜7.0nmであることが好ましく、より好ましくは3.0〜5.0nmである。本発明の目的を満足するためには、該表面は走行性やスリット性を担う表面として機能することが好ましい。表面粗さ(Sa1)が3.0nm未満であると走行性やスリット性が不良となりやすく、表面粗さ(Sa1)が7.0nmを超えると磁気記録媒体とした場合に磁性層表面の平滑性低下によりミッシングパルスが多発しやすい。 The surface roughness (Sa1) of at least one of the outermost layer surfaces of the biaxially oriented polyester film of the present invention is preferably 3.0 to 7.0 nm, more preferably 3.0 to 5.0 nm. In order to satisfy the object of the present invention, it is preferable that the surface functions as a surface which is responsible for running and slitting properties. If the surface roughness (Sa1) is less than 3.0 nm, the running performance and slitting property are likely to be poor, and if the surface roughness (Sa1) exceeds 7.0 nm, the smoothness of the magnetic layer surface when used as a magnetic recording medium. Missing pulses are likely to occur frequently due to the decrease.

また、上述したSa1を構成する面とは反対側の最外層表面の表面粗さ(Sa2)は、上述の表面粗さ(Sa1)よりも小さいことが好ましく、本発明のミッシングパルスを満足するためには磁性層を該表面側に塗設することが好ましい。表面粗さ(Sa2)は0.5〜5.0nmであることが好ましく、より好ましくは0.5〜3.0nmである。表面粗さ(Sa2)が上記の範囲外であると該表面に磁性層を設け磁気記録媒体としたときに走行性やスリット性、ミッシングパルスを両立することが困難となることがある。 Further, the surface roughness (Sa2) of the outermost layer surface on the side opposite to the surface constituting the above-mentioned Sa1 is preferably smaller than the above-mentioned surface roughness (Sa1), in order to satisfy the missing pulse of the present invention. It is preferable to apply a magnetic layer on the surface side of the surface. The surface roughness (Sa2) is preferably 0.5 to 5.0 nm, more preferably 0.5 to 3.0 nm. If the surface roughness (Sa2) is out of the above range, it may be difficult to achieve both running performance, slitting property, and missing pulse when a magnetic layer is provided on the surface and used as a magnetic recording medium.

本発明の表面粗さ(Sa1)および(Sa2)をそれぞれ制御するためには、平均一次粒径が0.01〜0.3μmの不活性粒子を0.01〜0.5質量%の範囲内で含有する層(B層)を少なくとも1層有する2層以上の積層構成を有することが好ましい。この場合、B層は走行性を担う層として機能し、フィルムの一方の最外層として設けられ、もう一方の最外層には平滑性を担う層(A層)が設けられる。A層に不活性粒子を含有する場合は、平均一次粒径が0.01〜0.1μmの粒子を用いることが本発明の表面粗さ(Sa2)を制御しやすくなるので好ましい。不活性粒子の含有量としては0.01〜0.2質量%の範囲で添加することができる。本発明の二軸配向ポリエステルフィルムは、少なくとも2層以上の積層構成とすることで両最外層表面の平滑性を制御し易くなり、優れた表面平滑性と走行性やスリット性を両立することができるため好ましい。 In order to control the surface roughness (Sa1) and (Sa2) of the present invention, respectively, the inert particles having an average primary particle size of 0.01 to 0.3 μm are within the range of 0.01 to 0.5% by mass. It is preferable to have a laminated structure of two or more layers having at least one layer (B layer) contained in. In this case, the B layer functions as a layer responsible for running performance, is provided as one outermost layer of the film, and is provided with a layer (A layer) responsible for smoothness on the other outermost layer. When the A layer contains inert particles, it is preferable to use particles having an average primary particle size of 0.01 to 0.1 μm because the surface roughness (Sa2) of the present invention can be easily controlled. The content of the inert particles can be added in the range of 0.01 to 0.2% by mass. The biaxially oriented polyester film of the present invention has a laminated structure of at least two layers, so that it becomes easy to control the smoothness of the surfaces of both outermost layers, and it is possible to achieve both excellent surface smoothness, running performance and slitting property. It is preferable because it can be done.

本発明の二軸配向ポリエステルフィルムでは、上記した高さ60nm以上の突起個数を有し、かつ表面粗さ(Sa1)が3.0〜7.0nmである最外層がB層である態様が好ましい。 In the biaxially oriented polyester film of the present invention, it is preferable that the outermost layer having the above-mentioned number of protrusions having a height of 60 nm or more and having a surface roughness (Sa1) of 3.0 to 7.0 nm is the B layer. ..

本発明の高さ60nm以上の突起個数の制御方法としては、B層における含有粒子の平均一次粒子径、添加量、積層厚み、熱固定温度で制御が可能である。特にB層に含有する粒子の平均一次粒子径は0.3μm以下、好ましくは0.01〜0.2μmの平均一次粒径の異なる粒子を2種類以上併用することが重要である。 As a method for controlling the number of protrusions having a height of 60 nm or more in the present invention, it is possible to control by the average primary particle diameter of the contained particles in the B layer, the addition amount, the stacking thickness, and the heat fixing temperature. In particular, it is important to use two or more kinds of particles having an average primary particle diameter of 0.3 μm or less, preferably 0.01 to 0.2 μm, having different average primary particle diameters contained in the B layer.

本発明の二軸配向ポリエステルフィルムのB層に好ましく含有される粒子としては特に限定されないが、無機粒子、有機粒子、いずれも用いることができる。具体的な種類としては、例えば、クレー、マイカ、酸化チタン、炭酸カルシウム、湿式シリカ、乾式シリカ、コロイダルシリカ、リン酸カルシウム、硫酸バリウム、アルミナ珪酸塩、カオリン、タルク、モンモリロナイト、アルミナ、ジルコニア等の無機粒子、アクリル酸類、スチレン系樹脂、シリコーン、イミド等を構成成分とする有機粒子、コアシェル型有機粒子などが例示できるが、本発明の高さ60nm以上の突起高さと突起個数を制御するには、単一分散する球形の粒子である有機粒子やコロイダルシリカが特に好ましい。さらに、走行性とスリット性を改善させるためにアルミナ粒子をB層に添加させると効率よく改善できるため好ましい。 The particles preferably contained in the B layer of the biaxially oriented polyester film of the present invention are not particularly limited, but either inorganic particles or organic particles can be used. Specific types include inorganic particles such as clay, mica, titanium oxide, calcium carbonate, wet silica, dry silica, colloidal silica, calcium phosphate, barium sulfate, alumina silicate, kaolin, talc, montmorillonite, alumina, and zirconia. , Acrylic acids, styrene resin, silicone, imide and other organic particles, core-shell type organic particles, etc. can be exemplified. However, in order to control the protrusion height and the number of protrusions having a height of 60 nm or more in the present invention, simply Organic particles and colloidal silica, which are spherical particles that are monodisperse, are particularly preferable. Further, it is preferable to add alumina particles to the B layer in order to improve the phototaxis and the slit property because it can be efficiently improved.

本発明の二軸配向ポリエステルフィルムのB層に添加される粒子の含有量は、0.005〜0.8質量%が好ましく例示され、さらに好ましくは0.01〜0.5質量%である。 The content of the particles added to the B layer of the biaxially oriented polyester film of the present invention is preferably 0.005 to 0.8% by mass, more preferably 0.01 to 0.5% by mass.

本発明の二軸配向ポリエステルフィルムのB層の積層厚み(t)は、1μm以下が好ましく、さらに好ましくは0.6μm以下である。積層厚みが1μm以上になると高さ60nm以上の突起個数を本発明の範囲内に制御することが困難となる場合がある。 The laminated thickness (t) of the B layer of the biaxially oriented polyester film of the present invention is preferably 1 μm or less, more preferably 0.6 μm or less. When the laminated thickness is 1 μm or more, it may be difficult to control the number of protrusions having a height of 60 nm or more within the range of the present invention.

本発明の二軸配向ポリエステルフィルムを製造するに際しては、熱固定温度を190〜235℃の範囲内で2段階以上に分けて段階高温熱固定を実施することが重要である。突起高さや表面粗さは、熱固定温度が高温になるほど高く大きくなる傾向があるが、段階高温熱固定を採用することによって、高温熱固定による突起高さと表面粗さの増加を抑制することが可能となる。さらに、熱固定温度を高く設定すると、配向緩和を起こしやすくなるため、本願の幅方向の湿度膨張係数を制御できなくなる場合があるが、段階高温熱固定を採用することによって、特に幅方向の配向緩和が緩やかとなり本願の温湿度膨張係数を好ましい範囲内に制御することが可能となる。 In producing the biaxially oriented polyester film of the present invention, it is important to carry out stepwise high temperature heat fixing by dividing the heat fixing temperature into two or more steps within the range of 190 to 235 ° C. The protrusion height and surface roughness tend to increase as the heat fixing temperature rises, but by adopting stepwise high-temperature heat fixing, it is possible to suppress the increase in protrusion height and surface roughness due to high-temperature heat fixing. It will be possible. Further, if the heat fixing temperature is set high, the orientation is easily relaxed, so that the humidity expansion coefficient in the width direction of the present application may not be controlled. However, by adopting the stepwise high temperature heat fixing, the orientation in the width direction is particularly large. The relaxation becomes gradual, and the coefficient of thermal expansion of the present application can be controlled within a preferable range.

本発明の二軸配向ポリエステルフィルムの厚みは3.5〜4.6μmの範囲が好ましい。厚みが3.5μmより小さくなると、剛性や寸法安定性が悪化しテープの腰が不十分となり磁気記録媒体としたときに電磁変換特性が悪化する傾向がある。また、B層内の含有粒子による平滑面(A面)側への突き上げを抑制しにくくなる。また、4.6μmより大きいと、テープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量に対応し難い。厚みの調整方法としては、二軸配向ポリエステルフィルムの製膜の際のポリマーの溶融押出時におけるスクリューの吐出量を調整し、口金から未延伸フィルムの厚みを制御することによって二軸延伸後のフィルム厚みを調節することが可能となる。 The thickness of the biaxially oriented polyester film of the present invention is preferably in the range of 3.5 to 4.6 μm. When the thickness is smaller than 3.5 μm, the rigidity and dimensional stability are deteriorated, the waist of the tape is insufficient, and the electromagnetic conversion characteristics tend to be deteriorated when used as a magnetic recording medium. In addition, it becomes difficult to suppress the particles contained in the B layer from being pushed up toward the smooth surface (A surface). Further, if it is larger than 4.6 μm, the tape length per roll of the tape becomes short, so that it is difficult to cope with the miniaturization and high capacity of the magnetic tape. As a method of adjusting the thickness, the discharge amount of the screw at the time of melt extrusion of the polymer during the film formation of the biaxially oriented polyester film is adjusted, and the thickness of the unstretched film is controlled from the base to control the film after biaxial stretching. The thickness can be adjusted.

本発明の二軸配向ポリエステルフィルムを磁気記録媒体用ベースフィルムとして用いる場合は、上記したB層側の表面(B面)側にバックコート層(以下BC層という)を設けることが高密度磁気記録媒体を得る上で好ましい。磁性層に強磁性六方晶フェライト粉末を用いてなる磁気記録媒体はベースフィルムのみならず磁性層および非磁性下層やBC層自体の厚みも薄膜化の傾向にある。特に、BC層の厚みが0.4μm以下と薄膜化するとBC層表面が支持体に起因する突起の影響を受け易くなり、BC層表面の平滑性が低下する。B層表面の特定の高さの突起個数を本発明の範囲に規定することによって、より薄膜化したBC層であってもその表面の平滑性を損なうことなくミッシングパルスの発生頻度に優れた電磁変換特性を発揮できる。 When the biaxially oriented polyester film of the present invention is used as a base film for a magnetic recording medium, it is necessary to provide a back coat layer (hereinafter referred to as BC layer) on the surface (B surface) side of the B layer side described above for high-density magnetic recording. It is preferable to obtain a medium. In magnetic recording media using ferromagnetic hexagonal ferrite powder for the magnetic layer, not only the base film but also the thickness of the magnetic layer, the non-magnetic lower layer, and the BC layer itself tend to be thinned. In particular, when the thickness of the BC layer is reduced to 0.4 μm or less, the surface of the BC layer is easily affected by the protrusions caused by the support, and the smoothness of the surface of the BC layer is lowered. By defining the number of protrusions at a specific height on the surface of the B layer within the scope of the present invention, even a thinner BC layer has an excellent electromagnetic wave generation frequency without impairing the smoothness of the surface. Can demonstrate conversion characteristics.

上記したような本発明の二軸配向ポリエステルフィルムは、たとえば次のように製造される。 The biaxially oriented polyester film of the present invention as described above is produced, for example, as follows.

まず、ポリエステルのペレットを、押出機を用いて溶融し、口金から吐出した後、冷却固化してシート状に成形する。このとき、繊維焼結ステンレス金属フィルターによりポリマーを濾過することが、ポリマー中の未溶融物を除去するために好ましい。 First, polyester pellets are melted using an extruder, discharged from a mouthpiece, cooled and solidified, and formed into a sheet. At this time, it is preferable to filter the polymer with a fiber-sintered stainless metal filter in order to remove unmelted matter in the polymer.

本発明の特徴面を阻害しない範囲内であれば、各種添加剤、例えば、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、結晶核剤、紫外線吸収剤、難燃剤、難燃助剤、顔料、染料、などが添加されてもよい。 Various additives such as compatibilizers, plasticizers, weather resistant agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents, and colorants, as long as they do not interfere with the characteristics of the present invention. , Conductive agents, crystal nucleating agents, ultraviolet absorbers, flame retardants, flame retardants, pigments, dyes, etc. may be added.

続いて、上記シートを長手方向と幅方向に同時二軸延伸した後、再度横方向に延伸し熱処理する。同時二軸延伸を実施することで本発明の高さ60nm以上の突起個数や突起高さを制御し易くなるために好ましい。 Subsequently, the sheet is simultaneously biaxially stretched in the longitudinal direction and the width direction, and then stretched again in the lateral direction for heat treatment. It is preferable to carry out simultaneous biaxial stretching because it becomes easy to control the number of protrusions and the height of protrusions having a height of 60 nm or more according to the present invention.

延伸形式としては、同時二軸延伸した後にさらに幅方向に延伸する方法が好ましい。逐次二軸延伸法では、長手方向に延伸した後、幅方向に延伸する際に粒子部に延伸応力が集中しやすくなるため、突起高さが高くなりやすい。さらにボイドが形成されやすくなり、段階高温熱固定の際に破れを引き起こす場合がある。また、幅方向の配向が高くなりすぎることによって、温湿度膨張係数を本発明の範囲内に制御することが困難となる場合がある。 As the stretching type, a method of simultaneously biaxially stretching and then further stretching in the width direction is preferable. In the sequential biaxial stretching method, after stretching in the longitudinal direction, stretching stress tends to concentrate on the particle portion when stretching in the width direction, so that the protrusion height tends to increase. Furthermore, voids are more likely to be formed, which may cause tearing during stepwise high-temperature heat fixation. Further, if the orientation in the width direction becomes too high, it may be difficult to control the coefficient of thermal expansion within the range of the present invention.

以下、本発明のフィルムの製造方法について、ポリエチレンテレフタレート(PET)をポリエステルとして用いた例を代表例として説明する。なお本発明はPETフィルムに限定されるものではなく、他のポリマーを用いたものものでもよい。例えば、ガラス転移温度や融点の高いポリエチレン−2,6−ナフタレンジカルボキシレートなどを用いてポリエステルフィルムを構成する場合は、以下に示す温度よりも高温で押出や延伸を行えばよい。 Hereinafter, the method for producing a film of the present invention will be described as a representative example in which polyethylene terephthalate (PET) is used as a polyester. The present invention is not limited to the PET film, and may be one using another polymer. For example, when a polyester film is formed using polyethylene-2,6-naphthalene dicarboxylate having a high glass transition temperature or melting point, extrusion or stretching may be performed at a temperature higher than the temperatures shown below.

まず、PETのペレットを製造する。PETは、次のいずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを原料とし、直接エステル化反応によって低分子量のPETまたはオリゴマーを得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセス、(2)ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応によって低分子量体を得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセスである。 First, PET pellets are produced. PET is manufactured by one of the following processes. That is, (1) a process in which terephthalic acid and ethylene glycol are used as raw materials, a low molecular weight PET or oligomer is obtained by a direct transesterification reaction, and then a polymer is obtained by a polycondensation reaction using an antimony trioxide or a titanium compound as a catalyst. , (2) A process in which a low molecular weight substance is obtained by a transesterification reaction using dimethyl terephthalate and ethylene glycol as raw materials, and then a polymer is obtained by a polycondensation reaction using an antimony trioxide or a titanium compound as a catalyst.

フィルムを構成するPETに粒子を含有させるには、エチレングリコールに粒子を所定割合にてスラリーの形で分散させ、このエチレングリコールを重合時に添加する方法が好ましい。粒子を添加する際には、例えば、粒子の合成時に得られる水スラリーやアルコールスラリーの粒子を一旦乾燥させることなく添加すると粒子の分散性がよい。ここで高さ60nm以上の突起個数を本発明の範囲内に制御するためには、粒子のスラリー濃度を5質量%以下にすることが重要である。添加する粒子が無機粒子の場合は、特定濃度に調整した粒子含有スラリーに平均粒径0.5〜0.05mmのガラスビーズを加え1,000〜5,000rpmで1〜5時間攪拌することも非常に効果的である。 In order to contain the particles in the PET constituting the film, a method in which the particles are dispersed in ethylene glycol in a predetermined ratio in the form of a slurry and the ethylene glycol is added at the time of polymerization is preferable. When adding the particles, for example, if the particles of the water slurry or alcohol slurry obtained during the synthesis of the particles are added without being dried once, the dispersibility of the particles is good. Here, in order to control the number of protrusions having a height of 60 nm or more within the range of the present invention, it is important to keep the slurry concentration of the particles to 5% by mass or less. When the particles to be added are inorganic particles, glass beads having an average particle size of 0.5 to 0.05 mm may be added to the particle-containing slurry adjusted to a specific concentration, and the mixture may be stirred at 1,000 to 5,000 rpm for 1 to 5 hours. Very effective.

次に、粒子の水スラリーを直接PETペレットと混合し、ベント式二軸混練押出機を用いて、粒子含有量が0.1〜0.5質量%となるようにPETに練り込み粒子マスターペレットを作成することが特に重要である。粒子の含有量を調節する方法としては、上記方法で作成した特定濃度の粒子マスターペレットを製膜時に粒子を実質的に含有しないPETで希釈して粒子の含有量を調節する方法が好ましい。この際、特に実質的に粒子を含有しないPETペレットの配合割合が50質量%以下、好ましくは35質量%以下にすることが粒子の分散性が向上し、本発明の高さ60nm以上の突起個数を制御しやすくなる。また、高温熱固定によるフィルム破れの低減にも繋がるため特に重要である。さらに、2種類以上の粒子マスターペレットを用いる場合に、予め所定の所望の含有量になるように配合した後、再度、溶融混練した2段混練粒子マスターを用いて粒子の分散性を向上させると段階高温延伸を行う際のフィルム破れが低減するため好ましく例示される。 Next, the aqueous slurry of particles is directly mixed with PET pellets and kneaded into PET using a bent twin-screw kneading extruder so that the particle content is 0.1 to 0.5% by mass. Particle master pellets Is especially important to create. As a method for adjusting the particle content, a method of diluting the particle master pellets having a specific concentration prepared by the above method with PET which does not substantially contain particles at the time of film formation to adjust the particle content is preferable. At this time, the dispersibility of the particles is improved by setting the blending ratio of the PET pellets containing substantially no particles to 50% by mass or less, preferably 35% by mass or less, and the number of protrusions having a height of 60 nm or more according to the present invention. It becomes easier to control. It is also particularly important because it leads to reduction of film tear due to high-temperature heat fixation. Further, when two or more kinds of particle master pellets are used, the dispersibility of the particles is improved by using the two-stage kneaded particle master which is melt-kneaded again after blending in advance so as to have a predetermined desired content. It is preferably exemplified because the film tearing during the stepwise high temperature stretching is reduced.

次に、得られたPETのペレットを、180℃で3時間以上減圧乾燥した後、固有粘度が低下しないように窒素気流下あるいは減圧下で、270〜320℃に加熱された押出機に供給し、スリット状のダイから押出し、キャスティングロール上で冷却して未延伸フィルムを得る。この際、異物や変質ポリマーを除去するために各種のフィルター、例えば、焼結金属、多孔性セラミック、サンド、金網などの素材からなる高精度フィルターを用いることが好ましい。また、定量供給性を向上させ、所望の積層厚みを得るためにギアポンプを設けることは上記した特徴面を形成する上で極めて好ましい。フィルムを積層するには、2台以上の押出機およびマニホールドまたは合流ブロックを用いて、複数の異なるポリマーを溶融積層するとよい。 Next, the obtained PET pellets are dried under reduced pressure at 180 ° C. for 3 hours or more, and then supplied to an extruder heated to 270 to 320 ° C. under a nitrogen stream or under reduced pressure so that the intrinsic viscosity does not decrease. , Extruded from a slit-shaped die and cooled on a casting roll to obtain an unstretched film. At this time, it is preferable to use various filters, for example, high-precision filters made of materials such as sintered metal, porous ceramics, sand, and wire mesh, in order to remove foreign substances and altered polymers. Further, it is extremely preferable to provide a gear pump in order to improve the quantitative supply property and obtain a desired laminated thickness in order to form the above-mentioned characteristic surface. To laminate the films, a plurality of different polymers may be fused and laminated using two or more extruders and manifolds or merging blocks.

次に、このようにして得られた未延伸フィルムを同時二軸延伸し、続いて再度幅方向に延伸する方法について説明する。 Next, a method of simultaneously biaxially stretching the unstretched film thus obtained and then stretching again in the width direction will be described.

なお、本発明において、MDとは二軸配向ポリエステルフィルムの長手方向(縦方向)を示し、TDとは二軸配向ポリエステルフィルムの幅方向(横方向)を示す。 In the present invention, MD indicates the longitudinal direction (longitudinal direction) of the biaxially oriented polyester film, and TD indicates the width direction (horizontal direction) of the biaxially oriented polyester film.

まず、未延伸フィルムをMD、TD方向に同時二軸延伸する。延伸温度は、用いるポリマーの種類によって異なるが、未延伸フィルムのガラス転移温度(Tg)を目安として決めることができる。Tg+20〜Tg+50℃の範囲であることが好ましく、より好ましくはTg+20℃〜Tg+30℃である。上記範囲より延伸温度が低い場合には、フィルム破れが多発して生産性が低下し、同時二軸延伸後に再度幅方向に延伸する際に安定して延伸することが困難となることがある。同時二軸延伸時のMD延伸倍率は3〜6倍、好ましくは3.1〜5.0倍である。TD延伸倍率は3.3〜6倍、好ましくは3.5〜5倍である。 First, the unstretched film is simultaneously biaxially stretched in the MD and TD directions. The stretching temperature varies depending on the type of polymer used, but can be determined using the glass transition temperature (Tg) of the unstretched film as a guide. It is preferably in the range of Tg + 20 ° C. to Tg + 50 ° C., more preferably Tg + 20 ° C. to Tg + 30 ° C. If the stretching temperature is lower than the above range, the film may be torn frequently and the productivity may be lowered, and it may be difficult to stably stretch the film when it is stretched again in the width direction after simultaneous biaxial stretching. The MD stretching ratio at the time of simultaneous biaxial stretching is 3 to 6 times, preferably 3.1 to 5.0 times. The TD stretching ratio is 3.3 to 6 times, preferably 3.5 to 5 times.

次に、再度TD方向に延伸(TD延伸2)を行う。TD延伸2の延伸温度は180〜220℃、好ましくは190〜210℃である。TD延伸2の延伸倍率は好ましくは1.3〜2倍であり、より好ましくは1.4〜1.7倍である。TD延伸2の延伸倍率や延伸温度が本発明の範囲外であると温湿度膨張係数を本願の範囲内に制御できなくなる場合がある。またこの時、MD方向に1.05〜1.3倍の範囲内で同時二軸延伸するとTD方向に再延伸した際にB面の表面突起がTD方向に連なりすぎることを抑制する効果がある。面積倍率は12〜30倍、好ましくは14〜25倍である。面積倍率が本願の範囲外であると温湿度膨張係数の両立が困難となる場合がある。面積倍率が30倍を超えると温湿度膨張係数を本発明の範囲内に制御できなくなる場合や、高さ60nm以上の突起個数が多くなりすぎる場合がある。面積倍率が12倍を下回ると、本発明の温湿度膨張係数を得ることが困難となる傾向にある。 Next, stretching in the TD direction (TD stretching 2) is performed again. The stretching temperature of TD stretching 2 is 180 to 220 ° C, preferably 190 to 210 ° C. The draw ratio of TD stretch 2 is preferably 1.3 to 2 times, more preferably 1.4 to 1.7 times. If the stretching ratio or stretching temperature of TD stretching 2 is outside the range of the present invention, the coefficient of thermal expansion may not be controlled within the range of the present application. Further, at this time, simultaneous biaxial stretching within the range of 1.05 to 1.3 times in the MD direction has an effect of suppressing the surface protrusions on the B surface from being excessively connected in the TD direction when re-stretching in the TD direction. .. The area magnification is 12 to 30 times, preferably 14 to 25 times. If the area magnification is out of the range of the present application, it may be difficult to achieve both the coefficient of thermal expansion and the coefficient of thermal expansion. If the area magnification exceeds 30 times, the coefficient of thermal expansion may not be controlled within the range of the present invention, or the number of protrusions having a height of 60 nm or more may become too large. When the area magnification is less than 12 times, it tends to be difficult to obtain the coefficient of thermal expansion of the present invention.

次にこの二軸延伸フィルムを幅方向に弛緩しながら熱固定処理する。熱固定処理条件として、熱固定温度は、190〜235℃が好ましく、さらに好ましくは200〜230℃である。熱固定温度は2段階以上に分けて段階高温熱固定を施すことが本発明の温湿度膨張係数の両立と高さ60nm以上の突起個数制御、表面粗さ、およびフィルム破れの観点より好ましい。段階高温熱固定の条件は、1段目熱固定温度(HS1)は(TD延伸2の延伸温度+3℃)〜(TD延伸2の延伸温度+20℃)が好ましく例示される。2段目熱固定温度(HS2)は、(HS1+5℃)〜(HS1+15℃)の範囲が好ましい。3段目熱固定温度(HS3)は、(HS2)〜(HS2+10℃)の範囲が好ましく、さらに好ましくは、(HS2+2℃)〜(HS2+10℃)である。本発明の温湿度膨張係数および微少融解ピーク温度(T−meta)を得るためには、2段目の熱固定温度を215℃以上、好ましくは220〜235℃に設定すると制御しやすくなり好ましい。 Next, the biaxially stretched film is heat-fixed while relaxing in the width direction. As the heat fixing treatment condition, the heat fixing temperature is preferably 190 to 235 ° C, more preferably 200 to 230 ° C. It is preferable that the heat fixing temperature is divided into two or more steps and the step high temperature heat fixing is performed from the viewpoints of achieving both the temperature-humidity expansion coefficient of the present invention, controlling the number of protrusions having a height of 60 nm or more, surface roughness, and film tearing. As the conditions for the stepwise high temperature heat fixing, the first step heat fixing temperature (HS1) is preferably (stretching temperature of TD stretching 2 + 3 ° C.) to (stretching temperature of TD stretching 2 + 20 ° C.). The second stage heat fixing temperature (HS2) is preferably in the range of (HS1 + 5 ° C.) to (HS1 + 15 ° C.). The third-stage heat fixing temperature (HS3) is preferably in the range of (HS2) to (HS2 + 10 ° C.), more preferably (HS2 + 2 ° C.) to (HS2 + 10 ° C.). In order to obtain the coefficient of thermal expansion and the minute melting peak temperature (T-meta) of the present invention, it is preferable to set the heat fixing temperature of the second stage to 215 ° C. or higher, preferably 220 to 235 ° C. for easy control.

熱固定処理時間は0.5〜10秒の範囲、弛緩率は幅方向に0.8〜2.0%で行うのが好ましい。次に130〜180℃に調整された冷却ゾーンに導き徐冷した後、フィルムエッジ部を裁断してロールに巻き取り、本発明の二軸配向ポリエステルフィルムを得ることができる。 The heat fixing treatment time is preferably in the range of 0.5 to 10 seconds, and the relaxation rate is preferably 0.8 to 2.0% in the width direction. Next, the film is guided to a cooling zone adjusted to 130 to 180 ° C. and slowly cooled, and then the film edge portion is cut and wound on a roll to obtain the biaxially oriented polyester film of the present invention.

TD延伸2の延伸温度と1段目熱固定温度に差があり、熱固定温度が上述の範囲よりも高いとフィルムが緩和しやすくなり、本発明の湿度膨張係数を得ることが困難となり寸法安定性が低下しやすい。さらに、表面平滑性が低下し本発明の表面粗さを得ることが困難となる場合がある。一方で熱固定温度が低すぎるとTD熱収縮率を本願の範囲内に制御できない場合や結晶性が低くなりやすく、磁気記録媒体の製造工程においてベースフィルムの平面性が低下しミッシングパルスの発生頻度が増加する傾向がある。 There is a difference between the stretching temperature of TD stretching 2 and the heat fixing temperature of the first stage, and if the heat fixing temperature is higher than the above range, the film is easily relaxed, it becomes difficult to obtain the coefficient of thermal expansion of the present invention, and the dimensions are stable. The sex tends to decrease. Further, the surface smoothness may be lowered, and it may be difficult to obtain the surface roughness of the present invention. On the other hand, if the heat fixing temperature is too low, the TD heat shrinkage rate cannot be controlled within the range of the present application, or the crystallinity tends to be low, and the flatness of the base film is lowered in the manufacturing process of the magnetic recording medium, and the frequency of missing pulses is generated. Tends to increase.

次に、磁気記録媒体は例えば次のように製造される。 Next, the magnetic recording medium is manufactured as follows, for example.

上記のようにして得られた磁気記録媒体用支持体(二軸配向ポリエステルフィルム)を、たとえば0.1〜3m幅にスリットし、速度20〜300m/min、張力50〜300N/mで搬送しながら、一方の面に非磁性塗料をエクストルージョンコーターにより厚み0.5〜1.5μm塗布し乾燥後、さらに磁性塗料を厚み0.1〜0.3μmで塗布する。その後、磁性塗料および非磁性塗料が塗布された支持体を磁気配向させ、温度80〜130℃で乾燥させる。次いで、反対側の面にバックコートを厚み0.3〜0.8μmで塗布し、カレンダー処理した後、巻き取る。なお、カレンダー処理は、小型テストカレンダー装置(金属ロール、7段)を用い、温度70〜120℃、線圧0.5〜5kN/cmで行う。その後、60〜80℃にて24〜72時間エージング処理し、12.65mm幅にスリットし、パンケーキを作製する。次いで、このパンケーキから特定の長さ分をカセットに組み込んで、カセットテープ型磁気記録媒体とする。 The support for magnetic recording medium (biaxially oriented polyester film) obtained as described above is slit into a width of 0.1 to 3 m, for example, and conveyed at a speed of 20 to 300 m / min and a tension of 50 to 300 N / m. However, a non-magnetic paint is applied to one surface with an extraction coater to a thickness of 0.5 to 1.5 μm, and after drying, a magnetic paint is further applied to a thickness of 0.1 to 0.3 μm. Then, the support coated with the magnetic paint and the non-magnetic paint is magnetically oriented and dried at a temperature of 80 to 130 ° C. Next, a back coat is applied to the opposite surface to a thickness of 0.3 to 0.8 μm, calendar-treated, and then wound up. The calendar processing is performed using a small test calendar device (metal roll, 7 steps) at a temperature of 70 to 120 ° C. and a linear pressure of 0.5 to 5 kN / cm. Then, the pancake is aged at 60 to 80 ° C. for 24 to 72 hours and slit to a width of 12.65 mm to prepare a pancake. Next, a specific length of the pancake is incorporated into a cassette to form a cassette tape type magnetic recording medium.

ここで、磁性塗料などの組成は例えば以下のような組成が挙げられる。 Here, examples of the composition of the magnetic paint and the like include the following compositions.

以下、単に「部」と記載されている場合は、「質量部」を意味する。 Hereinafter, when simply described as "parts", it means "parts by mass".

[磁性層形成塗液]
バリウムフェライト磁性粉末 100部
〔板径:20.5nm、板厚:7.6nm、板状比:2.7、Hc:191kA/m(≒2400Oe)飽和磁化:44Am/kg、BET比表面積:60m/g〕
ポリウレタン樹脂 12部
質量平均分子量 10,000
スルホン酸官能基 0.5meq/g
α−アルミナ HIT60(住友化学社製) 8部
カーボンブラック #55(旭カーボン社製)粒子サイズ0.015μm 0.5部
ステアリン酸 0.5部
ブチルステアレート 2部
メチルエチルケトン 180部
シクロヘキサノン 100部
[非磁性層形成用塗布液]
非磁性粉体 α酸化鉄 100部
平均長軸長 :0.09μm、BET法による比表面積 50m/g
平均針状比 : 7
DBP吸油量: 27〜38ml/100g
表面処理層 :Al 8質量%
カーボンブラック 25部
コンダクテックスSC−U(コロンビアンカーボン社製)
塩化ビニル共重合体 MR104(日本ゼオン社製) 13部
ポリウレタン樹脂 UR8200(東洋紡社製) 5部
フェニルホスホン酸 3.5部
ブチルステアレート 1.0部
磁気記録媒体は、例えば、データ記録用途、具体的にはコンピュータデータのバックアップ用途(例えばリニアテープ式の記録媒体(LTO7、LTO8、次世代LTOテープ(LTO9))や映像などのデジタル画像の記録用途などに好適に用いることができる。
[Magnetic layer forming coating liquid]
100 parts of barium ferrite magnetic powder [plate diameter: 20.5 nm, plate thickness: 7.6 nm, plate ratio: 2.7, Hc: 191 kA / m (≈2400 Oe) saturation magnetization: 44 Am 2 / kg, BET specific surface area: 60m 2 / g]
Polyurethane resin 12 parts Mass average molecular weight 10,000
Sulfonic acid functional group 0.5 meq / g
α-Alumina HIT60 (manufactured by Sumitomo Chemical Co., Ltd.) 8 parts Carbon black # 55 (manufactured by Asahi Carbon Co., Ltd.) Particle size 0.015 μm 0.5 parts Stearic acid 0.5 parts Butanone stearate 2 parts Methyl ethyl ketone 180 parts Cyclohexanone 100 parts [Non- Coating liquid for forming magnetic layer]
Non-magnetic powder α iron oxide 100 parts Average major axis length: 0.09 μm, specific surface area by BET method 50 m 2 / g
Average needle-like ratio: 7
DBP oil absorption: 27-38 ml / 100 g
Surface treatment layer: Al 2 O 3 8% by weight
Carbon Black 25 parts Conductex SC-U (manufactured by Colombian Carbon)
Vinyl chloride copolymer MR104 (manufactured by Nippon Zeon) 13 parts Polyurethane resin UR8200 (manufactured by Toyo Boseki) 5 parts Phenylphosphonic acid 3.5 parts Butyl stearate 1.0 parts Magnetic recording media are, for example, data recording applications, concrete Specifically, it can be suitably used for backup of computer data (for example, linear tape type recording media (LTO7, LTO8, next-generation LTO tape (LTO9)), recording of digital images such as video, and the like.

本発明の二軸配向ポリエステルフィルムが好適に用いられる塗布型デジタル記録方式の磁気記録媒体としては、例えば、磁性層がバリウムフェライト等の強磁性粉末をポリウレタン樹脂等のバインダーに均一に分散させて磁性塗液を作成し、その塗液を塗布して磁性層が形成された塗布型磁気記録媒体を例示することができる。 As a coating type digital recording type magnetic recording medium in which the biaxially oriented polyester film of the present invention is preferably used, for example, the magnetic layer is magnetic by uniformly dispersing ferromagnetic powder such as barium ferrite in a binder such as polyurethane resin. An example is a coating type magnetic recording medium in which a coating liquid is prepared and the coating liquid is applied to form a magnetic layer.

(物性の測定方法ならびに効果の評価方法)
本発明における特性値の測定方法並びに効果の評価方法は次の通りである。
(Measurement method of physical properties and evaluation method of effect)
The method for measuring the characteristic value and the method for evaluating the effect in the present invention are as follows.

(1)幅方向の湿度膨張係数(ppm/%RH)
フィルムの幅方向に対して、下記装置を恒温恒湿槽内に設置し、以下の条件にて変形量の測定を行い、3回の測定結果の平均値を本発明における幅方向の湿度膨張係数とした。
(1) Humidity expansion coefficient in the width direction (ppm /% RH)
In the width direction of the film, the following device is installed in a constant temperature and humidity chamber, the amount of deformation is measured under the following conditions, and the average value of the three measurement results is the coefficient of thermal expansion in the width direction in the present invention. And said.

測定装置 :大倉インダストリ(株)製 テープ伸び量試験機 1TTM1
恒温恒湿槽 :(株)カトー製 TP計装 Version 1.04
試料サイズ :幅 10mm × 長さ 200mm(サンプル長)
荷重 :10g
測定回数 :3回
温度 :30℃
湿度条件 :<1> 40%RHで6時間保持
<2> 80%RHで6時間保持(昇湿レート:0.7%RH/min)
<3> 40%RHに降湿(降湿レート:1.4%RH/min)後、6時間保持
<4> 80%RHに昇湿(昇湿レート:0.7%RH/min)
測定(L40):湿度条件<3>の湿度40%RH 6時間保持後のサンプル長を計測(L40
測定(L80):湿度条件<4>の湿度40%RHから80%RHまで昇湿(昇湿レート:0.7%RH/min)させた時のサンプル長を計測(L80)。
Measuring device: Tape elongation tester 1TTM1 manufactured by Okura Industry Co., Ltd.
Constant temperature and humidity chamber: Kato Co., Ltd. TP instrumentation Version 1.04
Sample size: width 10 mm x length 200 mm (sample length)
Load: 10g
Number of measurements: 3 times Temperature: 30 ° C
Humidity condition: <1> Hold at 40% RH for 6 hours <2> Hold at 80% RH for 6 hours (humidity rate: 0.7% RH / min)
<3> Humidify to 40% RH (humidity rate: 1.4% RH / min) and hold for 6 hours <4> Humidify to 80% RH (humidity rate: 0.7% RH / min)
Measurement (L 40 ): Measure the sample length after holding the humidity 40% RH for 6 hours under the humidity condition <3> (L 40 ).
Measurement (L 80 ): The sample length when the humidity is raised from 40% RH to 80% RH (humidity rate: 0.7% RH / min) under the humidity condition <4> is measured (L 80 ).

ΔL(mm):寸法変化量ΔL(L80−L40
次式から湿度膨張係数(ppm/%RH)を算出した。
湿度膨張係数(ppm/%RH)=10×{(ΔL/(測定前のサンプル長×湿度差)}
測定前のサンプル長=200(mm)
湿度差=40(%)
(2)幅方向の温度膨張係数(ppm/℃)
フィルムの幅方向に対して、下記条件にて窒素雰囲気下で測定を行い、3回の測定結果の平均値を本発明における温度膨張係数とした。
ΔL (mm): Dimensional change amount ΔL (L 80- L 40 )
The coefficient of thermal expansion (ppm /% RH) was calculated from the following equation.
Humidity expansion coefficient (ppm /% RH) = 10 6 × {(ΔL / ( sample length × humidity difference before measurement)}
Sample length before measurement = 200 (mm)
Humidity difference = 40 (%)
(2) Coefficient of thermal expansion in the width direction (ppm / ° C)
Measurements were made in the width direction of the film under a nitrogen atmosphere under the following conditions, and the average value of the three measurement results was taken as the coefficient of thermal expansion in the present invention.

測定装置 :真空理工(株)製 熱機械試験機
TM−9400(天秤部および加熱炉)
TMS−9000(マルチ熱分析ステーション)
試料サイズ :幅4mm×長さ15mm(サンプル長)
荷重 :5g
回数 :3回
温度 :25℃→50℃→20℃→50℃(昇温レート:1℃/min)
測定(L):再昇温時の30℃でのサンプル長(L 測定(L):再昇温時の40℃でのサンプル長(L
ΔL(mm):寸法変化量ΔL(L−L
次式から温度膨張係数を算出した。
Measuring device: Thermal mechanical testing machine manufactured by Vacuum Riko Co., Ltd.
TM-9400 (balance and heating furnace)
TMS-9000 (Multi Thermal Analysis Station)
Sample size: width 4 mm x length 15 mm (sample length)
Load: 5g
Number of times: 3 times Temperature: 25 ° C → 50 ° C → 20 ° C → 50 ° C (heating rate: 1 ° C / min)
Measurement (L 0 ): Sample length at 30 ° C. when reheating (L 0 measurement (L 1 ): Sample length at 40 ° C. when reheating (L 1 ))
ΔL (mm): Dimensional change amount ΔL (L 1 −L 0 )
The coefficient of thermal expansion was calculated from the following equation.

温度膨張係数(ppm/℃)=10×{(ΔL/(測定前のサンプル長×温度差)}
測定前のサンプル長=15(mm)
温度差=10(℃)
(3)高さ60nm以上の突起個数(個/mm
走査型白色干渉顕微鏡を用いて、場所を変えて100視野測定した。サンプルセットは、ステージのY軸方向がサンプルフィルムの長手方向(長手方向とは、フィルムの製造工程においてフィルムが走行する方向)となるようにサンプルをセットした。
Temperature expansion coefficient (ppm / ℃) = 10 6 × {(ΔL / ( sample length × temperature difference before measurement)}
Sample length before measurement = 15 (mm)
Temperature difference = 10 (° C)
(3) Number of protrusions with a height of 60 nm or more (pieces / mm 2 )
Using a scanning white interference microscope, 100 fields of view were measured at different locations. In the sample set, the sample was set so that the Y-axis direction of the stage was the longitudinal direction of the sample film (the longitudinal direction is the direction in which the film travels in the film manufacturing process).

以下の測定条件にて測定する。得られた画像について、付属の解析ソフトを用い粒子解析し高さ閾値60nmを設定して各視野の高さ60nm以上の突起個数を求め、その総数を1mmあたりに換算した値を高さ60nm以上の突起個数とした。
[測定条件]
・装置:日立ハイテクサイエンス製 走査型白色干渉顕微鏡 VS1540
・対物レンズ:50倍
・波長フィルター:530white
・測定モード :Wave
[変換処理条件]と
・補間 :完全補間
・フィルター :メジアン3×3
・面補正 :4次
(4)熱収縮率
JIS C2318(1997年)に従って測定した。サンプルサイズの長手方向がフィルムの幅方向となるように作成し、以下の条件測定し幅方向の熱収縮率を求めた。
Measure under the following measurement conditions. The obtained image is subjected to particle analysis using the attached analysis software, a height threshold value of 60 nm is set, the number of protrusions having a height of 60 nm or more in each field of view is obtained, and the total number is converted into 1 mm 2 and the height is 60 nm. The number of protrusions is as above.
[Measurement condition]
・ Equipment: Hitachi High-Tech Science Scanning White Interference Microscope VS1540
・ Objective lens: 50x ・ Wavelength filter: 530white
-Measurement mode: Wave
[Conversion processing conditions] and ・ Interpolation: Complete interpolation ・ Filter: Median 3 × 3
-Surface correction: 4th order (4) Heat shrinkage rate Measured according to JIS C2318 (1997). The sample size was prepared so that the longitudinal direction was the width direction of the film, and the heat shrinkage rate in the width direction was determined by measuring the following conditions.

サンプルサイズ:幅10mm、標線間隔200mm
測定条件 :温度100℃、処理時間30分
荷重 :無荷重
熱収縮率(%)=[(L−L)/L]×100
:加熱処理前の標線間隔
L :加熱処理後の標線間隔
(5)ヤング率
ASTM−D882(1997年)に準拠してフィルムのヤング率を測定した。なお、インストロンタイプの引張試験機を用い、条件は下記のとおりとした。5回の測定結果の平均値を本発明におけるヤング率とした。
Sample size: width 10 mm, marked line spacing 200 mm
Measurement conditions: Temperature 100 ° C., Processing time 30 minutes Load: No load Heat shrinkage rate (%) = [(L 0- L) / L 0 ] x 100
L 0 : Marked line interval before heat treatment
L: Marking line interval after heat treatment (5) Young's modulus The Young's modulus of the film was measured according to ASTM-D882 (1997). An Instron type tensile tester was used, and the conditions were as follows. The average value of the results of five measurements was taken as the Young's modulus in the present invention.

測定装置:インストロン社製超精密材料試験機MODEL5848
試料サイズ:
フィルム幅方向のヤング率測定の場合
フィルム長手方向2mm×フィルム幅方向12.6mm
(つかみ間隔はフィルム幅方向に8mm)
フィルム長手方向のヤング率測定の場合
フィルム幅方向2mm×フィルム長手方向12.6mm
(つかみ間隔はフィルム長手方向に8mm)
引張り速度:1mm/分
測定環境:温度23℃、湿度65%RH
測定回数:5回。
Measuring device: Instron ultra-precision material testing machine MODEL5848
Sample size:
When measuring Young's modulus in the film width direction 2 mm in the film longitudinal direction x 12.6 mm in the film width direction
(Gripping interval is 8 mm in the film width direction)
When measuring Young's modulus in the film longitudinal direction 2 mm in the film width direction x 12.6 mm in the film longitudinal direction
(Gripping interval is 8 mm in the longitudinal direction of the film)
Tensile speed: 1 mm / min Measurement environment: Temperature 23 ° C, humidity 65% RH
Number of measurements: 5 times.

(6)微少融解ピーク温度(T−meta)
JIS−K7121(1987年)に従って、示差走査熱量計として、セイコーインスツルメンツ社製DSC(RDC220)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いて、試料5mgをアルミニウム製受皿上、25℃から300℃まで、昇温速度20℃/分で昇温した。そのとき、観測される融解の吸熱ピークのピーク温度を融点(Tm)、Tmの少し低温側に現れる微小吸熱ピーク温度をT−metaとした。Tmのピーク面積から算出される熱量を融解熱量ΔHmとする。
(6) Fine melting peak temperature (T-meta)
According to JIS-K7121 (1987), Seiko Instruments DSC (RDC220) was used as a differential scanning calorimeter, and the company's disk station (SSC / 5200) was used as a data analyzer, and 5 mg of sample was placed on an aluminum saucer, 25. The temperature was raised from ° C. to 300 ° C. at a heating rate of 20 ° C./min. At that time, the peak temperature of the observed endothermic peak of melting was defined as the melting point (Tm), and the minute endothermic peak temperature appearing on the slightly lower temperature side of Tm was defined as T-meta. The amount of heat calculated from the peak area of Tm is defined as the amount of heat of fusion ΔHm.

(7)表面粗さ(Sa1)、(Sa2)
フィルムの両面について、前記(3)に記載の装置を用いて、同条件にて場所を変えて100視野の測定を実施し、変換処理を施した後、付帯の解析ソフトにおいて各視野の面粗さ(Sa)を求めた。各面について100視野の平均値を求め、値が大きい方をSa1、小さい方をSa2とした。
(7) Surface roughness (Sa1), (Sa2)
For both sides of the film, using the device described in (3) above, measurement of 100 fields of view was performed at different locations under the same conditions, and after conversion processing was performed, the surface roughness of each field of view was roughened with the incidental analysis software. I asked for Sa. The average value of 100 visual fields was calculated for each surface, and the larger value was designated as Sa1 and the smaller value was designated as Sa2.

(8)積層厚み(μm)
以下の条件にて断面観察を場所を変えて10視野行い、得られた厚み(μm)の平均値を算出しA層の厚み(μm)とした。
(8) Laminated thickness (μm)
Cross-sectional observation was carried out in 10 different fields under the following conditions, and the average value of the obtained thickness (μm) was calculated and used as the thickness (μm) of the A layer.

測定装置:透過型電子顕微鏡(TEM) 日立製H−7100FA型
測定条件:加速電圧 100kV
測定倍率:1万倍
試料調整:超薄膜切片法
観察面 :TD−ZD断面(TD:幅方向、ZD:厚み方向)
測定回数:1視野につき3点、10視野を測定する。
Measuring device: Transmission electron microscope (TEM) Hitachi H-7100FA type Measuring conditions: Acceleration voltage 100 kV
Measurement magnification: 10,000 times Sample preparation: Ultra-thin section method Observation surface: TD-ZD cross section (TD: width direction, ZD: thickness direction)
Number of measurements: Measure 3 points and 10 fields of view per field of view.

(9)スリット性
フィルムを幅1mにスリットする際、スリット速度を変更しフィルム端部の切れ味を目視にて以下に示す方法により評価した。なお、Cをスリット性不良と判断した。
(9) Slit property When the film was slit to a width of 1 m, the slit speed was changed and the sharpness of the edge of the film was visually evaluated by the method shown below. In addition, C was judged to have poor slit property.

AA:速度70m/分でも端部が歪になることなくスリット可能。 AA: Slitting is possible without distortion at the ends even at speeds of 70 m / min.

A:速度60m/分以上70m/分未満で端部に歪が発生する。 A: Distortion occurs at the end at a speed of 60 m / min or more and less than 70 m / min.

B:速度50m/分以上60m/分未満で端部に歪が発生する。 B: Distortion occurs at the end at a speed of 50 m / min or more and less than 60 m / min.

C:速度50m/分未満でフィルム表面にシワが発生し端部が歪になる。 C: At a speed of less than 50 m / min, wrinkles are generated on the film surface and the edges are distorted.

(10)ミッシングパルス発生頻度
1m幅にスリットしたフィルムを、張力200Nで搬送させ、支持体の一方の表面に下記に従って磁性塗料および非磁性塗料を塗布し12.65mm幅にスリットし、パンケーキを作成する。次いで、このパンケーキから長さ200m分をカセットに組み込んで、磁気テープとした。
(10) Missing pulse generation frequency A film slit to a width of 1 m is conveyed with a tension of 200 N, and a magnetic paint and a non-magnetic paint are applied to one surface of the support according to the following, and the film is slit to a width of 12.65 mm to form a pancake. create. Next, a length of 200 m from this pancake was incorporated into a cassette to obtain a magnetic tape.

(以下、「部」とあるのは「質量部」を意味する。)
磁性層形成用塗布液
バリウムフェライト磁性粉末 100部
(板径:20.5nm、板厚:7.6nm、
板状比:2.7、Hc:191kA/m(≒2400Oe)
飽和磁化:44Am/kg、BET比表面積:60m/g)
ポリウレタン樹脂 12部
質量平均分子量 10,000
スルホン酸官能基 0.5meq/g
α−アルミナ HIT60(住友化学社製) 8部
カーボンブラック #55(旭カーボン社製)
粒子サイズ0.015μm 0.5部
ステアリン酸 0.5部
ブチルステアレート 2部
メチルエチルケトン 180部
シクロヘキサノン 100部
非磁性層形成用塗布液
非磁性粉体 α酸化鉄 85部
平均長軸長 : 0.09μm、BET法による比表面積 50m/g
平均針状比 : 7
DBP吸油量: 27〜38ml/100g
表面処理層 : Al 8質量%
カーボンブラック 15部
“コンダクテックス”(登録商標)SC−U(コロンビアンカーボン社製)
ポリウレタン樹脂 UR8200(東洋紡社製) 22部
フェニルホスホン酸 3部
シクロヘキサノン 140部
メチルエチルケトン 170部
ブチルステアレート 1部
ステアリン酸 2部
上記の塗布液のそれぞれについて、各成分をニ−ダで混練した。0.5mmφのジルコニアビーズを分散部の容積に対し65%充填する量を入れた横型サンドミルに、塗布液をポンプで通液し、2,000rpmで120分間(実質的に分散部に滞留した時間)、分散させた。得られた分散液にポリイソシアネ−トを非磁性層の塗料には5.0部、磁性層の塗料には2.5部を加え、さらにメチルエチルケトン3部を加え、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
(Hereinafter, "part" means "mass part".)
Coating liquid for forming a magnetic layer 100 parts of barium ferrite magnetic powder (plate diameter: 20.5 nm, plate thickness: 7.6 nm,
Plate ratio: 2.7, Hc: 191 kA / m (≈2400 Oe)
Saturation magnetization: 44Am 2 / kg, BET specific surface area: 60m 2 / g)
Polyurethane resin 12 parts Mass average molecular weight 10,000
Sulfonic acid functional group 0.5 meq / g
α-Alumina HIT60 (manufactured by Sumitomo Chemical Co., Ltd.) 8 parts Carbon Black # 55 (manufactured by Asahi Carbon Co., Ltd.)
Particle size 0.015 μm 0.5 part Stearic acid 0.5 part Butanone 2 parts Methyl ethyl ketone 180 parts Cyclohexanone 100 parts Non-magnetic layer forming coating liquid Non-magnetic powder α Iron oxide 85 parts Average major axis length: 0.09 μm , BET method specific surface area 50m 2 / g
Average needle-like ratio: 7
DBP oil absorption: 27-38 ml / 100 g
Surface treatment layer: Al 2 O 3 8% by weight
Carbon Black 15 copies "Conductex" (registered trademark) SC-U (manufactured by Colombian Carbon)
Polyurethane resin UR8200 (manufactured by Toyobo Co., Ltd.) 22 parts Phenylphosphonic acid 3 parts Cyclohexanone 140 parts Methyl ethyl ketone 170 parts Butyl stearate 1 part Stearic acid 2 parts Each component of each of the above coating liquids was kneaded with a needle. The coating liquid was pumped through a horizontal sand mill containing an amount of 0.5 mmφ zirconia beads filled at 65% of the volume of the dispersion part, and stayed at 2,000 rpm for 120 minutes (substantially staying in the dispersion part). ), Distributed. To the obtained dispersion, 5.0 parts of polyisosianate was added to the paint of the non-magnetic layer, 2.5 parts was added to the paint of the magnetic layer, and 3 parts of methyl ethyl ketone was further added to obtain a filter having an average pore size of 1 μm. The coating liquids for forming the non-magnetic layer and the coating liquid for forming the magnetic layer were prepared respectively.

得られた非磁性層形成用塗布液を、PETフィルム上に乾燥後の厚さが0.8μmになるように塗布乾燥させた後、磁性層形成用塗布液を乾燥後の磁性層の厚さが0.07μmになるように塗布を行い、磁性層がまだ湿潤状態にあるうちに6,000G(600mT)の磁力を持つコバルト磁石と6,000G(600mT)の磁力を持つソレノイドにより配向させ乾燥させた。その後、カレンダ後の厚みが0.35μmとなるようにバックコート層(カーボンブラック 平均粒子サイズ:17nm 100部、炭酸カルシウム平均粒子サイズ:40nm 80部、αアルミナ 平均粒子サイズ:200nm 5部をポリウレタン樹脂、ポリイソシアネートに分散)を塗布した。次いでカレンダで温度90℃、線圧300kg/cm(294kN/m)にてカレンダ処理を行った後、65℃で、72時間キュアリングした。さらに、スリット品の送り出し、巻き取り装置を持った装置に不織布とカミソリブレードが磁性面に押し当たるように取り付け、テープクリーニング装置で磁性層の表面のクリーニングを行い、磁気テープを得た。 The obtained coating liquid for forming a non-magnetic layer is applied and dried on a PET film so that the thickness after drying is 0.8 μm, and then the coating liquid for forming a magnetic layer is applied to the thickness of the magnetic layer after drying. Is applied to 0.07 μm, and while the magnetic layer is still wet, it is oriented and dried by a cobalt magnet with a magnetic force of 6,000 G (600 mT) and a solenoid with a magnetic force of 6,000 G (600 mT). I let you. After that, the backcoat layer (carbon black average particle size: 17 nm 100 parts, calcium carbonate average particle size: 40 nm 80 parts, α-alumina average particle size: 200 nm 5 parts is made of polyurethane resin so that the thickness after calendering becomes 0.35 μm. , Dispersed in polyisocyanate) was applied. Next, the calendar was subjected to a calendar treatment at a temperature of 90 ° C. and a linear pressure of 300 kg / cm (294 kN / m), and then cured at 65 ° C. for 72 hours. Further, the non-woven fabric and the razor blade were attached to a device having a slit product feeding and winding device so as to be pressed against the magnetic surface, and the surface of the magnetic layer was cleaned with a tape cleaning device to obtain a magnetic tape.

上記により得られた磁気テープカートリッジ(磁気テープ全長500m)をIBM社製LTO−7ドライブにセットし、磁気テープを張力0.55N、走行速度8m/秒で1,500往復走行させた。 The magnetic tape cartridge (total length of magnetic tape 500 m) obtained as described above was set in an IBM LTO-7 drive, and the magnetic tape was reciprocated 1,500 at a tension of 0.55 N and a traveling speed of 8 m / sec.

上記走行後の磁気テープカートリッジをリファレンスドライブ(IBM社製LTO7ドライブ)にセットし、磁気テープを走行させて記録再生を行った。走行中の再生信号を外部AD(Analog/Digital)変換装置に取り込み、再生信号振幅が平均(全トラックでの測定値の平均)に対して80%以上低下した信号をミッシングパルスとして、その発生頻度を磁気テープ全長で除して、磁気テープの単位長さ当たりのミッシングパルス発生頻度(単位:回/m)として求めた。ミッシングパルス発生頻度が2.5回/m以下のテープを信頼性の高い磁気テープとし、ミッシングパルス発生頻度が2.5回/mを超えて発生するテープを不良とし、以下の基準で判断した。 The magnetic tape cartridge after running was set in a reference drive (LTO7 drive manufactured by IBM), and the magnetic tape was run to perform recording and reproduction. The reproduced signal during traveling is taken into an external AD (Analog / Digital) conversion device, and the signal whose amplitude of the reproduced signal is reduced by 80% or more with respect to the average (average of the measured values in all tracks) is regarded as a missing pulse, and its frequency of occurrence is taken as a missing pulse. Was divided by the total length of the magnetic tape to obtain the missing pulse generation frequency (unit: times / m) per unit length of the magnetic tape. Tapes with a missing pulse generation frequency of 2.5 times / m or less were regarded as highly reliable magnetic tapes, and tapes with a missing pulse generation frequency of more than 2.5 times / m were regarded as defective, and were judged according to the following criteria. ..

AA:ミッシングパルス発生頻度が1.5回/m未満
A:ミッシングパルス発生頻度が1.5回/m以上、2.0回/m未満
B:ミッシングパルス発生頻度が2.0回/m以上、2.5回/m未満
C:ミッシングパルス発生頻度が2.5回/m以上。
AA: Missing pulse generation frequency is less than 1.5 times / m A: Missing pulse generation frequency is 1.5 times / m or more and less than 2.0 times / m B: Missing pulse generation frequency is 2.0 times / m or more , Less than 2.5 times / m C: Missing pulse generation frequency is 2.5 times / m or more.

(11)磁気テープの環境変化安定性
上記(10)にて作成した磁気テープを恒温恒湿槽内に設置したフィルム寸法測定装置(図1)にセットし、荷重を50gとし、下記の温湿度条件でテープの幅を測定した。
(11) Stability of magnetic tape due to environmental changes The magnetic tape created in (10) above was set in a film size measuring device (Fig. 1) installed in a constant temperature and humidity chamber, and the load was 50 g. The width of the tape was measured under the conditions.

・温湿度条件<1> : 10℃ 10%RH
<2> : 10℃ 80%RH
<3> : 29℃ 80%RH
<4> : 45℃ 24%RH
<5> : 45℃ 10%RH
寸法測定は、<1>→<2>→<3>→<4>→<5>の順に行い、それぞれの温湿度に達してから2時間放置した後にテープの幅を測定した(それぞれのテープ幅をL<1>、L<2>、L<3>、L<4>、L<5>とする)。
・ Temperature and humidity conditions <1>: 10 ° C, 10% RH
<2>: 10 ° C. 80% RH
<3>: 29 ° C. 80% RH
<4>: 45 ° C. 24% RH
<5>: 45 ° C. 10% RH
The dimensions were measured in the order of <1> → <2> → <3> → <4> → <5>, and the width of the tape was measured after leaving for 2 hours after reaching each temperature and humidity (each tape). The width is L <1>, L <2>, L <3>, L <4>, L <5>).

各条件間のテープ幅変化を求め、さらに磁気ヘッドの温度膨張(7ppm/℃)を考慮した補正(7ppm/℃×各条件間の温度差を差し引く)を行い、下記式の通り条件間のテープ幅変化を求めた。 The tape width change between each condition is obtained, and the correction (7ppm / ° C x the temperature difference between each condition is subtracted) in consideration of the temperature expansion (7ppm / ° C) of the magnetic head is performed. The width change was calculated.

変化量(1) ΔL<3>−L<1> = |L<3>−L<1>−(7×19)|
変化量(2) ΔL<5>−L<2> = |L<5>−L<2>−(7×35)|
上記、変化量(1)(2)のうち大きい変化量をテープ幅(12.65mm)で割り、ppm単位に換算したものを温湿度環境変化におけるテープ幅変化(ppm)とし、以下の基準で判断した。
Amount of change (1) ΔL <3> -L <1> = | L <3> -L <1>-(7 × 19) |
Amount of change (2) ΔL <5> -L <2> = | L <5> -L <2>-(7 x 35) |
Of the above changes (1) and (2), the larger change is divided by the tape width (12.65 mm) and converted to ppm to be the tape width change (ppm) due to changes in the temperature and humidity environment. It was judged.

A:500ppm未満
B:500ppm以上800ppm未満
C:800ppm以上
A: Less than 500ppm B: 500ppm or more and less than 800ppm C: 800ppm or more

次の実施例に基づき、本発明の実施形態を説明する。なお、ここでポリエチレンテレフタレートをPET、ポリエチレンナフタレートをPEN、ポリエーテルイミドをPEIと表記する。 Embodiments of the present invention will be described based on the following examples. Here, polyethylene terephthalate is referred to as PET, polyethylene naphthalate is referred to as PEN, and polyetherimide is referred to as PEI.

(1)PETペレットの作製:テレフタル酸ジメチル194質量部とエチレングリコール124質量部とをエステル交換反応装置に仕込み、内容物を140℃に加熱して溶解した。その後、内容物を撹拌しながら酢酸マグネシウム四水和物0.3質量部および三酸化アンチモン0.05質量部を加え、140〜230℃でメタノールを留出しつつエステル交換反応を行った。次いで、リン酸トリメチルの5質量%エチレングリコール溶液を0.5質量部(リン酸トリメチルとして0.025質量部)とリン酸二水素ナトリウム2水和物の5質量%エチレングリコール溶液を0.3質量部(リン酸二水素ナトリウム2水和物として0.015質量部)添加した。 (1) Preparation of PET pellets: 194 parts by mass of dimethyl terephthalate and 124 parts by mass of ethylene glycol were charged into a transesterification reactor, and the contents were heated to 140 ° C. to dissolve them. Then, while stirring the contents, 0.3 parts by mass of magnesium acetate tetrahydrate and 0.05 parts by mass of antimony trioxide were added, and a transesterification reaction was carried out while distilling out methanol at 140 to 230 ° C. Next, 0.5 parts by mass of a 5% by mass ethylene glycol solution of trimethyl phosphate (0.025 parts by mass as trimethyl phosphate) and 0.3 parts by mass of a 5% by mass ethylene glycol solution of monosodium dihydrogen phosphate dihydrate. By mass (0.015 parts by mass as sodium dihydrogen phosphate dihydrate) was added.

トリメチルリン酸のエチレングリコール溶液を添加すると反応内容物の温度が低下する。そこで余剰のエチレングリコールを留出させながら反応内容物の温度が230℃に復帰するまで撹拌を継続した。このようにしてエステル交換反応装置内の反応内容物の温度が230℃に達した後、反応内容物を重合装置へ移行した。 The addition of an ethylene glycol solution of trimethylphosphate lowers the temperature of the reaction contents. Therefore, stirring was continued until the temperature of the reaction contents returned to 230 ° C. while distilling off excess ethylene glycol. After the temperature of the reaction contents in the transesterification reactor reached 230 ° C. in this way, the reaction contents were transferred to the polymerization apparatus.

移行後、反応系を230℃から275℃まで徐々に昇温するとともに、圧力を0.1kPaまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。最終温度、最終圧力に到達した後、2時間(重合を始めて3時間)反応させたところ、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.62のポリエチレンテレフタレートが示す値を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度0.62のポリエチレンテレフタレートのPETペレットを得た(原料−1)。 After the transition, the reaction system was gradually heated from 230 ° C. to 275 ° C. and the pressure was lowered to 0.1 kPa. The time required to reach the final temperature and the final pressure was 60 minutes. After reaching the final temperature and final pressure, the reaction was carried out for 2 hours (3 hours after the start of polymerization), and the stirring torque of the polymerization apparatus became a predetermined value (specific values differ depending on the specifications of the polymerization apparatus, but this polymerization apparatus The value indicated by polyethylene terephthalate having an intrinsic viscosity of 0.62 was set as a predetermined value). Therefore, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand shape, and immediately cut to obtain PET pellets of polyethylene terephthalate having an intrinsic viscosity of 0.62 (raw material-1).

(2−a)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を90質量部と平均粒径0.45μmの架橋ポリスチレン粒子の10質量%水スラリーを10質量部(架橋ポリスチレン粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2a)を得た。 (2-a) Preparation of particle-containing PET pellets: 90 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a vent-type twin-screw kneading extruder heated to 280 ° C. in the same direction. Supply 10 parts by mass (1 part by mass as cross-linked polystyrene particles) of 10% by mass water slurry of .45 μm cross-linked polystyrene particles, keep the vent holes at a reduced pressure of 1 kPa or less to remove water, and remove the cross-linked polystyrene particles by 1. Particle-containing pellets (raw material-2a) containing mass% and having an intrinsic viscosity of 0.62 were obtained.

(2−b)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を90質量部と平均粒径0.30μmの架橋ポリスチレン粒子の5質量%水スラリーを10質量部(架橋ポリスチレン粒子として0.5質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を0.5質量%含有する固有粘度0.62の粒子含有ペレット(原料−2b)を得た。 (2-b) Preparation of particle-containing PET pellets: 90 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a vent-type twin-screw kneading extruder heated to 280 ° C. in the same direction. 10 parts by mass (0.5 parts by mass as cross-linked polystyrene particles) of 5% by mass water slurry of cross-linked polystyrene particles of .30 μm was supplied, and the vent holes were maintained at a reduced pressure of 1 kPa or less to remove water, and the cross-linked polystyrene particles were removed. A particle-containing pellet (raw material-2b) having an intrinsic viscosity of 0.62 containing 0.5% by mass of

(2−c)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を90質量部と平均粒径0.15μmの架橋ポリスチレン粒子の5質量%水スラリーを10質量部(架橋ポリスチレン粒子として0.5質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を0.5質量%含有する固有粘度0.62の粒子含有ペレット(原料−2c)を得た。 (2-c) Preparation of particle-containing PET pellets: 90 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a vent-type twin-screw kneading extruder heated to 280 ° C. in the same direction. 10 parts by mass (0.5 parts by mass as cross-linked polystyrene particles) of 5% by mass water slurry of .15 μm cross-linked polystyrene particles was supplied, and the vent holes were maintained at a reduced pressure of 1 kPa or less to remove water, and the cross-linked polystyrene particles were removed. A particle-containing pellet (raw material-2c) having an intrinsic viscosity of 0.62 containing 0.5% by mass of

(2−d)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を90質量部と平均粒径0.17μmの架橋ポリスチレン粒子の5質量%水スラリーを10質量部(架橋ポリスチレン粒子として0.5質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を0.5質量%含有する固有粘度0.62の粒子含有ペレット(原料−2d)を得た。 (2-d) Preparation of particle-containing PET pellets: 90 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a vent-type twin-screw kneading extruder heated to 280 ° C. in the same direction. 10 parts by mass (0.5 parts by mass as cross-linked polystyrene particles) of 5% by mass water slurry of .17 μm cross-linked polystyrene particles was supplied, and the vent holes were maintained at a reduced pressure of 1 kPa or less to remove water, and the cross-linked polystyrene particles were removed. A particle-containing pellet (raw material-2d) having an intrinsic viscosity of 0.62 containing 0.5% by mass of

(2−e)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を94質量部と平均粒径0.060μmのコロイダルシリカ粒子の5質量%水スラリーに平均粒径0.05mmのガラスビーズを加え1,000rpmで2時間攪拌した後ろ過しガラスビーズを除去した水スラリーを6質量部(コロイダルシリカ粒子として0.3質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を0.3質量%含有する固有粘度0.62の粒子含有ペレット(原料−2e)を得た。 (2-e) Preparation of particle-containing PET pellets: The above-mentioned PET pellets (raw material-1) were added to 94 parts by mass and an average particle size of 0 in a vent-type twin-screw kneading extruder heated to 280 ° C. in the same direction. 6 parts by mass (colloidal silica particles) of a water slurry in which glass beads having an average particle size of 0.05 mm are added to a 5 mass% water slurry of 060 μm colloidal silica particles, stirred at 1,000 rpm for 2 hours, and then filtered to remove the glass beads. 0.3 parts by mass), the vent holes are maintained at a reduced pressure of 1 kPa or less to remove water, and 0.3 mass% of colloidal silica particles are contained in particle-containing pellets having an intrinsic viscosity of 0.62 (raw material-). 2e) was obtained.

(2−f)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を90質量部と平均粒径0.20μmのコロイダルシリカ粒子の5質量%水スラリーに平均粒径0.05mmのガラスビーズを加え3,000rpmで2時間攪拌した後ろ過しガラスビーズを除去した水スラリーを10質量部(コロイダルシリカ粒子として0.5質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を0.5質量%含有する固有粘度0.62の粒子含有ペレット(原料−2f)を得た。 (2-f) Preparation of particle-containing PET pellets: 90 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 in a vent-type twin-screw kneading extruder heated to 280 ° C. . 10 parts by mass (colloidal silica particles) of a water slurry in which glass beads having an average particle size of 0.05 mm are added to a 5 mass% water slurry of 20 μm colloidal silica particles, stirred at 3,000 rpm for 2 hours, and then filtered to remove the glass beads. 0.5 parts by mass), the vent holes are maintained at a reduced pressure of 1 kPa or less to remove water, and 0.5 mass% of colloidal silica particles are contained in particle-containing pellets having an intrinsic viscosity of 0.62 (raw material-). 2f) was obtained.

(2−g)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を90質量部と1次平均粒径0.02μmのアルミナ粒子の10質量%水スラリーに平均粒径0.5mmのジルコニアビーズを加え3,000rpmで2時間攪拌した後ろ過しジルコニアビーズを除去した水スラリーを10質量部(アルミナ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、アルミナ粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2g)を得た。 (2-g) Preparation of particle-containing PET pellets: 90 parts by mass of the above-mentioned PET pellets (raw material-1) and primary average particles were added to a vent-type twin-screw kneading extruder heated to 280 ° C. in the same direction. 10 parts by mass (alumina particles) of a 10% by mass water slurry of alumina particles having a diameter of 0.02 μm was added with zirconia beads having an average particle size of 0.5 mm, stirred at 3,000 rpm for 2 hours, and then filtered to remove the zirconia beads. 1 part by mass) was supplied, the vent holes were maintained at a reduced pressure of 1 kPa or less to remove water, and particle-containing pellets (raw material-2 g) containing 1% by mass of alumina particles and having an intrinsic viscosity of 0.62 were obtained. ..

(3)2成分組成物(PET/PEI)ペレットの作製:温度280℃に加熱されたニーディングパドル混練部を3箇所設けた同方向回転タイプのベント式2軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に、上記方法で得られたPETペレット(原料−1)とSABICイノベーティブプラスチック社製のPEI“Ultem”(登録商標)1010のペレットを供給して、剪断速度100sec−1、滞留時間1分にて溶融押出し、PEIを50質量%含有した2成分組成物ペレットを得た。なお、作製した2成分組成物ペレットのガラス転移温度は150℃であった(原料−3)。 (3) Preparation of two-component composition (PET / PEI) pellets: A unidirectional rotation type vent type twin-screw kneading extruder (manufactured by Japan Steel Works, Ltd.) provided with three kneading paddle kneading portions heated to a temperature of 280 ° C. , Screw diameter 30 mm, screw length / screw diameter = 45.5), and pellets of PET pellets (raw material-1) obtained by the above method and PEI "Ultem" (registered trademark) 1010 manufactured by SABIC Innovative Plastics Co., Ltd. It was fed and melt-extruded at a shear rate of 100 sec -1 and a residence time of 1 minute to obtain a two-component composition pellet containing 50% by mass of PEI. The glass transition temperature of the prepared two-component composition pellet was 150 ° C. (raw material-3).

(実施例1)
押出機E1、E2の2台を用い、280℃に加熱された押出機E1には、A層原料として、PETペレット(原料−1)を29質量部、2成分組成物ペレット(原料−3)4質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2c)67質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、PETペレット(原料−1)28質量部、2成分組成物ペレット(原料−3)4質量部、平均粒径0.20μmのコロイダルシリカ粒子含有ペレット(原料−2e)64質量部、平均粒径0.30μmの架橋ポリスチレン粒子含有ペレット(原料−2a)4質量部、を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=8|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Example 1)
In the extruder E1 heated to 280 ° C. using two extruders E1 and E2, 29 parts by mass of PET pellets (raw material-1) were used as the raw material for the A layer, and the two-component composition pellets (raw material-3). 67 parts by mass of colloidal silica particle-containing pellets (raw material-2c) having an average particle size of 0.06 μm and 4 parts by mass were dried under reduced pressure at 180 ° C. for 3 hours before being supplied. Similarly, in the extruder E2 heated to 280 ° C., 28 parts by mass of PET pellets (raw material-1) and 4 parts by mass of two-component composition pellets (raw material-3) were used as the B layer raw material, and the average particle size was 0.20 μm. 64 parts by mass of colloidal silica particle-containing pellets (raw material-2e) and 4 parts by mass of crosslinked polystyrene particle-containing pellets (raw material-2a) having an average particle size of 0.30 μm were blended and dried under reduced pressure at 180 ° C. for 3 hours before being supplied. .. In order to stack two layers of these, the stacking thickness ratio (A layer | B layer) = 8 | 1 is set in the T die, and the layers are merged so that the B layer side is on the cast drum surface side, and the cast drum has a surface temperature of 25 ° C. Adhesion cooling and solidification were performed while applying an electric charge to prepare a laminated unstretched film.

この積層未延伸フィルムを同時二軸延伸機にて100℃で長手方向(MD方向)に3.3倍延伸(MD延伸1)、幅方向(TD方向)に3.5倍延伸し(TD延伸1)、さらに続いて200℃の温度の加熱ゾーンで長手方向に1.1倍(MD延伸2)、幅方向に1.5倍同時に延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで熱処理温度を段階的に上げながら、1段目を温度212℃で2秒間、2段目を温度222℃で5秒間、さらに3段目224℃で3秒間熱処理を行い、150℃の温度で1.7%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの製膜安定性は良好であり、物性評価したところ、表4に示すように、磁気テープとして使用した際に優れた特性を有していた。 This laminated unstretched film was stretched 3.3 times in the longitudinal direction (MD direction) (MD stretching 1) and 3.5 times in the width direction (TD direction) at 100 ° C. using a simultaneous biaxial stretching machine (TD stretching). 1), followed by simultaneous stretching 1.1 times in the longitudinal direction (MD stretching 2) and 1.5 times in the width direction in a heating zone at a temperature of 200 ° C. (TD stretching 2). Subsequently, while gradually raising the heat treatment temperature in the heat treatment zone in the tenter, the first stage is heat-treated at a temperature of 212 ° C. for 2 seconds, the second stage is heat-treated at a temperature of 222 ° C. for 5 seconds, and the third stage is heat-treated at 224 ° C. for 3 seconds. Was performed, and a relaxation treatment was performed in the width direction of 1.7% at a temperature of 150 ° C. Then, after cooling uniformly to 25 ° C., the film edge was removed and the film was wound on a core to obtain a biaxially stretched polyester film having a thickness of 4.5 μm. The film-forming stability of the obtained biaxially oriented polyester film was good, and when the physical properties were evaluated, as shown in Table 4, it had excellent properties when used as a magnetic tape.

以下、表に各実施例、比較例の原料組成、製膜条件、二軸配向ポリエステルフィルムの物性、磁気テープの特性等を示す。 Below, the table shows the raw material composition of each Example and Comparative Example, the film forming conditions, the physical properties of the biaxially oriented polyester film, the characteristics of the magnetic tape, and the like.

(実施例2〜4)
表に示す粒子処方となるように、B層原料および延伸条件を変更して厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの製膜安定性は良好であり、物性評価したところ、表に示すように、磁気テープとして使用した際に優れた特性を有していた。
(Examples 2 to 4)
A biaxially stretched polyester film having a thickness of 4.5 μm was obtained by changing the B layer raw material and stretching conditions so as to obtain the particle formulation shown in the table. The film-forming stability of the obtained biaxially oriented polyester film was good, and when the physical properties were evaluated, as shown in the table, it had excellent properties when used as a magnetic tape.

(実施例5)
押出機E1、E2の2台を用い、280℃に加熱された押出機E1には、A層原料として、PETペレット(原料−1)を29質量部、2成分組成物ペレット(原料−3)4質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2c)67質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、PETペレット(原料−1)20質量部、2成分組成物ペレット(原料−3)12質量部、平均粒径0.20μmのコロイダルシリカ粒子含有ペレット(原料−2e)64質量部、平均粒径0.30μmの架橋ポリスチレン粒子含有ペレット(原料−2a)4質量部、を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=8|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Example 5)
In the extruder E1 heated to 280 ° C. using two extruders E1 and E2, 29 parts by mass of PET pellets (raw material-1) were used as the raw material for the A layer, and the two-component composition pellets (raw material-3). 67 parts by mass of colloidal silica particle-containing pellets (raw material-2c) having an average particle size of 0.06 μm and 4 parts by mass were dried under reduced pressure at 180 ° C. for 3 hours before being supplied. The extruder E2, which was also heated to 280 ° C., had 20 parts by mass of PET pellets (raw material-1) and 12 parts by mass of two-component composition pellets (raw material-3) as raw materials for the B layer, and had an average particle size of 0.20 μm. 64 parts by mass of colloidal silica particle-containing pellets (raw material-2e) and 4 parts by mass of crosslinked polystyrene particle-containing pellets (raw material-2a) having an average particle size of 0.30 μm were blended and dried under reduced pressure at 180 ° C. for 3 hours before being supplied. .. In order to stack two layers of these, the stacking thickness ratio (A layer | B layer) = 8 | 1 is set in the T die, and the layers are merged so that the B layer side is on the cast drum surface side, and the cast drum has a surface temperature of 25 ° C. Adhesion cooling and solidification were performed while applying an electric charge to prepare a laminated unstretched film.

この積層未延伸フィルムを同時二軸延伸機にて100℃で長手方向(MD方向)に3.1倍延伸(MD延伸1)、幅方向(TD方向)に3.5倍延伸し(TD延伸1)、さらに続いて200℃の温度の加熱ゾーンで長手方向に1.1倍(MD延伸2)、幅方向に1.6倍同時に延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで熱処理温度を段階的に上げながら、1段目を温度212℃で2秒間、2段目を温度222℃で5秒間、さらに3段目224℃で3秒間熱処理を行い、150℃の温度で1.7%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの製膜安定性は良好であり、物性評価したところ、表4に示すように、磁気テープとして使用した際に優れた特性を有していた。 This laminated unstretched film was stretched 3.1 times in the longitudinal direction (MD direction) (MD stretching 1) and 3.5 times in the width direction (TD direction) at 100 ° C. using a simultaneous biaxial stretching machine (TD stretching). 1), followed by simultaneous stretching 1.1 times in the longitudinal direction (MD stretching 2) and 1.6 times in the width direction in a heating zone at a temperature of 200 ° C. (TD stretching 2). Subsequently, while gradually raising the heat treatment temperature in the heat treatment zone in the tenter, the first stage is heat-treated at a temperature of 212 ° C. for 2 seconds, the second stage is heat-treated at a temperature of 222 ° C. for 5 seconds, and the third stage is heat-treated at 224 ° C. for 3 seconds. Was performed, and a relaxation treatment was performed in the width direction of 1.7% at a temperature of 150 ° C. Then, after cooling uniformly to 25 ° C., the film edge was removed and the film was wound on a core to obtain a biaxially stretched polyester film having a thickness of 4.5 μm. The film-forming stability of the obtained biaxially oriented polyester film was good, and when the physical properties were evaluated, as shown in Table 4, it had excellent properties when used as a magnetic tape.

(比較例1)
表に示すとおり、延伸条件を変更して厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 1)
As shown in the table, the stretching conditions were changed to obtain a biaxially stretched polyester film having a thickness of 4.5 μm.

(比較例2)
表に示す粒子処方となる原料を用いて、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=4|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Comparative Example 2)
Using the raw materials used as the particle formulations shown in the table, they were dried under reduced pressure at 180 ° C. for 3 hours before being supplied. In order to stack two layers of these, the stacking thickness ratio (A layer | B layer) = 4 | 1 is set in the T die, and the layers are merged so that the B layer side is on the cast drum surface side, and the cast drum has a surface temperature of 25 ° C. Adhesion cooling and solidification were performed while applying an electric charge to prepare a laminated unstretched film.

この積層未延伸フィルムをロール式延伸機にて90℃で3段階で長手方向に3.5倍延伸した。この延伸は2組ずつのロールの周速差を利用し1段目に2.5倍、2段目1.34倍、3段目1.05倍で行った。 This laminated unstretched film was stretched 3.5 times in the longitudinal direction in three steps at 90 ° C. using a roll-type stretcher. This stretching was performed at 2.5 times in the first stage, 1.34 times in the second stage, and 1.05 times in the third stage using the difference in peripheral speed between the two sets of rolls.

得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の95℃の温度の予熱ゾーンに導き、引き続き連続的に90℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.5倍延伸し(TD延伸1)、さらに続いて195℃の温度の加熱ゾーンで幅方向に1.4倍延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで190℃の温度で10秒間の熱処理を施し、さらに150℃の温度で0.5%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。 While grasping both ends of the obtained uniaxially stretched film with clips, the film is guided to a preheating zone having a temperature of 95 ° C. in the tenter, and continuously in a heating zone having a temperature of 90 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. Was stretched 3.5 times (TD stretch 1), and subsequently stretched 1.4 times in the width direction in a heating zone at a temperature of 195 ° C. (TD stretch 2). Subsequently, the heat treatment zone in the tenter was heat-treated at a temperature of 190 ° C. for 10 seconds, and further relaxed at a temperature of 150 ° C. in the 0.5% width direction. Then, after cooling uniformly to 25 ° C., the film edge was removed and the film was wound on a core to obtain a biaxially stretched polyester film having a thickness of 4.5 μm.

(比較例3)
表に示す粒子処方となるように原料および延伸条件、熱固定温度を変更して、厚さ4.4μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 3)
A biaxially stretched polyester film having a thickness of 4.4 μm was obtained by changing the raw material, stretching conditions, and heat fixing temperature so as to obtain the particle formulations shown in the table.

(比較例4)
表に示すとおり、熱固定温度を変更した以外は実施例2と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 4)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 2 except that the heat fixing temperature was changed.

(比較例5)
表に示す通り、熱固定温度を変更した以外は実施例1と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 5)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 1 except that the heat fixing temperature was changed.

(比較例6)
表に示す通り、延伸条件、熱固定温度を変更した以外は実施例4と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 6)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 4 except that the stretching conditions and the heat fixing temperature were changed.

Figure 2021055077
Figure 2021055077

Figure 2021055077
Figure 2021055077

Figure 2021055077
Figure 2021055077

Figure 2021055077
Figure 2021055077

1:レーザー発信器
2:受光部
3:荷重検出器
4:荷重
5〜8:フリーロール
9:磁気テープ
10:レーザー光
1: Laser transmitter 2: Receiver 3: Load detector 4: Load 5-8: Free roll 9: Magnetic tape 10: Laser light

Claims (7)

幅方向の湿度膨張係数が4.5〜6.5ppm/%RHであり、幅方向の温度膨張係数が−3.0〜7.0ppm/℃であり、少なくとも一方の最外層表面において、高さ60nm以上の突起個数が0〜200個/mmである二軸配向ポリエステルフィルム。 The coefficient of thermal expansion in the width direction is 4.5 to 6.5 ppm /% RH, the coefficient of thermal expansion in the width direction is -3.0 to 7.0 ppm / ° C, and the height is at least one of the outermost layer surfaces. A biaxially oriented polyester film having a number of protrusions of 60 nm or more of 0 to 200 / mm 2. 幅方向の熱収縮率が1.0%以下である、請求項1に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1, wherein the heat shrinkage rate in the width direction is 1.0% or less. 幅方向のヤング率が7.0〜12.0GPaである、請求項1または2に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1 or 2, wherein the Young's modulus in the width direction is 7.0 to 12.0 GPa. 微少融解ピーク温度(T−meta)が210〜240℃である、請求項1〜3のいずれかに記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to any one of claims 1 to 3, wherein the minute melting peak temperature (T-meta) is 210 to 240 ° C. 少なくとも一方の表面粗さ(Sa1)が3.0〜7.0nmである、請求項1〜4のいずれかに記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to any one of claims 1 to 4, wherein at least one surface roughness (Sa1) is 3.0 to 7.0 nm. Sa1を構成する面とは反対側の最外層表面の表面粗さ(Sa2)が0.5〜5.0nmである、請求項5に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 5, wherein the surface roughness (Sa2) of the outermost layer surface on the side opposite to the surface constituting Sa1 is 0.5 to 5.0 nm. 塗布型デジタル記録方式の磁気記録媒体用ベースフィルムに用いられる、請求項1〜6のいずれかに記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to any one of claims 1 to 6, which is used as a base film for a coating type digital recording type magnetic recording medium.
JP2020159795A 2019-09-30 2020-09-24 Biaxially oriented polyester film Pending JP2021055077A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178650 2019-09-30
JP2019178650 2019-09-30

Publications (1)

Publication Number Publication Date
JP2021055077A true JP2021055077A (en) 2021-04-08

Family

ID=75269943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020159795A Pending JP2021055077A (en) 2019-09-30 2020-09-24 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JP2021055077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100871A1 (en) * 2021-12-02 2023-06-08 富士フイルム株式会社 Magnetic tape container
WO2023100870A1 (en) * 2021-12-02 2023-06-08 富士フイルム株式会社 Magnetic tape housing body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100871A1 (en) * 2021-12-02 2023-06-08 富士フイルム株式会社 Magnetic tape container
WO2023100870A1 (en) * 2021-12-02 2023-06-08 富士フイルム株式会社 Magnetic tape housing body

Similar Documents

Publication Publication Date Title
JP5712614B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2007226943A (en) Base for magnetic recording medium and magnetic recording medium thereof
JP2017200761A (en) Biaxially oriented laminate polyester film and magnetic recording medium
JP6260199B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6926617B2 (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP2021055077A (en) Biaxially oriented polyester film
JP4893190B2 (en) Biaxially oriented polyester film
JP5915102B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6819082B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6701666B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP5136271B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6707861B2 (en) Biaxially oriented polyester film
JP2009221277A (en) Biaxially oriented polyester film and magnetic recording medium
JP6866703B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2020164807A (en) Biaxially oriented polyester film
JP2011183714A (en) Biaxially oriented polyester film
JP5098719B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP7456203B2 (en) Biaxially oriented polyester film
JP2011068807A (en) Biaxially oriented polyester film
JP4232378B2 (en) Biaxially oriented polyester film and method for producing the same
JP5521627B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2011184605A (en) Biaxially oriented film
JP2023127054A (en) Biaxially oriented polyester film
JP2022053506A (en) Biaxially oriented polyester film
JP5589718B2 (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507