JP2021021933A - 光学装置 - Google Patents

光学装置 Download PDF

Info

Publication number
JP2021021933A
JP2021021933A JP2020082546A JP2020082546A JP2021021933A JP 2021021933 A JP2021021933 A JP 2021021933A JP 2020082546 A JP2020082546 A JP 2020082546A JP 2020082546 A JP2020082546 A JP 2020082546A JP 2021021933 A JP2021021933 A JP 2021021933A
Authority
JP
Japan
Prior art keywords
light
dispersion
incident
optical device
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020082546A
Other languages
English (en)
Inventor
健史 太田
Takefumi Ota
健史 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US16/918,821 priority Critical patent/US20210033385A1/en
Priority to EP20188443.4A priority patent/EP3771883A3/en
Priority to CN202010752519.0A priority patent/CN112305774A/zh
Publication of JP2021021933A publication Critical patent/JP2021021933A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】小型化およびコストの点で有利な光学装置を提供する。【解決手段】光の波長分散を行う光学装置であって、入射した光を透過して波長毎に光路が異なるように分散させ、第1分散光を生成する分散素子と、第1分散光を順次反射する4つの反射面を含む反射部と、を有し、4つの反射面で順次反射された第1分散光を分散素子に入射させて分散素子を透過させる。【選択図】図1

Description

本発明は、光学装置に関する。
短パルス光の光強度を増幅する際に、チャープパルス増幅という方法が用いられる。チャープパルス増幅ではパルス光に波長分散を与えて時間幅を広げた後、パルス光を増幅し、先に与えた波長分散と逆の波長分散を与えることでパルス光を時間的に圧縮する。
また、光干渉断層法(光コヒーレンストモグラフィ、OCT(Optical Coherence Tomography))では、広帯域光を用いた干渉計に基づいて信号を得ている。その際、測定対象に照射され返って来た後方散乱光と、干渉させる参照光との波長分散をほぼ一致させることで、高い分解能を得ることが出来る。このように、短パルス光や広帯域光を用いる分野では、その波長分散量を制御することが必要である。
従来、波長分散の制御方法として、回折格子を用いる方法がある。一般的には二つの回折格子を平行に配置した構成が取られる。また、特許文献1のような構成も開示されている。特許文献1では、水平方向のルーフミラーと垂直方向のルーフミラーを配置している。
特開2007−67123号公報
しかし、従来の波長分散制御装置では、反射型回折格子を用いており、コーナーミラーで折り返すため、入射光と回折光とが横方向でずれてしまい、回折格子の横幅が大きくなるという問題がある。
そこで、本発明は、小型化およびコストの点で有利な光学装置を提供することを目的とする。
上記課題を解決するために、本発明は、光の波長分散を行う光学装置であって、入射した光を透過して波長毎に光路が異なるように分散させ、第1分散光を生成する分散素子と、前記第1分散光を順次反射する4つの反射面を含む反射部と、を有し、前記4つの反射面で順次反射された前記第1分散光を前記分散素子に入射させて前記分散素子を透過させることを特徴とする。
本発明によれば、例えば、小型化およびコストの点で有利な光学装置を提供することができる。
第1実施形態および実施例1の波長分散装置を説明する図である。 第1実施形態に係る分散素子の表面における入射光と分散光の入射位置を説明する図である。 第1実施形態に基づく実施例2の波長分散装置の概略図である。 第1実施形態に基づく実施例4の波長分散装置の概略図である。 第1実施形態に基づく実施例5の波長分散装置の概略図である。 第1実施形態に基づく実施例5の他例の波長分散装置の概略図である。 第2実施形態に係る分散素子の表面における入射光と分散光の入射位置を説明する図である。 第3実施形態および実施例7の波長分散装置を説明する図である。 第6実施形態に基づいた実施例8の加工装置の概略図である。 第7実施形態に係る光干渉断層計の概略図である。 第8実施形態に係る波長分散測定装置の概略図である。 異常分散および正常分散を与える原理について説明する模式図である。 第5実施形態に係る波長分散測定装置の概略図である。
以下、本発明を実施するための形態について図面などを参照して説明する。
<第1実施形態>
図1は、第1実施形態および実施例1の波長分散装置(光学装置)100を説明する図である。波長分散装置100は、分散素子102、導光光学系104、折り返しミラー106、および、エッジミラー109を備える。
不図示の光源からの入射光101は、分散素子102に入射される。入射された入射光101は分散素子102により、波長に応じて空間的に分散される。本実施形態では分散素子102として透過型の回折格子1021を用いる。ただし、透過型の回折格子に限らず、プリズムやグリズムなどを用いても良い。分散素子102は、入射した光を透過して波長毎に光路が異なるように分散させ、分散光103(第1分散光)を生成する。分散光103は、導光光学系104(反射部)を伝搬して、分散素子102に照射される。導光光学系104は、分散光103を順次反射する複数の反射面を含む。本実施形態では、複数の反射面として、4枚ミラー、第1ミラー1041、第2ミラー1042、第3ミラー1043、および、第4ミラー1044を用いた。次に、導光光学系104を伝搬した分散光103は、分散素子102を透過後に平行光105(第2分散光)となるように分散素子102に入射され、分散素子102を透過する。
図2は、第1実施形態に係る分散素子102の表面における入射光101と分散光103の入射位置を説明する図である。なお、ここで、分散素子102の表面において、空間的に分散する方向を横方向(ここではX方向)、それに対して垂直な方向(ここではZ方向)を縦方向とする。図2(A)は、Z方向から分散素子102を見た図である。図2(B)は、横方向及び縦方向に直交する方向であるY方向から分散素子102をみた図である。図2(B)において、R1は、分散素子102の表面において入射光101が入射される点を示している。また、R6は、分散素子102の表面において分散光103が入射される点を示している。図2に示すように、透過型の分散素子102を用いることにより、分散光103は、分散素子102の表面において、入射光101と横方向には少なくとも一部が重なりつつ、縦方向には重ならないように分散素子102に入射される。なお、ここでは、分散素子102として透過型の回折格子1021を用いているため、分散素子102の表面における入射光101と分散光103の入射位置について言及した。しかし、分散素子102としてグリズムを用いる場合は、上述の説明における「表面」を「内部」と読み替えるものとする。
分散素子102を透過した分散光103は、平行光105となり、該平行光105は、折り返しミラー106により反射され、折り返し光107となって伝搬する。折り返し光107は横方向には平行光105と角度を変えずに反射されて伝搬する。縦方向にはわずかに角度を変えて反射される。そして、分散素子102に照射され、導光光学系104を伝搬し、再度分散素子102に入射され、分散光108として伝搬する。分散光108は、折り返しミラー106が縦方向に角度を変えて折り返したことによって、入射光とは縦方向にわずかに異なる位置で分散素子102から伝搬してくる。エッジミラー109を用いて、分散光108を受け、射出光110を出力する。
本実施形態により、分散素子の横方向における幅をこれまでよりも狭くすることが可能となる。これにより、波長分散装置全体のサイズを小さくすることが可能となる。また、分散素子サイズを小さくすることで、低コスト化が可能となる。
(実施例1)
図1を用いて、実施例1を説明する。本実施例では分散素子102として透過型の回折格子1021を用いる。入射光101は中心波長1030nmで、スペクトル幅が10nmのパルス光である。分散パラメータDがおよそ−43[ps/nm/km]である光ファイバを2km伝搬することでおよそ1nsecに広がっている。
分散素子102として用いる回折格子1021は1740本/mmの格子密度である。横方向の幅は180mm、縦方向の幅は60mmのものを用いた。入射光101の入射角度はおよそ63.5度である。また、回折格子1021の溝構造に平行かつ、回折格子の平面に対し0.25度下向きに入射する。およそ1nsecに広がっているパルス光の波長分散を補償するために、二つの平行の回折格子からなる回折格子対を用いた場合、それら二つの回折格子の平行での距離は317mm程度である。分散光103を受光する際の中心波長の光路長はおよそ745mmである。また、回折格子の横方向の幅は145mm必要である。そこで、導光光学系104として、4枚のミラー、第1ミラー1041、第2ミラー1042、第3ミラー1043、および第4ミラー1044を用いた。
分散光103は第1ミラー1041によって、光の伝搬する方向に対してほぼ直角となる方向に反射する。ここでは、分散される方向(横方向)とも直角となる方向に反射されるように配置した。第1ミラー1041によって反射された分散光103は、第2ミラー1042により反射され、第3ミラー1043へ導光される。第3ミラー1043で反射された光は第4ミラー1044により反射され、回折格子1021へ導光され、回折格子1021へ入射する。この時、回折格子1021へ導光される分散光103は、二つの平行の回折格子からなる回折格子対を用いた場合の二つ目の回折格子へ照射される条件と等しい条件となるように導光される。また、回折格子1021の表面において空間的に分散する方向を横方向、それと直交する方向を縦方向とした場合、回折格子1021の縦方向には全反射しない条件下で角度を有していても良い。
本実施例において、入射光101と分散光103は、縦方向で10mmずれるように、回折格子1021へ入射される。分散光103が回折格子1021で分散されてから第1ミラー1041〜第4ミラー1044を伝搬して、回折格子1021に入射される光路長はおよそ745mmである。光路長は第1ミラー1041〜第4ミラー1044のうち少なくとも一つ以上を移動させることで調整できる。よって、導光光学系104は、例えば、第1ミラー1041〜第4ミラー1044の反射面を駆動する駆動機構を備えていることが好ましい。駆動機構は、第1ミラー1041〜第4ミラー1044のうち少なくとも一つ以上を移動することが可能であればよく、それぞれのミラーに対して個別に備えられていても良いし、複数のミラーに対して1つの駆動機構が備えられていても良い。
回折格子1021に入射された分散光103は、回折格子1021を透過して平行光105として射出され、折り返しミラー106により反射される。この時、横方向については角度を変えずに反射する。縦方向については、入射光が0.25度だけ下向きに入射されているため、ミラー面の垂直面に対し、0.25度だけ下向き入射され、0.25度だけ下向きに反射する。
反射された光は、折り返しミラー106に向かってきた光路のわずかに下を逆方向に伝搬して行き、回折格子1021をさらに二回伝搬する。そして、再び入射光101と同等のスポット径となる。折り返しミラー106により、入射と反射で合わせて0.5度だけ下向きに反射されているため、回折格子1021では、入射光に対しておよそ7mm下方を伝搬する。さらに、回折格子1021から50mm離れた位置に設置したエッジミラー109によって、入射光を遮らずに光が反射され、射出光110を得る。
(実施例2)
実施例1では折り返しミラー106を一枚のミラーとしたが、折り返しミラー106として直角に配置された二枚のミラーあるいは直角プリズムを配置し、高さを変えて折り返すとより好ましい。図3は、第1実施形態に基づく実施例2の波長分散装置1001の概略図である。実施例2に係る波長分散装置1001では、折り返しミラーとして直角プリズム1061を用いる。折り返しミラーとして直角プリズム1061を用いると、直角プリズム1061に照射される光と、折り返す光の光軸を平行とすることが可能となる。また、エッジミラー109を用いて、射出光110を出力したが、ハーフミラーやサーキュレータを用いても良い。サーキュレータの例として、偏波ビームスプリッタと1/4波長板から構成したものが上げられる。これにより、エッジミラーが入射光と重なることを配慮する必要が無くなり、調整が簡易化される。
(実施例3)
上述の実施例では導光光学系104に4枚のミラー(第1ミラー1041〜第4ミラー1044)を用いたが、3枚のミラーで構成し、分散素子102への分散光103を入射させる角度を調整して照射しても良い。また、2枚のミラーにより構成することも可能である。これにより、反射回数を減らし、ミラー枚数の低減によるコスト削減と光損失の低減が可能となる。
(実施例4)
図4は、第1実施形態に基づく実施例4の波長分散装置200の概略図である。上述の実施例では、分散光103を第1ミラー1041によって、光の伝搬する方向と分散される方向(横方向)の両方ともに対して直角となる方向に反射されるように配置した。しかし、本実施例の波長分散装置200では、図4に示すように光が分散される面と同一面上で折り返しても良い。このことで、高さを抑えた分散制御装置を提供することが可能となる。
(実施例5)
本実施例では、折り返しミラー106を取り除いた構成について説明する。図5は、第1実施形態に基づく実施例5の波長分散装置1002の概略図である。波長分散装置1002は、実施例1に係る波長分散装置100から折り返しミラー106を取り除いた構成となっている。図6は、第1実施形態に基づく実施例5の他例の波長分散装置2001の概略図である。波長分散装置2001は、実施例4に係る波長分散装置200から折り返しミラー106を取り除いた構成となっている。本実施形態により、空間分散された光が平行に伝搬する光学系をレンズ無しで構成することが可能となる。
本実施形態によれば、折り返しミラー106を構成する必要がないため、低コスト化が可能となる。
<第2実施形態>
次に、図7に基づいて第2実施形態の波長分散装置について説明する。図7は、第2実施形態に係る分散素子102の表面における入射光101と分散光103の入射位置を説明する図である。図7(A)は、X方向から分散素子102をみた図である。図7(B)は、Y方向から分散素子102を見た図である。第1実施形態では、入射光101と分散光103では伝搬光軸は平行であり、分散素子102上の異なる高さを伝搬した。図7に示すように、第2実施形態では、分散素子102の表面において、入射光101と分散光103は少なくとも一部が重なり、分散方向と光伝搬方向に対して垂直な方向で異なる角度で分散素子102に入射される。言い換えると、分散光103は、分散素子102の表面において、入射光101と横方向、および、縦方向で少なくとも一部が重なるように分散素子102に入射される。
本実施形態により、分散素子102の縦方向の幅も狭くすることが可能となる。このことで、さらに薄型の波長分散装置を実現することが可能となる。また、分散素子サイズを小さくすることで、低コスト化が可能となる。
(実施例6)
本実施例では、実施例1と同一の素子を用いた。ただし、光軸や素子の配置が異なるため、以下に説明する。本実施例に係る波長分散装置の配置は、図4に示す波長分散装置200の配置とほぼ同じである。分散素子102である回折格子1021は、その面を水平に対して垂直になるように配置されている。入射光101は水平に対して0.25度上向きの角度で回折格子1021に入射する。回折格子の溝構造に対してはおよそ63.5度で入射される。分散光103は、導光光学系104により、周回して、再度回折格子1021に照射される。導光光学系104は4枚のミラー、第1ミラー1041、第2ミラー1042、第3ミラー1043、および第4ミラー1044を用いた。本実施例では、分散光103は、実施例1とは異なり、回折格子1021の縦方向ではなく、横方向のうち一方を回り込むように伝搬するように、第1ミラー1041〜第4ミラー1044を配置した。第4ミラー1044は、分散素子102の表面において分散光103と入射光101との一部が横方向、および、縦方向で重なるように、分散光103を反射するよう調整した。この時、分散光103は水平に対して0.25度下向きに角度で回折格子1021に照射されるように調整した。
実施例1と同様に、回折格子1021に照射された分散光103は平行光105として射出され、折り返しミラー106により反射される。この時、横方向については角度を変えずに反射し、縦方向については0.25度だけ下向きに反射する。反射された光は、折り返しミラー106に向かってきた光路のわずかに下を伝搬して返って行き、回折格子1021をさらに二回伝搬する。そして、再び入射光101と同等のスポット径となる。折り返しミラー106により、入射光に対し0.5度だけ下向きに反射されているため、回折格子1021では、入射光に対しておよそ7mm下方を伝搬する。さらに、回折格子1021から50mm離れた位置に設置したエッジミラー109によって、入射光を遮らずに光が反射され、射出光110を得る。
本実施例により、第1実施形態に比べて縦方向の回折格子幅を狭くすることが可能となる。なお、本実施例では入射光101と分散光103とで水平面に対して対称な角度で回折格子1021に入射されているが、対称な角度に限らない。対称な角度に限らないことで、組立の容易性が向上する。
<第3実施形態>
図8は、第3実施形態および実施例7の波長分散装置300を説明する図である。図8(A)は、第3実施形態および実施例7に係る波長分散装置300の概略図である。図8(A)では、中心波長の光路を破線で示す。本実施形態では、さらに導光光学系104の複数の反射面全体を回転させる回転機構301をさらに設ける。本実施形態では、回転機構301は、例えば、駆動可能なステージである。第1ミラー1041〜第4ミラー1044が配置されたステージを、回転軸を中心に回転させることにより、分散光103の光路長を変更することができる。ここで分散素子102は一例として回折格子1021とする。
反射素子4枚、ここでは、第1ミラー1041〜第4ミラー1044を用いて方形の導光光学系が構成されている場合を例として、分散光103の光路長を変更する原理を説明する。図8(B)は、分散光103の光路長を変更する原理を説明する図である。分散素子102に入射光が入射される点をR1とする。回折した分散光103が1枚目から4枚目までの反射面(第1ミラー1041、第2ミラー1042、第3ミラー1043、および、第4ミラー1044)で反射される点をそれぞれR2、R3、R4、R5とする。そして、分散光103が分散素子102に入射される点をR6とする。4枚の反射素子の反射面を延長した交点、すなわち、方形302の頂点をそれぞれP1、P2、P3、P4とする。方形を全体的に回転させる角度をθmとする。回折光の角度をθrとする。方形を正方形とし、一辺の長さをaとする。xyの座標軸を置き、入射光と回折格子の角度をθgとする。すなわち、回折格子への入射角度は90−θg°となる。
以上から、各点の座標は以下の通りとなる。
Figure 2021021933
Figure 2021021933
Figure 2021021933
Figure 2021021933
Figure 2021021933
Figure 2021021933
Figure 2021021933
Figure 2021021933
Figure 2021021933
Figure 2021021933
したがって、R1からR6までの長さは、角度θmに応じて変化する。
R1からR6までの長さは、分散光103の光路長に相当する。即ち、導光光学系104全体を回転機構301によって回転させることにより、分散光103の光路長を変更することができる。
本実施形態により、反射素子間の距離を変えるのではなく、回転により分散を調整することが可能となる。このことで、導光光学系が分割されることが無くなり、光軸のずれなどが無い安定した調整が可能となる。
なお、導光光学系104の複数の反射面のうち、少なくとも2面を回転軸を中心に回転させることにより、分散光103の光路長を変更することができる。例えば、3つの反射面のうち1面を固定として、他の2面を回転軸を中心に回転させてもよい。このような構成の場合、例えば、ステージなどを小型化することが可能となり、装置全体を小型化することができる。また、反射面を減らすことで、反射損失を低減することができる。
(実施例7)
回転機構301による分散光103の光路長を変化の具体例について説明する。図8(C)は、回転機構301による分散光103の光路長の変化の一例を示す図である。回転機構301によって、導光光学系104全体を回転させることにより、分散光103の光路長は図8(C)のように変化する。ここで、正方形の一辺の長さaを265mmとした。この時、角度θmが0度のとき、光路長はおよそ750mmとなる。これは、実施例1の構成を用いた場合、回折格子の平行での距離は317mm程度であり、光路長は745mmと同程度となる。角度θmをー5度から+5度まで変化させると、光路長は612mm〜880mmまで変化させることが可能となる。
<第4実施形態>
本実施形態では、光が平行光である箇所、すなわち、入射光101あるいは平行光105の伝搬する部分に、高次の分散成分を補償する素子を挿入する。高次の分散成分を補償する素子としては、光を透過し、材料分散を有する媒質や、それらを組み合わせた素子、プリズム分散補償素子などである。または、チャープミラーのような、反射にすることで波長分散量を制御することが可能な素子である。本実施形態によれば、より詳細なパルス幅(パルス時間幅)の制御、チャープの制御が可能となる。
<第5実施形態>
本実施形態では、分散光103が伝搬する光路中に、レンズを配置することにより、正常分散を与える波長分散装置を実現する。回折格子1021では、異常分散を付与するのみである。しかし、レンズや集光ミラーを用いることで、回折格子対でも正常分散を付与することが可能となる。よって、本実施形態によれば、正常分散を与える波長分散装置を提供することが可能となる。
図12は、異常分散および正常分散を与える原理について説明する模式図である。まず異常分散を与える原理について図12(A)を用いて説明する。入射光1201は、第1回折格子1204に入射される。ここで、第1回折格子1204による回折角度について、中心波長λcの光1202の回折角度をθcとし、ある波長λの光1203の回折角度をθとする。第1回折格子1204により回折された光は、第1回折格子1204と平行に配置された第2回折格子1205へ伝搬される。その場合、第2回折格子1205で回折された光の位相差φ(λ)は、以下の式(数式11)のように表される。
Figure 2021021933
次に正常分散を与える原理について図12(B)を用いて説明する。図12(A)とは異なり、第1回折格子1204と第2回折格子1205を平行ではなく対称に配置する。ここで、第1回折格子1204および第2回折格子1205からそれぞれL1、L2の位置に焦点距離fnの第1レンズ1206と第2レンズ1207を配置した場合、位相差φ(λ)は以下の式(数式12)で表される。
Figure 2021021933
ここでθgは中心波長の伝搬光軸に対する回折格子の角度である。
数式11と数式12を比較して分かるように、回折格子のレンズからの距離L1、L2を調整することで、異常分散と正常分散の関係を反転させることができる。
図13は、第5実施形態に係る波長分散測定装置1300の概略図である。本実施形態では、図13に示すような構成とすることで、回折格子の使用枚数を削減し、小型化した正常分散を与える波長分散装置を提供することが可能となる。波長分散測定装置1300には、一例として、第1実施形態に基づく実施例2と同一の素子を用いている。ただし、波長分散測定装置1300では、反射ミラーを3枚とし、回折格子1021と第1ミラー1041との間、および第3ミラー1043と回折格子との間にレンズ1301とレンズ1302を挿入した。また、光を空間的に分散させる素子は回折格子に限らず、プリズムやグリズムなどの素子を用いても良い。その場合、反射ミラーの角度や枚数を、プリズムやグリズムの面の角度に応じて設計すれば良い。このような構成とすることで、正常分散を与える波長分散装置を提供することが可能となる。
<第6実施形態>
本実施形態は、上述の波長分散装置を用いたレーザー加工装置の実施形態である。本実施形態に係るレーザー加工装置によって、レーザーパルスの幅を調整しながら加工を行う。本実施形態に係る加工装置500は、一つのパルス光源を用いて熱加工と非熱加工を切り替えながらレーザー加工を行うことができる。また、分散の方向を制御することで、短波長から照射する加工と、長波長から照射する加工とを切り替えることも可能である。これにより、材料の吸収による熱の発生を制御した加工を行うことが可能となる。
さらに、レーザー出力と合わせて制御することで、短パルスの尖頭値を変えずにパルス幅を制御したレーザー加工を行うことも可能となる。
(実施例8)
第6実施形態に基づいた実施例を、図9を用いて説明する。図9は、第6実施形態に基づいた実施例8の加工装置500の概略図である。加工装置500は、パルス制御装置510、スキャナ導光光学系505、レーザー加工スキャナ(レーザー走査装置)506、ステージ508、およびPC509を備える。
パルス制御装置510は、光源501、および、波長分散装置503を含む。光源501は、例えば、超短パルスレーザー光源である。光源501から出力されたパルスレーザー光502は、波長分散装置503に入射してパルス幅及び分散量、分散方向が制御される。これにより、パルスレーザー光502のパルス時間幅およびパルスピーク強度が制御される。波長分散装置503は、PC509によって制御される。
分散が制御された光504は、スキャナ導光光学系505を伝搬し、ビーム径を制御され、レーザー加工スキャナ506へ入射される。レーザー加工スキャナ506は、パルスエネルギーを保ったまま、パルス時間幅およびパルスピーク強度の少なくとも一方を変化させながらレーザーを走査することによってターゲット507に対して加工を行う。レーザー加工スキャナ506は、ターゲット507に対して、集光ビームスポットの平面位置と高さ方向、照射角度を調整する調整部511を備える。調整部511は、集光ビームスポットの平面位置と高さ方向、照射角度を調整することにより、レーザーの出力を調整する。ここで、レーザー加工スキャナ506は、制御された光504を集光径20μメートルで、集光ビームスポットの平面位置と高さ方向、照射角度を制御する。ターゲット507は、ステージ508上に固定される。ターゲット507の材質は、例えば、金属であり、本実施例では、厚さは1mmである。レーザー加工スキャナ506は、PC509により動作を制御される。集光ビームスポットは、はじめ直径180μメートルの円状に走査され、10psのパルス幅であった。これにより、熱加工に近い状態で高速にした穴を開ける。次に、集光ビームスポットを直径200μメートルの円状に走査する。その時、500fsのパルス幅となるように光の分散を波長分散装置503によって制御する。これにより、非熱加工となり、熱ダレのないレーザー加工を行う。
なお、本実施例において、波長分散装置503およびレーザー加工スキャナ506は、PC509によって制御されるものとしたが、それぞれが制御部を備え、それぞれの制御部を介してPC509によって制御されても良い。
本実施例により、高速で熱影響の少ないレーザー加工を実現できる。
<第7実施形態>
本実施形態は、上述の波長分散装置を用いた光干渉断層計(光コヒーレンストモグラフィ、OCT)の実施形態である。本実施形態に係る光干渉断層計では、サンプルに照射された光と参照光との分散を制御する。
図10は、第7実施形態に係る光干渉断層計600の概略図である。光干渉断層計600は、光源601、光分岐素子602、光走査装置606、光重畳素子608、光路長調整装置609、光分散素子611、波長分散装置613、および、PC614を備える。
図10に示すように、光干渉断層計600では、光源601から射出された光を、光分岐素子602を用いて、サンプル603に照射する信号光(照射光)604と参照光605とに分ける。信号光604は、光走査装置606によって、サンプル603上を走査される。光走査装置606はPC614により動作を制御され、信号光604の照射角度あるいは照射位置情報がPC614にモニタリングされている。
サンプル603に照射され、散乱して戻ってきた後方散乱光607は集光され、光重畳素子608へと伝搬する。一方、参照光605は、信号光604が光分岐素子602からサンプル603経て、光重畳素子608までの光路長とほぼ一致するように光路長調整装置609を伝搬し、光重畳素子608へ入射される。光重畳素子608では、後方散乱光607と参照光605とが重ねあわされ、干渉光610が生成される。干渉光610は回折格子のような光分散素子611により空間的に分散され、ラインセンサ612によりスペクトル干渉信号として検出される。検出されたスペクトル干渉信号はPC614に取り込まれ、フーリエ変換され、断層信号が得られる。断層信号は光走査装置606の角度情報と統合され、断層画像を得る。
断層信号の断層の分解能は、光源のスペクトル幅によって決定される。また、後方散乱光607と参照光605との分散量が同じであれば理論上の最も高い分解能を得ることが出来る。そこで、参照光605が伝搬する光分岐素子602と光重畳素子608の光路(光導波路)中に、波長分散装置613を配置し、参照光605の分散量を制御する。波長分散装置613はPC614によって制御される。波長の分散量の制御は、得られた断層信号が所定の値より大きくなるように制御される。すなわち、干渉信号の信号対雑音比が所定の値より大きくなるように制御される。なお、波長の分散量は、得られた断層信号がもっとも分解能が高くなるように制御されることが好ましい。
本実施形態により、高分解能なOCTを実現できる。また、測定対象のサンプルの厚さや材質に応じて調整しながらの断層信号の取得が可能となる。
<第8実施形態>
本実施形態は、第7実施形態に係る干渉計を用いて光を透過する物質の厚さあるいは屈折率分散を測定する装置(波長分散測定装置)である。
図11を用いて説明する。図11は、第8実施形態に係る波長分散測定装置700の概略図である。波長分散測定装置700は、光源701、マイケルソン干渉計702、光検出器708、および、PC709を備える。
光源701にはスペクトル幅が広い、広帯域光源を用いる。光源701から射出された光は、マイケルソン干渉計702に導光される。マイケルソン干渉計702では、光分岐素子7023を用いて、参照光路7021を伝搬する参照光と信号光路7022を伝搬する信号光とに光を分岐する。信号光路側には、透過物質703を配置する。信号光は信号光ミラー705により反射され、再度透過物質703を伝搬する。マイケルソン干渉計702により、参照光と透過物質703を伝搬した信号光とが重ねあわされ、干渉光を得る。
干渉光は光検出器708により受光され、干渉信号を得、PC709に取り込まれる。参照光は、参照光ミラー704を用いて反射される。参照光ミラー704は移動ステージ706に取り付けられており、参照光路7021の長さは変化する。ここで、参照光路7021中に、本発明での波長分散装置707を挿入する。波長分散装置707では第3実施形態で説明したように反射素子が回転する機構を有している。回転角度はPC709により制御され、その角度がモニタリングされる。回転角度を制御することで、参照光の分散が変化し、干渉信号の幅が変化する。したがって、干渉信号を解析することで、透過物質703の特性を評価することが可能となる。透過物質703の厚さが分かっている場合には、分散量を測定できる。あるいは、分散量が分かっている場合には厚さを測定できる。
本実施形態により、透過物質の特性を評価する装置を提供することが可能となる。
以上、本発明の好ましい実施例について説明したが、本発明は、これらの実施例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
101 入射光
102 分散素子
103,108 分散光
104 導光光学系
105 平行光
107 折り返し光
110 射出光
1021 回折格子
1041 第1ミラー
1042 第2ミラー
1043 第3ミラー
1044 第4ミラー

Claims (15)

  1. 光の波長分散を行う光学装置であって、
    入射した光を透過して波長毎に光路が異なるように分散させ、第1分散光を生成する分散素子と、
    前記第1分散光を順次反射する4つの反射面を含む反射部と、を有し、
    前記4つの反射面で順次反射された前記第1分散光を前記分散素子に入射させて前記分散素子を透過させることを特徴とする光学装置。
  2. 前記反射部は、前記分散素子の表面、あるいは内部において、前記分散素子が光を分散させる方向に対して垂直な方向で、前記入射した光と少なくとも一部が重なるように前記第1分散光を前記分散素子に入射させることを特徴とする請求項1に記載の光学装置。
  3. 前記反射部は、前記分散素子の表面、あるいは内部において、前記分散素子が光を分散させる方向、および、前記分散素子が光を分散させる方向に対して垂直な方向で、前記入射した光と少なくとも一部が重なるように前記第1分散光を前記分散素子に入射させることを特徴とする請求項1に記載の光学装置。
  4. 前記反射部は、前記4つの反射面のうち、少なくとも2面を回転軸を中心に回転させる回転機構を有することを特徴とする請求項1乃至3のいずれか1項に記載の光学装置。
  5. 前記回転機構は、前記回転させる角度を調整することにより前記第1分散光の光路長を調整することを特徴とする請求項4に記載の光学装置。
  6. 前記回転機構は、前記4つの反射面を一体として回転させることにより前記第1分散光の光路長を調整することを特徴とする請求項4に記載の光学装置。
  7. 前記反射部は、前記4つの反射面のうち、少なくとも1面を駆動して前記第1分散光の光路長を変更する駆動機構を有することを特徴とする請求項1乃至6のいずれか1項に記載の光学装置。
  8. 前記4つの反射面で反射され前記分散素子に導光された前記第1分散光が前記分散素子を透過することにより生成される第2分散光を反射して、前記分散素子に入射させる反射素子をさらに有することを特徴とする請求項1乃至7のいずれか1項に記載の光学装置。
  9. 前記反射素子は、前記分散素子の表面、あるいは内部において、前記分散素子が光を分散させる方向で、前記入射した光と少なくとも一部が重なるように前記第2分散光を前記分散素子に入射させることを特徴とする請求項8に記載の光学装置。
  10. 前記分散素子と前記反射面と間に配置される、少なくとも1つ以上のレンズまたは集光ミラーを有することを特徴とする請求項1乃至9のいずれか1項に記載の光学装置。
  11. パルスレーザー光源と、
    請求項1乃至10のいずれか1項に記載の光学装置と、
    前記パルスレーザー光源及び前記光学装置を制御する制御手段と、を有し、
    前記制御手段は、前記パルスレーザー光源から出力されたパルスレーザー光を前記光学装置に入射させて前記パルスレーザー光の波長分散を行うことで、前記パルスレーザー光のパルス時間幅およびパルスピーク強度の少なくとも一方を制御することを特徴とするパルス制御装置。
  12. 請求項11に記載のパルス制御装置と、
    パルスエネルギーを保ったまま、パルス時間幅およびパルスピーク強度の少なくとも一方を変化させながらレーザーを走査することによって加工を行うレーザー走査装置を有することを特徴とする加工装置。
  13. レーザーの出力を調整する調整部を有し、
    前記調整部によってパルス時間幅およびパルスピーク強度の少なくとも一方を変化させながらレーザー加工を行う請求項12に記載の加工装置。
  14. 光を発する光源と、
    前記光源から発せられた光を、測定対象に照射する照射光と、参照光とに分岐する光分岐素子と、
    前記測定対象から散乱された散乱光と前記参照光とを重ね合わせる光重畳素子と、
    前記光重畳素子で前記散乱光と前記参照光とが重ね合わさられるように、前記参照光を導く光導波路に配置された、請求項1乃至10のいずれか1項に記載の光学装置と、
    前記光学装置によって干渉信号の信号対雑音比が所定の値より大きくなるように波長の分散を制御する制御手段と、を有することを特徴とする干渉計。
  15. 前記制御手段によって制御された分散の量に基づいて前記測定対象の厚さおよび波長分散の少なくとも一方を測定することを特徴とする請求項14に記載の干渉計。

JP2020082546A 2019-07-30 2020-05-08 光学装置 Pending JP2021021933A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/918,821 US20210033385A1 (en) 2019-07-30 2020-07-01 Optical device
EP20188443.4A EP3771883A3 (en) 2019-07-30 2020-07-29 Dispersive optical device
CN202010752519.0A CN112305774A (zh) 2019-07-30 2020-07-30 光学设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019139879 2019-07-30
JP2019139879 2019-07-30

Publications (1)

Publication Number Publication Date
JP2021021933A true JP2021021933A (ja) 2021-02-18

Family

ID=74573274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082546A Pending JP2021021933A (ja) 2019-07-30 2020-05-08 光学装置

Country Status (1)

Country Link
JP (1) JP2021021933A (ja)

Similar Documents

Publication Publication Date Title
JP6866460B2 (ja) 光計測において照明を提供するためのシステム
US7170610B2 (en) Low-coherence inferometric device for light-optical scanning of an object
US6654127B2 (en) Optical delay line
US7897924B2 (en) Beam scanning imaging method and apparatus
JP6505111B2 (ja) 低ノイズ高安定性の深紫外線連続波レーザー
JP4573528B2 (ja) 光学装置及び走査顕微鏡
US7385693B2 (en) Microscope apparatus
WO2017013759A1 (ja) 遠赤外分光装置
JP5735824B2 (ja) 情報取得装置及び情報取得方法
JP4640577B2 (ja) 光スペクトラムアナライザ
CN105333815A (zh) 一种基于光谱色散线扫描的超横向分辨率表面三维在线干涉测量系统
US20050122529A1 (en) Measurement system of three-dimensional shape of transparent thin film using acousto-optic tunable filter
CN105333816A (zh) 一种基于光谱色散全场的超横向分辨率表面三维在线干涉测量系统
JP2021021933A (ja) 光学装置
US10649405B2 (en) Digital holographic imaging apparatus and illumination apparatus
US20210033385A1 (en) Optical device
JP4074271B2 (ja) 時間分解分光装置
JP6720383B2 (ja) 遠赤外分光装置
JP7012045B2 (ja) 遠赤外分光装置
KR101240146B1 (ko) 갈바노 미러를 이용한 파장 스캐닝 방식의 공초점 분광 현미경
JP3992699B2 (ja) 時間分解分光装置
JP2016029340A (ja) 計測装置
JP4009620B2 (ja) 顕微鏡装置
KR102116618B1 (ko) 광학 시편 표면 검사 장치 및 그 제어 방법
WO2022049986A1 (ja) パルス分光装置及びマルチファイバ用照射ユニット