JP2020190498A - 広帯域パルス光源装置、分光測定装置及び分光測定方法 - Google Patents

広帯域パルス光源装置、分光測定装置及び分光測定方法 Download PDF

Info

Publication number
JP2020190498A
JP2020190498A JP2019096412A JP2019096412A JP2020190498A JP 2020190498 A JP2020190498 A JP 2020190498A JP 2019096412 A JP2019096412 A JP 2019096412A JP 2019096412 A JP2019096412 A JP 2019096412A JP 2020190498 A JP2020190498 A JP 2020190498A
Authority
JP
Japan
Prior art keywords
light source
wavelength
pulse light
light
wideband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019096412A
Other languages
English (en)
Inventor
寿一 長島
Juichi Nagashima
寿一 長島
祐 山崎
Yu Yamazaki
祐 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2019096412A priority Critical patent/JP2020190498A/ja
Priority to PCT/JP2020/019251 priority patent/WO2020235441A1/ja
Publication of JP2020190498A publication Critical patent/JP2020190498A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

【課題】広帯域伸長パルス光を出射することのできる実用的な広帯域パルス光源装置、分光測定装置及び分光測定方法を提供する。【解決手段】広帯域パルス光源1からの広帯域パルス光のパルス幅をパルス内の経過時間と波長とが1対1で対応するように伸長する伸長素子2は、900nm以上1300nm以下の波長範囲において波長分散値が−30ピコ秒/nm/km以下のシングルモードファイバである。伸長された広帯域パルス光が対象物Sに照射され、対象物Sを透過した光が受光器4で受光され、演算手段5によりスペクトルに変換される。【選択図】図4

Description

この出願の発明は、広帯域パルス光を出射する光源装置に関するものであり、また広帯域パルス光を利用して対象物の分光特性を測定する装置や方法に関するものである。
パルス光源の典型的なものは、パルス発振のレーザ(パルスレーザ)である。近年、パルスレーザの波長を広帯域化させる研究が盛んに行われており、その典型が、非線形光学効果を利用したスーパーコンティニウム光(以下、SC光という。)の生成である。SC光は、パルスレーザ源からの光をファイバのような非線形素子に通し、自己位相変調や光ソリトンのような非線形光学効果により波長を広帯域化させることで得られる光である。
特開2013−205390号公報
上述した広帯域パルス光は、波長域としては伸長されているが、パルス幅(時間幅)としては狭いままである。しかし、ファイバのような伝送素子における群遅延を利用するとパルス幅も伸長することができる。この際、適切な波長分散特性を持つ素子を選択すると、パルス内の時間(経過時間)と波長とが1対1に対応した状態でパルス伸長することができる。
このようにパルス伸長させた広帯域パルス光(以下、広帯域伸長パルス光という。)における時間と波長との対応関係は、分光測定に効果的に利用することが可能である。広帯域伸長パルス光をある受光器で受光した場合、受光器が検出した光強度の時間的変化は、各波長の光強度即ちスペクトルに対応している。したがって、受光器の出力データの時間的変化をスペクトルに換算することができ、回折格子のような特別な分散素子を用いなくても分光測定が可能になる。つまり、広帯域伸長パルス光を対象物に照射してその対象物からの光を受光器で受光してその時間的変化を測定することで、その対象物の分光特性(例えば分光透過率)を知ることができるようになる。
このように、広帯域伸長パルス光は分光測定等の分野で特に有益と考えられる。この出願の発明は、このような検討に基づくものであり、広帯域パルス光伸長パルス光を出射する実用的な光源装置を提供し、分光測定の技術の発展に貢献することを目的としている。
上記課題を解決するため、この出願の発明に係る広帯域パルス光源装置は、広帯域パルス光源と、広帯域パルス光源からの広帯域パルス光のパルス幅をパルス内の経過時間と波長とが1対1で対応するように伸長する伸長素子とを備えている。伸長素子は、伸長素子は、900nm以上1300nm以下の波長範囲において波長分散値が−30ピコ秒/nm/kmのシングルモードファイバである。
また、上記課題を解決するため、伸長素子は、コアが石英ガラス製であり、クラッドがフッ素添加の石英ガラス製であり得る。
また、上記課題を解決するため、伸長素子は、コアの直径が1μm以上5μm以下のファイバであり得る。
また、上記課題を解決するため、広帯域パルス光源は、スーパーコンティニウム光源であり得る。
また、上記課題を解決するため、広帯域パルス光源は、900nm以上1300nm以下の波長域において少なくとも10nmの波長幅に亘って連続している光を出力するスーパーコンティニウム光源であり得る。
また、上記課題を解決するため、この出願の発明に係る分光測定装置は、上記広帯域パルス光源装置と、この広帯域パルス光源装置から出射された広帯域パルス光が照射された対象物からの光が入射する位置に配置された受光器と、受光器からの出力信号をスペクトルに変換する演算を行う演算手段とを備えている。
また、上記課題を解決するため、この出願の発明に係る分光測定方法は、上記広帯域パルス光源装置から出射された広帯域パルス光を対象物に照射する照射ステップと、照射ステップにおいて広帯域パルス光が照射された対象物からの光を受光器で受光する受光ステップと、受光器からの出力信号を演算手段によりスペクトルに変換する処理を行う演算ステップとを備えている。
以下に説明する通り、この出願の発明に係る広帯域パルス光源装置によれば、900nm以上1300nm以下の波長範囲において波長分散値が−30ピコ秒/nm/kmのシングルモードファイバを伸長素子として使用するので、時間と波長とが1対1で対応している広帯域伸張パルス光であって且つ波長に応じた遅延時間の差が大きく付与されている広帯域パルス伸長パルス光を出射させることができる。また、伸長素子はシングルモードファイバであるので、時間対波長の一意性が低下するのが防止される。
また、伸長素子がコアの直径が1μm以上5μm以下のファイバである場合、マルチモードで動作し易くなる欠点が解消され、また出射光の強度が低下したり意図しない非線形光学効果が生じ易くなったりする問題が生じない。
また、広帯域パルス光源がスーパーコンティニウム光源である場合、より広い波長範囲に亘って連続スペクトルである光であって波長に応じた遅延時間差の大きな光を得ることができるという効果が得られる。
また、広帯域パルス光源が900nm以上1300nm以下の波長域において少なくとも10nmの波長幅に亘って連続している光を出力する光源である場合、近赤外分光法による対象物の分析の用途に好適に使用することができるという効果が得られる。
また、この出願の発明に係る分光測定装置又は分光測定方法によれば、このような広帯域パルス光源を使用して分光測定するので、従来の分光計に比べて高速且つ高SN比の分光測定が可能となる。そして、損失が限度以上に大きくなるのを回避しつつ波長分解能をより高くできるため、例えば吸収の大きな対象物についても十分な照度で光を照射して分光測定が行え、且つ高分解能の測定によってより細かいスペクトルを得ることができる。
実施形態の広帯域パルス光源装置の概略図である。 広帯域パルス光のパルス伸長の原理について示した概略図である。 実施形態の装置における高分散ファイバの波長分散特性を示す図である。 実施形態の分光測定装置の概略図である。 分光測定ソフトウェアに含まれる測定プログラムの構成について示した概略図である。 実施形態の分光測定装置における波長分解能の例について示した概略図である。
次に、この出願の発明を実施するための形態(実施形態)について説明する。
まず、広帯域パルス光源装置の発明の実施形態について説明する。図1は、実施形態の広帯域パルス光源装置の概略図である。図1に示す広帯域パルス光源装置は、広帯域パルス光源1と、伸長素子2とを備えている。伸長素子2は、広帯域パルス光源1からの光を1パルス内の経過時間と波長との関係が1対1になるようパルス伸長する素子である。
広帯域パルス光源1は、900nmから1300nmの範囲において少なくとも10nmの波長幅に亘って連続したスペクトルの光を出射する光源である。900nmから1300nmの範囲とする点は、実施形態の光源装置がこの波長域における光測定を用途としているためである。
少なくとも10nmの波長幅に亘って連続したスペクトルの光とは、典型的にはSC光である。したがって、この実施形態では、広帯域パルス光源1は、SC光源となっている。但し、SLD(Superluminescent Diode)光源のような他の広帯域パルス光源が使用される場合もある。広帯域パルス光源1におけるスペクトルは、少なくも50nmの波長幅に亘って連続しているとより好ましく、少なくとも100nmに亘って連続しているとさらに好ましい。
SC光源である広帯域パルス光源1は、超短パルスレーザ11と、非線形素子12とを備えている。超短パルスレーザ11としては、ゲインスイッチレーザ、マイクロチップレーザ、ファイバレーザ等を用いることができる。また、非線形素子12には、ファイバが使用される場合が多い。例えば、フォトニッククリスタルファイバやその他の非線形ファイバが非線形素子12として使用できる。ファイバのモードとしてはシングルモードの場合が多いが、マルチモードであっても十分な非線形性を示すものであれば、非線形素子12として使用できる。
図2は、広帯域パルス光のパルス伸長の原理について示した概略図である。SC光のような広帯域パルス光のパルス幅を伸長させる素子としては、特定の波長分散特性を有するファイバを使用することができる。例えば、ある波長範囲において連続スペクトルであるSC光L1を当該波長範囲で正の波長分散特性を有するファイバ20に通すと、パルス幅が伸長される。即ち、図2に示すように、SC光L1においては、超短パルスではあるものの、1パルスの初期に最も長い波長λが存在し、時間が経過すると徐々に短い波長の光が存在し、パルスの終期には最も短い波長λの光が存在する。この光を、正常分散のファイバ20に通すと、正常分散のファイバ20では、波長の短い光ほど遅れて伝搬するので、1パルス内の時間差が増長され、ファイバ20を出射する際には、短い波長の光は長い波長の光に比べてさらに遅れるようになる。この結果、出射するSC光L2は、時間対波長の一意性が確保された状態でパルス幅が伸長された光となる。即ち、図2の下側に示すように、時刻t〜tは、波長λ〜λに対してそれぞれ1対1で対応した状態でパルス伸長される。したがって、時間を特定して光強度を求めれば、それは、その時間に対応する波長の光強度(スペクトル)を示すことになる。これは、回折格子のような特別な素子を使用しなくても分光測定が行えるできることを意味する。
しかしながら、発明者の研究によると、現状の要素技術における発想では、分光測定用の広帯域パルス光源装置の分野においては、十分に高い測定精度で且つ十分に高い分解能を実現することは難しいことが判ってきた。以下、この点について説明する。
上述した分散補償ファイバに見られるように、現在市販されている殆どのファイバが光通信用である。したがって、広帯域パルス光源装置における伸長素子としても、光通信用のものを転用して利用せざるを得ない状況である。
一方、分光測定における主要な技術課題の一つは、波長分解能である。どれくらい細かなスペクトルに分けて光を測定できるかが、分光測定装置の性能を示す重要な指標となっている。例えば、材料分析のためにしばしば行われる900〜1300nm程度の範囲の近赤外域の分光測定では、フーリエ変換分光計や回折格子分光計(走査型又はマルチチャンネル型)が使用される。このような分光計では、5〜20nm程度の波長分解能で測定が可能となっている。したがって、前述した広帯域伸長パルス光を分光測定に応用する場合も、この程度の波長分解能を実現できないと、測定装置としては実用的なものにならないと推測される。
図2において、Δλ/Δtは時間の変化に対する波長の変化の大きさを示している。図2から解るように、波長分解能を高くするにはΔtを小さくすれば良い。しかしながら、Δtは受光器の検出速度(信号払い出し周期)に相当しており、Δtを小さくすることには限界がある。したがって、最小のΔtにおいてΔλを小さくすることが必要で、これはΔλ/Δtの勾配を小さく(緩やかに)する必要があることを意味する。最小のΔtにおけるΔλが、ここでの波長分解能である。Δλ/Δtを小さくするということは、時間の変化に対する波長の変化を小さくするということである。時間の変化に対して波長の変化が小さいということは、言い換えれば、波長分散の量(分散値の絶対値)を多くすることが必要ということである。
しかしながら、光通信用のファイバの転用を前提として考えると、前述した5〜20nm程度の波長分解能(20nm以下の波長分解能)を達成することは、分散の量が少なく、難しい。周知のように、光通信用のシングルモードファイバは、1310nm付近でゼロ分散となっており、それより短い波長では分散値は負となっている。したがって、900〜1300nm程度の範囲では、光通信用のシングルモードファイバは、伸長素子として一応使用可能である。しかしながら、発明者の検討によると、光通信用のシングルモードファイバは、900〜1300nm程度の波長範囲において分散の量(分散値の絶対値)が少なく、十分に高い波長分解能を得ることは難しい。
また、光通信用のファイバとして、0分散の波長を長波長側にシフトさせた分散シフトファイバも開発されている。分散シフトファイバにおけるゼロ分散は1550nm付近であり、それより短波長側では分散値は負である。したがって、900〜1300nmの範囲では、光通信用のシングルモードファイバよりも分散の量が比較的多い。しかしながら、発明者の検討によると、それでもまだ分散の量が少なく、十分に高い波長分解能を得ることが難しい。
さらに、光通信用のファイバとして、累積波長分散による波形の歪みを補償する分散補償ファイバが知られている。分散補償ファイバは、シングルモードファイバにおける異常分散(正の分散値)の補償のため、絶対値の大きな負の分散値を有している。しかしながら、分散補償ファイバは、光通信の主要な波長帯域である1550nm前後の帯域において分散補償を行うファイバであり、900〜1300nmでは分散の量は少なくなってしまっている。
このような状況は、光通信用のファイバ技術としては至極当然のことである。つまり、光通信において波長分散は波形(伝送信号)の歪みをもたらすものであり、極力小さくすることが求められる。したがって、波長分散の量を大きくするという発想は、光通信の分野には存在しない。分散補償も、小さく抑えた上でそれでも生じる分散を補償するということであり、分散を全体として大きくするという発想ではない。
本願の発明者は、このような状況の下、分光測定用という異なる用途、技術分野のため、逆転の発想に立ち、分散の量を多くし、それによって高い波長分可能の得るという技術思想を相当するに至った。そして、さらに鋭意研究を重ねた結果、900〜1300nmの範囲において−30ピコ秒/nm/km以下の分散値を有するファイバを伸長素子2として使用することが好適であることが判明した。「−30ピコ秒/nm/km以下」とは、自明であるが、分散値が負でその絶対値が30ピコ秒/nm/kmより大きいという意味である。
周知のように、波長分散の値は、群遅延時間を波長の大きさ(nm)とファイバの長さ(km)で規格化した値である。つまり、波長が1nm違った際に1kmあたりにどの程度の遅延時間の差が生じるかを示す値である。したがって、900〜1300nmの範囲において−30ピコ秒/nm/kmとは、波長1nm違うことに1kmあたり30ピコ秒以上の遅延時間の差が生じることを意味する。正確には、負の値であるから、波長が1nm短くなると1kmあたり30ピコ秒以上より遅れるということを意味する。
分散の量を全体として多くするには、より長いファイバを使用するという発想もあり得る。例えば、−30ピコ秒/nm/kmのファイバを1kmの長さで使用した場合と、−15ピコ秒/nm/kmのファイバを2kmの長さで使用した場合とで、全体の分散の量は同じである。しかしながら、ファイバの場合には伝送損失を考慮する必要がある。ファイバを長くして全体としての分散の量を得ようとすると、出射する光があまりにも弱くなってしまい、実用に耐えないことになる。ファイバは、一般的には、1kmあたり1〜数dB程度の損失がある。これを前提にして十分な強度の広帯域伸長パルス光を出射させるには、−30ピコ秒/nm/km以下の分散特性が必要であるというのが、発明者による検討結果である。以下、この明細書において、−30ピコ秒/nm/km以下の分散特性を有するファイバを、「高分散ファイバ」と呼ぶ。分散を大きくするという発想が存在しないので、高分散ファイバという用語は存在しないが、便宜上、このように表現する。
このような検討の下、実施形態の広帯域パルス光源装置は、伸長素子2として高分散ファイバ21を使用している。高分散ファイバ21としては、例えば、コアが石英ガラス製、クラッドはフッ素添加の石英ガラス製のものとすることができる。クラッドにおけるフッ素の添加量は、重量比で0.5mol%〜6mol%程度である。波長分散の大きさはコア径(直径)も影響するが、コア径は例えば2〜4mm程度である。
図3は、実施形態の装置における高分散ファイバの波長分散特性を示す図である。図3に示すように、このファイバは、900〜1300nmの範囲において、−80ピコ秒/nm/km〜−40ピコ秒/nm/kmとなっており、高分散ファイバであることを示している。
このような高分散ファイバは、プリフォームを入手し、線引きすることで製造される。プリフォームの状態でファイバ材料を提供している会社が幾つか知られており、コア及びクラッドとなる上記各材料でプリフォームの製造を依頼する。そして、提供されたプリフォームを加熱して線引きすることで、上記高分散ファイバが製造される。
次に、このような広帯域パルス光源装置を搭載した分光測定装置について説明する。図4は、実施形態の分光測定装置の概略図である。
図4に示す分光測定装置は、広帯域パルス光源装置10と、広帯域パルス光源10からの出射された広帯域伸長パルス光を対象物Sに照射する照射光学系3と、広帯域伸長パルス光が照射された対象物Sからの光を受光する受光器4と、受光器4からの出力信号をスペクトルに変換する演算を行う演算手段5とを備えている。
広帯域パルス光源装置10には、上述した実施形態のものが使用されている。この実施形態では、対象物Sの透過光を分光測定することが想定されているため、対象物Sは透明な受け板6上に配置される。測定波長帯域は900〜1300nm程度の近赤外域となっているため、受け板6は、この帯域において良好な透過率を有する材質のものが使用される。
照射光学系3は、この実施形態では、ビームエキスパンダ31を含んでいる。伸長素子2としての高分散ファイバ21からの光は、時間伸長された広帯域パルス光ではあるものの、超短パルスレーザ源11からの光であり、ビーム径が小さいことを考慮したものである。この他、ガルバノミラーのようなスキャン機構を設け、ビームスキャンにより広い照射領域をカバーする場合もある。
受光器4は、受け板6の光出射側に配置されている。受光器4としては、フォトダイオードによるものが使用される。1〜10GHz程度の高速フォトダイオード受光器が好適に使用できる。
演算手段5としては、プロセッサ51及びストレージ52を備えた汎用PCが使用できる。ストレージ52には、分光測定ソフトウェアがインストールされており、これには、受光器4からの出力の時間的変化をスペクトルに変換する測定プログラム53や、スペクトルへの変換の際に使用される基準スペクトルデータ54等が含まれている。尚、受光器4と汎用PCとの間にはAD変換器7が設けられており、受光器4の出力信号は、AD変換器7によりデジタルデータに変換されて汎用PCに入力される。
図5は、分光測定ソフトウェアに含まれる測定プログラムの構成について示した概略図である。図5の例は、吸収スペクトル(分光吸収率)を測定するための構成の例となっている。基準スペクトルデータ54は、吸収スペクトルを算出するための基準となる波長毎の値である。基準スペクトルデータ54は、広帯域パルス光源装置10からの光を対象物Sを経ない状態で受光器4に入射させることで取得する。即ち、対象物Sを経ないで光を受光器4に直接入射させ、受光器4の出力をAD変換器7経由で汎用PCに入力させ、時間分解能Δtごとの値を取得する。各値は、パルス内のΔtごとの各時刻(t,t,t,・・・,以下、パルス内時刻という。)の基準強度として記憶される(V,V,V,・・・)。
各パルス内時刻t,t,t,・・・での基準強度V,V,V,・・・は、対応する各波長λ,λ,λ,・・・の強度(スペクトル)である。パルス内時刻t,t,t,・・・と波長との関係が予め調べられており、各パルス内時刻の値V,V,V,・・・が各λ,λ,λ,・・・の値であると取り扱われる。
そして、対象物を経た光を受光器4に入射させた際、受光器4からの出力はAD変換器7を経て同様に各パルス内時刻t,t,t,・・・の値(測定値)としてメモリに記憶される(v,v,v,・・・)。各測定値は、基準スペクトルデータ54と比較される(v/V,v/V,v/V,・・・)。そして、必要に応じて各逆数の対数を取り、吸収スペクトルの算出結果とする。
上記のような演算処理をするよう、測定プログラム53はプログラミングされている。尚、図5の例では、吸収スペクトルを調べるだけのようになっているが、実際には、吸収スペクトルを調べることで、対象物の成分の比率を分析したり、対象物を同定したりすることもある。
図6は、実施形態の分光測定装置における波長分解能の例について示した概略図である。図6には、一例として、前述したようにクラッドにフッ素添加をした石英ガラス系ファイバを高分散ファイバ21として使用した場合の波長分解能が示されている。この例では、受光器2の信号払い出し周期Δtは、0.2ナノ秒となっている。
図6に示すように、実施形態の分光測定装置では、900〜1300nmの範囲における波長分解能は2〜4nmとなっている。この分解能は、現在普及しているフーリエ変換分光計や回折格子分光計と比べても遜色なく、場合によってはより高い波長分解能となっている。
次に、上記分光測定装置の動作について説明する。以下の説明は、分光測定方法の実施形態の説明でもある。実施形態の分光測定装置を使用して分光測定する場合、対象物Sを配置しない状態で広帯域パルス光源装置10を動作させ、受光器4からの出力信号を処理して予め基準スペクトルデータ54を取得する。その上で、対象物Sを受け板7に配置し、広帯域パルス光源装置10を再び動作させる。そして、受光器4からの出力信号をAD変換器7を介して演算手段5に入力し、測定プログラム53によりスペクトルに変換して吸収スペクトルを算出する。
このような分光測定装置又は分光測定方法によれば、広帯域パルス光源1からの広帯域パルス光を時間と波長が1対1で対応するように伸長素子2で伸長し、この光を対象物Sに照射して分光測定するので、従来の分光計に比べて高速且つ高SN比の分光測定が可能となる。回折格子を使用した空間的な分光の場合、空間に分散させる際の損失があるため、受光器に入射する光は微弱になり易く、高SN比の測定のためには回折格子のスキャンを繰り返して光量を確保する必要がある。また、フーリエ変換分光計でも、ミラーのスキャンが必要で、光量を確保するために複数回のスキャンが必要になっている。実施形態の分光測定装置及び分光測定方法によれば、このようなスキャンは不要であり、短い時間でも十分な量の光を検出器に入射させることができる。このため、高速且つ高SN比の測定が可能となる。
加えて、伸長素子2として高分散ファイバ21を使用しているので、損失が限度以上に大きくなるのを回避しつつ波長分解能をより高くできる。このため、例えば吸収の大きな対象物Sについても十分な照度で光を照射して分光測定が行え、且つ高分解能の測定によりより細かいスペクトルを得ることができる。
また、高分散ファイバ21がシングルモードファイバである点には、時間対波長の一意性が低下するのを防止し、分光測定の精度をより高く維持する意義がある。伸長素子2としてマルチモードファイバを使用した場合、モード間分散が生じ得る。モード間分散が生じると、同じ波長でも遅延時間に差が生じてしまう。この結果、伸長された広帯域パルス光において時間対波長の一意性が崩れ、分光測定精度が低下してしまう。この実施形態では、高分散ファイバ21はシングルモードファイバであるので、このような問題はない。
尚、上記実施形態では、高分散ファイバ21は、コアが石英ガラス製でクラッドがフッ素添加の石英ガラス製であったが、他の構成もあり得る。例えば、コアを酸化ゲルマニウム添加の石英ガラス製とし、クラッドを石英ガラス製としたファイバを高分散ファイバとして用いることができる。また、コアが酸化ゲルマニウム添加の石英ガラス製でクラッドがフッ素添加の石英ガラス製であっても良い。
また、高分散ファイバ21は、上記の通りシングルモードファイバであるが、この観点では、コア径は5μm以下とすることが好ましい。5μmを超えると、マルチモードでの動作がし易くなり、時間対波長の一意性が崩れ易くなるからである。但し、コア径があまりにも小さくなると、コアに入射して伝送される光の量が限度以上に低下してしまい、出射する光の強度が十分に得られなくなる恐れがある。また、コア径が小さくなると、意図しない非線形効果が生じ易くなる問題もある。これらを考慮すると、高分散ファイバ21のコア径は1μm以上とすることが好ましい。
また、ファイバ中のコアを伝搬する光は、コアとクラッドの界面で全反射を繰り返しているが、全反射の際に光の一部はクラッドへと染み出している。このため、クラッド径を過度に小さくすると、コアからクラッドへと染み出した光は、ファイバの側面からファイバの外部へと散逸してしまい、コアへと戻らず、結果的に光伝送量を低下させる要因となる。さらに、光ファイバを曲げると、この染み出しは促進される。以上の事情から、900〜1300nmの光の波長範囲における、シングルモードファイバのコアからクラッドへの光染み出しを考慮すると、クラッド径はコア径の4倍以上とすることが好ましい。さらに、ファイバの曲げによる光漏れ等も考慮すると、クラッド径はコア径の10倍以上であることが好ましい。
上記実施形態において、受光器4は定期的に校正がされる。校正には、基準スペクトルデータ54の再取得も含まれる。この場合、伸長素子2の出射側においてビームスプリッタ等で光路を二つに分け、一方を測定用とし他方の参照用として基準スペクトルデータをリアルタイム54で取得する校正方法が採用されることもあり得る。
また、広帯域パルス光源装置の用途としては、上述した分光測定以外にも、各種の用途があり得る。例えば、顕微鏡のように対象物に光照射して観察する用途や、光照射して距離を計測するような用途についても、上記実施形態の広帯域パルス光源装置を使用することができる。
尚、900〜1300nmの波長範囲に含まれるある波長幅に亘って連続スペクトルであることは、材料分析等に特に有効な近赤外域での光測定用として好適なものにする意義がある。但し、分光測定はこの波長範囲以外も種々のものがあり、分光測定装置や分光測定方法としては、この波長範囲に限られるものではない。
1 広帯域パルス光源
10 広帯域パルス光源装置
11 超短パルスレーザ
12 非線形素子
2 伸長素子
21 高分散ファイバ
3 照射光学系
4 受光器
5 演算手段
53 測定プログラム
6 受け板
S 対象物

Claims (7)

  1. 広帯域パルス光源と、
    広帯域パルス光源からの広帯域パルス光のパルス幅をパルス内の経過時間と波長とが1対1で対応するように伸長する伸長素子とを備えており、
    伸長素子は、900nm以上1300nm以下の波長範囲において波長分散値が−30ピコ秒/nm/km以下のシングルモードファイバであることを特徴とする広帯域パルス光源装置。
  2. 前記伸長素子は、コアが石英ガラス製であり、クラッドがフッ素添加の石英ガラス製であることを特徴とする請求項1記載の広帯域パルス光源装置。
  3. 前記伸長素子は、コアの直径が1μm以上5μm以下のファイバであることを特徴とする請求項1又は2記載の広帯域パルス光源装置。
  4. 前記広帯域パルス光源は、スーパーコンティニウム光源であることを特徴とする請求項1乃至3いずれかに記載の広帯域パルス光源装置。
  5. 前記広帯域パルス光源は、900nm以上1300nm以下の波長域において少なくとも10nmの波長幅に亘って連続している光を出力するスーパーコンティニウム光源であることを特徴とする請求項1乃至4いずれかに記載の広帯域パルス光源装置。
  6. 請求項1乃至5いずれかに記載の広帯域パルス光源装置と、
    この広帯域パルス光源装置から出射された広帯域パルス光が照射された対象物からの光が入射する位置に配置された受光器と、
    受光器からの出力信号をスペクトルに変換する演算を行う演算手段とを備えていることを特徴とする分光測定装置。
  7. 請求項1乃至5いずれかに記載の広帯域パルス光源装置から出射された広帯域パルス光を対象物に照射する照射ステップと、
    照射ステップにおいて広帯域パルス光が照射された対象物からの光を受光器で受光する受光ステップと、
    受光器からの出力信号を演算手段によりスペクトルに変換する処理を行う演算ステップとを備えていることを特徴とする分光測定方法。
JP2019096412A 2019-05-22 2019-05-22 広帯域パルス光源装置、分光測定装置及び分光測定方法 Pending JP2020190498A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019096412A JP2020190498A (ja) 2019-05-22 2019-05-22 広帯域パルス光源装置、分光測定装置及び分光測定方法
PCT/JP2020/019251 WO2020235441A1 (ja) 2019-05-22 2020-05-14 広帯域パルス光源装置、分光測定装置及び分光測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096412A JP2020190498A (ja) 2019-05-22 2019-05-22 広帯域パルス光源装置、分光測定装置及び分光測定方法

Publications (1)

Publication Number Publication Date
JP2020190498A true JP2020190498A (ja) 2020-11-26

Family

ID=73453668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096412A Pending JP2020190498A (ja) 2019-05-22 2019-05-22 広帯域パルス光源装置、分光測定装置及び分光測定方法

Country Status (2)

Country Link
JP (1) JP2020190498A (ja)
WO (1) WO2020235441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112452A1 (ja) * 2021-12-15 2023-06-22 浜松ホトニクス株式会社 計測装置及び計測方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544010B (zh) * 2022-02-25 2024-03-01 中国科学院上海光学精密机械研究所 焦斑处超短激光脉冲宽度测量装置与方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002815A (ja) * 2006-06-20 2008-01-10 Univ Nagoya 波長変化パルス光発生装置およびこれを用いた光断層計測装置
JP5361243B2 (ja) * 2008-05-13 2013-12-04 キヤノン株式会社 光断層画像撮像装置
JP6120280B2 (ja) * 2013-08-20 2017-04-26 国立大学法人 東京大学 高速撮影システム及び方法
JP2018205546A (ja) * 2017-06-05 2018-12-27 日本電信電話株式会社 広帯域光発生装置
US11300452B2 (en) * 2017-06-08 2022-04-12 Ushio Denki Kabushiki Kaisha Spectral measurement method, spectral measurement system, and broadband pulsed light source unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112452A1 (ja) * 2021-12-15 2023-06-22 浜松ホトニクス株式会社 計測装置及び計測方法

Also Published As

Publication number Publication date
WO2020235441A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
JP3546917B2 (ja) 超短光パルスの伝達装置、発生装置および伝達方法
JP7115387B2 (ja) 光測定用光源装置、分光測定装置及び分光測定方法
JP7070567B2 (ja) 分光測定方法、分光測定装置及び広帯域パルス光源ユニット
Tosi et al. Rayleigh scattering characterization of a low-loss MgO-based nanoparticle-doped optical fiber for distributed sensing
JP7215060B2 (ja) 分光分析用光源、分光分析装置及び分光分析方法
WO2020235441A1 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
WO2020196688A1 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
CN107064100A (zh) 基于色散时变的光纤拉曼光谱仪
US20220187126A1 (en) Broadband pulsed light source apparatus
JP7147657B2 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
US10816720B2 (en) Optical fiber with specialized figure-of-merit and applications therefor
JP4463828B2 (ja) 光導波路の波長分散の測定方法、測定装置及び測定プログラム
WO2021024890A1 (ja) 広帯域パルス光源装置、分光測定装置、分光測定方法及び分光分析方法
Kang et al. Measuring far-field beam divergence angle of supercontinuum fiber sources
JP2006242634A (ja) 光伝送媒体の分散測定方法及び装置
Wang et al. Dispersive Fourier transformation in the 800 nm spectral range
WO2022064875A1 (ja) アレイ導波路回折格子、広帯域光源装置及び分光測定装置
Zhang et al. Direct characterization of the spatial effective refractive index profile in Bragg gratings
JP7238540B2 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
JP2016173561A (ja) 伝送装置、これを用いた測定装置、装置及び伝送方法
Liang et al. Dispersion measurement of large mode area Yb-doped double-clad fiber
Krivosheina et al. Coherent Optical Frequency Reflectometer Based on a Self-sweeping Fiber Laser for Distributed Measurements
Lee et al. Spectrum-sliced Fourier-domain low-coherence interferometry for measuring the chromatic dispersion of an optical fiber
Tiess et al. Simultaneous spectral and temporal laser pulse characterization in the nanosecond range employing an all-fiber time-delay spectrometer
Boyd et al. Measuring the evolution of femtosecond pulses in fibre optic tapers by interferometric reflectometry