JP2020165256A - Shovel - Google Patents

Shovel Download PDF

Info

Publication number
JP2020165256A
JP2020165256A JP2019069172A JP2019069172A JP2020165256A JP 2020165256 A JP2020165256 A JP 2020165256A JP 2019069172 A JP2019069172 A JP 2019069172A JP 2019069172 A JP2019069172 A JP 2019069172A JP 2020165256 A JP2020165256 A JP 2020165256A
Authority
JP
Japan
Prior art keywords
control
bucket
controller
valve
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019069172A
Other languages
Japanese (ja)
Inventor
春男 呉
Chunnan Wu
春男 呉
裕介 佐野
Yusuke Sano
裕介 佐野
一則 平沼
Kazunori Hiranuma
一則 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2019069172A priority Critical patent/JP2020165256A/en
Publication of JP2020165256A publication Critical patent/JP2020165256A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

To provide a shovel for accurately calculating the weight of a loaded object.SOLUTION: The shovel includes a lower structure, a super structure revolvably mounted on the lower structure, an attachment attached to the super structure, and a control device. The control device calculates the weight of a loaded object by the attachment on the basis of driving force to revolve the super structure.SELECTED DRAWING: Figure 5

Description

本開示は、ショベルに関する。 This disclosure relates to excavators.

例えば、動作部と共に使用する積載質量計算システムであって、動作部の状態を測定するために構成された状態センサと、動作部によって動かされる積載量の質量を計算するために構成された処理装置であって、垂直旋回軸周りで回転する動作部によって引き起こされる、動作部の遠心力、慣性力、および摩擦力に関する質量の計算を補償するため、測定された状態を使用するように構成されている処理装置とを備える、積載質量計算システムが知られている(特許文献1参照)。 For example, a load mass calculation system used together with a moving unit, which is a state sensor configured to measure the state of the operating unit and a processing device configured to calculate the mass of the load moved by the operating unit. And is configured to use the measured state to compensate for the mass calculations for the centrifugal, inertial, and frictional forces of the moving parts caused by the moving parts rotating around the vertical swivel axis. A load mass calculation system including a processing device is known (see Patent Document 1).

特表2011−508187号公報Japanese Patent Publication No. 2011-508187

しかしながら、特許文献1に開示された方法では、積載物の重量を計算する際に補償が必要となるため、補償の精度により誤差の発生も影響され、最終的な重量の算出精度に影響を及ぼすおそれがある。 However, in the method disclosed in Patent Document 1, since compensation is required when calculating the weight of the load, the occurrence of an error is also affected by the accuracy of compensation, which affects the final weight calculation accuracy. There is a risk.

そこで、上記課題に鑑み、精度よく積載物の重量を算出するショベルを提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a shovel that accurately calculates the weight of a load.

上記目的を達成するため、本発明の一実施形態では、下部走行体と、前記下部走行体に旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、制御装置と、を備え、前記制御装置は、前記上部旋回体の旋回駆動力に基づいて、前記アタッチメントによる積載物の重量を算出する、ショベルが提供される。 In order to achieve the above object, in one embodiment of the present invention, a lower traveling body, an upper rotating body rotatably mounted on the lower traveling body, an attachment attached to the upper rotating body, a control device, and the like. The control device is provided with a shovel that calculates the weight of a load by the attachment based on the turning driving force of the upper swing body.

上述の実施形態によれば、精度よく積載物の重量を算出するショベルを提供することができる。 According to the above-described embodiment, it is possible to provide a shovel that accurately calculates the weight of the load.

本実施形態に係る掘削機としてのショベルの側面図である。It is a side view of the excavator as an excavator which concerns on this embodiment. 本実施形態に係るショベルの構成の一例を概略的に示す図である。It is a figure which shows typically an example of the structure of the excavator which concerns on this embodiment. 本実施形態に係るショベルの油圧システムの構成の一例を概略的に示す図である。It is a figure which shows typically an example of the structure of the hydraulic system of the excavator which concerns on this embodiment. 本実施形態に係るショベルの油圧システムのうちの操作系に関する構成部分の一例を概略的に示す図である。It is a figure which shows the example of the component part about the operation system in the hydraulic system of the excavator which concerns on this embodiment schematicly. 本実施形態に係るショベルのうちの土砂荷重検出機能に関する構成部分の一例を概略的に示す図である。It is a figure which shows typically an example of the component part about the earth and sand load detection function in the excavator which concerns on this embodiment. ショベルによるダンプトラックへの土砂の積み込み作業が行われている作業現場の様子の一例を示す模式図。Schematic diagram showing an example of a work site where excavators are loading earth and sand onto a dump truck.

以下、図面を参照して発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the invention will be described with reference to the drawings.

[ショベルの概要]
最初に、図1を参照して、本実施形態に係るショベル100の概要について説明する。
[Outline of excavator]
First, the outline of the excavator 100 according to the present embodiment will be described with reference to FIG.

図1は、本実施形態に係る掘削機としてのショベル100の側面図である。 FIG. 1 is a side view of the excavator 100 as an excavator according to the present embodiment.

尚、図1では、ショベル100は、施工対象の上り傾斜面ESに面する水平面に位置すると共に、後述する目標施工面の一例である上り法面BS(つまり、上り傾斜面ESに対する施工後の法面形状)が併せて記載されている。なお、施工対象の上り傾斜面ESには、目標施工面である上り法面BSの法線方向を示す円筒体(図示せず)が設けられている。 In FIG. 1, the excavator 100 is located on a horizontal plane facing the uphill slope ES to be constructed, and is an uphill slope BS (that is, after construction on the uphill slope ES, which is an example of the target construction surface described later. Slope shape) is also described. The uphill slope ES to be constructed is provided with a cylindrical body (not shown) indicating the normal direction of the uphill slope BS, which is the target construction surface.

本実施形態に係るショベル100は、下部走行体1と、旋回機構2を介して旋回自在に下部走行体1に搭載される上部旋回体3と、アタッチメント(作業機)を構成するブーム4、アーム5、及び、バケット6と、キャビン10を備える。 The excavator 100 according to the present embodiment includes a lower traveling body 1, an upper swinging body 3 mounted on the lower traveling body 1 so as to be swivelable via a swivel mechanism 2, a boom 4 and an arm constituting an attachment (working machine). It includes 5, a bucket 6, and a cabin 10.

下部走行体1は、左右一対のクローラが走行油圧モータ1L,1R(後述する図2参照)でそれぞれ油圧駆動されることにより、ショベル100を走行させる。つまり、一対の走行油圧モータ1L,1R(走行モータの一例)は、被駆動部としての下部走行体1(クローラ)を駆動する。 The lower traveling body 1 travels the excavator 100 by hydraulically driving a pair of left and right crawlers with traveling hydraulic motors 1L and 1R (see FIG. 2 described later), respectively. That is, the pair of traveling hydraulic motors 1L and 1R (an example of the traveling motor) drive the lower traveling body 1 (crawler) as the driven portion.

上部旋回体3は、旋回油圧モータ2A(後述する図2参照)で駆動されることにより、下部走行体1に対して旋回する。つまり、旋回油圧モータ2Aは、被駆動部としての上部旋回体3を駆動する旋回駆動部であり、上部旋回体3の向きを変化させることができる。 The upper swing body 3 turns with respect to the lower traveling body 1 by being driven by the swing hydraulic motor 2A (see FIG. 2 described later). That is, the swing hydraulic motor 2A is a swing drive unit that drives the upper swing body 3 as a driven unit, and can change the direction of the upper swing body 3.

尚、上部旋回体3は、旋回油圧モータ2Aの代わりに、電動機(以下、「旋回用電動機」)により電気駆動されてもよい。つまり、旋回用電動機は、旋回油圧モータ2Aと同様、非駆動部としての上部旋回体3を駆動する旋回駆動部であり、上部旋回体3の向きを変化させることができる。 The upper swing body 3 may be electrically driven by an electric motor (hereinafter, "swivel motor") instead of the swing hydraulic motor 2A. That is, the swivel motor is a swivel drive unit that drives the upper swivel body 3 as a non-drive unit, like the swivel hydraulic motor 2A, and can change the direction of the upper swivel body 3.

ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、エンドアタッチメントとしてのバケット6が上下回動可能に枢着される。ブーム4、アーム5、及びバケット6は、それぞれ、油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。 The boom 4 is pivotally attached to the center of the front portion of the upper swing body 3 so as to be vertically movable, the arm 5 is pivotally attached to the tip of the boom 4 so as to be vertically rotatable, and the tip of the arm 5 is pivotally attached as an end attachment. The bucket 6 is pivotally attached so as to be vertically rotatable. The boom 4, arm 5, and bucket 6 are hydraulically driven by the boom cylinder 7, arm cylinder 8, and bucket cylinder 9 as hydraulic actuators, respectively.

尚、バケット6は、エンドアタッチメントの一例であり、アーム5の先端には、作業内容等に応じて、バケット6の代わりに、他のエンドアタッチメント、例えば、法面用バケット、浚渫用バケット、ブレーカ等が取り付けられてもよい。 The bucket 6 is an example of an end attachment, and the tip of the arm 5 has another end attachment, for example, a slope bucket, a dredging bucket, or a breaker, instead of the bucket 6 depending on the work content or the like. Etc. may be attached.

キャビン10は、オペレータが搭乗する運転室であり、上部旋回体3の前部左側に搭載される。 The cabin 10 is a driver's cab on which the operator is boarded, and is mounted on the front left side of the upper swing body 3.

[ショベルの構成]
次に、図1に加えて、図2を参照して、本実施形態に係るショベル100の具体的な構成について説明する。
[Excavator configuration]
Next, a specific configuration of the excavator 100 according to the present embodiment will be described with reference to FIG. 2 in addition to FIG.

図2は、本実施形態に係るショベル100の構成の一例を概略的に示す図である。 FIG. 2 is a diagram schematically showing an example of the configuration of the excavator 100 according to the present embodiment.

尚、図2において、機械的動力系、作動油ライン、パイロットライン、及び電気制御系は、それぞれ、二重線、実線、破線、及び点線で示されている。 In FIG. 2, the mechanical power system, the hydraulic oil line, the pilot line, and the electric control system are shown by double lines, solid lines, broken lines, and dotted lines, respectively.

本実施形態に係るショベル100の駆動系は、エンジン11と、レギュレータ13と、メインポンプ14と、コントロールバルブ17を含む。また、本実施形態に係るショベル100の油圧駆動系は、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のそれぞれを油圧駆動する走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等の油圧アクチュエータを含む。 The drive system of the excavator 100 according to the present embodiment includes an engine 11, a regulator 13, a main pump 14, and a control valve 17. Further, as described above, the hydraulic drive system of the excavator 100 according to the present embodiment hydraulically drives each of the lower traveling body 1, the upper rotating body 3, the boom 4, the arm 5, and the bucket 6 traveling hydraulic motors 1L, 1R. , Swirling hydraulic motor 2A, boom cylinder 7, arm cylinder 8, bucket cylinder 9, and other hydraulic actuators.

エンジン11は、油圧駆動系におけるメイン動力源であり、例えば、上部旋回体3の後部に搭載される。具体的には、エンジン11は、後述するコントローラ30による直接或いは間接的な制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。 The engine 11 is a main power source in the hydraulic drive system, and is mounted on the rear part of the upper swing body 3, for example. Specifically, the engine 11 rotates constantly at a preset target rotation speed under direct or indirect control by a controller 30, which will be described later, to drive the main pump 14 and the pilot pump 15. The engine 11 is, for example, a diesel engine that uses light oil as fuel.

レギュレータ13は、メインポンプ14の吐出量を制御する。例えば、レギュレータ13は、コントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(傾転角)を調節する。レギュレータ13は、例えば、後述の如く、レギュレータ13L,13Rを含む。 The regulator 13 controls the discharge amount of the main pump 14. For example, the regulator 13 adjusts the angle (tilt angle) of the swash plate of the main pump 14 in response to a control command from the controller 30. The regulator 13 includes regulators 13L and 13R, for example, as described later.

メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、高圧油圧ラインを通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、上述の如く、コントローラ30による制御下で、レギュレータ13により斜板の傾転角が調節されることでピストンのストローク長が調整され、吐出流量(吐出圧)が制御される。メインポンプ14は、例えば、後述の如く、メインポンプ14L,14Rを含む。 Like the engine 11, the main pump 14 is mounted on the rear part of the upper swing body 3 and supplies hydraulic oil to the control valve 17 through a high-pressure hydraulic line, for example. The main pump 14 is driven by the engine 11 as described above. The main pump 14 is, for example, a variable displacement hydraulic pump, and as described above, the stroke length of the piston is adjusted by adjusting the tilt angle of the swash plate by the regulator 13 under the control of the controller 30, and the pump is discharged. The flow rate (discharge pressure) is controlled. The main pump 14 includes, for example, the main pumps 14L and 14R as described later.

コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載され、オペレータによる操作装置26に対する操作に応じて、油圧駆動系の制御を行う油圧制御装置である。コントロールバルブ17は、上述の如く、高圧油圧ラインを介してメインポンプ14と接続され、メインポンプ14から供給される作動油を、操作装置26の操作状態に応じて、油圧アクチュエータ(走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9)に選択的に供給する。具体的には、コントロールバルブ17は、メインポンプ14から油圧アクチュエータのそれぞれに供給される作動油の流量と流れる方向を制御する制御弁171〜176を含む。より具体的には、制御弁171は、走行油圧モータ1Lに対応し、制御弁172は、走行油圧モータ1Rに対応し、制御弁173は、旋回油圧モータ2Aに対応する。また、制御弁174は、バケットシリンダ9に対応し、制御弁175は、ブームシリンダ7に対応し、制御弁176は、アームシリンダ8に対応する。また、制御弁175は、例えば、後述の如く、制御弁175L,175Rを含み、制御弁176は、例えば、後述の如く、制御弁176L,176Rを含む。制御弁171〜176の詳細は、後述する。 The control valve 17 is, for example, a hydraulic control device mounted in the central portion of the upper swing body 3 and controls the hydraulic drive system in response to an operator's operation on the operating device 26. As described above, the control valve 17 is connected to the main pump 14 via the high-pressure hydraulic line, and the hydraulic oil supplied from the main pump 14 is supplied to the hydraulic actuator (running hydraulic motor 1L) according to the operating state of the operating device 26. , 1R, swing hydraulic motor 2A, boom cylinder 7, arm cylinder 8, and bucket cylinder 9) are selectively supplied. Specifically, the control valve 17 includes control valves 171 to 176 that control the flow rate and flow direction of the hydraulic oil supplied from the main pump 14 to each of the hydraulic actuators. More specifically, the control valve 171 corresponds to the traveling hydraulic motor 1L, the control valve 172 corresponds to the traveling hydraulic motor 1R, and the control valve 173 corresponds to the swing hydraulic motor 2A. Further, the control valve 174 corresponds to the bucket cylinder 9, the control valve 175 corresponds to the boom cylinder 7, and the control valve 176 corresponds to the arm cylinder 8. Further, the control valve 175 includes, for example, control valves 175L and 175R as described later, and the control valve 176 includes, for example, control valves 176L and 176R as described later. Details of the control valves 171 to 176 will be described later.

本実施形態に係るショベル100の操作系は、パイロットポンプ15と、操作装置26を含む。また、ショベル100の操作系は、後述するコントローラ30によるマシンコントロール機能に関する構成として、シャトル弁32を含む。 The operating system of the excavator 100 according to the present embodiment includes a pilot pump 15 and an operating device 26. Further, the operation system of the excavator 100 includes a shuttle valve 32 as a configuration related to a machine control function by the controller 30, which will be described later.

パイロットポンプ15は、例えば、上部旋回体3の後部に搭載され、パイロットラインを介して操作装置26にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。 The pilot pump 15 is mounted on the rear portion of the upper swing body 3, for example, and supplies the pilot pressure to the operating device 26 via the pilot line. The pilot pump 15 is, for example, a fixed-capacity hydraulic pump, and is driven by the engine 11 as described above.

操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各種動作要素(下部走行体1、上部旋回体3、ブーム4、アーム5、バケット6等)の操作を行うための操作入力手段である。換言すれば、操作装置26は、オペレータがそれぞれの動作要素を駆動する油圧アクチュエータ(即ち、走行油圧モータ1L,1R、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、バケットシリンダ9等)の操作を行うための操作入力手段である。操作装置26は、その二次側のパイロットラインを通じて直接的に、或いは、二次側のパイロットラインに設けられる後述のシャトル弁32を介して間接的に、コントロールバルブ17にそれぞれ接続される。これにより、コントロールバルブ17には、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に応じたパイロット圧が入力されうる。そのため、コントロールバルブ17は、操作装置26における操作状態に応じて、それぞれの油圧アクチュエータを駆動することができる。操作装置26は、例えば、アーム5(アームシリンダ8)を操作するレバー装置を含む。また、操作装置26は、例えば、ブーム4(ブームシリンダ7)、バケット6(バケットシリンダ9)、上部旋回体3(旋回油圧モータ2A)のそれぞれを操作するレバー装置26A〜26Cを含む(図4参照)。また、操作装置26は、例えば、下部走行体1の左右一対のクローラ(走行油圧モータ1L,1R)のそれぞれを操作するレバー装置やペダル装置を含む。 The operation device 26 is provided near the driver's seat of the cabin 10, and is an operation input means for the operator to operate various operation elements (lower traveling body 1, upper turning body 3, boom 4, arm 5, bucket 6, etc.). Is. In other words, the operating device 26 operates the hydraulic actuators (that is, traveling hydraulic motors 1L, 1R, swivel hydraulic motor 2A, boom cylinder 7, arm cylinder 8, bucket cylinder 9, etc.) in which the operator drives each operating element. It is an operation input means for performing. The operating device 26 is connected to the control valve 17 directly through the pilot line on the secondary side thereof or indirectly via the shuttle valve 32 described later provided on the pilot line on the secondary side. As a result, the pilot pressure according to the operating state of the lower traveling body 1, the upper swinging body 3, the boom 4, the arm 5, the bucket 6 and the like in the operating device 26 can be input to the control valve 17. Therefore, the control valve 17 can drive each hydraulic actuator according to the operating state of the operating device 26. The operating device 26 includes, for example, a lever device for operating the arm 5 (arm cylinder 8). Further, the operating device 26 includes, for example, lever devices 26A to 26C for operating each of the boom 4 (boom cylinder 7), the bucket 6 (bucket cylinder 9), and the upper swing body 3 (swing hydraulic motor 2A) (FIG. 4). reference). Further, the operating device 26 includes, for example, a lever device and a pedal device for operating each of the pair of left and right crawlers (traveling hydraulic motors 1L, 1R) of the lower traveling body 1.

シャトル弁32は、2つの入口ポートと1つの出口ポートを有し、2つの入口ポートに入力されたパイロット圧のうちの高い方のパイロット圧を有する作動油を出口ポートに出力させる。シャトル弁32は、2つの入口ポートのうちの一方が操作装置26に接続され、他方が比例弁31に接続される。シャトル弁32の出口ポートは、パイロットラインを通じて、コントロールバルブ17内の対応する制御弁のパイロットポートに接続されている(詳細は、図4参照)。そのため、シャトル弁32は、操作装置26が生成するパイロット圧と比例弁31が生成するパイロット圧のうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。つまり、後述するコントローラ30は、操作装置26から出力される二次側のパイロット圧よりも高いパイロット圧を比例弁31から出力させることにより、オペレータによる操作装置26の操作に依らず、対応する制御弁を制御し、各種動作要素の動作を制御することができる。シャトル弁32は、例えば、後述の如く、シャトル弁32AL,32AR,32BL,32BR,32CL,32CRを含む。 The shuttle valve 32 has two inlet ports and one outlet port, and outputs hydraulic oil having the higher pilot pressure of the pilot pressures input to the two inlet ports to the outlet port. In the shuttle valve 32, one of the two inlet ports is connected to the operating device 26 and the other is connected to the proportional valve 31. The outlet port of the shuttle valve 32 is connected through the pilot line to the pilot port of the corresponding control valve in the control valve 17 (see FIG. 4 for details). Therefore, the shuttle valve 32 can make the higher of the pilot pressure generated by the operating device 26 and the pilot pressure generated by the proportional valve 31 act on the pilot port of the corresponding control valve. That is, the controller 30, which will be described later, outputs a pilot pressure higher than the pilot pressure on the secondary side output from the operating device 26 from the proportional valve 31, so that the corresponding control is performed regardless of the operation of the operating device 26 by the operator. It is possible to control the valve and control the operation of various operating elements. The shuttle valve 32 includes, for example, shuttle valves 32AL, 32AR, 32BL, 32BR, 32CL, 32CR as described later.

尚、操作装置26(左操作レバー、右操作レバー、左走行レバー、及び右走行レバー)は、パイロット圧を出力する油圧パイロット式ではなく、電気信号を出力する電気式であってもよい。この場合、操作装置26からの電気信号は、コントローラ30に入力され、コントローラ30は、入力される電気信号に応じて、コントロールバルブ17内の各制御弁171〜176を制御することにより、操作装置26に対する操作内容に応じた、各種油圧アクチュエータの動作を実現する。例えば、コントロールバルブ17内の制御弁171〜176は、コントローラ30からの指令により駆動する電磁ソレノイド式スプール弁であってよい。また、例えば、パイロットポンプ15と各制御弁171〜176のパイロットポートとの間には、コントローラ30からの電気信号に応じて動作する電磁弁が配置されてもよい。この場合、電気式の操作装置26を用いた手動操作が行われると、コントローラ30は、その操作量(例えば、レバー操作量)に対応する電気信号によって、当該電磁弁を制御しパイロット圧を増減させることで、操作装置26に対する操作内容に合わせて、各制御弁171〜176を動作させることができる。 The operating device 26 (left operating lever, right operating lever, left traveling lever, and right traveling lever) may be an electric type that outputs an electric signal instead of a hydraulic pilot type that outputs a pilot pressure. In this case, the electric signal from the operating device 26 is input to the controller 30, and the controller 30 controls each of the control valves 171 to 176 in the control valve 17 according to the input electric signal. The operation of various hydraulic actuators is realized according to the operation content with respect to 26. For example, the control valves 171 to 176 in the control valve 17 may be electromagnetic solenoid type spool valves driven by a command from the controller 30. Further, for example, an electromagnetic valve that operates in response to an electric signal from the controller 30 may be arranged between the pilot pump 15 and the pilot ports of the control valves 171 to 176. In this case, when a manual operation is performed using the electric operation device 26, the controller 30 controls the solenoid valve by an electric signal corresponding to the operation amount (for example, the lever operation amount) to increase or decrease the pilot pressure. By doing so, each control valve 171 to 176 can be operated according to the operation content for the operation device 26.

本実施形態に係るショベル100の制御系は、コントローラ30と、吐出圧センサ28と、操作圧センサ29と、比例弁31と、表示装置40と、入力装置42と、音声出力装置43と、記憶装置47と、ブーム角度センサS1と、アーム角度センサS2と、バケット角度センサS3と、機体傾斜センサS4と、旋回状態センサS5と、撮像装置S6と、測位装置P1と、通信装置T1を含む。 The control system of the excavator 100 according to the present embodiment includes a controller 30, a discharge pressure sensor 28, an operating pressure sensor 29, a proportional valve 31, a display device 40, an input device 42, an audio output device 43, and storage. The device 47, a boom angle sensor S1, an arm angle sensor S2, a bucket angle sensor S3, a machine body tilt sensor S4, a turning state sensor S5, an image pickup device S6, a positioning device P1, and a communication device T1 are included.

コントローラ30(制御装置の一例)は、例えば、キャビン10内に設けられ、ショベル100の駆動制御を行う。コントローラ30は、その機能が任意のハードウェア、ソフトウェア、或いは、その組み合わせにより実現されてよい。例えば、コントローラ30は、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、不揮発性の補助記憶装置と、各種入出力インターフェース等を含むマイクロコンピュータを中心に構成される。コントローラ30は、例えば、ROMや不揮発性の補助記憶装置に格納される各種プログラムをCPU上で実行することにより各種機能を実現する。 The controller 30 (an example of a control device) is provided in the cabin 10, for example, and controls the drive of the excavator 100. The function of the controller 30 may be realized by any hardware, software, or a combination thereof. For example, the controller 30 is centered on a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a non-volatile auxiliary storage device, various input / output interfaces, and the like. It is composed. The controller 30 realizes various functions by executing various programs stored in a ROM or a non-volatile auxiliary storage device on the CPU, for example.

例えば、コントローラ30は、オペレータ等の所定操作により予め設定される作業モード等に基づき、目標回転数を設定し、エンジン11を一定回転させる駆動制御を行う。 For example, the controller 30 sets a target rotation speed based on a work mode or the like preset by a predetermined operation of an operator or the like, and performs drive control for rotating the engine 11 at a constant speed.

また、例えば、コントローラ30は、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。 Further, for example, the controller 30 outputs a control command to the regulator 13 as needed to change the discharge amount of the main pump 14.

また、例えば、コントローラ30は、例えば、オペレータによる操作装置26を通じたショベル100の手動操作をガイド(案内)するマシンガイダンス機能に関する制御を行う。また、コントローラ30は、例えば、オペレータによる操作装置26を通じたショベル100の手動操作を自動的に支援するマシンコントロール機能に関する制御を行う。つまり、コントローラ30は、マシンガイダンス機能及びマシンコントロール機能に関する機能部として、マシンガイダンス部50を含む。また、コントローラ30は、後述する土砂荷重処理部60を含む。 Further, for example, the controller 30 controls the machine guidance function for guiding the manual operation of the excavator 100 through the operating device 26 by the operator, for example. Further, the controller 30 controls, for example, a machine control function that automatically supports the manual operation of the excavator 100 through the operating device 26 by the operator. That is, the controller 30 includes the machine guidance unit 50 as a functional unit related to the machine guidance function and the machine control function. Further, the controller 30 includes a sediment load processing unit 60, which will be described later.

尚、コントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、コントローラ30の機能は、複数のコントローラにより分散される態様で実現されてもよい。例えば、マシンガイダンス機能及びマシンコントロール機能は、専用のコントローラ(制御装置)により実現されてもよい。 A part of the function of the controller 30 may be realized by another controller (control device). That is, the function of the controller 30 may be realized in a manner distributed by a plurality of controllers. For example, the machine guidance function and the machine control function may be realized by a dedicated controller (control device).

吐出圧センサ28は、メインポンプ14の吐出圧を検出する。吐出圧センサ28により検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28は、例えば、後述の如く、吐出圧センサ28L,28Rを含む。 The discharge pressure sensor 28 detects the discharge pressure of the main pump 14. The detection signal corresponding to the discharge pressure detected by the discharge pressure sensor 28 is taken into the controller 30. The discharge pressure sensor 28 includes, for example, discharge pressure sensors 28L and 28R as described later.

操作圧センサ29は、上述の如く、操作装置26の二次側のパイロット圧、即ち、操作装置26におけるそれぞれの動作要素(即ち、油圧アクチュエータ)に関する操作状態(例えば、操作方向や操作量等の操作内容)に対応するパイロット圧を検出する。操作圧センサ29による操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に対応するパイロット圧の検出信号は、コントローラ30に取り込まれる。操作圧センサ29は、例えば、後述の如く、操作圧センサ29A〜29Cを含む。 As described above, the operating pressure sensor 29 has a pilot pressure on the secondary side of the operating device 26, that is, an operating state (for example, an operating direction, an operating amount, etc.) relating to each operating element (that is, a hydraulic actuator) in the operating device 26. The pilot pressure corresponding to the operation content) is detected. The pilot pressure detection signal corresponding to the operating state of the lower traveling body 1, the upper swinging body 3, the boom 4, the arm 5, the bucket 6 and the like in the operating device 26 by the operating pressure sensor 29 is taken into the controller 30. The operating pressure sensor 29 includes, for example, operating pressure sensors 29A to 29C as described later.

尚、操作圧センサ29の代わりに、操作装置26におけるそれぞれの動作要素に関する操作状態を検出可能な他のセンサ、例えば、レバー装置26A〜26C等の操作量(傾倒量)や傾倒方向を検出可能なエンコーダやポテンショメータ等が設けられてもよい。 Instead of the operating pressure sensor 29, it is possible to detect the operating amount (tilting amount) and tilting direction of other sensors capable of detecting the operating state of each operating element in the operating device 26, for example, the lever devices 26A to 26C. An encoder, a potentiometer, or the like may be provided.

比例弁31は、パイロットポンプ15とシャトル弁32とを接続するパイロットラインに設けられ、その流路面積(作動油が通流可能な断面積)を変更できるように構成される。比例弁31は、コントローラ30から入力される制御指令に応じて動作する。これにより、コントローラ30は、オペレータにより操作装置26(具体的には、レバー装置26A〜26C)が操作されていない場合であっても、パイロットポンプ15から吐出される作動油を、比例弁31及びシャトル弁32を介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。比例弁31は、例えば、後述の如く、比例弁31AL,31AR,31BL,31BR,31CL,31CRを含む。 The proportional valve 31 is provided in the pilot line connecting the pilot pump 15 and the shuttle valve 32, and is configured so that the flow path area (cross-sectional area through which hydraulic oil can flow) can be changed. The proportional valve 31 operates in response to a control command input from the controller 30. As a result, the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the proportional valve 31 and the proportional valve 31 even when the operating devices 26 (specifically, the lever devices 26A to 26C) are not operated by the operator. It can be supplied to the pilot port of the corresponding control valve in the control valve 17 via the shuttle valve 32. The proportional valve 31 includes, for example, proportional valves 31AL, 31AR, 31BL, 31BR, 31CL, 31CR as described later.

表示装置40は、キャビン10内の着座したオペレータから視認し易い場所に設けられ、コントローラ30による制御下で、各種情報画像を表示する。表示装置40は、CAN(Controller Area Network)等の車載通信ネットワークを介してコントローラ30に接続されていてもよいし、一対一の専用線を介してコントローラ30に接続されていてもよい。 The display device 40 is provided in the cabin 10 at a location that is easily visible to the seated operator, and displays various information images under the control of the controller 30. The display device 40 may be connected to the controller 30 via an in-vehicle communication network such as CAN (Controller Area Network), or may be connected to the controller 30 via a one-to-one dedicated line.

入力装置42は、キャビン10内の着座したオペレータから手が届く範囲に設けられ、オペレータによる各種操作入力を受け付け、操作入力に応じた信号をコントローラ30に出力する。入力装置42は、各種情報画像を表示する表示装置のディスプレイに実装されるタッチパネル、レバー装置26A〜26Cのレバー部の先端に設けられるノブスイッチ、表示装置40の周囲に設置されるボタンスイッチ、レバー、トグル、回転ダイヤル等を含む。入力装置42に対する操作内容に対応する信号は、コントローラ30に取り込まれる。 The input device 42 is provided within reach of a seated operator in the cabin 10, receives various operation inputs by the operator, and outputs a signal corresponding to the operation input to the controller 30. The input device 42 includes a touch panel mounted on a display of a display device that displays various information images, a knob switch provided at the tip of a lever portion of lever devices 26A to 26C, a button switch installed around the display device 40, and a lever. , Toggle, rotary dial, etc. The signal corresponding to the operation content for the input device 42 is taken into the controller 30.

音声出力装置43は、例えば、キャビン10内に設けられ、コントローラ30と接続され、コントローラ30による制御下で、音声を出力する。音声出力装置43は、例えば、スピーカやブザー等である。音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力する。 The audio output device 43 is provided in the cabin 10, for example, is connected to the controller 30, and outputs audio under the control of the controller 30. The audio output device 43 is, for example, a speaker, a buzzer, or the like. The voice output device 43 outputs various information by voice in response to a voice output command from the controller 30.

記憶装置47は、例えば、キャビン10内に設けられ、コントローラ30による制御下で、各種情報を記憶する。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。記憶装置47は、ショベル100の動作中に各種機器が出力する情報を記憶してもよく、ショベル100の動作が開始される前に各種機器を介して取得する情報を記憶してもよい。記憶装置47は、例えば、通信装置T1等を介して取得される、或いは、入力装置42等を通じて設定される目標施工面に関するデータを記憶していてもよい。当該目標施工面は、ショベル100のオペレータにより設定(保存)されてもよいし、施工管理者等により設定されてもよい。 The storage device 47 is provided in the cabin 10, for example, and stores various information under the control of the controller 30. The storage device 47 is a non-volatile storage medium such as a semiconductor memory. The storage device 47 may store information output by various devices during the operation of the excavator 100, or may store information acquired through the various devices before the operation of the excavator 100 is started. The storage device 47 may store data regarding the target construction surface acquired via the communication device T1 or the like or set through the input device 42 or the like, for example. The target construction surface may be set (saved) by the operator of the excavator 100, or may be set by the construction manager or the like.

ブーム角度センサS1は、ブーム4に取り付けられ、ブーム4の上部旋回体3に対する俯仰角度(以下、「ブーム角度」)、例えば、側面視において、上部旋回体3の旋回平面に対してブーム4の両端の支点を結ぶ直線が成す角度を検出する。ブーム角度センサS1は、例えば、ロータリエンコーダ、加速度センサ、6軸センサ、IMU(Inertial Measurement Unit:慣性計測装置)等を含んでよい。また、ブーム角度センサS1は、可変抵抗器を利用したポテンショメータ、ブーム角度に対応する油圧シリンダ(ブームシリンダ7)のストローク量を検出するシリンダセンサ等を含んでもよい。以下、アーム角度センサS2、バケット角度センサS3についても同様である。ブーム角度センサS1によるブーム角度に対応する検出信号は、コントローラ30に取り込まれる。 The boom angle sensor S1 is attached to the boom 4, and the depression / elevation angle of the boom 4 with respect to the upper swing body 3 (hereinafter, “boom angle”), for example, in a side view, the boom 4 has a swing plane of the upper swing body 3. Detects the angle formed by the straight line connecting the fulcrums at both ends. The boom angle sensor S1 may include, for example, a rotary encoder, an acceleration sensor, a 6-axis sensor, an IMU (Inertial Measurement Unit), and the like. Further, the boom angle sensor S1 may include a potentiometer using a variable resistor, a cylinder sensor for detecting the stroke amount of the hydraulic cylinder (boom cylinder 7) corresponding to the boom angle, and the like. Hereinafter, the same applies to the arm angle sensor S2 and the bucket angle sensor S3. The detection signal corresponding to the boom angle by the boom angle sensor S1 is taken into the controller 30.

アーム角度センサS2は、アーム5に取り付けられ、アーム5のブーム4に対する回動角度(以下、「アーム角度」)、例えば、側面視において、ブーム4の両端の支点を結ぶ直線に対してアーム5の両端の支点を結ぶ直線が成す角度を検出する。アーム角度センサS2によるアーム角度に対応する検出信号は、コントローラ30に取り込まれる。 The arm angle sensor S2 is attached to the arm 5, and the rotation angle of the arm 5 with respect to the boom 4 (hereinafter, “arm angle”), for example, the arm 5 with respect to a straight line connecting the fulcrums at both ends of the boom 4 in a side view. Detects the angle formed by the straight line connecting the fulcrums at both ends of. The detection signal corresponding to the arm angle by the arm angle sensor S2 is taken into the controller 30.

バケット角度センサS3は、バケット6に取り付けられ、バケット6のアーム5に対する回動角度(以下、「バケット角度」)、例えば、側面視において、アーム5の両端の支点を結ぶ直線に対してバケット6の支点と先端(刃先)とを結ぶ直線が成す角度を検出する。バケット角度センサS3によるバケット角度に対応する検出信号は、コントローラ30に取り込まれる。 The bucket angle sensor S3 is attached to the bucket 6, and the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter, “bucket angle”), for example, the bucket 6 with respect to a straight line connecting the fulcrums at both ends of the arm 5 in a side view. Detects the angle formed by the straight line connecting the fulcrum and the tip (blade edge). The detection signal corresponding to the bucket angle by the bucket angle sensor S3 is taken into the controller 30.

機体傾斜センサS4は、水平面に対する機体(上部旋回体3或いは下部走行体1)の傾斜状態を検出する。機体傾斜センサS4は、例えば、上部旋回体3に取り付けられ、ショベル100(即ち、上部旋回体3)の前後方向及び左右方向の2軸回りの傾斜角度(以下、「前後傾斜角」及び「左右傾斜角」)を検出する。機体傾斜センサS4は、例えば、ロータリエンコーダ、加速度センサ、6軸センサ、IMU等を含んでよい。機体傾斜センサS4による傾斜角度(前後傾斜角及び左右傾斜角)に対応する検出信号は、コントローラ30に取り込まれる。 The airframe tilt sensor S4 detects the tilted state of the airframe (upper swivel body 3 or lower traveling body 1) with respect to the horizontal plane. The airframe tilt sensor S4 is attached to, for example, the upper swing body 3, and tilt angles around two axes in the front-rear direction and the left-right direction of the excavator 100 (that is, the upper swing body 3) (hereinafter, “front-back tilt angle” and “left-right”. Tilt angle ") is detected. The airframe tilt sensor S4 may include, for example, a rotary encoder, an acceleration sensor, a 6-axis sensor, an IMU, and the like. The detection signal corresponding to the tilt angle (front-back tilt angle and left-right tilt angle) by the aircraft tilt sensor S4 is taken into the controller 30.

旋回状態センサS5は、上部旋回体3の旋回状態に関する検出情報を出力する。旋回状態センサS5は、例えば、上部旋回体3の旋回角速度及び旋回角度を検出する。旋回状態センサS5は、例えば、ジャイロセンサ、レゾルバ、ロータリエンコーダ等を含んでよい。旋回状態センサS5による上部旋回体3の旋回角度や旋回角速度に対応する検出信号は、コントローラ30に取り込まれる。 The swivel state sensor S5 outputs detection information regarding the swivel state of the upper swivel body 3. The turning state sensor S5 detects, for example, the turning angular velocity and the turning angle of the upper swing body 3. The swivel state sensor S5 may include, for example, a gyro sensor, a resolver, a rotary encoder, and the like. The detection signal corresponding to the turning angle and the turning angular velocity of the upper turning body 3 by the turning state sensor S5 is taken into the controller 30.

空間認識装置としての撮像装置S6は、ショベル100の周辺を撮像する。撮像装置S6は、ショベル100の前方を撮像するカメラS6F、ショベル100の左方を撮像するカメラS6L、ショベル100の右方を撮像するカメラS6R、及び、ショベル100の後方を撮像するカメラS6Bを含む。 The imaging device S6 as a space recognition device images the periphery of the excavator 100. The image pickup apparatus S6 includes a camera S6F that images the front of the excavator 100, a camera S6L that images the left side of the excavator 100, a camera S6R that images the right side of the excavator 100, and a camera S6B that images the rear of the excavator 100. ..

カメラS6Fは、例えば、キャビン10の天井、即ち、キャビン10の内部に取り付けられている。また、カメラS6Fは、キャビン10の屋根、ブーム4の側面等、キャビン10の外部に取り付けられていてもよい。カメラS6Lは、上部旋回体3の上面左端に取り付けられ、カメラS6Rは、上部旋回体3の上面右端に取り付けられ、カメラS6Bは、上部旋回体3の上面後端に取り付けられている。 The camera S6F is mounted, for example, on the ceiling of the cabin 10, that is, inside the cabin 10. Further, the camera S6F may be attached to the outside of the cabin 10, such as the roof of the cabin 10 and the side surface of the boom 4. The camera S6L is attached to the upper left end of the upper swivel body 3, the camera S6R is attached to the upper right end of the upper swivel body 3, and the camera S6B is attached to the upper surface rear end of the upper swivel body 3.

撮像装置S6(カメラS6F,S6B,S6L,S6R)は、それぞれ、例えば、非常に広い画角を有する単眼の広角カメラである。また、撮像装置S6は、ステレオカメラや距離画像カメラ等であってもよい。撮像装置S6による撮像画像は、表示装置40を介してコントローラ30に取り込まれる。 The image pickup apparatus S6 (cameras S6F, S6B, S6L, S6R) is, for example, a monocular wide-angle camera having a very wide angle of view. Further, the image pickup device S6 may be a stereo camera, a distance image camera, or the like. The image captured by the image pickup device S6 is captured by the controller 30 via the display device 40.

空間認識装置としての撮像装置S6は、物体検知装置として機能してもよい。この場合、撮像装置S6は、ショベル100の周囲に存在する物体を検知してよい。検知対象の物体には、例えば、人、動物、車両、建設機械、建造物、穴等が含まれうる。また、撮像装置S6は、撮像装置S6又はショベル100から認識された物体までの距離を算出してもよい。物体検知装置としての撮像装置S6には、例えば、ステレオカメラ、距離画像センサ等が含まれうる。そして、空間認識装置は、例えば、CCDやCMOS等の撮像素子を有する単眼カメラであり、撮像した画像を表示装置40に出力する。また、空間認識装置は、空間認識装置又はショベル100から認識された物体までの距離を算出するように構成されていてもよい。また、撮像装置S6に加えて、空間認識装置として、例えば、超音波センサ、ミリ波レーダ、LIDAR、赤外線センサ等の他の物体検知装置が設けられてもよい。空間認識装置80としてミリ波レーダ、超音波センサ、又はレーザレーダ等を利用する場合には、多数の信号(レーザ光等)を物体に発信し、その反射信号を受信することで、反射信号から物体の距離及び方向を検出してもよい。 The image pickup device S6 as a space recognition device may function as an object detection device. In this case, the image pickup apparatus S6 may detect an object existing around the excavator 100. The object to be detected may include, for example, a person, an animal, a vehicle, a construction machine, a building, a hole, or the like. Further, the image pickup device S6 may calculate the distance from the image pickup device S6 or the excavator 100 to the recognized object. The image pickup device S6 as the object detection device may include, for example, a stereo camera, a distance image sensor, and the like. The space recognition device is, for example, a monocular camera having an image sensor such as a CCD or CMOS, and outputs the captured image to the display device 40. Further, the space recognition device may be configured to calculate the distance from the space recognition device or the excavator 100 to the recognized object. Further, in addition to the image pickup device S6, other object detection devices such as an ultrasonic sensor, a millimeter wave radar, a lidar, and an infrared sensor may be provided as the space recognition device. When a millimeter-wave radar, an ultrasonic sensor, a laser radar, or the like is used as the space recognition device 80, a large number of signals (laser light, etc.) are transmitted to an object, and the reflected signal is received from the reflected signal. The distance and direction of the object may be detected.

尚、撮像装置S6は、直接、コントローラ30と通信可能に接続されてもよい。 The image pickup device S6 may be directly connected to the controller 30 in a communicable manner.

測位装置P1は、上部旋回体3の位置及び向きを測定する。測位装置P1は、例えば、GNSS(Global Navigation Satellite System)コンパスであり、上部旋回体3の位置及び向きを検出し、上部旋回体3の位置及び向きに対応する検出信号は、コントローラ30に取り込まれる。また、測位装置P1の機能のうちの上部旋回体3の向きを検出する機能は、上部旋回体3に取り付けられた方位センサにより代替されてもよい。 The positioning device P1 measures the position and orientation of the upper swing body 3. The positioning device P1 is, for example, a GNSS (Global Navigation Satellite System) compass, which detects the position and orientation of the upper swivel body 3, and the detection signal corresponding to the position and orientation of the upper swivel body 3 is taken into the controller 30. .. Further, the function of detecting the direction of the upper swing body 3 among the functions of the positioning device P1 may be replaced by the azimuth sensor attached to the upper swing body 3.

通信装置T1は、基地局を末端とする移動体通信網、衛星通信網、インターネット網等を含む所定のネットワークを通じて外部機器と通信を行う。通信装置T1は、例えば、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の移動体通信規格に対応する移動体通信モジュールや、衛星通信網に接続するための衛星通信モジュール等である。 The communication device T1 communicates with an external device through a predetermined network including a mobile communication network having a base station as a terminal, a satellite communication network, an Internet network, and the like. The communication device T1 is, for example, a mobile communication module corresponding to mobile communication standards such as LTE (Long Term Evolution), 4G (4th Generation), and 5G (5th Generation), and satellite communication for connecting to a satellite communication network. Modules, etc.

マシンガイダンス部50は、例えば、マシンガイダンス機能に関するショベル100の制御を実行する。マシンガイダンス部50は、例えば、目標施工面とアタッチメントの先端部、具体的には、エンドアタッチメントの作業部位との距離等の作業情報を、表示装置40や音声出力装置43等を通じて、オペレータに伝える。目標施工面に関するデータは、例えば、上述の如く、記憶装置47に予め記憶されている。目標施工面に関するデータは、例えば、基準座標系で表現されている。基準座標系は、例えば、世界測地系である。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向に、Y軸を東経90度の方向に、そして、Z軸を北極の方向にとる三次元直交XYZ座標系である。オペレータは、施工現場の任意の点を基準点と定め、入力装置42を通じて、基準点との相対的な位置関係により目標施工面を設定してよい。バケット6の作業部位は、例えば、バケット6の爪先、バケット6の背面等である。また、エンドアタッチメントとして、バケット6の代わりに、例えば、ブレーカが採用される場合、ブレーカの先端部が作業部位に相当する。マシンガイダンス部50は、表示装置40、音声出力装置43等を通じて、作業情報をオペレータに通知し、オペレータによる操作装置26を通じたショベル100の操作をガイドする。 The machine guidance unit 50 controls, for example, the excavator 100 regarding the machine guidance function. The machine guidance unit 50 conveys work information such as the distance between the target construction surface and the tip of the attachment, specifically, the work part of the end attachment, to the operator through the display device 40, the voice output device 43, or the like. .. The data regarding the target construction surface is stored in advance in the storage device 47, for example, as described above. The data regarding the target construction surface is represented by, for example, a reference coordinate system. The reference coordinate system is, for example, the world geodetic system. The world geodetic system is a three-dimensional orthogonal coordinate with the origin at the center of the earth, the X-axis in the direction of the intersection of the Greenwich meridian and the equator, the Y-axis in the direction of 90 degrees east longitude, and the Z-axis in the direction of the North Pole. It is an XYZ coordinate system. The operator may set an arbitrary point on the construction site as a reference point, and set the target construction surface through the input device 42 according to the relative positional relationship with the reference point. The working part of the bucket 6 is, for example, the toe of the bucket 6, the back surface of the bucket 6, and the like. Further, when a breaker is adopted instead of the bucket 6 as the end attachment, for example, the tip portion of the breaker corresponds to the work part. The machine guidance unit 50 notifies the operator of work information through the display device 40, the voice output device 43, and the like, and guides the operator to operate the excavator 100 through the operation device 26.

また、マシンガイダンス部50は、例えば、マシンコントロール機能に関するショベル100の制御を実行する。マシンガイダンス部50は、例えば、オペレータが手動で掘削操作を行っているときに、目標施工面とバケット6の先端位置とが一致するように、ブーム4、アーム5、及び、バケット6の少なくとも一つを自動的に動作させてもよい。 Further, the machine guidance unit 50 executes control of the excavator 100 regarding the machine control function, for example. The machine guidance unit 50 is, for example, at least one of the boom 4, the arm 5, and the bucket 6 so that the target construction surface and the tip position of the bucket 6 are aligned when the operator is manually performing the excavation operation. One may be operated automatically.

マシンガイダンス部50は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回状態センサS5、撮像装置S6、測位装置P1、通信装置T1及び入力装置42等から情報を取得する。そして、マシンガイダンス部50は、例えば、取得した情報に基づき、バケット6と目標施工面との間の距離を算出し、音声出力装置43からの音声及び表示装置40に表示される画像により、バケット6と目標施工面との間の距離の程度をオペレータに通知したり、アタッチメントの先端部(具体的には、バケット6の爪先や背面等の作業部位)が目標施工面に一致するように、アタッチメントの動作を自動的に制御したりする。マシンガイダンス部50は、当該マシンガイダンス機能及びマシンコントロール機能に関する詳細な機能構成として、位置算出部51と、距離算出部52と、情報伝達部53と、自動制御部54と、旋回角度算出部55と、相対角度算出部56と、を含む。 The machine guidance unit 50 receives information from the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the body tilt sensor S4, the turning state sensor S5, the image pickup device S6, the positioning device P1, the communication device T1, the input device 42, and the like. get. Then, the machine guidance unit 50 calculates, for example, the distance between the bucket 6 and the target construction surface based on the acquired information, and the bucket is based on the sound from the sound output device 43 and the image displayed on the display device 40. Notify the operator of the degree of distance between 6 and the target construction surface, and make sure that the tip of the attachment (specifically, the work part such as the toe or back of the bucket 6) matches the target construction surface. Automatically control the operation of attachments. The machine guidance unit 50 has a position calculation unit 51, a distance calculation unit 52, an information transmission unit 53, an automatic control unit 54, and a turning angle calculation unit 55 as detailed functional configurations related to the machine guidance function and the machine control function. And the relative angle calculation unit 56.

位置算出部51は、所定の測位対象の位置を算出する。例えば、位置算出部51は、アタッチメントの先端部、具体的には、バケット6の爪先や背面等の作業部位の基準座標系における座標点を算出する。具体的には、位置算出部51は、ブーム4、アーム5、及びバケット6のそれぞれの俯仰角度(ブーム角度、アーム角度、及びバケット角度)からバケット6の作業部位の座標点を算出する。 The position calculation unit 51 calculates the position of a predetermined positioning target. For example, the position calculation unit 51 calculates the coordinate points in the reference coordinate system of the tip portion of the attachment, specifically, the work portion such as the toe or the back surface of the bucket 6. Specifically, the position calculation unit 51 calculates the coordinate points of the working portion of the bucket 6 from the elevation angles (boom angle, arm angle, and bucket angle) of the boom 4, the arm 5, and the bucket 6.

距離算出部52は、2つの測位対象間の距離を算出する。例えば、距離算出部52は、アタッチメントの先端部、具体的には、バケット6爪先や背面等の作業部位と目標施工面との間の距離を算出する。また、距離算出部52は、バケット6の作業部位としての背面と目標施工面との間の角度(相対角度)を算出してもよい。 The distance calculation unit 52 calculates the distance between two positioning targets. For example, the distance calculation unit 52 calculates the distance between the tip of the attachment, specifically, the work site such as the tip of the bucket 6 or the back surface, and the target construction surface. Further, the distance calculation unit 52 may calculate an angle (relative angle) between the back surface of the bucket 6 as a work portion and the target construction surface.

情報伝達部53は、表示装置40や音声出力装置43等の所定の通知手段を通じて、各種情報をショベル100のオペレータに伝達(通知)する。情報伝達部53は、距離算出部52により算出された各種距離等の大きさ(程度)をショベル100のオペレータに通知する。例えば、表示装置40による視覚情報及び音声出力装置43による聴覚情報の少なくとも一方を用いて、バケット6の先端部と目標施工面との間の距離(の大きさ)をオペレータに伝える。また、情報伝達部53は、表示装置40による視覚情報及び音声出力装置43による聴覚情報の少なくとも一方を用いて、バケット6の作業部位としての背面と目標施工面との間の相対角度(の大きさ)をオペレータに伝えてもよい。 The information transmission unit 53 transmits (notifies) various information to the operator of the excavator 100 through predetermined notification means such as the display device 40 and the voice output device 43. The information transmission unit 53 notifies the operator of the excavator 100 of the magnitude (degree) of various distances and the like calculated by the distance calculation unit 52. For example, the distance (magnitude) between the tip of the bucket 6 and the target construction surface is transmitted to the operator by using at least one of the visual information by the display device 40 and the auditory information by the audio output device 43. Further, the information transmission unit 53 uses at least one of the visual information by the display device 40 and the auditory information by the audio output device 43, and the relative angle (large) between the back surface of the bucket 6 as a work part and the target construction surface. You may tell the operator.

具体的には、情報伝達部53は、音声出力装置43による断続音を用いて、バケット6の作業部位と目標施工面との間の距離(例えば、鉛直距離)の大きさをオペレータに伝える。この場合、情報伝達部53は、鉛直距離が小さくなるほど、断続音の間隔を短くし、鉛直距離が大きくなるほど、断続音の感覚を長くしてよい。また、情報伝達部53は、連続音を用いてもよく、音の高低、強弱等を変化させながら、鉛直距離の大きさの違いを表すようにしてもよい。また、情報伝達部53は、バケット6の先端部が目標施工面よりも低い位置になった、つまり、目標施工面を超えてしまった場合、音声出力装置43を通じて警報を発してもよい。当該警報は、例えば、断続音より顕著に大きい連続音である。 Specifically, the information transmission unit 53 informs the operator of the magnitude of the distance (for example, vertical distance) between the work site of the bucket 6 and the target construction surface by using the intermittent sound produced by the voice output device 43. In this case, the information transmission unit 53 may shorten the interval of the intermittent sound as the vertical distance becomes smaller, and lengthen the sensation of the intermittent sound as the vertical distance increases. Further, the information transmission unit 53 may use continuous sound, and may express the difference in the magnitude of the vertical distance while changing the pitch, strength, etc. of the sound. Further, the information transmission unit 53 may issue an alarm through the voice output device 43 when the tip end portion of the bucket 6 is at a position lower than the target construction surface, that is, when the target construction surface is exceeded. The alarm is, for example, a continuous sound that is significantly louder than the intermittent sound.

また、情報伝達部53は、アタッチメントの先端部、具体的には、バケット6の作業部位と目標施工面との間の距離の大きさやバケット6の背面と目標施工面との間の相対角度の大きさ等を作業情報として表示装置40に表示させてもよい。表示装置40は、コントローラ30による制御下で、例えば、撮像装置S6から受信した画像データと共に、情報伝達部53から受信した作業情報を表示する。情報伝達部53は、例えば、アナログメータの画像やバーグラフインジケータの画像等を用いて、鉛直距離の大きさをオペレータに伝えるようにしてもよい。 Further, the information transmission unit 53 is the tip portion of the attachment, specifically, the size of the distance between the work part of the bucket 6 and the target construction surface, and the relative angle between the back surface of the bucket 6 and the target construction surface. The size and the like may be displayed on the display device 40 as work information. Under the control of the controller 30, the display device 40 displays, for example, the work information received from the information transmission unit 53 together with the image data received from the image pickup device S6. The information transmission unit 53 may transmit the magnitude of the vertical distance to the operator by using, for example, an image of an analog meter or an image of a bar graph indicator.

自動制御部54は、アクチュエータを自動的に動作させることでオペレータによる操作装置26を通じたショベル100の手動操作を自動的に支援する。具体的には、自動制御部54は、後述の如く、複数の油圧アクチュエータ(具体的には、旋回油圧モータ2A、ブームシリンダ7、及びバケットシリンダ9)に対応する制御弁(具体的には、制御弁173、制御弁175L,175R、及び制御弁174)に作用するパイロット圧を個別に且つ自動的に調整することができる。これにより、自動制御部54は、それぞれの油圧アクチュエータを自動的に動作させることができる。自動制御部54によるマシンコントロール機能に関する制御は、例えば、入力装置42に含まれる所定のスイッチが押下された場合に実行されてよい。当該所定のスイッチは、例えば、マシンコントロールスイッチ(以下、「MC(Machine Control)スイッチ」)であり、ノブスイッチとして操作装置26(例えば、アーム5の操作に対応するレバー装置)のオペレータによる把持部の先端に配置されていてもよい。以下、MCスイッチが押下されている場合に、マシンコントロール機能が有効である前提で説明を進める。 The automatic control unit 54 automatically supports the manual operation of the excavator 100 through the operation device 26 by the operator by automatically operating the actuator. Specifically, the automatic control unit 54 is a control valve (specifically, specifically, a swivel hydraulic motor 2A, a boom cylinder 7, and a bucket cylinder 9) corresponding to a plurality of hydraulic actuators (specifically, a swing hydraulic motor 2A, a boom cylinder 7, and a bucket cylinder 9) as described later. The pilot pressure acting on the control valve 173, the control valves 175L, 175R, and the control valve 174) can be adjusted individually and automatically. As a result, the automatic control unit 54 can automatically operate each hydraulic actuator. The control related to the machine control function by the automatic control unit 54 may be executed, for example, when a predetermined switch included in the input device 42 is pressed. The predetermined switch is, for example, a machine control switch (hereinafter, “MC (Machine Control) switch”), and is a grip portion by an operator of an operating device 26 (for example, a lever device corresponding to the operation of the arm 5) as a knob switch. It may be arranged at the tip of. Hereinafter, the description will proceed on the premise that the machine control function is effective when the MC switch is pressed.

例えば、自動制御部54は、MCスイッチ等が押下されている場合、掘削作業や整形作業を支援するために、アームシリンダ8の動作に合わせて、ブームシリンダ7及びバケットシリンダ9の少なくとも一方を自動的に伸縮させる。具体的には、自動制御部54は、オペレータが手動でアーム5の閉じ操作(以下、「アーム閉じ操作」)を行っている場合に、目標施工面とバケット6の爪先や背面等の作業部位の位置とが一致するようにブームシリンダ7及びバケットシリンダ9の少なくとも一方を自動的に伸縮させる。この場合、オペレータは、例えば、アーム5の操作に対応するレバー装置をアーム閉じ操作するだけで、バケット6の爪先等を目標施工面に一致させながら、アーム5を閉じることができる。 For example, when the MC switch or the like is pressed, the automatic control unit 54 automatically switches at least one of the boom cylinder 7 and the bucket cylinder 9 in accordance with the operation of the arm cylinder 8 in order to support the excavation work and the shaping work. Expand and contract. Specifically, when the operator manually closes the arm 5 (hereinafter, “arm closing operation”), the automatic control unit 54 has a target construction surface and a work part such as a toe or a back surface of the bucket 6. At least one of the boom cylinder 7 and the bucket cylinder 9 is automatically expanded and contracted so as to match the position of. In this case, for example, the operator can close the arm 5 while aligning the toes of the bucket 6 with the target construction surface by simply operating the lever device corresponding to the operation of the arm 5.

また、自動制御部54は、MCスイッチ等が押下されている場合、上部旋回体3を目標施工面に正対させるために旋回油圧モータ2A(アクチュエータの一例)を自動的に回転させてもよい。以下、コントローラ30(自動制御部54)による上部旋回体3を目標施工面に正対させる制御を「正対制御」と称する。これにより、オペレータ等は、所定のスイッチを押下するだけで、或いは、当該スイッチが押下された状態で、旋回操作に対応する後述のレバー装置26Cを操作するだけで、上部旋回体3を目標施工面に正対させることができる。また、オペレータは、MCスイッチを押下するだけで、上部旋回体3を目標施工面に正対させ且つ上述の目標施工面の掘削作業等に関するマシンコントロール機能を開始させることができる。 Further, the automatic control unit 54 may automatically rotate the swing hydraulic motor 2A (an example of an actuator) in order to make the upper swing body 3 face the target construction surface when the MC switch or the like is pressed. .. Hereinafter, the control by the controller 30 (automatic control unit 54) to make the upper swing body 3 face the target construction surface is referred to as "face-to-face control". As a result, the operator or the like can target the upper swivel body 3 by simply pressing a predetermined switch, or by operating the lever device 26C described later corresponding to the swivel operation while the switch is pressed. It can be made to face the surface. Further, the operator can make the upper swivel body 3 face the target construction surface and start the machine control function related to the excavation work of the target construction surface described above by simply pressing the MC switch.

例えば、ショベル100の上部旋回体3が目標施工面に正対している状態は、アタッチメントの動作に従い、アタッチメントの先端部(例えば、バケット6の作業部位としての爪先や背面等)を目標施工面(上り法面BS)の傾斜方向に沿って移動させることが可能な状態である。具体的には、ショベル100の上部旋回体3が目標施工面に正対している状態は、ショベル100の旋回平面に鉛直なアタッチメントの稼動面(アタッチメント稼動面)が、円筒体に対応する目標施工面の法線を含む状態(換言すれば、当該法線に沿う状態)である。 For example, when the upper swing body 3 of the excavator 100 faces the target construction surface, the tip of the attachment (for example, the tip of the toe or the back surface of the bucket 6 as a work part) is set to the target construction surface (for example, according to the operation of the attachment). It is in a state where it can be moved along the inclination direction of the ascending slope BS). Specifically, when the upper swivel body 3 of the excavator 100 faces the target construction surface, the operating surface of the attachment (attachment operating surface) vertical to the swivel plane of the excavator 100 corresponds to the target construction surface. It is a state including the normal of the surface (in other words, a state along the normal).

ショベル100のアタッチメント稼動面が円筒体に対応する目標施工面の法線を含む状態にない場合、アタッチメントの先端部は、目標施工面を傾斜方向に移動させることができない。そのため、結果として、ショベル100は、目標施工面を適切に施工できない。これに対して、自動制御部54は、自動的に旋回油圧モータ2Aを回転させることで、上部旋回体3を正対させることができる。これにより、ショベル100は、目標施工面を適切に施工することができる。 If the attachment operating surface of the excavator 100 does not include the normal of the target construction surface corresponding to the cylindrical body, the tip of the attachment cannot move the target construction surface in the inclined direction. Therefore, as a result, the excavator 100 cannot properly construct the target construction surface. On the other hand, the automatic control unit 54 can automatically rotate the swing hydraulic motor 2A to face the upper swing body 3. As a result, the excavator 100 can appropriately construct the target construction surface.

自動制御部54は、正対制御において、例えば、バケット6の爪先の左端の座標点と目標施工面との間の左端鉛直距離(以下、単に「左端鉛直距離」)と、バケット6の爪先の右端の座標点と目標施工面との間の右端鉛直距離(以下、単に「右端鉛直距離」)とが等しくなった場合に、ショベルが目標施工面に正対していると判断する。また、自動制御部54は、左端鉛直距離と右端鉛直距離とが等しくなった場合(即ち、左端鉛直距離と右端鉛直距離との差がゼロになった場合)ではなく、その差が所定値以下になった場合に、ショベル100が目標施工面に正対していると判断してもよい。 In the face-to-face control, the automatic control unit 54 determines, for example, the leftmost vertical distance between the leftmost coordinate point of the toe of the bucket 6 and the target construction surface (hereinafter, simply "leftmost vertical distance") and the toe of the bucket 6. When the rightmost vertical distance between the rightmost coordinate point and the target construction surface (hereinafter, simply "rightmost vertical distance") becomes equal, it is judged that the excavator faces the target construction surface. Further, the automatic control unit 54 is not when the leftmost vertical distance and the rightmost vertical distance are equal (that is, when the difference between the leftmost vertical distance and the rightmost vertical distance becomes zero), but the difference is equal to or less than a predetermined value. When becomes, it may be determined that the excavator 100 faces the target construction surface.

また、自動制御部54は、正対制御において、例えば、左端鉛直距離と右端鉛直距離との差に基づき、旋回油圧モータ2Aを動作させてもよい。具体的には、MCスイッチ等の所定のスイッチが押下された状態で旋回操作に対応するレバー装置26Cが操作されると、上部旋回体3を目標施工面に正対させる方向にレバー装置26Cが操作されたか否かを判断する。例えば、バケット6の爪先と目標施工面(上り法面BS)との間の鉛直距離が大きくなる方向にレバー装置26Cが操作された場合、自動制御部54は、正対制御を実行しない。一方で、バケット6の爪先と目標施工面(上り法面BS)との間の鉛直距離が小さくなる方向に旋回操作レバーが操作された場合、自動制御部54は、正対制御を実行する。その結果、自動制御部54は、左端鉛直距離と右端鉛直距離との差が小さくなるように旋回油圧モータ2Aを動作させることができる。その後、自動制御部54は、その差が所定値以下或いはゼロになると、旋回油圧モータ2Aを停止させる。また、自動制御部54は、その差が所定値以下或いはゼロとなる旋回角度を目標角度として設定し、その目標角度と現在の旋回角度(具体的には、旋回状態センサS5の検出信号に基づく検出値)との角度差がゼロになるように、旋回油圧モータ2Aの動作制御を行ってもよい。この場合、旋回角度は、例えば、基準方向に対する上部旋回体3の前後軸の角度である。 Further, the automatic control unit 54 may operate the swing hydraulic motor 2A based on, for example, the difference between the left end vertical distance and the right end vertical distance in the face-to-face control. Specifically, when the lever device 26C corresponding to the turning operation is operated while a predetermined switch such as the MC switch is pressed, the lever device 26C moves in the direction in which the upper turning body 3 faces the target construction surface. Determine if it has been manipulated. For example, when the lever device 26C is operated in the direction in which the vertical distance between the toe of the bucket 6 and the target construction surface (uphill slope BS) increases, the automatic control unit 54 does not execute the facing control. On the other hand, when the turning operation lever is operated in the direction in which the vertical distance between the toe of the bucket 6 and the target construction surface (uphill slope BS) becomes small, the automatic control unit 54 executes the facing control. As a result, the automatic control unit 54 can operate the swing hydraulic motor 2A so that the difference between the leftmost vertical distance and the rightmost vertical distance becomes small. After that, when the difference becomes equal to or less than a predetermined value or becomes zero, the automatic control unit 54 stops the swing hydraulic motor 2A. Further, the automatic control unit 54 sets a turning angle at which the difference is equal to or less than a predetermined value or becomes zero as a target angle, and is based on the target angle and the current turning angle (specifically, the detection signal of the turning state sensor S5). The operation of the swing hydraulic motor 2A may be controlled so that the angle difference from the detected value) becomes zero. In this case, the turning angle is, for example, the angle of the front-rear axis of the upper turning body 3 with respect to the reference direction.

尚、上述の如く、旋回油圧モータ2Aの代わりに、旋回用電動機がショベル100に搭載される場合、自動制御部54は、旋回用電動機(アクチュエータの一例)を制御対象として、正対制御を行う。 As described above, when the swivel motor is mounted on the excavator 100 instead of the swivel hydraulic motor 2A, the automatic control unit 54 performs face-to-face control with the swivel motor (an example of an actuator) as a control target. ..

旋回角度算出部55は、上部旋回体3の旋回角度を算出する。これにより、コントローラ30は、上部旋回体3の現在の向きを特定することができる。旋回角度算出部55は、例えば、測位装置P1に含まれるGNSSコンパスの出力信号に基づき、基準方向に対する上部旋回体3の前後軸の角度を旋回角度として算出する。また、旋回角度算出部55は、旋回状態センサS5の検出信号に基づき、旋回角度を算出してもよい。また、施工現場に基準点が設定されている場合、旋回角度算出部55は、旋回軸から基準点を見た方向を基準方向としてもよい。 The turning angle calculation unit 55 calculates the turning angle of the upper turning body 3. As a result, the controller 30 can specify the current orientation of the upper swing body 3. The turning angle calculation unit 55 calculates, for example, the angle of the front-rear axis of the upper turning body 3 with respect to the reference direction as the turning angle based on the output signal of the GNSS compass included in the positioning device P1. Further, the turning angle calculation unit 55 may calculate the turning angle based on the detection signal of the turning state sensor S5. Further, when the reference point is set at the construction site, the turning angle calculation unit 55 may use the direction in which the reference point is viewed from the turning axis as the reference direction.

旋回角度は、基準方向に対するアタッチメント稼動面が延びる方向を示す。アタッチメント稼動面は、例えば、アタッチメントを縦断する仮想平面であり、旋回平面に垂直となるように配置される。旋回平面は、例えば、旋回軸に垂直な旋回フレームの底面を含む仮想平面である。コントローラ30(マシンガイダンス部50)は、例えば、アタッチメント稼動面が目標施工面の法線を含んでいると判断した場合に、上部旋回体3が目標施工面に正対していると判断する。 The turning angle indicates the direction in which the attachment operating surface extends with respect to the reference direction. The attachment operating surface is, for example, a virtual plane that vertically traverses the attachment, and is arranged so as to be perpendicular to the turning plane. The swivel plane is, for example, a virtual plane including the bottom surface of the swivel frame perpendicular to the swivel axis. When, for example, the controller 30 (machine guidance unit 50) determines that the attachment operating surface includes the normal of the target construction surface, the controller 30 determines that the upper swivel body 3 faces the target construction surface.

相対角度算出部56は、上部旋回体3を目標施工面に正対させるために必要な旋回角度(相対角度)を算出する。相対角度は、例えば、上部旋回体3を目標施工面に正対させたときの上部旋回体3の前後軸の方向と、上部旋回体3の前後軸の現在の方向との間に形成される相対的な角度である。相対角度算出部56は、例えば、記憶装置47に記憶されている目標施工面に関するデータと、旋回角度算出部55により算出された旋回角度とに基づき、相対角度を算出する。 The relative angle calculation unit 56 calculates the turning angle (relative angle) required for the upper swivel body 3 to face the target construction surface. The relative angle is formed between, for example, the direction of the front-rear axis of the upper swivel body 3 when the upper swivel body 3 faces the target construction surface and the current direction of the front-rear axis of the upper swivel body 3. Relative angle. The relative angle calculation unit 56 calculates the relative angle based on, for example, the data on the target construction surface stored in the storage device 47 and the turning angle calculated by the turning angle calculation unit 55.

自動制御部54は、MCスイッチ等の所定のスイッチが押下された状態で旋回操作に対応するレバー装置26Cが操作されると、上部旋回体3を目標施工面に正対させる方向に旋回操作されたか否かを判断する。自動制御部54は、上部旋回体3を目標施工面に正対させる方向に旋回操作されたと判断した場合、相対角度算出部56により算出された相対角度を目標角度として設定する。そして、自動制御部54は、レバー装置26Cが操作された後の旋回角度の変化が目標角度に達した場合、上部旋回体3が目標施工面に正対したと判断し、旋回油圧モータ2Aの動きを停止させてよい。これにより、自動制御部54は、図2に示す構成を前提として、上部旋回体3を目標施工面に正対させることができる。上記正対制御の実施例では目標施工面に対する正対制御の事例を示したが、これに限られることはない。例えば、仮置きの土砂をダンプトラックに積み込む際の掬い取り動作においても、目標体積に相当する目標掘削軌道を生成し、目標掘削軌道に対してアタッチメントが向かい合うように旋回動作の正対制御をおこなってもよい。この場合、掬い取り動作の都度、目標掘削軌道は変更される。このため、ダンプトラックへの排土後は、新たに変更された目標掘削軌道に対して正対制御される。 When the lever device 26C corresponding to the turning operation is operated while a predetermined switch such as the MC switch is pressed, the automatic control unit 54 is turned in the direction in which the upper turning body 3 faces the target construction surface. Judge whether or not. When the automatic control unit 54 determines that the upper swivel body 3 has been swiveled in the direction facing the target construction surface, the automatic control unit 54 sets the relative angle calculated by the relative angle calculation unit 56 as the target angle. Then, when the change in the turning angle after the lever device 26C is operated reaches the target angle, the automatic control unit 54 determines that the upper turning body 3 faces the target construction surface, and determines that the turning hydraulic motor 2A You may stop the movement. As a result, the automatic control unit 54 can make the upper swing body 3 face the target construction surface on the premise of the configuration shown in FIG. In the above-mentioned embodiment of face-to-face control, an example of face-to-face control with respect to the target construction surface is shown, but the present invention is not limited to this. For example, even in the scooping operation when loading temporarily placed earth and sand into a dump truck, a target excavation track corresponding to the target volume is generated, and the turning operation is directly controlled so that the attachment faces the target excavation track. You may. In this case, the target excavation track is changed each time the scooping operation is performed. Therefore, after the soil is discharged to the dump truck, it is directly controlled against the newly changed target excavation track.

また、旋回油圧モータ2Aは、第1ポート2A1及び第2ポート2A2を有している。油圧センサ21は、旋回油圧モータ2Aの第1ポート2A1の作動油の圧力を検出する。油圧センサ22は、旋回油圧モータ2Aの第2ポート2A2の作動油の圧力を検出する。油圧センサ21,22により検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。 Further, the swing hydraulic motor 2A has a first port 2A1 and a second port 2A2. The hydraulic sensor 21 detects the pressure of the hydraulic oil in the first port 2A1 of the swing hydraulic motor 2A. The hydraulic pressure sensor 22 detects the pressure of the hydraulic oil in the second port 2A2 of the swing hydraulic motor 2A. The detection signal corresponding to the discharge pressure detected by the hydraulic sensors 21 and 22 is taken into the controller 30.

また、第1ポート2A1は、リリーフ弁23を介して作動油タンクと接続される。リリーフ弁23は、第1ポート2A1側の圧力が所定のリリーフ圧に達した場合に開き、第1ポート2A1側の作動油を作動油タンクに排出する。同様に、第2ポート2A2は、リリーフ弁24を介して作動油タンクと接続される。リリーフ弁24は、第2ポート2A2側の圧力が所定のリリーフ圧に達した場合に開き、第2ポート2A2側の作動油を作動油タンクに排出する。 Further, the first port 2A1 is connected to the hydraulic oil tank via the relief valve 23. The relief valve 23 opens when the pressure on the first port 2A1 side reaches a predetermined relief pressure, and discharges the hydraulic oil on the first port 2A1 side to the hydraulic oil tank. Similarly, the second port 2A2 is connected to the hydraulic oil tank via the relief valve 24. The relief valve 24 opens when the pressure on the second port 2A2 side reaches a predetermined relief pressure, and discharges the hydraulic oil on the second port 2A2 side to the hydraulic oil tank.

[ショベルの油圧システム]
次に、図3を参照して、本実施形態に係るショベル100の油圧システムについて説明する。
[Excavator hydraulic system]
Next, the hydraulic system of the excavator 100 according to the present embodiment will be described with reference to FIG.

図3は、本実施形態に係るショベル100の油圧システムの構成の一例を概略的に示す図である。 FIG. 3 is a diagram schematically showing an example of the configuration of the hydraulic system of the excavator 100 according to the present embodiment.

尚、図3において、機械的動力系、作動油ライン、パイロットライン、及び電気制御系は、図2等の場合と同様、それぞれ、二重線、実線、破線、及び点線で示されている。 In FIG. 3, the mechanical power system, the hydraulic oil line, the pilot line, and the electric control system are shown by double lines, solid lines, broken lines, and dotted lines, respectively, as in the case of FIG.

当該油圧回路により実現される油圧システムは、エンジン11により駆動されるメインポンプ14L,14Rのそれぞれから、センタバイパス油路C1L,C1R、パラレル油路C2L,C2Rを経て作動油タンクまで作動油を循環させる。 The hydraulic system realized by the hydraulic circuit circulates hydraulic oil from the main pumps 14L and 14R driven by the engine 11 to the hydraulic oil tank via the center bypass oil passages C1L and C1R and the parallel oil passages C2L and C2R, respectively. Let me.

センタバイパス油路C1Lは、メインポンプ14Lを起点として、コントロールバルブ17内に配置される制御弁171,173,175L,176Lを順に通過し、作動油タンクに至る。 The center bypass oil passage C1L starts from the main pump 14L, passes through the control valves 171, 173, 175L, and 176L arranged in the control valve 17 in order, and reaches the hydraulic oil tank.

センタバイパス油路C1Rは、メインポンプ14Rを起点として、コントロールバルブ17内に配置される制御弁172,174,175R,176Rを順に通過し、作動油タンクに至る。 The center bypass oil passage C1R starts from the main pump 14R, passes through the control valves 172, 174, 175R, and 176R arranged in the control valve 17 in order, and reaches the hydraulic oil tank.

制御弁171は、メインポンプ14Lから吐出される作動油を走行油圧モータ1Lへ供給し、且つ、走行油圧モータ1Lが吐出する作動油を作動油タンクに排出させるスプール弁である。 The control valve 171 is a spool valve that supplies the hydraulic oil discharged from the main pump 14L to the traveling hydraulic motor 1L and discharges the hydraulic oil discharged from the traveling hydraulic motor 1L to the hydraulic oil tank.

制御弁172は、メインポンプ14Rから吐出される作動油を走行油圧モータ1Rへ供給し、且つ、走行油圧モータ1Rが吐出する作動油を作動油タンクへ排出させるスプール弁である。 The control valve 172 is a spool valve that supplies the hydraulic oil discharged from the main pump 14R to the traveling hydraulic motor 1R and discharges the hydraulic oil discharged from the traveling hydraulic motor 1R to the hydraulic oil tank.

制御弁173は、メインポンプ14Lから吐出される作動油を旋回油圧モータ2Aへ供給し、且つ、旋回油圧モータ2Aが吐出する作動油を作動油タンクへ排出させるスプール弁である。 The control valve 173 is a spool valve that supplies the hydraulic oil discharged from the main pump 14L to the swing hydraulic motor 2A and discharges the hydraulic oil discharged by the swing hydraulic motor 2A to the hydraulic oil tank.

制御弁174は、メインポンプ14Rから吐出される作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出させるスプール弁である。 The control valve 174 is a spool valve that supplies the hydraulic oil discharged from the main pump 14R to the bucket cylinder 9 and discharges the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank.

制御弁175L,175Rは、それぞれ、メインポンプ14L,14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出させるスプール弁である。 The control valves 175L and 175R are spool valves that supply the hydraulic oil discharged by the main pumps 14L and 14R to the boom cylinder 7 and discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank, respectively.

制御弁176L,176Rは、メインポンプ14L,14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出させる。 The control valves 176L and 176R supply the hydraulic oil discharged by the main pumps 14L and 14R to the arm cylinder 8 and discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank.

制御弁171,172,173,174,175L,175R,176L,176Rは、それぞれ、パイロットポートに作用するパイロット圧に応じて、油圧アクチュエータに給排される作動油の流量を調整したり、流れる方向を切り換えたりする。 The control valves 171, 172, 173, 174, 175L, 175R, 176L, and 176R adjust the flow rate of the hydraulic oil supplied to and discharged from the hydraulic actuator according to the pilot pressure acting on the pilot port, and the flow direction, respectively. To switch.

パラレル油路C2Lは、センタバイパス油路C1Lと並列的に、制御弁171,173,175L,176Lにメインポンプ14Lの作動油を供給する。具体的には、パラレル油路C2Lは、制御弁171の上流側でセンタバイパス油路C1Lから分岐し、制御弁171,173,175L,176Rのそれぞれに並列してメインポンプ14Lの作動油を供給可能に構成される。これにより、パラレル油路C2Lは、制御弁171,173,175Lの何れかによってセンタバイパス油路C1Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。 The parallel oil passage C2L supplies the hydraulic oil of the main pump 14L to the control valves 171, 173, 175L, and 176L in parallel with the center bypass oil passage C1L. Specifically, the parallel oil passage C2L branches from the center bypass oil passage C1L on the upstream side of the control valve 171 and supplies the hydraulic oil of the main pump 14L in parallel with the control valves 171, 173, 175L, and 176R, respectively. It is configured to be possible. As a result, the parallel oil passage C2L supplies the hydraulic oil to the control valve further downstream when the flow of the hydraulic oil through the center bypass oil passage C1L is restricted or blocked by any of the control valves 171, 173, and 175L. it can.

パラレル油路C2Rは、センタバイパス油路C1Rと並列的に、制御弁172,174,175R,176Rにメインポンプ14Rの作動油を供給する。具体的には、パラレル油路C2Rは、制御弁172の上流側でセンタバイパス油路C1Rから分岐し、制御弁172,174,175R,176Rのそれぞれに並列してメインポンプ14Rの作動油を供給可能に構成される。パラレル油路C2Rは、制御弁172,174,175Rの何れかによってセンタバイパス油路C1Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。 The parallel oil passage C2R supplies the hydraulic oil of the main pump 14R to the control valves 172, 174, 175R and 176R in parallel with the center bypass oil passage C1R. Specifically, the parallel oil passage C2R branches from the center bypass oil passage C1R on the upstream side of the control valve 172, and supplies the hydraulic oil of the main pump 14R in parallel with the control valves 172, 174, 175R, and 176R, respectively. It is configured to be possible. The parallel oil passage C2R can supply the hydraulic oil to the control valve further downstream when the flow of the hydraulic oil through the center bypass oil passage C1R is restricted or blocked by any of the control valves 172, 174, and 175R.

レギュレータ13L,13Rは、それぞれ、コントローラ30による制御下で、メインポンプ14L,14Rの斜板の傾転角を調節することによって、メインポンプ14L,14Rの吐出量を調節する。 The regulators 13L and 13R adjust the discharge amounts of the main pumps 14L and 14R by adjusting the tilt angle of the swash plate of the main pumps 14L and 14R, respectively, under the control of the controller 30.

吐出圧センサ28Lは、メインポンプ14Lの吐出圧を検出し、検出された吐出圧に対応する検出信号は、コントローラ30に取り込まれる。吐出圧センサ28Rについても同様である。これにより、コントローラ30は、メインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御することができる。 The discharge pressure sensor 28L detects the discharge pressure of the main pump 14L, and the detection signal corresponding to the detected discharge pressure is taken into the controller 30. The same applies to the discharge pressure sensor 28R. As a result, the controller 30 can control the regulators 13L and 13R according to the discharge pressures of the main pumps 14L and 14R.

センタバイパス油路C1L,C1Rには、最も下流にある制御弁176L,176Rのそれぞれと作動油タンクとの間には、ネガティブコントロール絞り(以下、「ネガコン絞り」)18L,18Rが設けられる。これにより、メインポンプ14L,14Rにより吐出された作動油の流れは、ネガコン絞り18L,18Rで制限される。そして、ネガコン絞り18L,18Rは、レギュレータ13L,13Rを制御するための制御圧(以下、「ネガコン圧」)を発生させる。 Negative control throttles (hereinafter referred to as "negative control throttles") 18L and 18R are provided between the control valves 176L and 176R, which are the most downstream, and the hydraulic oil tank in the center bypass oil passages C1L and C1R. As a result, the flow of hydraulic oil discharged by the main pumps 14L and 14R is restricted by the negative control throttles 18L and 18R. Then, the negative control diaphragms 18L and 18R generate a control pressure (hereinafter, “negative control pressure”) for controlling the regulators 13L and 13R.

ネガコン圧センサ19L,19Rは、ネガコン圧を検出し、検出されたネガコン圧に対応する検出信号は、コントローラ30に取り込まれる。 The negative control pressure sensors 19L and 19R detect the negative control pressure, and the detection signal corresponding to the detected negative control pressure is taken into the controller 30.

コントローラ30は、吐出圧センサ28L,28Rにより検出されるメインポンプ14L,14Rの吐出圧に応じて、レギュレータ13L,13Rを制御し、メインポンプ14L,14Rの吐出量を調節してよい。例えば、コントローラ30は、メインポンプ14Lの吐出圧の増大に応じて、レギュレータ13Lを制御し、メインポンプ14Lの斜板傾転角を調節することにより、吐出量を減少させてよい。レギュレータ13Rについても同様である。これにより、コントローラ30は、吐出圧と吐出量との積で表されるメインポンプ14L,14Rの吸収馬力がエンジン11の出力馬力を超えないように、メインポンプ14L,14Rの全馬力制御を行うことができる。 The controller 30 may control the regulators 13L and 13R according to the discharge pressure of the main pumps 14L and 14R detected by the discharge pressure sensors 28L and 28R, and adjust the discharge amount of the main pumps 14L and 14R. For example, the controller 30 may reduce the discharge amount by controlling the regulator 13L in response to the increase in the discharge pressure of the main pump 14L and adjusting the swash plate tilt angle of the main pump 14L. The same applies to the regulator 13R. As a result, the controller 30 controls the total horsepower of the main pumps 14L and 14R so that the absorbed horsepower of the main pumps 14L and 14R, which is represented by the product of the discharge pressure and the discharge amount, does not exceed the output horsepower of the engine 11. be able to.

また、コントローラ30は、ネガコン圧センサ19L,19Rにより検出されるネガコン圧に応じて、レギュレータ13L,13Rを制御することにより、メインポンプ14L,14Rの吐出量を調節してよい。例えば、コントローラ30は、ネガコン圧が大きいほどメインポンプ14L,14Rの吐出量を減少させ、ネガコン圧が小さいほどメインポンプ14L,14Rの吐出量を増大させる。 Further, the controller 30 may adjust the discharge amount of the main pumps 14L and 14R by controlling the regulators 13L and 13R according to the negative control pressure detected by the negative control pressure sensors 19L and 19R. For example, the controller 30 reduces the discharge amount of the main pumps 14L and 14R as the negative control pressure increases, and increases the discharge amount of the main pumps 14L and 14R as the negative control pressure decreases.

具体的には、ショベル100における油圧アクチュエータが何れも操作されていない待機状態(図3に示す状態)の場合、メインポンプ14L,14Rから吐出される作動油は、センタバイパス油路C1L,C1Rを通ってネガコン絞り18L,18Rに至る。そして、メインポンプ14L,14Rから吐出される作動油の流れは、ネガコン絞り18L,18Rの上流で発生するネガコン圧を増大させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を許容最小吐出量まで減少させ、吐出した作動油がセンタバイパス油路C1L,C1Rを通過する際の圧力損失(ポンピングロス)を抑制する。 Specifically, in the standby state (state shown in FIG. 3) in which none of the hydraulic actuators in the excavator 100 is operated, the hydraulic oil discharged from the main pumps 14L and 14R passes through the center bypass oil passages C1L and C1R. Through it, it reaches the negative control aperture 18L, 18R. Then, the flow of the hydraulic oil discharged from the main pumps 14L and 14R increases the negative control pressure generated upstream of the negative control throttles 18L and 18R. As a result, the controller 30 reduces the discharge amount of the main pumps 14L and 14R to the allowable minimum discharge amount, and suppresses the pressure loss (pumping loss) when the discharged hydraulic oil passes through the center bypass oil passages C1L and C1R. ..

一方、何れかの油圧アクチュエータが操作装置26を通じて操作された場合、メインポンプ14L,14Rから吐出される作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、メインポンプ14L,14Rから吐出される作動油の流れは、ネガコン絞り18L,18Rに至る量を減少或いは消失させ、ネガコン絞り18L,18Rの上流で発生するネガコン圧を低下させる。その結果、コントローラ30は、メインポンプ14L,14Rの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータを確実に駆動させることができる。 On the other hand, when any of the hydraulic actuators is operated through the operating device 26, the hydraulic oil discharged from the main pumps 14L and 14R is sent to the hydraulic actuator to be operated via the control valve corresponding to the hydraulic actuator to be operated. Flow in. Then, the flow of hydraulic oil discharged from the main pumps 14L and 14R reduces or eliminates the amount reaching the negative control diaphragms 18L and 18R, and lowers the negative control pressure generated upstream of the negative control throttles 18L and 18R. As a result, the controller 30 can increase the discharge amount of the main pumps 14L and 14R, circulate sufficient hydraulic oil to the hydraulic actuator to be operated, and reliably drive the hydraulic actuator to be operated.

[ショベルのマシンコントロール機能に関する構成の詳細]
次に、図4を参照して、ショベル100のマシンコントロール機能に関する構成の詳細について説明する。
[Details of configuration for excavator machine control function]
Next, with reference to FIG. 4, the details of the configuration related to the machine control function of the excavator 100 will be described.

図4は、本実施形態に係るショベル100の油圧システムのうちの操作系に関する構成部分の一例を概略的に示す図である。具体的には、図4(A)は、ブームシリンダ7を油圧制御する制御弁175L,175Rにパイロット圧を作用させるパイロット回路の一例を示す図である。また、図4(B)は、バケットシリンダ9を油圧制御する制御弁174にパイロット圧を作用させるパイロット回路の一例を示す図である。また、図4(C)は、旋回油圧モータ2Aを油圧制御する制御弁173にパイロット圧を作用させるパイロット回路の一例を示す図である。 FIG. 4 is a diagram schematically showing an example of a component related to an operation system in the hydraulic system of the excavator 100 according to the present embodiment. Specifically, FIG. 4A is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to the control valves 175L and 175R that hydraulically control the boom cylinder 7. Further, FIG. 4B is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to a control valve 174 that hydraulically controls the bucket cylinder 9. Further, FIG. 4C is a diagram showing an example of a pilot circuit in which a pilot pressure is applied to a control valve 173 that hydraulically controls the swing hydraulic motor 2A.

また、例えば、図4(A)に示すように、レバー装置26Aは、オペレータ等がブーム4に対応するブームシリンダ7を操作するために用いられる。レバー装置26Aは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。 Further, for example, as shown in FIG. 4A, the lever device 26A is used by an operator or the like to operate the boom cylinder 7 corresponding to the boom 4. The lever device 26A uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.

シャトル弁32ALは、二つの入口ポートが、それぞれ、ブーム4の上げ方向の操作(以下、「ブーム上げ操作」)に対応するレバー装置26Aの二次側のパイロットラインと、比例弁31ALの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに接続される。 In the shuttle valve 32AL, the two inlet ports are the pilot line on the secondary side of the lever device 26A corresponding to the operation in the raising direction of the boom 4 (hereinafter, “boom raising operation”), and the secondary of the proportional valve 31AL. It is connected to the pilot line on the side, and the outlet port is connected to the pilot port on the right side of the control valve 175L and the pilot port on the left side of the control valve 175R.

シャトル弁32ARは、二つの入口ポートが、それぞれ、ブーム4の下げ方向の操作(以下、「ブーム下げ操作」)に対応するレバー装置26Aの二次側のパイロットラインと、比例弁31ARの二次側のパイロットラインとに接続され、出口ポートが、制御弁175Rの右側のパイロットポートに接続される。 In the shuttle valve 32AR, the two inlet ports are the pilot line on the secondary side of the lever device 26A corresponding to the operation in the lowering direction of the boom 4 (hereinafter, “boom lowering operation”), and the secondary of the proportional valve 31AR. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 175R.

つまり、レバー装置26Aは、シャトル弁32AL,32ARを介して、操作内容(例えば、操作方向及び操作量)に応じたパイロット圧を制御弁175L,175Rのパイロットポートに作用させる。具体的には、レバー装置26Aは、ブーム上げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32ALの一方の入口ポートに出力し、シャトル弁32ALを介して、制御弁175Lの右側のパイロットポートと制御弁175Rの左側のパイロットポートに作用させる。また、レバー装置26Aは、ブーム下げ操作された場合に、操作量に応じたパイロット圧をシャトル弁32ARの一方の入口ポートに出力し、シャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに作用させる。 That is, the lever device 26A applies the pilot pressure according to the operation content (for example, the operation direction and the operation amount) to the pilot ports of the control valves 175L and 175R via the shuttle valves 32AL and 32AR. Specifically, the lever device 26A outputs a pilot pressure according to the amount of operation to one inlet port of the shuttle valve 32AL when the boom is raised, and the right side of the control valve 175L via the shuttle valve 32AL. It acts on the pilot port of the above and the pilot port on the left side of the control valve 175R. Further, when the boom lowering operation is performed, the lever device 26A outputs the pilot pressure according to the operation amount to one inlet port of the shuttle valve 32AR, and the pilot port on the right side of the control valve 175R via the shuttle valve 32AR. To act on.

比例弁31ALは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ALは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ALの他方の入口ポートに出力する。これにより、比例弁31ALは、シャトル弁32ALを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに作用するパイロット圧を調整することができる。 The proportional valve 31AL operates according to the control current input from the controller 30. Specifically, the proportional valve 31AL uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other inlet port of the shuttle valve 32AL. Thereby, the proportional valve 31AL can adjust the pilot pressure acting on the pilot port on the right side of the control valve 175L and the pilot port on the left side of the control valve 175R via the shuttle valve 32AL.

比例弁31ARは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31ARは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32ARの他方の入口ポートに出力する。これにより、比例弁31ARは、シャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに作用するパイロット圧を調整することができる。 The proportional valve 31AR operates according to the control current input from the controller 30. Specifically, the proportional valve 31AR uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other inlet port of the shuttle valve 32AR. As a result, the proportional valve 31AR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 175R via the shuttle valve 32AR.

つまり、比例弁31AL,31ARは、レバー装置26Aの操作状態に依らず、制御弁175L、175Rを任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。 That is, the proportional valves 31AL and 31AR can adjust the pilot pressure output to the secondary side so that the control valves 175L and 175R can be stopped at an arbitrary valve position regardless of the operating state of the lever device 26A.

比例弁33ALは、比例弁31ALと同様に、マシンコントロール用制御弁として機能する。比例弁33ALは、操作装置26とシャトル弁32ALとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33ALは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32ALを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。 The proportional valve 33AL functions as a machine control control valve in the same manner as the proportional valve 31AL. The proportional valve 33AL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32AL, and is configured so that the flow path area of the pipeline can be changed. In the present embodiment, the proportional valve 33AL operates in response to a control command output from the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the shuttle valve 32AL to the corresponding control valve in the control valve 17. Can be supplied to the pilot port of.

同様に、比例弁33ARは、マシンコントロール用制御弁として機能する。比例弁33ARは、操作装置26とシャトル弁32ARとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33ARは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32ARを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。 Similarly, the proportional valve 33AR functions as a control valve for machine control. The proportional valve 33AR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32AR, and is configured so that the flow path area of the pipeline can be changed. In the present embodiment, the proportional valve 33AR operates in response to a control command output from the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32AR. Can be supplied to the pilot port of.

操作圧センサ29Aは、オペレータによるレバー装置26Aに対する操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Aに対する操作内容を把握できる。 The operating pressure sensor 29A detects the operation content of the lever device 26A by the operator in the form of pressure (operating pressure), and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content for the lever device 26A.

コントローラ30は、オペレータによるレバー装置26Aに対するブーム上げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AL及びシャトル弁32ALを介して、制御弁175Lの右側のパイロットポート及び制御弁175Rの左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Aに対するブーム下げ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31AR及びシャトル弁32ARを介して、制御弁175Rの右側のパイロットポートに供給できる。即ち、コントローラ30は、ブーム4の上げ下げの動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。 The controller 30 controls the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 175L via the proportional valve 31AL and the shuttle valve 32AL, regardless of the boom raising operation on the lever device 26A by the operator. It can be supplied to the pilot port on the left side of the valve 175R. Further, the controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 175R via the proportional valve 31AR and the shuttle valve 32AR, regardless of the boom lowering operation of the lever device 26A by the operator. Can be supplied to. That is, the controller 30 can automatically control the raising and lowering operation of the boom 4. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation on the specific operating device 26 is being performed.

比例弁33ALは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15からレバー装置26A、比例弁33AL、及びシャトル弁32ALを介して制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33ARは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15からレバー装置26A、比例弁33AR、及びシャトル弁32ARを介して制御弁175Rの右側パイロットポートに導入される作動油によるパイロット圧を減圧する。比例弁33AL、33ARは、制御弁175L、175Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。 The proportional valve 33AL operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right side pilot port of the control valve 175L and the left side pilot port of the control valve 175R is reduced via the lever device 26A, the proportional valve 33AL, and the shuttle valve 32AL. The proportional valve 33AR operates in response to a control command (current command) output by the controller 30. Then, the pilot pressure due to the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 175R via the lever device 26A, the proportional valve 33AR, and the shuttle valve 32AR is reduced. The proportional valves 33AL and 33AR can adjust the pilot pressure so that the control valves 175L and 175R can be stopped at any valve position.

この構成により、コントローラ30は、操作者によるブーム上げ操作が行われている場合であっても、必要に応じて、制御弁175の上げ側のパイロットポート(制御弁175Lの左側パイロットポート及び制御弁175Rの右側パイロットポート)に作用するパイロット圧を減圧し、ブーム4の閉じ動作を強制的に停止させることができる。操作者によるブーム下げ操作が行われているときにブーム4の下げ動作を強制的に停止させる場合についても同様である。 With this configuration, the controller 30 can use the pilot port on the raising side of the control valve 175 (the left pilot port of the control valve 175L and the control valve, if necessary, even when the boom raising operation is performed by the operator. The pilot pressure acting on the right pilot port of the 175R) can be reduced to forcibly stop the closing operation of the boom 4. The same applies to the case where the lowering operation of the boom 4 is forcibly stopped while the boom lowering operation is being performed by the operator.

或いは、コントローラ30は、操作者によるブーム上げ操作が行われている場合であっても、必要に応じて、比例弁31ARを制御し、制御弁175の上げ側のパイロットポートの反対側にある、制御弁175の下げ側のパイロットポート(制御弁175Rの右側パイロットポート)に作用するパイロット圧を増大させ、制御弁175を強制的に中立位置に戻すことで、ブーム4の上げ動作を強制的に停止させてもよい。この場合、比例弁33ALは省略されてもよい。操作者によるブーム下げ操作が行われている場合にブーム4の下げ動作を強制的に停止させる場合についても同様である。 Alternatively, the controller 30 controls the proportional valve 31AR as necessary even when the boom raising operation is performed by the operator, and is on the opposite side of the pilot port on the raising side of the control valve 175. By increasing the pilot pressure acting on the pilot port on the lower side of the control valve 175 (the pilot port on the right side of the control valve 175R) and forcibly returning the control valve 175 to the neutral position, the raising operation of the boom 4 is forcibly performed. You may stop it. In this case, the proportional valve 33AL may be omitted. The same applies to the case where the lowering operation of the boom 4 is forcibly stopped when the boom lowering operation is performed by the operator.

図4(B)に示すように、レバー装置26Bは、オペレータ等がバケット6に対応するバケットシリンダ9を操作するために用いられる。レバー装置26Bは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。 As shown in FIG. 4B, the lever device 26B is used by an operator or the like to operate the bucket cylinder 9 corresponding to the bucket 6. The lever device 26B uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.

シャトル弁32BLは、二つの入口ポートが、それぞれ、バケット6の閉じ方向の操作(以下、「バケット閉じ操作」)に対応するレバー装置26Bの二次側のパイロットラインと、比例弁31BLの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の左側のパイロットポートに接続される。 In the shuttle valve 32BL, the two inlet ports are the pilot line on the secondary side of the lever device 26B corresponding to the operation in the closing direction of the bucket 6 (hereinafter, “bucket closing operation”), and the secondary of the proportional valve 31BL. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the left side of the control valve 174.

シャトル弁32BRは、二つの入口ポートが、それぞれ、バケット6の開き方向の操作(以下、「バケット開き操作」)に対応するレバー装置26Bの二次側のパイロットラインと、比例弁31BRの二次側のパイロットラインとに接続され、出口ポートが、制御弁174の右側のパイロットポートに接続される。 In the shuttle valve 32BR, the two inlet ports are the pilot line on the secondary side of the lever device 26B corresponding to the operation in the opening direction of the bucket 6 (hereinafter, “bucket opening operation”), and the secondary of the proportional valve 31BR. It is connected to the pilot line on the side and the outlet port is connected to the pilot port on the right side of the control valve 174.

つまり、レバー装置26Bは、シャトル弁32BL,32BRを介して、操作内容に応じたパイロット圧を制御弁174のパイロットポートに作用させる。具体的には、レバー装置26Bは、バケット閉じ操作された場合に、操作量に応じたパイロット圧をシャトル弁32BLの一方の入口ポートに出力し、シャトル弁32BLを介して、制御弁174の左側のパイロットポートに作用させる。また、レバー装置26Bは、バケット開き操作された場合に、操作量に応じたパイロット圧をシャトル弁32BRの一方の入口ポートに出力し、シャトル弁32BRを介して、制御弁174の右側のパイロットポートに作用させる。 That is, the lever device 26B applies the pilot pressure according to the operation content to the pilot port of the control valve 174 via the shuttle valves 32BL and 32BR. Specifically, when the bucket is closed, the lever device 26B outputs a pilot pressure according to the amount of operation to one inlet port of the shuttle valve 32BL, and via the shuttle valve 32BL, the left side of the control valve 174. Act on the pilot port of. Further, when the bucket is opened, the lever device 26B outputs a pilot pressure according to the amount of operation to one inlet port of the shuttle valve 32BR, and via the shuttle valve 32BR, the pilot port on the right side of the control valve 174. To act on.

比例弁31BLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31BLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BLの他方のパイロットポートに出力する。これにより、比例弁31BLは、シャトル弁32BLを介して、制御弁174の左側のパイロットポートに作用するパイロット圧を調整することができる。 The proportional valve 31BL operates according to the control current input from the controller 30. Specifically, the proportional valve 31BL uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32BL. Thereby, the proportional valve 31BL can adjust the pilot pressure acting on the pilot port on the left side of the control valve 174 via the shuttle valve 32BL.

比例弁31BRは、コントローラ30が出力する制御電流に応じて動作する。具体的には、比例弁31BRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32BRの他方のパイロットポートに出力する。これにより、比例弁31BRは、シャトル弁32BRを介して、制御弁174の右側のパイロットポートに作用するパイロット圧を調整することができる。 The proportional valve 31BR operates according to the control current output by the controller 30. Specifically, the proportional valve 31BR uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32BR. Thereby, the proportional valve 31BR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 174 via the shuttle valve 32BR.

つまり、比例弁31BL,31BRは、レバー装置26Bの操作状態に依らず、制御弁174を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。 That is, the proportional valves 31BL and 31BR can adjust the pilot pressure output to the secondary side so that the control valve 174 can be stopped at an arbitrary valve position regardless of the operating state of the lever device 26B.

比例弁33BLは、比例弁31BLと同様に、マシンコントロール用制御弁として機能する。比例弁33BLは、操作装置26とシャトル弁32BLとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33BLは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32BLを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。 The proportional valve 33BL functions as a machine control control valve in the same manner as the proportional valve 31BL. The proportional valve 33BL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32BL, and is configured so that the flow path area of the pipeline can be changed. In the present embodiment, the proportional valve 33BL operates in response to a control command output from the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the shuttle valve 32BL to the corresponding control valve in the control valve 17. Can be supplied to the pilot port of.

同様に、比例弁33BRは、マシンコントロール用制御弁として機能する。比例弁33BRは、操作装置26とシャトル弁32BRとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33BRは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32BRを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。 Similarly, the proportional valve 33BR functions as a control valve for machine control. The proportional valve 33BR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32BR, and is configured so that the flow path area of the pipeline can be changed. In the present embodiment, the proportional valve 33BR operates in response to a control command output from the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32BR. Can be supplied to the pilot port of.

操作圧センサ29Bは、オペレータによるレバー装置26Bに対する操作内容を圧力(操作圧)の形で検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Bの操作内容を把握できる。 The operating pressure sensor 29B detects the operation content of the lever device 26B by the operator in the form of pressure (operating pressure), and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content of the lever device 26B.

コントローラ30は、オペレータによるレバー装置26Bに対するバケット閉じ操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BL及びシャトル弁32BLを介して、制御弁174の左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Bに対するバケット開き操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31BR及びシャトル弁32BRを介して、制御弁174の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、バケット6の開閉動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。 The controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the left side of the control valve 174 via the proportional valve 31BL and the shuttle valve 32BL, regardless of the bucket closing operation on the lever device 26B by the operator. Can be made to. Further, the controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the right side of the control valve 174 via the proportional valve 31BR and the shuttle valve 32BR regardless of the bucket opening operation for the lever device 26B by the operator. Can be supplied to. That is, the controller 30 can automatically control the opening / closing operation of the bucket 6. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation on the specific operating device 26 is being performed.

なお、操作者によるバケット閉じ操作又はバケット開き操作が行われている場合にバケット6の動作を強制的に停止させる比例弁33BL,33BRの操作は、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる比例弁33AL,33ARの操作と同様であり、重複する説明を省略する。 The operation of the proportional valves 33BL and 33BR for forcibly stopping the operation of the bucket 6 when the bucket closing operation or the bucket opening operation is performed by the operator is performed by the operator performing a boom raising operation or a boom lowering operation. This is the same as the operation of the proportional valves 33AL and 33AR for forcibly stopping the operation of the boom 4 when the boom 4 is broken, and duplicate description will be omitted.

また、例えば、図4(C)に示すように、レバー装置26Cは、オペレータ等が上部旋回体3(旋回機構2)に対応する旋回油圧モータ2Aを操作するために用いられる。レバー装置26Cは、パイロットポンプ15から吐出される作動油を利用して、その操作内容に応じたパイロット圧を二次側に出力する。 Further, for example, as shown in FIG. 4C, the lever device 26C is used by an operator or the like to operate the swing hydraulic motor 2A corresponding to the upper swing body 3 (swing mechanism 2). The lever device 26C uses the hydraulic oil discharged from the pilot pump 15 to output the pilot pressure according to the operation content to the secondary side.

シャトル弁32CLは、二つの入口ポートが、それぞれ、上部旋回体3の左方向の旋回操作(以下、「左旋回操作」)に対応するレバー装置26Cの二次側のパイロットラインと、比例弁31CLの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の左側のパイロットポートに接続される。 In the shuttle valve 32CL, the two inlet ports are the pilot line on the secondary side of the lever device 26C corresponding to the left turning operation of the upper turning body 3 (hereinafter, “left turning operation”), and the proportional valve 31CL. It is connected to the pilot line on the secondary side of the control valve 173, and the outlet port is connected to the pilot port on the left side of the control valve 173.

シャトル弁32CRは、二つの入口ポートが、それぞれ、上部旋回体3の右方向の旋回操作(以下、「右旋回操作」)に対応するレバー装置26Cの二次側のパイロットラインと、比例弁31CRの二次側のパイロットラインとに接続され、出口ポートが、制御弁173の右側のパイロットポートに接続される。 In the shuttle valve 32CR, the two inlet ports are the pilot line on the secondary side of the lever device 26C corresponding to the rightward turning operation of the upper turning body 3 (hereinafter, “right turning operation”), and the proportional valve. It is connected to the pilot line on the secondary side of 31CR, and the outlet port is connected to the pilot port on the right side of the control valve 173.

つまり、レバー装置26Cは、シャトル弁32CL,32CRを介して、左右方向への操作内容に応じたパイロット圧を制御弁173のパイロットポートに作用させる。具体的には、レバー装置26Cは、左旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32CLの一方の入口ポートに出力し、シャトル弁32CLを介して、制御弁173の左側のパイロットポートに作用させる。また、レバー装置26Cは、右旋回操作された場合に、操作量に応じたパイロット圧をシャトル弁32CRの一方の入口ポートに出力し、シャトル弁32CRを介して、制御弁173の右側のパイロットポートに作用させる。 That is, the lever device 26C applies a pilot pressure according to the operation content in the left-right direction to the pilot port of the control valve 173 via the shuttle valves 32CL and 32CR. Specifically, when the lever device 26C is turned left, the pilot pressure corresponding to the amount of operation is output to one inlet port of the shuttle valve 32CL, and the left side of the control valve 173 is output via the shuttle valve 32CL. Act on the pilot port of. Further, when the lever device 26C is turned to the right, the pilot pressure according to the amount of operation is output to one inlet port of the shuttle valve 32CR, and the pilot on the right side of the control valve 173 via the shuttle valve 32CR. Act on the port.

比例弁31CLは、コントローラ30から入力される制御電流に応じて動作する。具体的には、比例弁31CLは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CLの他方のパイロットポートに出力する。これにより、比例弁31CLは、シャトル弁32CLを介して、制御弁173の左側のパイロットポートに作用するパイロット圧を調整することができる。 The proportional valve 31CL operates according to the control current input from the controller 30. Specifically, the proportional valve 31CL uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32CL. As a result, the proportional valve 31CL can adjust the pilot pressure acting on the pilot port on the left side of the control valve 173 via the shuttle valve 32CL.

比例弁31CRは、コントローラ30が出力する制御電流に応じて動作する。具体的には、比例弁31CRは、パイロットポンプ15から吐出される作動油を利用して、コントローラ30から入力される制御電流に応じたパイロット圧をシャトル弁32CRの他方のパイロットポートに出力する。これにより、比例弁31CRは、シャトル弁32CRを介して、制御弁173の右側のパイロットポートに作用するパイロット圧を調整することができる。 The proportional valve 31CR operates according to the control current output by the controller 30. Specifically, the proportional valve 31CR uses the hydraulic oil discharged from the pilot pump 15 to output a pilot pressure corresponding to the control current input from the controller 30 to the other pilot port of the shuttle valve 32CR. Thereby, the proportional valve 31CR can adjust the pilot pressure acting on the pilot port on the right side of the control valve 173 via the shuttle valve 32CR.

つまり、比例弁31CL,31CRは、レバー装置26Cの操作状態に依らず、制御弁173を任意の弁位置で停止できるように、二次側に出力するパイロット圧を調整することができる。 That is, the proportional valves 31CL and 31CR can adjust the pilot pressure output to the secondary side so that the control valve 173 can be stopped at an arbitrary valve position regardless of the operating state of the lever device 26C.

比例弁33CLは、比例弁31CLと同様に、マシンコントロール用制御弁として機能する。比例弁33CLは、操作装置26とシャトル弁32CLとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33CLは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32CLを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。 The proportional valve 33CL functions as a machine control control valve in the same manner as the proportional valve 31CL. The proportional valve 33CL is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32CL, and is configured so that the flow path area of the pipeline can be changed. In the present embodiment, the proportional valve 33CL operates in response to a control command output from the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged from the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the shuttle valve 32CL to the corresponding control valve in the control valve 17. Can be supplied to the pilot port of.

同様に、比例弁33CRは、マシンコントロール用制御弁として機能する。比例弁33CRは、操作装置26とシャトル弁32CRとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁33CRは、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、操作装置26が吐出する作動油の圧力を減圧した上で、シャトル弁32CRを介し、コントロールバルブ17内の対応する制御弁のパイロットポートに供給できる。 Similarly, the proportional valve 33CR functions as a control valve for machine control. The proportional valve 33CR is arranged in a pipeline connecting the operating device 26 and the shuttle valve 32CR, and is configured so that the flow path area of the pipeline can be changed. In the present embodiment, the proportional valve 33CR operates in response to a control command output from the controller 30. Therefore, the controller 30 reduces the pressure of the hydraulic oil discharged by the operating device 26 regardless of the operation of the operating device 26 by the operator, and then passes the corresponding control valve in the control valve 17 via the shuttle valve 32CR. Can be supplied to the pilot port of.

操作圧センサ29Cは、オペレータによるレバー装置26Cに対する操作状態を圧力として検出し、検出された圧力に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、レバー装置26Cに対する左右方向への操作内容を把握できる。 The operating pressure sensor 29C detects the operating state of the lever device 26C by the operator as a pressure, and the detection signal corresponding to the detected pressure is taken into the controller 30. As a result, the controller 30 can grasp the operation content in the left-right direction with respect to the lever device 26C.

コントローラ30は、オペレータによるレバー装置26Cに対する左旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CL及びシャトル弁32CLを介して、制御弁173の左側のパイロットポートに供給させることができる。また、コントローラ30は、オペレータによるレバー装置26Cに対する右旋回操作とは無関係に、パイロットポンプ15から吐出される作動油を、比例弁31CR及びシャトル弁32CRを介して、制御弁173の右側のパイロットポートに供給させることができる。即ち、コントローラ30は、上部旋回体3の左右方向への旋回動作を自動制御することができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。 The controller 30 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port on the left side of the control valve 173 via the proportional valve 31CL and the shuttle valve 32CL regardless of the left turning operation of the lever device 26C by the operator. Can be made to. Further, the controller 30 transfers the hydraulic oil discharged from the pilot pump 15 to the pilot on the right side of the control valve 173 via the proportional valve 31CR and the shuttle valve 32CR regardless of the right turning operation of the lever device 26C by the operator. It can be supplied to the port. That is, the controller 30 can automatically control the turning operation of the upper turning body 3 in the left-right direction. Further, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 even when the operation on the specific operating device 26 is being performed.

なお、操作者による旋回操作が行われている場合に上部旋回体3の動作を強制的に停止させる比例弁33CL,33CRの操作は、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる比例弁33AL,33ARの操作と同様であり、重複する説明を省略する。 The operation of the proportional valves 33CL and 33CR for forcibly stopping the operation of the upper swing body 3 when the swing operation is performed by the operator is a boom raising operation or a boom lowering operation by the operator. In this case, the operation is the same as the operation of the proportional valves 33AL and 33AR for forcibly stopping the operation of the boom 4, and duplicate description will be omitted.

尚、ショベル100は、更に、アーム5を自動的に開閉させる構成、及び、下部走行体1を自動的に前進・後進させる構成を備えていてもよい。この場合、油圧システムのうち、アームシリンダ8の操作系に関する構成部分、走行油圧モータ1Lの操作系に関する構成部分、及び、走行油圧モータ1Rの操作に関する構成部分は、ブームシリンダ7の操作系に関する構成部分等(図4(A)〜(C))と同様に構成されてよい。 The excavator 100 may further include a configuration in which the arm 5 is automatically opened and closed, and a configuration in which the lower traveling body 1 is automatically moved forward and backward. In this case, among the hydraulic systems, the components related to the operation system of the arm cylinder 8, the components related to the operation system of the traveling hydraulic motor 1L, and the components related to the operation of the traveling hydraulic motor 1R are the components related to the operation system of the boom cylinder 7. It may be configured in the same manner as the parts (FIGS. 4A to 4C).

[ショベルの土砂荷重検出機能に関する構成の詳細]
次に、図5を参照して、本実施形態に係るショベル100の土砂荷重検出機能に関する構成の詳細について説明する。図5は、本実施形態に係るショベル100のうちの土砂荷重検出機能に関する構成部分の一例を概略的に示す図である。
[Details of configuration related to excavator sediment load detection function]
Next, with reference to FIG. 5, the details of the configuration related to the sediment load detection function of the excavator 100 according to the present embodiment will be described. FIG. 5 is a diagram schematically showing an example of a component related to a sediment load detecting function in the excavator 100 according to the present embodiment.

図3で前述したように、コントローラ30は、バケット6で掘削した土砂の荷重を検出する機能に関する機能部として、土砂荷重処理部60を含む。 As described above in FIG. 3, the controller 30 includes a sediment load processing unit 60 as a functional unit related to the function of detecting the load of the sediment excavated by the bucket 6.

土砂荷重処理部60は、積載物重量算出部61と、最大積載量検出部62と、加算積載量算出部63と、残積載量算出部64と、を有する。 The earth and sand load processing unit 60 includes a load weight calculation unit 61, a maximum load capacity detection unit 62, an additional load capacity calculation unit 63, and a remaining load capacity calculation unit 64.

ここで、本実施形態に係るショベル100の動作の一例について図6を用いて説明する。図6は、ショベル100によるダンプトラックDTへの土砂(積載物)の積み込み作業が行われている作業現場の様子の一例を示す模式図である。具体的には、図6(A)は、作業現場の上面図である。図6(B)は、図6(A)の矢印AR1で示す方向から作業現場を見たときの図である。図6(B)では、明瞭化のため、ショベル100(バケット6を除く。)の図示が省略されている。また、図6(A)において、実線で描かれたショベル100は掘削動作が終了したときの状態を表し、破線で描かれたショベル100は複合動作中の状態を表し、一点鎖線で描かれたショベル100は放土動作が開始する前の状態を表す。同様に、図6(B)において、実線で描かれたバケット6Aは掘削動作が終了したときのバケット6の状態を表し、破線で描かれたバケット6Bは複合動作中のバケット6の状態を表し、一点鎖線で描かれたバケット6Cは放土動作が開始する前のバケット6の状態を表す。また、図6(A)及び図6(B)における太い点線は、バケット6の背面にある所定点が描く軌跡を表す。 Here, an example of the operation of the excavator 100 according to the present embodiment will be described with reference to FIG. FIG. 6 is a schematic view showing an example of a work site in which earth and sand (load) is loaded onto the dump truck DT by the excavator 100. Specifically, FIG. 6A is a top view of the work site. FIG. 6B is a view when the work site is viewed from the direction indicated by the arrow AR1 in FIG. 6A. In FIG. 6B, the excavator 100 (excluding the bucket 6) is not shown for clarity. Further, in FIG. 6A, the excavator 100 drawn by the solid line represents the state when the excavation operation is completed, and the excavator 100 drawn by the broken line represents the state during the combined operation, and is drawn by the alternate long and short dash line. Excavator 100 represents a state before the start of the excavation operation. Similarly, in FIG. 6B, the bucket 6A drawn with a solid line represents the state of the bucket 6 when the excavation operation is completed, and the bucket 6B drawn with a broken line represents the state of the bucket 6 during the combined operation. , The bucket 6C drawn by the alternate long and short dash line represents the state of the bucket 6 before the excavation operation starts. The thick dotted line in FIGS. 6 (A) and 6 (B) represents a locus drawn by a predetermined point on the back surface of the bucket 6.

まず、ショベル100は、点P1に示す掘削位置において、アタッチメントを制御してバケット6により土砂を掘削する(掘削動作)。次に、ショベル100は、上部旋回体3を旋回(図6(A)の例では時計回り)させ、バケット6を点P1に示す掘削位置から点P2の位置を通り点P3に示す放土位置へと移動する(旋回動作)。放土位置の下方には、ダンプトラックDTの荷台が配置されている。次に、ショベル100は、放土位置において、アタッチメントを制御してバケット6内の土砂を放土することにより、バケット6内の土砂をダンプトラックDTの荷台へと積み込む(放土動作)。次に、ショベル100は、上部旋回体3を旋回(図6(A)の例では反時計回り)させ、バケット6を点P3に示す放土位置から点P2の位置を通り点P1に示す掘削位置へと移動する(旋回動作)。これらの動作を繰り返すことにより、ショベル100は、掘削した土砂をダンプトラックDTの荷台へと積み込む。 First, the excavator 100 controls the attachment to excavate the earth and sand by the bucket 6 at the excavation position indicated by the point P1 (excavation operation). Next, the excavator 100 swivels the upper swivel body 3 (clockwise in the example of FIG. 6A), passes the bucket 6 from the excavation position shown at the point P1 to the position of the point P2, and passes through the position of the point P2 to the discharge position shown at the point P3. Move to (turning motion). Below the release position, the loading platform of the dump truck DT is arranged. Next, the excavator 100 loads the earth and sand in the bucket 6 onto the loading platform of the dump truck DT by controlling the attachment at the earth discharge position and discharging the earth and sand in the bucket 6 (earth and earth operation). Next, the excavator 100 swivels the upper swivel body 3 (counterclockwise in the example of FIG. 6A), passes the bucket 6 from the discharge position shown at the point P3, passes through the position of the point P2, and excavates at the point P1. Move to position (clockwise operation). By repeating these operations, the excavator 100 loads the excavated earth and sand onto the loading platform of the dump truck DT.

図5に戻り、積載物重量算出部61は、旋回動作時における上部旋回体3の旋回駆動力に基づいて、バケット6内の土砂(積載物)の重量を算出する。なお、土砂の重量の算出方法については、後述する。 Returning to FIG. 5, the load weight calculation unit 61 calculates the weight of the earth and sand (load) in the bucket 6 based on the turning driving force of the upper swinging body 3 during the turning operation. The method of calculating the weight of earth and sand will be described later.

最大積載量検出部62は、土砂を積載する対象のダンプトラックDTの最大積載量を検出する。例えば、最大積載量検出部62は、撮像装置S6で撮像された画像に基づいて、土砂を積載する対象のダンプトラックDTを特定する。次に、最大積載量検出部62は、特定されたダンプトラックDTの画像に基づいて、ダンプトラックDTの最大積載量を検出する。例えば、最大積載量検出部62は、特定されたダンプトラックDTの画像に基づいて、ダンプトラックDTの車種(サイズ等)を判定する。最大積載量検出部62は、車種と最大積載量とを対応付けしたテーブルを有しており、画像から判定した車種及びテーブルに基づいて、ダンプトラックDTの最大積載量を求める。なお、入力装置42によってダンプトラックDTの最大積載量、車種等が入力され、最大積載量検出部62は、入力装置42の入力情報に基づいて、ダンプトラックDTの最大積載量を求めてもよい。 The maximum load capacity detection unit 62 detects the maximum load capacity of the dump truck DT to be loaded with earth and sand. For example, the maximum load capacity detection unit 62 identifies the dump truck DT to be loaded with earth and sand based on the image captured by the image pickup device S6. Next, the maximum load capacity detection unit 62 detects the maximum load capacity of the dump truck DT based on the image of the identified dump truck DT. For example, the maximum load capacity detection unit 62 determines the vehicle type (size, etc.) of the dump truck DT based on the image of the specified dump truck DT. The maximum load capacity detection unit 62 has a table in which the vehicle type and the maximum load capacity are associated with each other, and obtains the maximum load capacity of the dump truck DT based on the vehicle type and the table determined from the image. The maximum load capacity of the dump truck DT, the vehicle type, etc. are input by the input device 42, and the maximum load capacity detection unit 62 may obtain the maximum load capacity of the dump truck DT based on the input information of the input device 42. ..

加算積載量算出部63は、ダンプトラックDTに積載された土砂重量を算出する。即ち、バケット6内の土砂がダンプトラックDTの荷台に放土されるごとに、加算積載量算出部63は、積載物重量算出部61で算出されたバケット6内の土砂重量を加算して、ダンプトラックDTの荷台に積載された土砂重量の合計である加算積載量(合計重量)を算出する。なお、土砂を積載する対象のダンプトラックDTが新しいダンプトラックDTとなった場合には、加算積載量はリセットされる。 The additional load capacity calculation unit 63 calculates the weight of earth and sand loaded on the dump truck DT. That is, each time the earth and sand in the bucket 6 is discharged to the loading platform of the dump truck DT, the additional load capacity calculation unit 63 adds the earth and sand weight in the bucket 6 calculated by the load weight calculation unit 61. The additional load capacity (total weight), which is the total weight of the earth and sand loaded on the loading platform of the dump truck DT, is calculated. If the dump truck DT to be loaded with earth and sand becomes a new dump truck DT, the additional load capacity is reset.

残積載量算出部64は、最大積載量検出部62で検出したダンプトラックDTの最大積載量と、加算積載量算出部63で算出した現在の加算積載量との差を残積載量として算出する。残積載量とは、ダンプトラックDTに積載可能な土砂の残りの重量である。 The remaining load capacity calculation unit 64 calculates the difference between the maximum load capacity of the dump truck DT detected by the maximum load capacity detection unit 62 and the current additional load capacity calculated by the additional load capacity calculation unit 63 as the remaining load capacity. .. The remaining load capacity is the remaining weight of earth and sand that can be loaded on the dump truck DT.

表示装置40には、積載物重量算出部61で算出されたバケット6内の土砂重量、最大積載量検出部62で検出されたダンプトラックDTの最大積載量、加算積載量算出部63で算出されたダンプトラックDTの加算積載量(荷台に積載された土砂重量の合計)、残積載量算出部64で算出されたダンプトラックDTの残積載量(積載可能な土砂の残りの重量)が表示されてもよい。 The display device 40 is calculated by the sediment weight in the bucket 6 calculated by the load weight calculation unit 61, the maximum load capacity of the dump truck DT detected by the maximum load capacity detection unit 62, and the additional load capacity calculation unit 63. The additional load capacity of the dump truck DT (total weight of sediment loaded on the loading platform) and the remaining load capacity of the dump truck DT calculated by the remaining load capacity calculation unit 64 (remaining weight of sediment that can be loaded) are displayed. You may.

なお、加算積載量が最大積載量を超えた場合、表示装置40に警告が出るように構成されていてもよい。また、算出されたバケット6内の土砂重量が残積載量を超える場合、表示装置40に警告が出るように構成されていてもよい。なお、警告は、表示装置40に表示される場合に限られず、音声出力装置43による音声出力であってもよい。これにより、ダンプトラックDTの最大積載量を超えて土砂が積載されることを防止することができる。 The display device 40 may be configured to warn when the additional load capacity exceeds the maximum load capacity. Further, when the calculated earth and sand weight in the bucket 6 exceeds the remaining load capacity, the display device 40 may be configured to warn. The warning is not limited to the case where it is displayed on the display device 40, and may be a voice output by the voice output device 43. As a result, it is possible to prevent the earth and sand from being loaded in excess of the maximum load capacity of the dump truck DT.

<土砂重量算出方法>
次に、積載物重量算出部61におけるバケット6内の土砂の重量を算出する方法について更に説明する。
<Calculation method of earth and sand weight>
Next, a method of calculating the weight of the earth and sand in the bucket 6 in the load weight calculation unit 61 will be further described.

ここで、上部旋回体3を旋回させる際の旋回トルクτの運動方程式は、以下の式(1)で表すことができる。なお、アタッチメント角θは、ブーム角度、アーム角度、バケット角度を含む。 Here, the equation of motion of the turning torque τ when turning the upper swing body 3 can be expressed by the following equation (1). The attachment angle θ includes a boom angle, an arm angle, and a bucket angle.

Figure 2020165256
Figure 2020165256

また、バケット6内に土砂がない場合(空荷の場合)における上部旋回体3を旋回させる際の旋回トルクτ0の運動方程式は、以下の式(2)で表すことができる。 Further, the equation of motion of the turning torque τ0 when turning the upper swing body 3 when there is no earth and sand in the bucket 6 (in the case of an empty load) can be expressed by the following equation (2).

Figure 2020165256
Figure 2020165256

また、バケット6内に土砂がある場合における上部旋回体3を旋回させる際の旋回トルクτwの運動方程式は、以下の式(3)で表すことができる。 Further, the equation of motion of the turning torque τw when turning the upper swing body 3 when there is earth and sand in the bucket 6 can be expressed by the following equation (3).

Figure 2020165256
Figure 2020165256

ここで、式(2)及び式(3)より、土砂がある場合の旋回トルクτwと土砂がない場合の旋回トルクτ0との差Δτは、以下の式(4)で表すことができる。 Here, from the equations (2) and (3), the difference Δτ between the turning torque τw when there is earth and sand and the turning torque τ0 when there is no earth and sand can be expressed by the following equation (4).

Figure 2020165256
Figure 2020165256

ここで、式(4)における積載物重量M以外のパラメータは、既知あるいは計測可能であるため、積載物重量Mを算出することが可能である。 Here, since the parameters other than the load weight M in the equation (4) are known or measurable, the load weight M can be calculated.

即ち、積載物重量算出部61は、上部旋回体3の旋回動作において、上部旋回体3の旋回駆動力を取得する。ここで、上部旋回体3の旋回駆動力は、旋回油圧モータ2Aの一方のポートと他方のポートとの圧力差、即ち、油圧センサ21,22で検出した油圧の差から得られる。 That is, the load weight calculation unit 61 acquires the turning driving force of the upper turning body 3 in the turning operation of the upper turning body 3. Here, the turning driving force of the upper swinging body 3 is obtained from the pressure difference between one port and the other port of the swinging hydraulic motor 2A, that is, the difference in hydraulic pressure detected by the hydraulic sensors 21 and 22.

また、積載物重量算出部61は、姿勢センサによりアタッチメントの姿勢を取得する。例えば、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3により、アタッチメント角(ブーム角度、アーム角度、バケット角度)を取得する。また、機体傾斜センサS4により、機体の傾斜角度を取得してもよい。また、積載物重量算出部61は、旋回状態センサS5により、上部旋回体3の旋回角速度及び旋回角度を取得する。 Further, the load weight calculation unit 61 acquires the posture of the attachment by the posture sensor. For example, the attachment angle (boom angle, arm angle, bucket angle) is acquired by the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3. Further, the tilt angle of the fuselage may be acquired by the fuselage tilt sensor S4. Further, the load weight calculation unit 61 acquires the turning angular velocity and the turning angle of the upper turning body 3 by the turning state sensor S5.

また、積載物重量算出部61は、事前にテーブルを有している。テーブルには、アタッチメントの姿勢と、旋回駆動力と、に対応して、積載物重量Mが対応付けされている。 Further, the load weight calculation unit 61 has a table in advance. The load weight M is associated with the table according to the posture of the attachment and the turning driving force.

これにより、積載物重量算出部61は、旋回駆動力、姿勢センサの情報、テーブルに基づいて、積載物重量Mを算出することができる。 As a result, the load weight calculation unit 61 can calculate the load weight M based on the turning driving force, the information of the attitude sensor, and the table.

また、積載物重量算出部61は、旋回駆動力により旋回イナーシャを求め、求めた旋回イナーシャに基づいて、積載物重量Mを算出してもよい。 Further, the load weight calculation unit 61 may obtain the turning inertia by the turning driving force and calculate the load weight M based on the obtained turning inertia.

ここで、バケット6内に土砂がない場合の旋回イナーシャは、アタッチメントの姿勢及び既知の情報(各部の重心位置、重量等)により求めることができる。また、バケット6内に土砂を有する場合の旋回イナーシャは、旋回トルクから計算することができる。 Here, the turning inertia when there is no earth and sand in the bucket 6 can be obtained from the posture of the attachment and known information (position of the center of gravity of each part, weight, etc.). Further, the turning inertia when the bucket 6 has earth and sand can be calculated from the turning torque.

土砂がない場合の旋回イナーシャから土砂がある場合の旋回イナーシャへの増加量は、バケット6内の土砂重量に基づくものである。よって、土砂がない場合の旋回イナーシャと土砂を有する場合の旋回イナーシャへとを対比して、積載物重量Mを算出することができる。換言すれば、これらの旋回イナーシャの差分に基づいて、積載物重量Mを算出することができる。 The amount of increase from the swirling inertia in the absence of sediment to the swirling inertia in the presence of sediment is based on the weight of the sediment in the bucket 6. Therefore, the load weight M can be calculated by comparing the swirling inertia when there is no earth and sand with the swirling inertia when there is earth and sand. In other words, the load weight M can be calculated based on the difference between these turning inertias.

ここで、旋回駆動力には、慣性モーメント、旋回遠心力の影響が含まれている。このため、積載物重量算出部61における土砂重量の算出方法は、従来技術(例えば、特許文献1)の方法のように積載物の重量を計算する際に複雑な補償を必要とせず、積載物重量Mを直接求めることができる。 Here, the turning driving force includes the influence of the moment of inertia and the turning centrifugal force. Therefore, the method of calculating the sediment weight in the load weight calculation unit 61 does not require complicated compensation when calculating the weight of the load as in the method of the prior art (for example, Patent Document 1), and the load The weight M can be obtained directly.

なお、ショベル100が上部旋回体3が旋回する場合を例に説明したが、これに限られるものではない。例えば、上部旋回体3が旋回するとともに、アタッチメントが旋回方向以外の方向に速度成分を持つ場合、アタッチメントの速度を考慮して積載物重量Mを求めてもよい。例えば、バケット6が上部旋回体3の回転軸よりも遠ざかるまたは近づく方向に移動する、バケット6が上部旋回体3の回転軸に沿った上方向または下方向に移動する場合、バケット6の速度を考慮して積載物重量Mを求めてもよい。 Although the excavator 100 has been described as an example in which the upper swing body 3 is swiveled, the present invention is not limited to this. For example, when the upper swing body 3 turns and the attachment has a speed component in a direction other than the turning direction, the load weight M may be obtained in consideration of the speed of the attachment. For example, when the bucket 6 moves away from or closer to the rotation axis of the upper swing body 3, and the bucket 6 moves upward or downward along the rotation axis of the upper swing body 3, the speed of the bucket 6 is increased. The load weight M may be obtained in consideration of this.

以上、本実施形態に係るショベル100によれば、掘削された土砂重量を検出することができる。ここで、従来技術(例えば、特許文献1)の方法では、積載物の重量を計算する際に補償が必要となるため、補償の精度により誤差の発生するおそれがある。また、ダンプトラックDTの荷台に積載された土砂重量を求める際は、誤差が累積するため、精度よく加算積載量を求めることができないおそれがあった。これに対し、本実施形態のショベル100では、旋回トルクに基づいて土砂重量を直接検出することができるので、補償の精度による誤差の発生を防止できる。 As described above, according to the excavator 100 according to the present embodiment, the weight of excavated earth and sand can be detected. Here, in the method of the prior art (for example, Patent Document 1), compensation is required when calculating the weight of the load, so that an error may occur depending on the accuracy of compensation. Further, when calculating the weight of earth and sand loaded on the loading platform of the dump truck DT, there is a possibility that the additional load capacity cannot be accurately calculated because errors are accumulated. On the other hand, in the excavator 100 of the present embodiment, since the earth and sand weight can be directly detected based on the turning torque, it is possible to prevent the occurrence of an error due to the accuracy of compensation.

また、ダンプトラックDTに積載された土砂重量を算出することができる。これにより、ダンプトラックDTの過積載を防止することができる。例えば、作業現場から公道へ出る前にトラックスケール等によりダンプトラックDTの積載量がチェックされる。積載量が最大積載量を超えている場合、ダンプトラックDTはショベル100の位置まで戻り、積載している土砂を減らす作業が必要である。このため、ダンプトラックDTの運用効率が低下する。また、ダンプトラックDTの積載不足は、土砂を運搬するダンプトラックDTの延べ台数を増加させ、ダンプトラックDTの運用効率が低下する。これに対し、本実施形態に係るショベル100によれば、過積載を防止しつつ、土砂をダンプトラックDTに積載することができるので、ダンプトラックDTの運用効率を向上させることができる。 In addition, the weight of earth and sand loaded on the dump truck DT can be calculated. This makes it possible to prevent the dump truck DT from being overloaded. For example, the load capacity of the dump truck DT is checked by a truck scale or the like before going out from the work site to the public road. When the load capacity exceeds the maximum load capacity, the dump truck DT needs to return to the position of the excavator 100 to reduce the load of earth and sand. Therefore, the operational efficiency of the dump truck DT is lowered. Insufficient loading of the dump truck DT increases the total number of dump truck DTs that carry earth and sand, and reduces the operational efficiency of the dump truck DT. On the other hand, according to the excavator 100 according to the present embodiment, the earth and sand can be loaded on the dump truck DT while preventing overloading, so that the operational efficiency of the dump truck DT can be improved.

また、表示装置40には、バケット6内の土砂重量、ダンプトラックDTの最大積載量、加算積載量、残積載量が表示される。これにより、ショベル100に搭乗するペレータは、これらの表示を参照しながら作業を行うことにより、ダンプトラックDTに土砂を積載することができる。 Further, the display device 40 displays the sediment weight in the bucket 6, the maximum load capacity of the dump truck DT, the additional load capacity, and the remaining load capacity. As a result, the perator boarding the excavator 100 can load the dump truck DT with earth and sand by performing the work while referring to these displays.

以上、ショベル100の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 Although the embodiment of the excavator 100 has been described above, the present invention is not limited to the above-described embodiment and the like, and various modifications and improvements are made within the scope of the gist of the present invention described in the claims. Is possible.

本実施形態に係るショベル100は、アーム5の先端にエンドアタッチメントとしてのバケット6が枢着され、掘削した土砂(積載物)の重量を算出するものとして説明したが、これに限られるものではない。例えば、エンドアタッチメントがマグネットであって、磁力により吸着した鉄材等(積載物)の重量を算出するものであってもよい。 The excavator 100 according to the present embodiment has been described as having a bucket 6 as an end attachment pivotally attached to the tip of the arm 5 to calculate the weight of excavated earth and sand (load), but the present invention is not limited to this. .. For example, the end attachment may be a magnet, and the weight of an iron material or the like (load) attracted by magnetic force may be calculated.

100 ショベル
1 下部走行体
2 旋回機構
2A 旋回油圧モータ
2A1 第1ポート
2A2 第2ポート
3 上部旋回体
4 ブーム(アタッチメント)
5 アーム(アタッチメント)
6 バケット(アタッチメント)
7 ブームシリンダ
8 アームシリンダ
9 バケットシリンダ
21,22 油圧センサ
30 コントローラ(制御装置)
40 表示装置
42 入力装置
43 音声出力装置
47 記憶装置
60 土砂荷重処理部
61 積載物重量算出部
62 最大積載量検出部
63 加算積載量算出部
64 残積載量算出部
S1 ブーム角度センサ
S2 アーム角度センサ
S3 バケット角度センサ
S4 機体傾斜センサ
S5 旋回状態センサ
S6 撮像装置
DT ダンプトラック
100 Excavator 1 Lower traveling body 2 Swivel mechanism 2A Swivel hydraulic motor 2A1 1st port 2A2 2nd port 3 Upper swivel body 4 Boom (attachment)
5 arm (attachment)
6 bucket (attachment)
7 Boom cylinder 8 Arm cylinder 9 Bucket cylinder 21 and 22 Hydraulic sensor 30 Controller (control device)
40 Display device 42 Input device 43 Voice output device 47 Storage device 60 Sediment load processing unit 61 Load weight calculation unit 62 Maximum load capacity detection unit 63 Additional load capacity calculation unit 64 Remaining load capacity calculation unit S1 Boom angle sensor S2 Arm angle sensor S3 Bucket angle sensor S4 Body tilt sensor S5 Swivel state sensor S6 Imaging device DT Dump truck

Claims (8)

下部走行体と、
前記下部走行体に旋回可能に搭載される上部旋回体と、
前記上部旋回体に取り付けられるアタッチメントと、
制御装置と、を備え、
前記制御装置は、
前記上部旋回体の旋回駆動力に基づいて、前記アタッチメントによる積載物の重量を算出する、
ショベル。
With the lower running body,
An upper swivel body that is mounted on the lower traveling body so as to be swivel
The attachment attached to the upper swing body and
Equipped with a control device,
The control device
The weight of the load by the attachment is calculated based on the turning driving force of the upper turning body.
Excavator.
前記旋回駆動力により求められる旋回イナーシャに基づいて、前記積載物の重量を算出する、
請求項1に記載のショベル。
The weight of the load is calculated based on the turning inertia obtained by the turning driving force.
The excavator according to claim 1.
前記積載物の重量がない場合の旋回イナーシャと、前記積載物を有する場合の旋回イナーシャと、に基づいて、前記積載物の重量を算出する、
請求項1または請求項2に記載のショベル。
The weight of the load is calculated based on the swivel inertia when there is no weight of the load and the swivel inertia when there is the load.
The excavator according to claim 1 or 2.
前記アタッチメントは、土砂を掘削するアタッチメントであり、
前記積載物は前記アタッチメントにより掘削された土砂である、
請求項1乃至請求項3のいずれか1項に記載のショベル。
The attachment is an attachment for excavating earth and sand.
The load is earth and sand excavated by the attachment.
The excavator according to any one of claims 1 to 3.
前記制御装置は、
前記アタッチメントで土砂を掘削する工程と、
前記アタッチメントで掘削された土砂をダンプトラックに積み込む工程と、を繰り返して実行し、
前記制御装置は、
算出された積載物の重量に基づいて、前記ダンプトラックに積み込まれた積載物の合計重量を算出する加算積載量算出部を有する、
請求項4に記載のショベル。
The control device
The process of excavating earth and sand with the attachment,
The process of loading the earth and sand excavated by the attachment onto the dump truck is repeated.
The control device
It has an additional load capacity calculation unit that calculates the total weight of the load loaded on the dump truck based on the calculated weight of the load.
The excavator according to claim 4.
前記制御装置は、
前記ダンプトラックの最大積載量を検出する最大積載量検出部を有する、
請求項5に記載のショベル。
The control device
It has a maximum load capacity detection unit that detects the maximum load capacity of the dump truck.
The excavator according to claim 5.
前記制御装置は、
前記最大積載量と、前記合計重量と、に基づいて、前記ダンプトラックに積載可能な残積載量を算出する残積載量算出部を有する、
請求項6に記載のショベル。
The control device
It has a remaining load capacity calculation unit that calculates the remaining load capacity that can be loaded on the dump truck based on the maximum load capacity and the total weight.
The excavator according to claim 6.
算出された前記アタッチメントによる積載物の重量が、前記残積載量より重い場合、警告を出力する、
請求項7に記載のショベル。
If the calculated weight of the load by the attachment is heavier than the remaining load, a warning is output.
The excavator according to claim 7.
JP2019069172A 2019-03-29 2019-03-29 Shovel Pending JP2020165256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019069172A JP2020165256A (en) 2019-03-29 2019-03-29 Shovel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069172A JP2020165256A (en) 2019-03-29 2019-03-29 Shovel

Publications (1)

Publication Number Publication Date
JP2020165256A true JP2020165256A (en) 2020-10-08

Family

ID=72714424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069172A Pending JP2020165256A (en) 2019-03-29 2019-03-29 Shovel

Country Status (1)

Country Link
JP (1) JP2020165256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176515A1 (en) * 2021-02-22 2022-08-25 株式会社小松製作所 Method for estimating work machine moment
JP7491858B2 (en) 2021-02-22 2024-05-28 株式会社小松製作所 Method for estimating implement moment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064360A (en) * 1998-08-19 2000-02-29 Hitachi Constr Mach Co Ltd Load measuring device for hydraulic backhoe
JP2002004337A (en) * 2000-06-15 2002-01-09 Hitachi Constr Mach Co Ltd Method of calculating quantity of soil operated in hydraulic backhoe
JP2004242430A (en) * 2003-02-06 2004-08-26 Toshiba Corp Vector control inverter arrangement and washing machine
JP2009121127A (en) * 2007-11-14 2009-06-04 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Slewing control device
JP2011038885A (en) * 2009-08-10 2011-02-24 Toshiba Corp Paper sheet mass measuring apparatus
JP2012036645A (en) * 2010-08-06 2012-02-23 Ohbayashi Corp Loading amount management system and loading amount management method
JP2015141092A (en) * 2014-01-28 2015-08-03 日立建機株式会社 Loading weight excess prediction measuring device in construction machine
JP2017055926A (en) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 Washing machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064360A (en) * 1998-08-19 2000-02-29 Hitachi Constr Mach Co Ltd Load measuring device for hydraulic backhoe
JP2002004337A (en) * 2000-06-15 2002-01-09 Hitachi Constr Mach Co Ltd Method of calculating quantity of soil operated in hydraulic backhoe
JP2004242430A (en) * 2003-02-06 2004-08-26 Toshiba Corp Vector control inverter arrangement and washing machine
JP2009121127A (en) * 2007-11-14 2009-06-04 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Slewing control device
JP2011038885A (en) * 2009-08-10 2011-02-24 Toshiba Corp Paper sheet mass measuring apparatus
JP2012036645A (en) * 2010-08-06 2012-02-23 Ohbayashi Corp Loading amount management system and loading amount management method
JP2015141092A (en) * 2014-01-28 2015-08-03 日立建機株式会社 Loading weight excess prediction measuring device in construction machine
JP2017055926A (en) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 Washing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176515A1 (en) * 2021-02-22 2022-08-25 株式会社小松製作所 Method for estimating work machine moment
JP7491858B2 (en) 2021-02-22 2024-05-28 株式会社小松製作所 Method for estimating implement moment

Similar Documents

Publication Publication Date Title
WO2021006349A1 (en) Excavator
JP7242387B2 (en) Excavator
WO2019151335A1 (en) Shovel and shovel management system
US20210262196A1 (en) Excavator and control apparatus for excavator
WO2021241526A1 (en) Excavator and excavator system
CN112411662B (en) Excavator
WO2022124319A1 (en) Work machine and control device for work machine
WO2020203851A1 (en) Shovel
JPWO2020101004A1 (en) Excavator, excavator control device
US20240026651A1 (en) Display device for shovel, and shovel
JP7289701B2 (en) Excavator
JP7285679B2 (en) Excavator
JP2020165256A (en) Shovel
JP7420619B2 (en) excavator
JP2021156078A (en) Shovel
CN117043421A (en) Display device for excavator, excavator and support device for excavator
JP7395403B2 (en) Detection device and shovel
JP2021156081A (en) Work machine
JP7420618B2 (en) excavator
JP7490639B2 (en) Excavator
US20240175243A1 (en) Shovel control device and shovel
WO2023190842A1 (en) Work machine
WO2022210990A1 (en) Work machine and support system for work machine
JP2024001737A (en) Shovel
JP2022152393A (en) Shovel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230718