JP2020029231A - Travelling support device - Google Patents

Travelling support device Download PDF

Info

Publication number
JP2020029231A
JP2020029231A JP2018157400A JP2018157400A JP2020029231A JP 2020029231 A JP2020029231 A JP 2020029231A JP 2018157400 A JP2018157400 A JP 2018157400A JP 2018157400 A JP2018157400 A JP 2018157400A JP 2020029231 A JP2020029231 A JP 2020029231A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
unit
wave
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018157400A
Other languages
Japanese (ja)
Other versions
JP7087826B2 (en
Inventor
中林 敦
Atsushi Nakabayashi
敦 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2018157400A priority Critical patent/JP7087826B2/en
Priority to CN201910778914.3A priority patent/CN110895416A/en
Priority to US16/548,966 priority patent/US20200062228A1/en
Priority to DE102019122696.1A priority patent/DE102019122696A1/en
Publication of JP2020029231A publication Critical patent/JP2020029231A/en
Application granted granted Critical
Publication of JP7087826B2 publication Critical patent/JP7087826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1764Regulation during travel on surface with different coefficients of friction, e.g. between left and right sides, mu-split or between front and rear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/32Vehicle surroundings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/04Vehicle reference speed; Vehicle body speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To provide a travelling support device that can previously acquire a state of a road surface in a travelling direction of a vehicle.SOLUTION: The travelling support device comprises, for example: a sound wave control part that transfers sound waves toward a travelling direction of a vehicle and acquires information about reflected waves from a ranging part that receives the reflected waves reflected from an object; an information acquiring part that acquires information about temperatures around the vehicle; and a determining part that determines that a road surface in the travelling direction of the vehicle is a frozen road surface when determining that the ranging part has received reflected waves with signal strength of a prescribed value or more from a predetermined distance on the basis of the information about the reflected waves, if a temperature based on the temperature information is less than a prescribed temperature.SELECTED DRAWING: Figure 4

Description

本発明の実施形態は、走行支援装置に関する。   An embodiment of the present invention relates to a driving support device.

従来、車両に搭載された各種センサを用いて、車両の周囲に存在する物体、例えば、障害物となりうる、他車両、建造物、樹木、歩行者等の検出を行い、その物体との接触を回避するような制動支援を行う技術が種々提案されている。このような装置では、物体を検出するセンサとは別のセンサで路面状態(路面摩擦係数)を推定して制動力の調整を行うことで、状況に応じた物体との接触回避を実現している。   Conventionally, by using various sensors mounted on a vehicle, an object existing around the vehicle, for example, another vehicle, a building, a tree, a pedestrian, or the like that can be an obstacle is detected, and contact with the object is performed. There have been proposed various techniques for performing braking support to avoid such a situation. In such a device, a sensor different from a sensor that detects an object estimates a road surface condition (a coefficient of road surface friction) and adjusts a braking force, thereby realizing contact avoidance with an object according to a situation. I have.

特開平5−310110号公報JP-A-5-310110 特許第4966736号公報Japanese Patent No. 4966736

路面摩擦係数は、車両の車輪と路面の接触面に働く摩擦力と、接触面に垂直に作用する圧力との比である。したがって、路面摩擦係数は、推定すべき路面の位置に車輪が到達した状態でなければ推定できない。しかしながら、例えば、車両の進行方向前方の路面が凍結している場合、制動時の路面摩擦係数は現時点の路面摩擦係数よりも小さく、停止距離が短く想定されることで、制御遅れが生じる場合がある。したがって、車両の進行方向の路面状態が予め取得(または推定)できる走行支援装置が提供できれば、制御遅れ等を軽減または抑制可能となり有意義である。   The road surface friction coefficient is a ratio of a friction force acting on a contact surface between a vehicle wheel and a road surface and a pressure acting perpendicular to the contact surface. Therefore, the road surface friction coefficient cannot be estimated unless the wheels have reached the position of the road surface to be estimated. However, for example, when the road surface ahead in the traveling direction of the vehicle is frozen, the road surface friction coefficient at the time of braking is smaller than the current road surface friction coefficient, and a control delay may occur because the stopping distance is assumed to be short. is there. Therefore, if a travel support device capable of acquiring (or estimating) the road surface state in the traveling direction of the vehicle in advance can be provided, control delays and the like can be reduced or suppressed, which is significant.

実施形態にかかる走行支援装置は、例えば、車両の進行方向に向けて音波を送波し、物体から反射した反射波を受波する測距部から、上記反射波の情報を取得する音波制御部と、上記車両の周囲の温度情報を取得する情報取得部と、上記温度情報に基づく温度が所定温度未満の場合に、上記反射波の情報に基づいて、所定距離以上から所定値以上の信号強度の反射波を上記測距部が受信したと判定した場合に、上記車両の進行方向の路面が凍結路面であると判定する判定部と、を備える。この構成によれば、例えば、所定温度未満で、路面が凍結している場合、車両の進行方向に送波した音波を反射する物体が存在するとき、送波した音波の一部は、凍結路面で反射して戻ってくる可能性が高くなる。つまり、測距部は、路面が非凍結時に得られる反射波より遠い位置から強い反射波が取得される可能性が高くなる。この場合に車両の進行方向の路面が凍結路面であると判定することで、車両の進行方向の離れた位置における路面状態(凍結状態)を予め取得(推定)できる。   The traveling support device according to the embodiment is, for example, a sound wave control unit that transmits a sound wave in the traveling direction of the vehicle and acquires information on the reflected wave from a distance measuring unit that receives a reflected wave reflected from an object. An information acquisition unit for acquiring temperature information around the vehicle; and a signal intensity from a predetermined distance or more to a predetermined value or more based on the reflected wave information when the temperature based on the temperature information is lower than a predetermined temperature. And a determining unit that determines that the road surface in the traveling direction of the vehicle is a frozen road surface when the distance measuring unit determines that the reflected wave has been received. According to this configuration, for example, when the road surface is frozen at a temperature lower than the predetermined temperature, when an object reflecting the sound wave transmitted in the traveling direction of the vehicle exists, a part of the transmitted sound wave is It is more likely that the light will be reflected back. In other words, the distance measuring unit is more likely to obtain a strong reflected wave from a position farther than a reflected wave obtained when the road surface is not frozen. In this case, by determining that the road surface in the traveling direction of the vehicle is a frozen road surface, the road surface state (freezing state) at a position distant in the traveling direction of the vehicle can be acquired (estimated) in advance.

実施形態にかかる走行支援装置は、例えば、上記凍結路面であると判定された場合、上記音波を反射した上記車両の進行方向に存在する物体に向かって走行する上記車両と上記物体とが接触を回避し得る、上記路面の非凍結時の第一の制動距離より長い第二の制動距離の位置から制動制御を実行する制御部を、さらに備えてもよい。この構成によれば、例えば、車両の進行方向の離れた位置に凍結路面が存在すると判定された場合、非凍結路面を走行中に物体との接触を回避する第一の制動距離より遠い第二の制動距離の位置から制動を開始するため、凍結路面での車輪の滑りを考慮した物体との接触回避制動を実現できる。   The traveling support device according to the embodiment, for example, when it is determined that the frozen road surface, the vehicle traveling toward an object existing in the traveling direction of the vehicle that reflected the sound wave, the vehicle and the object contact. The vehicle may further include a control unit that executes the braking control from a position of a second braking distance longer than the first braking distance when the road surface is not frozen, which can be avoided. According to this configuration, for example, when it is determined that a frozen road surface exists at a position separated in the traveling direction of the vehicle, a second braking distance farther than the first braking distance for avoiding contact with an object while traveling on a non-freezing road surface is determined. Since the braking is started from the position of the braking distance, the contact avoidance braking with the object in consideration of the slip of the wheel on the frozen road surface can be realized.

実施形態にかかる走行支援装置の上記音波制御部は、例えば、上記車両の上記進行方向と略平行に送波可能に設けられた上記測距部から、上記反射波の情報を取得してもよい。この構成によれば、例えば、送波した音波が主として路面に向けられて、路面で過剰に反射してしまうことを軽減できる。その結果、非凍結路面の場合に強い反射波が路面から取得され、凍結路面と判定してしまう誤判定が軽減できる。また、非凍結路面の場合に、路面や路面上の小形物等を障害物として誤検出してしまうことが抑制できる。   The sound wave control unit of the driving support device according to the embodiment may acquire the information of the reflected wave from, for example, the distance measuring unit provided so as to be able to transmit waves substantially parallel to the traveling direction of the vehicle. . According to this configuration, for example, it is possible to reduce the possibility that the transmitted sound wave is mainly directed to the road surface and is excessively reflected on the road surface. As a result, in the case of a non-freezing road surface, a strong reflected wave is acquired from the road surface, and erroneous determination of determining as a frozen road surface can be reduced. Further, in the case of a non-freezing road surface, erroneous detection of a road surface or a small object on the road surface as an obstacle can be suppressed.

実施形態にかかる走行支援装置の上記判定部は、例えば、上記所定値以上の信号強度の上記反射波の受波頻度が所定回数以上の場合に、上記路面が上記凍結路面であると判定する判定閾値を有し、当該判定閾値は、判定時の上記車両の速度に応じて変化させてもよい。音波を送波する車両の速度が変化すると、送波した音波に対する単位期間当たりの反射波の受波数が変化する。この構成によれば、例えば、車両の速度に応じて判定閾値を変化させるため、車両の速度による判定精度のばらつきを軽減することができる。   The determination unit of the traveling support device according to the embodiment determines that the road surface is the frozen road surface, for example, when the frequency of receiving the reflected wave having the signal intensity equal to or higher than the predetermined value is equal to or higher than a predetermined number. There may be a threshold, and the determination threshold may be changed according to the speed of the vehicle at the time of the determination. When the speed of the vehicle transmitting the sound waves changes, the number of reflected waves received per unit period with respect to the transmitted sound waves changes. According to this configuration, for example, since the determination threshold is changed according to the speed of the vehicle, it is possible to reduce the variation in the determination accuracy due to the speed of the vehicle.

図1は、実施形態の走行支援装置を搭載する車両の車室の一部が透視された状態が示された例示的な斜視図である。FIG. 1 is an exemplary perspective view showing a state in which a part of a vehicle compartment of a vehicle equipped with the driving support device of the embodiment is seen through. 図2は、実施形態の走行支援装置を搭載する車両の例示的な平面図である。FIG. 2 is an exemplary plan view of a vehicle equipped with the driving support device of the embodiment. 図3は、実施形態の走行支援装置を含む駐車支援システムの構成の例示的なブロック図である。FIG. 3 is an exemplary block diagram of a configuration of a parking assistance system including the driving assistance device according to the embodiment. 図4は、実施形態の走行支援システムのCPUで実現される走行支援装置の構成の例示的なブロック図である。FIG. 4 is an exemplary block diagram of a configuration of the driving support device realized by the CPU of the driving support system of the embodiment. 図5は、実施形態の走行支援装置を搭載する車両と進行方向に存在する対象物体との位置関係および超音波の送受波の状態を示す例示的な模式図である。FIG. 5 is an exemplary schematic diagram illustrating a positional relationship between a vehicle equipped with the driving assistance device of the embodiment and a target object existing in a traveling direction and a state of transmission and reception of ultrasonic waves. 図6は、実施形態の走行支援装置を搭載する車両が、凍結路面が存在しないシーン(雪路面)で対象物体に接近する場合に受波する反射波の受波傾向を例示的に示すグラフである。FIG. 6 is a graph exemplarily showing a reception tendency of a reflected wave received when a vehicle equipped with the driving support device of the embodiment approaches a target object in a scene where there is no frozen road surface (snow road surface). is there. 図7は、実施形態の走行支援装置を搭載する車両が、凍結路面が存在しないシーン(非凍結のアスファルト路面)で対象物体に接近する場合に受波する反射波の受波傾向を例示的に示すグラフである。FIG. 7 exemplarily shows a reception tendency of a reflected wave received when a vehicle equipped with the driving support device of the embodiment approaches a target object in a scene where there is no frozen road surface (non-freezing asphalt road surface). It is a graph shown. 図8は、実施形態の走行支援装置を搭載する車両が、凍結路面が存在するシーンで対象物体に接近する場合に受波する反射波の受波傾向を例示的に示すグラフである。FIG. 8 is a graph exemplarily showing a receiving tendency of a reflected wave received when a vehicle equipped with the driving support device of the embodiment approaches a target object in a scene where a frozen road surface exists. 図9は、実施形態の走行支援装置が、路面の凍結の有無および対象物体の有無でシーンの場合分けを行ったときの超音波の送受の様子を例示的に示す表である。FIG. 9 is a table exemplarily showing the state of transmission and reception of ultrasonic waves when the traveling support device of the embodiment classifies scenes based on whether or not the road surface is frozen and whether or not the target object is present. 図10は、実施形態の走行支援装置において、凍結路面の有無判定を行う場合に基準となる判定閾値と車速との関係を例示的に示すマップである。FIG. 10 is a map exemplarily showing a relationship between a determination threshold value serving as a reference when determining whether or not a frozen road surface is present and the vehicle speed in the driving support device of the embodiment. 図11は、実施形態の走行支援装置による凍結路面判定および制動制御の処理の流れを説明する例示的なフローチャートである。FIG. 11 is an exemplary flowchart illustrating a flow of a frozen road surface determination and a brake control process performed by the driving support device of the embodiment.

以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用、結果、および効果は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能であるとともに、基本的な構成に基づく種々の効果や、派生的な効果のうち、少なくとも一つを得ることが可能である。   Hereinafter, exemplary embodiments of the present invention will be disclosed. The configurations of the embodiments described below, and the operations, results, and effects provided by the configurations are examples. The present invention can be realized by configurations other than those disclosed in the following embodiments, and can obtain at least one of various effects based on the basic configuration and derivative effects. .

本実施形態において、走行支援装置を搭載する車両1は、例えば、不図示の内燃機関を駆動源とする自動車、すなわち内燃機関自動車であってもよいし、不図示の電動機を駆動源とする自動車、すなわち電気自動車や燃料電池自動車等であってもよいし、それらの双方を駆動源とするハイブリッド自動車であってもよいし、他の駆動源を備えた自動車であってもよい。また、車両1は、種々の変速装置を搭載することができるし、内燃機関や電動機を駆動するのに必要な種々の装置、例えばシステムや部品等を搭載することができる。また、車両1における車輪3の駆動に関わる装置の方式や、数、レイアウト等は、種々に設定することができる。   In the present embodiment, the vehicle 1 equipped with the driving support device may be, for example, an automobile using an internal combustion engine (not shown) as a driving source, that is, an internal combustion engine automobile, or an automobile using an electric motor (not shown) as a driving source. That is, it may be an electric vehicle, a fuel cell vehicle, or the like, a hybrid vehicle using both of them as driving sources, or a vehicle equipped with another driving source. Further, the vehicle 1 can be mounted with various transmissions, and can be mounted with various devices required for driving the internal combustion engine and the electric motor, such as systems and components. Further, the type, number, layout, and the like of the devices related to the driving of the wheels 3 in the vehicle 1 can be variously set.

図1に例示されるように、車体2は、不図示の乗員が乗車する車室2aを構成している。車室2a内には、乗員としての運転者の座席2bに臨む状態で、操舵部4や、加速操作部5、制動操作部6、変速操作部7等が設けられている。操舵部4は、例えば、ダッシュボード25から突出したステアリングホイールであり、加速操作部5は、例えば、運転者の足下に位置されたアクセルペダルであり、制動操作部6は、例えば、運転者の足下に位置されたブレーキペダルであり、変速操作部7は、例えば、センターコンソールから突出したシフトレバーである。なお、操舵部4や、加速操作部5、制動操作部6、変速操作部7等は、これらには限定されない。   As illustrated in FIG. 1, the vehicle body 2 constitutes a vehicle compartment 2 a in which a passenger (not shown) rides. A steering unit 4, an acceleration operation unit 5, a braking operation unit 6, a shift operation unit 7, and the like are provided in the vehicle interior 2a in a state of facing a driver's seat 2b as an occupant. The steering unit 4 is, for example, a steering wheel protruding from the dashboard 25, the acceleration operation unit 5 is, for example, an accelerator pedal located below the driver's feet, and the braking operation unit 6 is, for example, a driver's The shift pedal 7 is, for example, a shift lever projecting from the center console. The steering unit 4, the acceleration operation unit 5, the braking operation unit 6, the shift operation unit 7, and the like are not limited to these.

また、車室2a内には、表示出力部としての表示装置8や、音声出力部としての音声出力装置9が設けられている。表示装置8は、例えば、LCD(liquid crystal display)や、OELD(organic electroluminescent display)等である。音声出力装置9は、例えば、スピーカである。また、表示装置8は、例えば、タッチパネル等、透明な操作入力部10で覆われている。乗員は、操作入力部10を介して表示装置8の表示画面に表示される画像を視認することができる。また、乗員は、表示装置8の表示画面に表示される画像に対応した位置で手指等により操作入力部10を触れたり押したり動かしたりして操作することで、操作入力を実行することができる。これら表示装置8や、音声出力装置9、操作入力部10等は、例えば、ダッシュボード25の車幅方向すなわち左右方向の中央部に位置されたモニタ装置11に設けられている。モニタ装置11は、スイッチや、ダイヤル、ジョイスティック、押しボタン等の不図示の操作入力部を有することができる。また、モニタ装置11とは異なる車室2a内の他の位置に不図示の音声出力装置を設けることができるし、モニタ装置11の音声出力装置9と他の音声出力装置から、音声を出力することができる。なお、モニタ装置11は、例えば、ナビゲーションシステムやオーディオシステムと兼用されうる。   Further, a display device 8 as a display output unit and an audio output device 9 as an audio output unit are provided in the passenger compartment 2a. The display device 8 is, for example, an LCD (liquid crystal display), an OELD (organic electroluminescent display), or the like. The audio output device 9 is, for example, a speaker. The display device 8 is covered with, for example, a transparent operation input unit 10 such as a touch panel. The occupant can visually recognize an image displayed on the display screen of the display device 8 via the operation input unit 10. Further, the occupant can execute the operation input by operating the operation input unit 10 by touching, pushing, or moving the operation input unit 10 with a finger or the like at a position corresponding to the image displayed on the display screen of the display device 8. . The display device 8, the audio output device 9, the operation input unit 10, and the like are provided, for example, on the monitor device 11 located at the center of the dashboard 25 in the vehicle width direction, that is, in the left-right direction. The monitor device 11 can include an operation input unit (not shown) such as a switch, a dial, a joystick, and a push button. An audio output device (not shown) can be provided at another position in the passenger compartment 2a different from the monitor device 11, and audio is output from the audio output device 9 of the monitor device 11 and another audio output device. be able to. Note that the monitor device 11 can also be used, for example, as a navigation system or an audio system.

また、車室2a内には、表示装置8とは別の表示装置12(図3参照)が設けられている。表示装置12は、例えば、ダッシュボード25の計器盤部26(図1参照)に設けられ、計器盤部26の略中央で、速度表示部と回転数表示部との間に位置されている。表示装置12の画面の大きさは、表示装置8の画面の大きさよりも小さい。この表示装置12には、主として車両1の走行支援に関する情報を示す画像が表示されうる。表示装置12で表示される情報量は、表示装置8で表示される情報量より少なくてもよい。表示装置12は、例えば、LCDや、OELD等である。なお、表示装置8に、表示装置12で表示される情報が表示されてもよい。   Further, a display device 12 (see FIG. 3) different from the display device 8 is provided in the passenger compartment 2a. The display device 12 is provided, for example, on an instrument panel 26 (see FIG. 1) of the dashboard 25, and is located substantially at the center of the instrument panel 26, between the speed display unit and the rotation speed display unit. The screen size of the display device 12 is smaller than the screen size of the display device 8. On the display device 12, an image mainly indicating information related to the driving support of the vehicle 1 can be displayed. The amount of information displayed on the display device 12 may be smaller than the amount of information displayed on the display device 8. The display device 12 is, for example, an LCD, an OELD, or the like. The information displayed on the display device 12 may be displayed on the display device 8.

また、図1、図2に例示されるように、車両1は、例えば、四輪自動車であり、左右二つの前輪3Fと、左右二つの後輪3Rとを有する。これら四つの車輪3は、いずれも転舵可能に構成されうる。図3に例示されるように、車両1は、少なくとも二つの車輪3を操舵する操舵システム13を有している。操舵システム13は、アクチュエータ13aと、トルクセンサ13bとを有する。操舵システム13は、ECU14(electronic control unit)等によって電気的に制御されて、アクチュエータ13aを動作させる。操舵システム13は、例えば、電動パワーステアリングシステムや、SBW(steer by wire)システム等である。操舵システム13は、アクチュエータ13aによって操舵部4にトルク、すなわちアシストトルクを付加して操舵力を補ったり、アクチュエータ13aによって車輪3を転舵したりする。この場合、アクチュエータ13aは、一つの車輪3を転舵してもよいし、複数の車輪3を転舵してもよい。また、トルクセンサ13bは、例えば、運転者が操舵部4に与えるトルクを検出する。   Further, as exemplified in FIGS. 1 and 2, the vehicle 1 is, for example, a four-wheeled vehicle, and has two left and right front wheels 3F and two left and right rear wheels 3R. Each of these four wheels 3 can be configured to be steerable. As illustrated in FIG. 3, the vehicle 1 has a steering system 13 that steers at least two wheels 3. The steering system 13 has an actuator 13a and a torque sensor 13b. The steering system 13 is electrically controlled by an ECU 14 (electronic control unit) or the like to operate the actuator 13a. The steering system 13 is, for example, an electric power steering system, an SBW (steer by wire) system, or the like. The steering system 13 supplements the steering force by adding a torque, that is, an assist torque, to the steering unit 4 by the actuator 13a, or turns the wheels 3 by the actuator 13a. In this case, the actuator 13a may steer one wheel 3 or steer a plurality of wheels 3. Further, the torque sensor 13b detects, for example, a torque given to the steering unit 4 by the driver.

また、図1、図2に例示されるように、車体2の例えば、後側の端部2eである、リヤトランクのドア2hの下方の壁部には撮像部15が設けられている。撮像部15は、例えば、CCD(charge coupled device)やCIS(CMOS image sensor)等の撮像素子を内蔵するデジタルカメラである。撮像部15は、所定のフレームレートで動画データを出力することができる。撮像部15は、それぞれ、広角レンズまたは魚眼レンズを有し、水平方向には例えば140°〜220°の範囲を撮影することができる。また、撮像部15の光軸は斜め下方に向けて設定されている。よって、撮像部15は、車両1の後方における移動可能な路面や車両1が駐車可能な領域を含む車体2の後方周辺の後方画像を逐次撮影し、撮像画像データとして出力する。なお、他の実施形態では、撮像部15が複数設けられてもよい。例えば、車体2の前側、すなわち車両前後方向の前方側に設けられて車両1の前方画像を取得してもよい。また、撮像部15は、例えば、車体2の右側の端部や左側の端部のうち例えば左右のドアミラーにーに設けられて、車両1の左右の側方画像を取得してもよい。撮像部15が車体2の後側の端部に設けられる場合、例えば車両1が後退走行する場合に、後方の安全確認等を行うための後方画像を表示装置8を介して提供可能である。また、撮像部15が車体2の前側端部や側方端部に設けられる場合、それぞれの方向の安全確認等を行うための画像が提供可能である。また、ECU14は、複数の撮像部15で得られた画像データに基づいて演算処理や画像処理を実行し、より広い視野角の画像を生成したり、車両1を上方から見た仮想的な俯瞰画像を生成したりしてもよい。   As illustrated in FIGS. 1 and 2, an imaging unit 15 is provided on a wall below the rear trunk door 2h, which is the rear end 2e of the vehicle body 2, for example. The imaging unit 15 is, for example, a digital camera having a built-in imaging device such as a charge coupled device (CCD) or a CMOS image sensor (CIS). The imaging unit 15 can output moving image data at a predetermined frame rate. Each of the imaging units 15 has a wide-angle lens or a fisheye lens, and can capture, for example, a range of 140 ° to 220 ° in the horizontal direction. The optical axis of the imaging unit 15 is set obliquely downward. Therefore, the imaging unit 15 sequentially captures rear images around the rear of the vehicle body 2 including a movable road surface behind the vehicle 1 and an area where the vehicle 1 can park, and outputs the captured images as captured image data. Note that in other embodiments, a plurality of imaging units 15 may be provided. For example, a front image of the vehicle 1 may be acquired by being provided on the front side of the vehicle body 2, that is, on the front side in the vehicle front-rear direction. Further, the imaging unit 15 may be provided, for example, on the left and right door mirrors of the right end and the left end of the vehicle body 2 to acquire left and right side images of the vehicle 1. When the imaging unit 15 is provided at the rear end of the vehicle body 2, for example, when the vehicle 1 moves backward, it is possible to provide a rear image through the display device 8 for confirming the safety of the rear. When the imaging unit 15 is provided at the front end or the side end of the vehicle body 2, images for confirming safety in each direction can be provided. The ECU 14 performs arithmetic processing and image processing based on the image data obtained by the plurality of imaging units 15 to generate an image with a wider viewing angle, or a virtual bird's-eye view of the vehicle 1 viewed from above. An image may be generated.

また、図1、図2に例示されるように、車体2には、複数の測距部16,17として、例えば四つの測距部16a〜16dと、八つの測距部17a〜17hとが設けられている。測距部16,17は、音波の一例として、例えば、超音波を発射してその反射波を捉えるソナーである。ソナーは、ソナーセンサ、あるいは超音波探知器とも称されうる。ECU14は、測距部16,17の検出結果により、車両1の周囲に位置された障害物等の物体の有無や当該物体までの距離を測定することができる。なお、測距部17は、例えば、比較的近距離の物体の検出に用いられ、測距部16は、例えば、測距部17よりも遠い比較的長距離の物体の検出に用いられうる。また、測距部17は、例えば、車両1の前方および後方の物体の検出に用いられ、測距部16は、車両1の側方の物体の検出に用いられうる。   As illustrated in FIGS. 1 and 2, the vehicle body 2 includes, for example, four distance measuring units 16 a to 16 d and eight distance measuring units 17 a to 17 h as a plurality of distance measuring units 16 and 17. Is provided. The distance measuring units 16 and 17 are sonars that emit, for example, an ultrasonic wave and capture a reflected wave as an example of a sound wave. Sonar can also be called a sonar sensor or an ultrasonic detector. The ECU 14 can measure the presence or absence of an object such as an obstacle located around the vehicle 1 and the distance to the object based on the detection results of the distance measurement units 16 and 17. The distance measuring unit 17 can be used, for example, to detect a relatively short distance object, and the distance measuring unit 16 can be used, for example, to detect a relatively long distance object farther than the distance measuring unit 17. The distance measuring unit 17 can be used, for example, for detecting objects in front and behind the vehicle 1, and the distance measuring unit 16 can be used for detecting an object on the side of the vehicle 1.

さらに、本実施形態の場合、例えば、測距部17は、車両1の進行方向における路面が凍結路面であるか否かを判定するための情報を取得するセンサとしても利用されうる。凍結路面の場合、路面の表面の凹凸が凍結によって非凍結路面より滑らかになり、超音波の反射性(反響性)が向上する場合がある。また、超音波を含む音波は、空気中を伝搬するため、温度が低い方が伝搬時の損失が少なくなる。本実施形態の走行支援装置は、この特徴の違いを利用して、凍結路面の有無判定を行う。凍結路面の有無判定の詳細は後述する。   Furthermore, in the case of the present embodiment, for example, the distance measuring unit 17 can also be used as a sensor that acquires information for determining whether or not the road surface in the traveling direction of the vehicle 1 is a frozen road surface. In the case of a frozen road surface, the surface irregularities of the road surface may become smoother than a non-freezing road surface due to freezing, and the reflectivity (echo) of the ultrasonic wave may be improved. Also, since sound waves including ultrasonic waves propagate in the air, the lower the temperature, the smaller the loss during propagation. The traveling support device of the present embodiment makes use of this difference in characteristics to determine the presence or absence of a frozen road surface. The details of the determination of the presence or absence of a frozen road surface will be described later.

また、図3に例示されるように、走行支援システム100では、ECU14や、モニタ装置11、操舵システム13、測距部16,17等の他、ブレーキシステム18、舵角センサ19、アクセルセンサ20、駆動システム21、車輪速センサ22、シフトセンサ23等が、電気通信回線としての車内ネットワーク24を介して電気的に接続されている。車内ネットワーク24は、例えば、CAN(controller area network)として構成されている。ECU14は、車内ネットワーク24を通じて制御信号を送ることで、操舵システム13、ブレーキシステム18、駆動システム21等を制御することができる。また、ECU14は、車内ネットワーク24を介して、トルクセンサ13b、ブレーキセンサ18b、舵角センサ19、測距部16,17、アクセルセンサ20、シフトセンサ23、車輪速センサ22等の検出結果や、操作入力部10等の操作信号等を、受け取ることができる。   As illustrated in FIG. 3, in the driving support system 100, in addition to the ECU 14, the monitor device 11, the steering system 13, the distance measurement units 16 and 17, a brake system 18, a steering angle sensor 19, an accelerator sensor 20 , A drive system 21, a wheel speed sensor 22, a shift sensor 23, etc., are electrically connected via an in-vehicle network 24 as an electric communication line. The in-vehicle network 24 is configured as, for example, a CAN (controller area network). The ECU 14 can control the steering system 13, the brake system 18, the drive system 21 and the like by sending a control signal through the in-vehicle network 24. Further, the ECU 14 detects detection results of the torque sensor 13b, the brake sensor 18b, the steering angle sensor 19, the distance measuring units 16, 17, the accelerator sensor 20, the shift sensor 23, the wheel speed sensor 22, and the like via the in-vehicle network 24, An operation signal or the like of the operation input unit 10 or the like can be received.

ECU14は、例えば、CPU14a(central processing unit)や、ROM14b(read only memory)、RAM14c(random access memory)、表示制御部14d、音声制御部14e、SSD14f(solid state drive、フラッシュメモリ)等を有している。CPU14aは、例えば、表示装置8,12で表示される画像に関連した画像処理や、走行支援を実行する際の車両1の進行方向の凍結路面の有無判定、路面状態に応じた接触回避制御(例えば制動制御等)、凍結路面の発見時の警報出力等、各種の演算処理および制御を実行することができる。   The ECU 14 includes, for example, a CPU 14a (central processing unit), a ROM 14b (read only memory), a RAM 14c (random access memory), a display control unit 14d, a voice control unit 14e, an SSD 14f (solid state drive, flash memory), and the like. ing. The CPU 14a, for example, performs image processing related to images displayed on the display devices 8 and 12, determines the presence or absence of a frozen road surface in the traveling direction of the vehicle 1 when performing driving support, and controls contact avoidance according to the road surface state ( Various arithmetic processes and controls, such as braking control, etc., and an alarm output when a frozen road surface is found, can be executed.

CPU14aは、ROM14b等の不揮発性の記憶装置にインストールされ記憶されたプログラムを読み出し、当該プログラムにしたがって演算処理を実行することができる。RAM14cは、CPU14aでの演算で用いられる各種のデータを一時的に記憶する。また、表示制御部14dは、ECU14での演算処理のうち、主として、撮像部15で得られた画像データを用いた画像処理や、表示装置8で表示される画像データの合成等を実行する。また、音声制御部14eは、ECU14での演算処理のうち、主として、音声出力装置9で出力される音声データの処理を実行する。また、SSD14fは、書き換え可能な不揮発性の記憶部であって、ECU14の電源がOFFされた場合にあってもデータを記憶することができる。なお、CPU14aや、ROM14b、RAM14c等は、同一パッケージ内に集積されうる。また、ECU14は、CPU14aに替えて、DSP(digital signal processor)等の他の論理演算プロセッサや論理回路等が用いられる構成であってもよい。また、SSD14fに替えてHDD(hard disk drive)が設けられてもよいし、SSD14fやHDDは、ECU14とは別に設けられてもよい。   The CPU 14a reads a program installed and stored in a non-volatile storage device such as the ROM 14b, and can execute arithmetic processing according to the program. The RAM 14c temporarily stores various data used in the calculation by the CPU 14a. In addition, the display control unit 14d mainly performs image processing using image data obtained by the imaging unit 15 and synthesis of image data displayed on the display device 8 among arithmetic processing in the ECU 14. In addition, the voice control unit 14 e mainly performs processing of voice data output from the voice output device 9 in the arithmetic processing in the ECU 14. The SSD 14f is a rewritable nonvolatile storage unit, and can store data even when the power of the ECU 14 is turned off. Note that the CPU 14a, the ROM 14b, the RAM 14c, and the like can be integrated in the same package. Further, the ECU 14 may be configured to use another logical operation processor, a logical circuit, or the like, such as a DSP (digital signal processor), instead of the CPU 14a. Further, a hard disk drive (HDD) may be provided instead of the SSD 14f, and the SSD 14f and the HDD may be provided separately from the ECU 14.

ブレーキシステム18は、例えば、ブレーキのロックを抑制するABS(anti-lock brake system)や、コーナリング時の車両1の横滑りを抑制する横滑り防止装置(ESC:electronic stability control)、ブレーキ力を増強させる(ブレーキアシストを実行する)電動ブレーキシステム、BBW(brake by wire)等である。ブレーキシステム18は、アクチュエータ18aを介して、車輪3ひいては車両1に制動力を与える。また、ブレーキシステム18は、左右の車輪3の回転差などからブレーキのロックや、車輪3の空回り、横滑りの兆候等を検出して、各種制御を実行することができる。ブレーキセンサ18bは、例えば、制動操作部6の可動部の位置を検出するセンサである。ブレーキセンサ18bは、可動部としてのブレーキペダルの位置を検出することができる。   The brake system 18 includes, for example, an anti-lock brake system (ABS) that suppresses lock of the brake, an electronic stability control (ESC) that suppresses a side slip of the vehicle 1 at the time of cornering, and increases the braking force ( Electric brake system for executing brake assist), BBW (brake by wire) and the like. The brake system 18 applies a braking force to the wheels 3 and thus to the vehicle 1 via the actuator 18a. In addition, the brake system 18 can execute various controls by detecting a lock of a brake, an idling of the wheel 3, a sign of a skid, or the like based on a rotation difference between the left and right wheels 3 and the like. The brake sensor 18b is, for example, a sensor that detects the position of the movable part of the braking operation unit 6. The brake sensor 18b can detect the position of a brake pedal as a movable part.

舵角センサ19は、例えば、ステアリングホイール等の操舵部4の操舵量を検出するセンサである。舵角センサ19は、例えば、ホール素子などを用いて構成される。ECU14は、運転者による操舵部4の操舵量や、自動操舵時の各車輪3の操舵量等を、舵角センサ19から取得して各種制御を実行する。なお、舵角センサ19は、操舵部4に含まれる回転部分の回転角度を検出する。舵角センサ19は、角度センサの一例である。   The steering angle sensor 19 is, for example, a sensor that detects a steering amount of the steering unit 4 such as a steering wheel. The steering angle sensor 19 is configured using, for example, a Hall element. The ECU 14 obtains, from the steering angle sensor 19, the amount of steering of the steering unit 4 by the driver, the amount of steering of each wheel 3 during automatic steering, and executes various controls. The steering angle sensor 19 detects a rotation angle of a rotating part included in the steering section 4. The steering angle sensor 19 is an example of an angle sensor.

アクセルセンサ20は、例えば、加速操作部5の可動部の位置を検出するセンサである。アクセルセンサ20は、可動部としてのアクセルペダルの位置を検出することができる。アクセルセンサ20は、変位センサを含む。   The accelerator sensor 20 is, for example, a sensor that detects the position of the movable part of the acceleration operation unit 5. The accelerator sensor 20 can detect the position of an accelerator pedal as a movable part. The accelerator sensor 20 includes a displacement sensor.

駆動システム21は、駆動源としての内燃機関(エンジン)システムやモータシステムである。駆動システム21は、アクセルセンサ20により検出された運転者(利用者)の要求操作量(例えばアクセルペダルの踏み込み量)にしたがいエンジンの燃料噴射量や吸気量の制御やモータの出力値を制御する。また、利用者の操作に拘わらず、車両1の走行状態に応じて、操舵システム13やブレーキシステム18の制御と協働してエンジンやモータの出力値を制御しうる。   The drive system 21 is an internal combustion engine (motor) system or a motor system as a drive source. The drive system 21 controls the fuel injection amount and intake air amount of the engine and the output value of the motor according to the required operation amount (for example, the depression amount of an accelerator pedal) of the driver (user) detected by the accelerator sensor 20. . Further, regardless of the operation of the user, the output values of the engine and the motor can be controlled in cooperation with the control of the steering system 13 and the brake system 18 according to the running state of the vehicle 1.

車輪速センサ22は、各車輪3に設けられ各車輪3の回転量や単位時間当たりの回転数を検出するセンサであり、検出した回転数を示す車輪速パルス数を検出値として出力する。車輪速センサ22は、例えば、ホール素子などを用いて構成されうる。CPU14aは、車輪速センサ22から取得した検出値に基づき、車両1の車速や移動量などを演算し、各種制御を実行する。CPU14aは、各車輪3の車輪速センサ22の検出値に基づいて車両1の車速を算出する場合、4輪のうち最も小さな検出値の車輪3の速度に基づき車両1の車速を決定し、各種制御を実行する。また、CPU14aは、4輪の中で他の車輪3に比べて検出値が大きな車輪3が存在する場合、例えば、他の車輪3に比べて単位期間(単位時間や単位距離)の回転数が所定数以上多い車輪3が存在する場合、その車輪3はスリップ状態(空転状態)であると見なし、各種制御を実行する。車輪速センサ22は、ブレーキシステム18に設けられている場合もある。その場合、CPU14aは、車輪速センサ22の検出結果をブレーキシステム18を介して取得する。   The wheel speed sensor 22 is a sensor provided on each wheel 3 for detecting the amount of rotation of each wheel 3 and the number of rotations per unit time, and outputs a wheel speed pulse number indicating the detected number of rotations as a detection value. The wheel speed sensor 22 can be configured using, for example, a Hall element. The CPU 14a calculates a vehicle speed, a moving amount, and the like of the vehicle 1 based on the detection value acquired from the wheel speed sensor 22, and executes various controls. When calculating the vehicle speed of the vehicle 1 based on the detected value of the wheel speed sensor 22 of each wheel 3, the CPU 14a determines the vehicle speed of the vehicle 1 based on the speed of the wheel 3 having the smallest detected value among the four wheels. Execute control. In addition, when there is a wheel 3 having a larger detection value than the other wheels 3 among the four wheels, the CPU 14a determines, for example, that the number of rotations in a unit period (unit time or unit distance) is larger than that of the other wheels 3. When there are more wheels 3 than a predetermined number, the wheels 3 are regarded as being in a slip state (idling state), and various controls are executed. The wheel speed sensor 22 may be provided in the brake system 18 in some cases. In that case, the CPU 14a acquires the detection result of the wheel speed sensor 22 via the brake system 18.

シフトセンサ23は、例えば、変速操作部7の可動部の位置を検出するセンサである。シフトセンサ23は、可動部としての、レバーや、アーム、ボタン等の位置を検出することができる。シフトセンサ23は、変位センサを含んでもよいし、スイッチとして構成されてもよい。   The shift sensor 23 is, for example, a sensor that detects the position of a movable part of the speed change operation unit 7. The shift sensor 23 can detect the position of a lever, arm, button, or the like as a movable part. The shift sensor 23 may include a displacement sensor or may be configured as a switch.

なお、上述した各種センサやアクチュエータの構成や、配置、電気的な接続形態等は、一例であって、種々に設定(変更)することができる。   The configuration, arrangement, electrical connection form, and the like of the various sensors and actuators described above are merely examples, and can be set (changed) in various ways.

図4は、実施形態の走行支援システム100のCPU14aで実現される走行支援装置28の構成の例示的なブロック図である。CPU14aは、ROM14b等の記憶装置にインストールされ記憶されたプログラムを読み出し、それを実行することで走行支援装置28として実現される各種モジュールを備える。CPU14aにおいて実現される走行支援装置28は、例えば、音波制御部30、情報取得部32、車速算出部34、閾値決定部36、判定部38、距離算出部40、減速開始位置算出部42、制動制御部44、警報処理部46等を備える。   FIG. 4 is an exemplary block diagram of a configuration of the driving support device 28 realized by the CPU 14a of the driving support system 100 according to the embodiment. The CPU 14a includes various modules that are implemented as the driving support device 28 by reading a program installed and stored in a storage device such as the ROM 14b and executing the program. The driving support device 28 realized by the CPU 14a includes, for example, a sound wave control unit 30, an information acquisition unit 32, a vehicle speed calculation unit 34, a threshold value determination unit 36, a determination unit 38, a distance calculation unit 40, a deceleration start position calculation unit 42, and a brake. A control unit 44, an alarm processing unit 46 and the like are provided.

音波制御部30は、送波制御部30aおよび受波制御部30bを備える。本実施形態の場合、車両1の進行方向における凍結路面の有無判定を行うため、音波の送波方向が車両1の進行方向となっている測距部17を利用することができる。従来、車両1の周囲に存在する物体の検出用に備えられた測距部17を利用して、凍結路面の有無判定を行うことで、部品コスト等の増加を伴うことなく、新たな付加機能の実現が可能になる。図5は、車両1が路面48を後退走行する場合、車両1の後方に設けられた測距部17(17a〜17d)を用いて、凍結路面の有無判定を行う場合の模式図である。上述したように、測距部17は、一例として、超音波ソナーを利用するものとする。測距部17は、超音波振動子(図示省略)を備える。送波制御部30aは一定周期で測距部17の超音波振動子を振動させる駆動信号を出力して測距部17の振動面から超音波Wを送波させる。超音波Wは音源である超音波振動子を中心として円錐状に広がりながら媒体中(本実施形態の場合、空気中)を伝搬していく。測距部17は、送波制御部30aの制御により送波された超音波Wが、車両1の周囲に存在する例えば、対象物体50で反射して戻ってきた反射波が重ねあわされた状態で受波する。受波制御部30bは、重ねあわされた信号を受波信号として取得する。超音波Wは、通常環境下で空気中を伝搬する場合、伝搬距離の増加に伴い減衰する。したがって、超音波Wを反射する対象物体50が測距部17から遠いほど、受波制御部30bで取得できる信号強度は低くなる。なお、この場合の「通常環境」とは、対象物体50以外で超音波Wの反射が起こりにくい環境であり、例えば、車両1(測距部17)が存在する路面48が平坦な硬質状態でない場合である。一般的な路面48である舗装路面(アスファルト路面)や未舗装路面、雪路面等は、表面に細かい凹凸が存在し、超音波Wを乱反射させたり、吸収したりする。その結果、超音波Wは、主として対象物体50で反射して、対象物体50の有無や位置を検出可能となる。なお、測距部17から送波される超音波Wは、例えば、車両1の進行方向と略平行に送波されるように設定されている。つまり、車両進行方向のより遠方まで測距部17から送波される超音波Wによる測距が可能であるとともに、主として路面48に向けられて、路面48や路面48上に存在する小形物等で過剰に反射してしまうことを抑制し、路面48や小形物等を障害物として誤検出してしまうことを抑制している。   The sound wave control unit 30 includes a wave transmission control unit 30a and a wave reception control unit 30b. In the case of the present embodiment, in order to determine the presence / absence of a frozen road surface in the traveling direction of the vehicle 1, the distance measuring unit 17 in which the sound wave transmission direction is the traveling direction of the vehicle 1 can be used. Conventionally, the presence or absence of a frozen road surface is determined by using a distance measuring unit 17 provided for detecting an object existing around the vehicle 1, so that a new additional function can be performed without an increase in parts cost and the like. Can be realized. FIG. 5 is a schematic diagram illustrating a case where the presence or absence of a frozen road surface is determined using the distance measuring units 17 (17a to 17d) provided behind the vehicle 1 when the vehicle 1 travels backward on the road surface 48. As described above, the distance measurement unit 17 uses an ultrasonic sonar as an example. The distance measuring unit 17 includes an ultrasonic vibrator (not shown). The transmission control unit 30a outputs a drive signal for vibrating the ultrasonic transducer of the distance measuring unit 17 at a constant period, and transmits the ultrasonic wave W from the vibration surface of the distance measuring unit 17. The ultrasonic wave W propagates in the medium (in the case of the present embodiment, in the air) while spreading in a conical shape around the ultrasonic transducer as the sound source. The distance measuring unit 17 is in a state where the ultrasonic wave W transmitted under the control of the transmission control unit 30a is reflected on the target object 50, which is present around the vehicle 1, for example, and is reflected by the target object 50. To receive waves. The reception controller 30b acquires the superposed signals as reception signals. When the ultrasonic wave W propagates in the air under a normal environment, the ultrasonic wave W is attenuated as the propagation distance increases. Therefore, as the target object 50 that reflects the ultrasonic wave W is farther from the distance measuring unit 17, the signal intensity that can be acquired by the wave receiving control unit 30b becomes lower. Note that the “normal environment” in this case is an environment in which reflection of the ultrasonic wave W is unlikely to occur except for the target object 50, for example, the road surface 48 on which the vehicle 1 (the distance measuring unit 17) exists is not in a flat hard state. Is the case. A general road surface 48, such as a paved road surface (asphalt road surface), an unpaved road surface, a snowy road surface, or the like, has fine irregularities on its surface, and reflects or absorbs the ultrasonic waves W irregularly. As a result, the ultrasonic wave W is mainly reflected by the target object 50, and the presence or absence and the position of the target object 50 can be detected. The ultrasonic wave W transmitted from the distance measuring unit 17 is set to be transmitted, for example, substantially in parallel with the traveling direction of the vehicle 1. In other words, the distance can be measured by the ultrasonic wave W transmitted from the distance measuring unit 17 to a greater distance in the traveling direction of the vehicle, and the road surface 48 and small objects existing on the road surface 48 are mainly directed to the road surface 48. In this way, excessive reflection is suppressed, and erroneous detection of the road surface 48 and small objects as obstacles is suppressed.

ところで、車両1の進行方向の路面48が凍結している場合、車両1(測距部17)から遠い位置からの強い反射波を測距部17が受波できる場合がある。例えば、路面48が凍結する場合、路面48の表面の細かい凹凸が氷で覆われ、滑らかな硬質平面に近い状態になる。その結果、測距部17から送波された超音波Wが凍結した路面48に当たった場合に乱反射することなく車両1の進行方向(車両1の後方)に進み、そこに存在する対象物体50に当たる。つまり、測距部17から送波された直接波と、凍結した路面48で一度反射した間接波とが対象物体50で反射され、重ねあわされた結果が測距部17で受波される。一方、路面48が凍結していない場合、路面48に当たった超音波は、路面48の表面の細かい凹凸により乱反射し、対象物体50に向う間接波が凍結路面の場合より少なくなる。その結果、路面48が凍結している場合、非凍結の場合より、測距部17から離れた位置からの反射波の受波強度(信号強度)が高くなる。   By the way, when the road surface 48 in the traveling direction of the vehicle 1 is frozen, the distance measuring unit 17 may be able to receive a strong reflected wave from a position far from the vehicle 1 (the distance measuring unit 17). For example, when the road surface 48 freezes, fine irregularities on the surface of the road surface 48 are covered with ice, and the road surface 48 is in a state close to a smooth hard plane. As a result, when the ultrasonic wave W transmitted from the distance measuring unit 17 hits the frozen road surface 48, the ultrasonic wave W advances in the traveling direction of the vehicle 1 (behind the vehicle 1) without being irregularly reflected, and the target object 50 existing there is present. Hit. That is, the direct wave transmitted from the distance measuring unit 17 and the indirect wave once reflected on the frozen road surface 48 are reflected by the target object 50, and the superimposed result is received by the distance measuring unit 17. On the other hand, when the road surface 48 is not frozen, the ultrasonic waves hitting the road surface 48 are irregularly reflected due to fine irregularities on the surface of the road surface 48, and the indirect waves toward the target object 50 are reduced as compared with the case of the frozen road surface. As a result, when the road surface 48 is frozen, the reception intensity (signal intensity) of the reflected wave from a position distant from the distance measuring unit 17 is higher than when the road surface 48 is not frozen.

また、路面48が凍結する場合、路面48の周囲すなわち車両1の周囲の温度(気温)が、非凍結時に比べて低い。音波(超音波W)の伝搬のし易さは、一般的に媒体(この場合、空気)の温度と湿度で決定される伝搬時の減衰量に影響され、低温環境(例えば、10℃以下)では温度が低いほど減衰量も小さくなる。したがって、路面48が凍結しているような周囲環境(低温環境)の場合、測距部17から離れた位置で反射した超音波Wは、少ない減衰で伝搬する。つまり、路面48が凍結している可能性がある場合、測距部17(受波制御部30b)は、非凍結の場合より遠い位置から強い受波強度(信号強度)の反射波を取得することができる。   When the road surface 48 freezes, the temperature (air temperature) around the road surface 48, that is, around the vehicle 1 is lower than when the road surface 48 is not frozen. The easiness of propagation of a sound wave (ultrasonic wave W) is generally affected by the attenuation at the time of propagation determined by the temperature and humidity of a medium (in this case, air). Thus, the lower the temperature, the smaller the attenuation. Therefore, in an environment where the road surface 48 is frozen (low-temperature environment), the ultrasonic wave W reflected at a position distant from the distance measuring unit 17 propagates with little attenuation. That is, when there is a possibility that the road surface 48 is frozen, the distance measuring unit 17 (the wave receiving control unit 30b) acquires a reflected wave with a strong received wave intensity (signal strength) from a position farther than when the road surface 48 is not frozen. be able to.

なお、図5において、路面48と対象物体50との接触位置P付近からの反射波の受波強度(信号強度)が高いことが知られている。これは、接触位置Pの周辺で超音波Wの重ね合わせが、他の部分、例えば、対象物体50において接触位置Pから遠い位置(路面48から遠い位置)に比べて強く生じるためである。さらに、路面48が凍結している場合、前述したように超音波Wの伝搬時の減衰が少なく、接触位置P付近からの反射波の受波強度(信号強度)が高くなる。また、接触位置P付近の路面48で反射した超音波W(間接波)の重ね合わせ効果も加算され、接触位置P付近からの反射波の受波強度(信号強度)がさらに高くなる。   In FIG. 5, it is known that the reception intensity (signal intensity) of the reflected wave from near the contact position P between the road surface 48 and the target object 50 is high. This is because the superposition of the ultrasonic waves W around the contact position P occurs more strongly than other parts, for example, a position far from the contact position P (a position far from the road surface 48) in the target object 50. Further, when the road surface 48 is frozen, the attenuation at the time of propagation of the ultrasonic wave W is small as described above, and the reception intensity (signal intensity) of the reflected wave from the vicinity of the contact position P increases. In addition, the superimposition effect of the ultrasonic waves W (indirect waves) reflected on the road surface 48 near the contact position P is added, and the reception intensity (signal intensity) of the reflected wave from the vicinity of the contact position P is further increased.

図6〜図8は、路面48の状態を変化させた場合に、受波制御部30bが取得する受波強度(信号強度)に基づく、波高値(反射波の強度)と検知距離(対象物体50までの距離)の関係(受波傾向)を示す例示的なグラフである。なお、グラフにおけるプロット点は、あるタイミングで測距部17が送波した超音波Wに対する反射波を受波した場合の信号強度(波高値)であり、例えば、超音波Wの送波は、毎秒5回行われるものとする。また、測距部17の通常環境下(非凍結路面の環境下)での対象物体50の認識範囲は、測距部17から例えば3000mm以内とし、受波制御部30bは、測距部17から3000mm以内に対象物体50が存在すれば、高い信号強度(高い波高値)の反射波を安定的に取得できて、対象物体50の存在および対象物体50までの距離を認識できるものとする。なお、受波制御部30bは、3000mm以上の場合でも、距離精度は落ちるものの、何らかの物体が存在することを示すデータの取得は可能である。   FIGS. 6 to 8 show the peak value (the intensity of the reflected wave) and the detection distance (the target object) based on the reception intensity (signal intensity) acquired by the reception control unit 30b when the state of the road surface 48 is changed. It is an exemplary graph showing the relationship (wave receiving tendency) of the distance up to 50. A plot point in the graph is a signal intensity (peak value) when a reflected wave with respect to the ultrasonic wave W transmitted by the distance measuring unit 17 is received at a certain timing. For example, the transmission of the ultrasonic wave W is as follows. It is performed five times per second. Further, the range of recognition of the target object 50 under the normal environment of the distance measuring unit 17 (under the environment of a non-freezing road surface) is, for example, within 3000 mm from the distance measuring unit 17. If the target object 50 exists within 3000 mm, it is assumed that a reflected wave having a high signal intensity (high peak value) can be stably acquired, and the existence of the target object 50 and the distance to the target object 50 can be recognized. Note that even when the distance is 3000 mm or more, the wave reception control unit 30b can acquire data indicating that some object exists, although the distance accuracy is reduced.

図6は、路面48が、非凍結のアスファルト路面である場合の受波制御部30bが取得する受波傾向である。車両1の周囲の温度は、路面凍結には至らない例えば10℃である。図6に示されるように、車両1(測距部17)が対象物体50に接近する場合、車両1(測距部17)と対象物体50との相対距離が、例えば3000mm以内の場合、対象物体50で反射した強い反射波が受波可能で、受波強度の高い(波高値が高い)信号が得られる。つまり、受波制御部30bは、路面48に凍結が生じていない環境下で、信号強度に基づく対象物体50の有無判定、および送波から受波までの時間と測定時の音速に基づき対象物体50の存在位置(相対距離)の算出が可能な情報の取得ができる。なお、車両1の後部には、複数の測距部17(17a〜17d)が配置され、同様に車両1の後方領域に対して超音波Wの送受波を行っている。したがって、少なくとも二つの測距部17の検出結果を用いることにより、三角測量が可能になり、対象物体50のより正確な位置検出を行うことができる。   FIG. 6 shows a wave receiving tendency acquired by the wave receiving control unit 30b when the road surface 48 is a non-freezing asphalt road surface. The temperature around the vehicle 1 is, for example, 10 ° C., which does not lead to road surface freezing. As shown in FIG. 6, when the vehicle 1 (the distance measuring unit 17) approaches the target object 50, when the relative distance between the vehicle 1 (the distance measuring unit 17) and the target object 50 is, for example, within 3000 mm, the target A strong reflected wave reflected by the object 50 can be received, and a signal having a high received wave intensity (high peak value) can be obtained. That is, in an environment where the road surface 48 is not frozen, the reception control unit 30b determines the presence or absence of the target object 50 based on the signal intensity, and determines the target object 50 based on the time from transmission to reception and the sound speed at the time of measurement. It is possible to obtain information from which 50 existing positions (relative distances) can be calculated. A plurality of distance measuring units 17 (17a to 17d) are arranged at the rear of the vehicle 1, and transmit and receive ultrasonic waves W to and from the rear area of the vehicle 1 in the same manner. Therefore, by using the detection results of at least two distance measuring units 17, triangulation can be performed, and more accurate position detection of the target object 50 can be performed.

一方、前述したように、車両1(測距部17)と対象物体50との相対距離が、測距部17の認識範囲である3000mm以上になると、受波制御部30bが取得する反射波の信号強度は、超音波Wの伝搬中の減衰により低下する。つまり、受波制御部30bは、測距部17の認識範囲に進入した対象物体50の識別が可能な受波傾向を得ることができる。   On the other hand, as described above, when the relative distance between the vehicle 1 (the distance measuring unit 17) and the target object 50 becomes 3000 mm or more, which is the recognition range of the distance measuring unit 17, the reflected wave acquired by the wave receiving control unit 30b is obtained. The signal strength decreases due to attenuation during propagation of the ultrasonic wave W. That is, the wave receiving control unit 30b can obtain a wave receiving tendency in which the target object 50 that has entered the recognition range of the distance measuring unit 17 can be identified.

図7は、路面48が、凍結路面である場合の受波制御部30bが取得する受波傾向である。なお、図7の場合、路面48は、図6の場合と同様のアスファルト路面の上に雪や霜が積もった、または雨が降った後、雪や霜が一度溶けた後の水または雨水等がアスファルト路面上で凍った状態である。例えば、「アイスバーン」と呼ばれる状態も含まれている。また、車両1の周囲の温度は、路面凍結に至る例えば「0℃」以下、例えば−10℃である。   FIG. 7 shows a wave receiving tendency acquired by the wave receiving control unit 30b when the road surface 48 is a frozen road surface. In addition, in the case of FIG. 7, the road surface 48 is formed of the same asphalt road surface as the case of FIG. 6, after snow or frost has accumulated, or after rain, and water or rainwater after the snow or frost has once melted. Is frozen on the asphalt surface. For example, a state called “ice burn” is also included. Further, the temperature around the vehicle 1 is, for example, “0 ° C.” or less, for example, −10 ° C., which leads to road surface freezing.

図7に示されるように、路面48が凍結路面である場合も、図6の非凍結路面の場合と同様に、車両1(測距部17)が対象物体50に接近する場合、車両1(測距部17)と対象物体50との相対距離が、例えば3000mm以内の場合、対象物体50で反射した強い反射波が受波可能で、受波強度の高い(波高値が高い)信号が得られる。つまり、受波制御部30bは、路面48に凍結の有無に拘わらず、信号強度に基づく対象物体50の有無判定、および送波から受波までの時間と測定時の音速に基づき対象物体50の存在位置(相対距離)の算出が可能な情報の取得ができる。この場合も、複数の測距部17(17a〜17d)を利用した三角測量により、対象物体50のより正確な位置検出を行うことができる。   As shown in FIG. 7, when the road surface 48 is a frozen road surface, similarly to the case of the non-freezing road surface in FIG. 6, when the vehicle 1 (the distance measuring unit 17) approaches the target object 50, the vehicle 1 ( When the relative distance between the distance measuring unit 17) and the target object 50 is, for example, 3000 mm or less, a strong reflected wave reflected by the target object 50 can be received, and a signal having a high reception intensity (high peak value) is obtained. Can be That is, the reception control unit 30b determines whether or not the target object 50 is present based on the signal intensity, regardless of whether or not the road surface 48 is frozen, and determines whether the target object 50 is present based on the time from transmission to reception and the sound speed at the time of measurement. Information from which the existence position (relative distance) can be calculated can be obtained. Also in this case, more accurate position detection of the target object 50 can be performed by triangulation using the plurality of distance measurement units 17 (17a to 17d).

また、対象物体50が車両1の進行方向に存在し、路面48が凍結路面の場合、前述したように、媒体の温度の低下による超音波Wの減衰量の減少と、凍結路面で反射した後に対象物体50で反射する間接的な反射波の重ね合わせが同時に発生する。その結果、受波制御部30bは、本来であれば路面48のノイズと区別できない低い(弱い)波高値しか得られないような遠い位置に存在する対象物体50からも強い反射波が受波可能で、受波強度の高い(波高値が高い)信号が得られるような受波傾向を得ることができる。例えば、図7に示されるように、図6では、高い波高値の反射波が得られなかった例えば3000mm以上の検知距離の領域Eに、高い波高値の反射波が得られている。換言すれば、走行支援装置28は、所定温度未満の場合に、反射波の情報に基づいて、所定距離以上から所定値以上の信号強度の反射波を測距部17が受信したと判定した場合に、車両1の進行方向の路面が凍結路面である可能性があると判定することができる。なお、この場合は、反射波は、重ね合わせが成されて信号強度が増大されているだけである。したがって、遠い位置からの反射波は、信号強度に基づく対象物体50の有無判定、および送波から受波までの時間と測定時の音速に基づき対象物体50の存在位置(相対距離)の算出が可能な情報を示すデータでもある。また、複数の測距部17(17a〜17d)を利用した三角測量により、対象物体50のより正確な位置検出を行うことができる。   When the target object 50 exists in the traveling direction of the vehicle 1 and the road surface 48 is a frozen road surface, as described above, the attenuation amount of the ultrasonic wave W due to the decrease in the temperature of the medium decreases, and after the ultrasonic wave W is reflected on the frozen road surface. The superposition of indirectly reflected waves reflected by the target object 50 occurs simultaneously. As a result, the wave reception control unit 30b can receive a strong reflected wave even from the target object 50 located at a distant position where only a low (weak) peak value that cannot be normally distinguished from the noise of the road surface 48 can be obtained. Thus, it is possible to obtain a reception tendency such that a signal having a high reception intensity (a high peak value) is obtained. For example, as shown in FIG. 7, in FIG. 6, a reflected wave having a high peak value is obtained in a region E at a detection distance of, for example, 3000 mm or more where a reflected wave having a high peak value was not obtained. In other words, when the traveling support device 28 determines that the distance measuring unit 17 has received a reflected wave having a signal strength equal to or greater than a predetermined value from a predetermined distance or more based on information of the reflected wave when the temperature is lower than the predetermined temperature. In addition, it can be determined that the road surface in the traveling direction of the vehicle 1 may be a frozen road surface. In this case, the reflected waves are merely superimposed and the signal intensity is merely increased. Therefore, the presence or absence of the target object 50 based on the signal intensity and the calculation of the position (relative distance) of the target object 50 based on the time from transmission to reception and the sound speed at the time of measurement are determined for the reflected wave from the distant position. It is also data indicating possible information. In addition, more accurate position detection of the target object 50 can be performed by triangulation using the plurality of distance measurement units 17 (17a to 17d).

図8は、路面48が、非凍結の雪路面である場合の受波制御部30bが取得する受波傾向である。雪路面と凍結路面とでは、車両1が走行する場合の路面μが異なる。特に、車両1が低速時の制動特性が異なるため区別する必要がある。なお、車両1の周囲の温度は、雪路面が維持されるような例えば0℃未満、例えば−10℃である。図6、図7の場合と同様に、車両1(測距部17)が対象物体50に接近する場合、車両1(測距部17)と対象物体50との相対距離が、例えば3000mm以内の場合、対象物体50で反射した強い反射波が受波可能で、受波強度の高い(波高値が高い)信号が得られる。つまり、受波制御部30bは、路面48に凍結の有無に拘わらず、信号強度に基づく対象物体50の有無判定、および送波から受波までの時間と測定時の音速に基づき対象物体50の存在位置(相対距離)の算出が可能な情報の取得ができる。この場合も、複数の測距部17(17a〜17d)を利用した三角測量により、対象物体50のより正確な位置検出を行うことができる。   FIG. 8 shows a wave reception tendency acquired by the wave reception control unit 30b when the road surface 48 is a non-freezing snowy road surface. The road surface μ when the vehicle 1 travels differs between a snowy road surface and a frozen road surface. In particular, since the braking characteristics of the vehicle 1 at low speed are different, it is necessary to distinguish between them. The temperature around the vehicle 1 is, for example, lower than 0 ° C., for example, −10 ° C., at which the snowy road surface is maintained. As in the case of FIGS. 6 and 7, when the vehicle 1 (the distance measuring unit 17) approaches the target object 50, the relative distance between the vehicle 1 (the distance measuring unit 17) and the target object 50 is, for example, within 3000 mm. In this case, a strong reflected wave reflected by the target object 50 can be received, and a signal having a high receiving intensity (high peak value) can be obtained. That is, the reception control unit 30b determines whether or not the target object 50 is present based on the signal intensity, regardless of whether or not the road surface 48 is frozen, and determines whether the target object 50 is present based on the time from transmission to reception and the sound speed at the time of measurement. Information from which the existence position (relative distance) can be calculated can be obtained. Also in this case, more accurate position detection of the target object 50 can be performed by triangulation using the plurality of distance measurement units 17 (17a to 17d).

一方、車両1(測距部17)と対象物体50との相対距離が、測距部17の認識範囲である例えば3000mm以上になると、受波制御部30bが取得する反射波の信号強度は、超音波Wの伝搬中の減衰により低下する。雪は音波の振動を吸収する性質がある。また、雪の結晶は、降雪表面に細かい凹凸を形成しやすい。その結果、周囲温度が低いにも拘わらず、路面48における超音波Wの反射が発生し難く、間接波が対象物体50まで到達する可能性が低くなる。その結果、雪路面では、図6に示すような非凍結のアスファルト路面と同様に、遠距離からの反射波の信号強度が低い受波傾向を示す。   On the other hand, when the relative distance between the vehicle 1 (the distance measuring unit 17) and the target object 50 becomes, for example, 3000 mm or more, which is the recognition range of the distance measuring unit 17, the signal intensity of the reflected wave acquired by the wave receiving control unit 30b becomes It decreases due to attenuation during propagation of the ultrasonic wave W. Snow has the property of absorbing the vibration of sound waves. In addition, snow crystals tend to form fine irregularities on the snowfall surface. As a result, despite the low ambient temperature, the reflection of the ultrasonic wave W on the road surface 48 hardly occurs, and the possibility that the indirect wave reaches the target object 50 decreases. As a result, on a snowy road surface, similarly to a non-freezing asphalt road surface as shown in FIG. 6, the signal strength of a reflected wave from a long distance tends to be low.

なお、図6〜図8において、凍結路面の判定をより効率的かつ明確に行えるように、例えば、波高値が低い領域では、ノイズとの区別が難しくなるためフィルタをかけて、除外または区別することで、所定距離以上から所定値以上の信号強度の反射波が取得されるか否かを確認するようにしてもよい。   In FIGS. 6 to 8, in order to more efficiently and clearly determine the frozen road surface, for example, in a region where the peak value is low, it is difficult to distinguish the noise from noise, so that the region is filtered or excluded or distinguished. Thus, it may be determined whether or not a reflected wave having a signal strength equal to or more than a predetermined value is obtained from a predetermined distance or more.

図9は、シーンが異なる場合の超音波の送受の様子を例示的に示す表である。一例として、路面48の凍結の有無および対象物体50の有無でシーンを場合分けしている。路面48が凍結路面の場合で、対象物体50が車両1の周囲に存在しない場合、測距部17から送波された超音波Wは、凍結路面で反射するものの、対象物体50が存在しないため、測距部17(車両1)に戻らない(受波制御部30bは反射波の信号を取得しない)。路面48が雪路面で対象物体50が車両1の周囲に存在しない場合も同様である。この場合、車両1が対象物体50等の障害物に接触する可能性は低い(ない)ため、車両1の制動制御において、路面48の凍結有無の判定は不要と見なすことができる。   FIG. 9 is a table exemplarily showing the state of transmission and reception of ultrasonic waves when the scenes are different. As an example, scenes are classified according to the presence or absence of freezing of the road surface 48 and the presence or absence of the target object 50. When the road surface 48 is a frozen road surface and the target object 50 does not exist around the vehicle 1, the ultrasonic wave W transmitted from the distance measuring unit 17 is reflected on the frozen road surface, but the target object 50 does not exist. Do not return to the distance measuring unit 17 (vehicle 1) (the wave receiving control unit 30b does not acquire the signal of the reflected wave). The same applies to a case where the road surface 48 is a snowy road surface and the target object 50 is not present around the vehicle 1. In this case, since the possibility that the vehicle 1 comes into contact with an obstacle such as the target object 50 is low (no), the determination of whether or not the road surface 48 is frozen can be regarded as unnecessary in the braking control of the vehicle 1.

路面48が凍結路面の場合で、対象物体50が車両1の周囲に存在する場合、測距部17から送波された超音波Wは、凍結路面で反射し測距部17(車両1)に戻る。図9の場合、測距部17から送波された超音波Wが対象物体50で反射して、その反射波がさらに凍結路面(路面48)で反射して測距部17に戻る例が示されている。別の例では、測距部17から送波された超音波Wが凍結路面(路面48)で反射し、その反射波が対象物体50でさらに反射し、測距部17に戻り受波される場合もある。つまり、測距部17は、凍結路面(路面48)等で反射しない直接波と、送受波の過程で、凍結路面(路面48)で反射した間接波とが重ねあわされた強い反射波の受波が可能になる。一方、路面48が非凍結路面(雪路面)の場合で、対象物体50が車両1の周囲に存在する場合、測距部17から送波された超音波Wのうち、対象物体50で反射して雪路面(路面48)に向かう反射波は、雪路面で乱反射または吸収され、測距部17(車両1)に戻りにくい。また、測距部17から送波された超音波Wの一部は雪路面(路面48)に向かうが、この場合も雪路面で乱反射または吸収されて、対象物体50に向かう間接波は極僅かである。そのため、測距部17は、凍結路面(路面48)等で反射しない直接波のみを主に受波することになり、路面48が凍結路面である場合に比べて反射波の受波強度は低下する。なお、雪路面の場合、乾燥路面より路面摩擦係数が低下するため、制動等を行う場合、配慮する必要がある。この場合、例えば、撮像部15が取得する撮像画像データに画像処理等を施すことにより雪路面か乾燥路面かの判定が可能になる。したがって、雪路面の場合は、本実施形態の凍結路面の判定とは別の判定処理の結果を用いて、制動制御を実施することができる。   When the road surface 48 is a frozen road surface and the target object 50 is present around the vehicle 1, the ultrasonic waves W transmitted from the distance measuring unit 17 are reflected on the frozen road surface and transmitted to the distance measuring unit 17 (vehicle 1). Return. FIG. 9 shows an example in which the ultrasonic wave W transmitted from the distance measuring unit 17 is reflected by the target object 50, and the reflected wave is further reflected on a frozen road surface (road surface 48) and returns to the distance measuring unit 17. Have been. In another example, the ultrasonic wave W transmitted from the distance measuring unit 17 is reflected on a frozen road surface (road surface 48), the reflected wave is further reflected on the target object 50, and is returned to the distance measuring unit 17 and received. In some cases. That is, the distance measuring unit 17 receives a strong reflected wave in which the direct wave not reflected on the frozen road surface (road surface 48) and the indirect wave reflected on the frozen road surface (road surface 48) are overlapped in the process of transmitting and receiving waves. Waves become possible. On the other hand, when the road surface 48 is a non-freezing road surface (snow road surface) and the target object 50 is present around the vehicle 1, the ultrasonic wave W transmitted from the distance measuring unit 17 is reflected by the target object 50. The reflected wave heading toward the snowy road surface (road surface 48) is irregularly reflected or absorbed on the snowy road surface, and is hard to return to the distance measuring unit 17 (vehicle 1). A part of the ultrasonic wave W transmitted from the distance measuring unit 17 goes to the snowy road surface (road surface 48). In this case, too, the indirect wave toward the target object 50 is irregularly reflected or absorbed on the snowy road surface, and very little. It is. Therefore, the distance measuring unit 17 mainly receives only direct waves that are not reflected on a frozen road surface (road surface 48) or the like, and the received wave intensity of the reflected wave is lower than when the road surface 48 is a frozen road surface. I do. In the case of a snowy road surface, the road surface friction coefficient is lower than that of a dry road surface. In this case, for example, by performing image processing or the like on the captured image data acquired by the imaging unit 15, it is possible to determine whether the road surface is a snowy road surface or a dry road surface. Therefore, in the case of a snowy road surface, the braking control can be performed using the result of the determination process different from the determination of the frozen road surface of the present embodiment.

なお、非凍結時の降雨路面の場合、雨水によってアスファルト路面の表面の凹凸を覆うことはないので、超音波Wは、乱反射等する結果となり、図6と同様な受波傾向を示す。また、非舗装路面においても路面の表面の凹凸により超音波Wは、乱反射等する結果となり、図6と同様な受波傾向を示す。また、これらの状況においても、車両1の進行方向に対象物体50が存在しない場合は、受波制御部30bは顕著な反射波を受波することはない。   In the case of a non-freezing rainy road surface, since the rainwater does not cover the unevenness of the surface of the asphalt road surface, the ultrasonic wave W results in irregular reflection and the like, and shows the same wave receiving tendency as that of FIG. Further, even on an unpaved road surface, the ultrasonic waves W are irregularly reflected due to unevenness of the surface of the road surface, and show the same wave receiving tendency as that of FIG. Also in these situations, when the target object 50 does not exist in the traveling direction of the vehicle 1, the reception control unit 30b does not receive a remarkable reflected wave.

図4に戻り、情報取得部32は、車両1の周囲の温度情報を取得する。例えば、車両1の空気調和装置に設けられた外気温測定用の温度センサからの情報や、測距部16や測距部17に設けられた温度センサ(温度による音速の補正用のセンサ)からの情報を取得する。また、別の実施形態では、インターネットや電話回線等の通信手段を用いて外部の情報センターが提供する、車両1の存在する位置の温度情報を取得してもよい。温度情報の取得方法は、これらに限定されず、車両1の周囲の温度情報が取得できれば、適宜利用可能である。また、凍結路面の判定用に専用の温度センサを設けてもよい。なお、外気温度と路面温度とに差異が生じている場合がある。このような場合、取得した外気温度と過去のデータとに基づき、路面温度を推定し、凍結路面の有無判定の判定条件(後述する温度閾値A)としてもよく、より正確な判定に寄与することができる。   Returning to FIG. 4, the information acquisition unit 32 acquires temperature information around the vehicle 1. For example, information from a temperature sensor for measuring the outside air temperature provided in the air conditioner of the vehicle 1 or a temperature sensor (a sensor for correcting the speed of sound based on temperature) provided in the distance measuring unit 16 or the distance measuring unit 17. Get the information of. In another embodiment, the temperature information of the position where the vehicle 1 exists, which is provided by an external information center, may be obtained using communication means such as the Internet or a telephone line. The method for acquiring the temperature information is not limited to these, and any method may be used as long as the temperature information around the vehicle 1 can be acquired. Further, a dedicated temperature sensor may be provided for determining the frozen road surface. In some cases, there is a difference between the outside air temperature and the road surface temperature. In such a case, the road surface temperature is estimated based on the acquired outside air temperature and the past data, and may be used as a determination condition (temperature threshold A described later) for determining the presence or absence of a frozen road surface, which contributes to more accurate determination. Can be.

車速算出部34は、車輪速センサ22から出力される検出結果に基づき、車両1の車速を算出する。また、閾値決定部36は、車速算出部34が算出した車両1の車速に基づき、路面48が凍結路面であると判定する際に用いる判定閾値(後述する判定閾値D)を決定する。判定閾値は、予め実験等に基づき決定することが可能で、ROM14b等に記憶されている。判定部38は、受波制御部30bが取得した例えば受波傾向を参照して路面48が凍結路面であるか否かを判定する。前述したように、路面48が凍結路面である場合、測距部17の認識範囲外である、測距部17から遠い検知距離である領域E(図7参照)において、非凍結路面の同じ領域E(図6参照)に比べて、強い信号強度の信号が複数受波できる。すなわち、領域Eに複数の反射波の波高値がプロットされる。判定部38は、例えば、領域Eのプロット数と閾値決定部36が決定した判定閾値(判定プロット数)とを比較し、プロット数が判定閾値以上の場合、つまり、所定値以上の信号強度の反射波の受波頻度が所定回数以上の場合に、車両1の進行方向の路面が凍結路面であると判定する。   The vehicle speed calculation unit 34 calculates the vehicle speed of the vehicle 1 based on the detection result output from the wheel speed sensor 22. Further, the threshold value determination unit 36 determines a determination threshold value (a determination threshold value D described later) used when determining that the road surface 48 is a frozen road surface based on the vehicle speed of the vehicle 1 calculated by the vehicle speed calculation unit 34. The determination threshold can be determined in advance based on experiments or the like, and is stored in the ROM 14b or the like. The determination unit 38 determines whether or not the road surface 48 is a frozen road surface with reference to, for example, the wave reception tendency acquired by the wave reception control unit 30b. As described above, when the road surface 48 is a frozen road surface, in the region E (see FIG. 7) which is outside the recognition range of the distance measuring unit 17 and is a detection distance far from the distance measuring unit 17, the same region on the non-freezing road surface As compared with E (see FIG. 6), a plurality of signals having a stronger signal strength can be received. That is, the peak values of the plurality of reflected waves are plotted in the area E. The determination unit 38 compares, for example, the number of plots in the region E with the determination threshold (the number of determination plots) determined by the threshold determination unit 36, and when the number of plots is equal to or greater than the determination threshold, When the reception frequency of the reflected wave is equal to or more than a predetermined number, it is determined that the road surface in the traveling direction of the vehicle 1 is a frozen road surface.

ところで、車両1が走行して対象物体50に対して移動している場合に、所定周期で送波制御部30aから送波される超音波Wのうち対象物体50で反射する反射波の単位期間当たりの受波数は車両1の車速によって変化する。例えば、図10に示されるように、車両1の車速が高いほど単位期間(例えば1秒間)当たりで受波できる反射波の数、すなわち、図6〜図8における単位期間当たりにプロットされる測定点の数が減る。したがって、予め凍結路面における車両1の各車速(例えば、1km/hごと)と受波できる反射波の数(プロット数)との関係を取得しておく。例えば、車速が5km/hの場合、領域Eにおいて、5以上の反射波を受波できている場合、判定部38は、路面48が凍結路面であると判定する。この場合、閾値決定部36は、車速5km/hに対する閾値を「5」として決定する。   By the way, when the vehicle 1 is traveling and moving with respect to the target object 50, the unit period of the reflected wave reflected by the target object 50 among the ultrasonic waves W transmitted from the transmission control unit 30a at a predetermined cycle. The number of received waves changes according to the vehicle speed of the vehicle 1. For example, as shown in FIG. 10, as the vehicle speed of the vehicle 1 increases, the number of reflected waves that can be received per unit period (for example, one second), that is, the measurement plotted per unit period in FIGS. Fewer points. Therefore, the relationship between each vehicle speed (for example, every 1 km / h) of the vehicle 1 on the frozen road surface and the number of reflected waves that can be received (the number of plots) is acquired in advance. For example, when the vehicle speed is 5 km / h, and five or more reflected waves can be received in the area E, the determination unit 38 determines that the road surface 48 is a frozen road surface. In this case, the threshold value determination unit 36 determines the threshold value for the vehicle speed of 5 km / h as “5”.

距離算出部40は、測距部17が超音波Wを送波して、その超音波Wが対象物体50で反射し測距部17で受波されるまでの時間と、超音波Wの送受波時の音速(温度に対応する音速)に基づき、測距部17(車両1)から対象物体50までの距離を算出する。なお、前述したように、車両1の後方側の端部2eには複数(例えば4個)の測距部17(17a〜17d)が備えられている。これらの測距部17a〜17dは、車両1の後方に存在する対象物体50に対してそれぞれ超音波Wの送波および反射波の受波を行うことができる。この場合、測距部17の配置された位置によって同一の対象物体50を臨む角度が異なり、送受波経路に差異が生じる。したがって、距離算出部40は、いずれか二つの測距部17の送受波の結果を用いて対象物体50の位置を三角測量により、より正確に算出するようにしてもよい。   The distance calculation unit 40 determines the time from when the distance measuring unit 17 transmits the ultrasonic wave W until the ultrasonic wave W is reflected by the target object 50 and received by the distance measuring unit 17, and when the ultrasonic wave W is transmitted and received. The distance from the distance measuring unit 17 (vehicle 1) to the target object 50 is calculated based on the sound speed at the time of the wave (the sound speed corresponding to the temperature). As described above, the rear end 2e of the vehicle 1 is provided with a plurality (for example, four) of distance measuring units 17 (17a to 17d). These distance measuring units 17a to 17d can respectively transmit the ultrasonic wave W and receive the reflected wave to and from the target object 50 present behind the vehicle 1. In this case, the angle at which the same target object 50 faces differs depending on the position where the distance measuring unit 17 is arranged, and a difference occurs in the transmission / reception path. Therefore, the distance calculation unit 40 may calculate the position of the target object 50 more accurately by triangulation using the transmission and reception results of any two of the distance measurement units 17.

減速開始位置算出部42は、判定部38の判定結果に基づき、路面48が非凍結路面であると判定された場合、現在の車両1の車速で非凍結路面で制動を行う場合の非凍結時必要制動距離を算出する。同様に、減速開始位置算出部42は、判定部38の判定結果に基づき、路面48が凍結路面であると判定された場合、現在の車両1の車速で凍結路面で制動を行う場合の凍結時必要制動距離を算出する。そして、減速開始位置算出部42は、距離算出部40が算出した対象物体50までの距離を参照し、対象物体50と接触することなく車両1が停止できるために、制動(減速)を開始すべき「減速開始位置」を算出する。なお、非凍結時および凍結時の必要制動距離は、予め試験により車速ごとに決定しておき、ROM14b等の記憶部に例えばマップとして保存しておくことができる。なお、非凍結時の必要制動距離は、例えば、路面乾燥時用、降雨時用、降雪時用等のように、天候状態等によってさらに細かく設定してもよい。   The deceleration start position calculation unit 42 determines whether the road surface 48 is a non-freezing road surface based on the determination result of the determination unit 38, and performs the non-freezing operation when braking on the non-freezing road surface at the current vehicle speed of the vehicle 1. Calculate the required braking distance. Similarly, when it is determined that the road surface 48 is a frozen road surface based on the determination result of the determination unit 38, the deceleration start position calculation unit 42 determines whether or not to perform braking on the frozen road surface at the current vehicle speed of the vehicle 1. Calculate the required braking distance. Then, the deceleration start position calculation unit 42 refers to the distance to the target object 50 calculated by the distance calculation unit 40, and starts braking (deceleration) because the vehicle 1 can stop without contacting the target object 50. The "deceleration start position" to be calculated is calculated. The required braking distance during non-freezing and during freezing can be determined in advance for each vehicle speed by a test and stored in a storage unit such as the ROM 14b, for example, as a map. In addition, the required braking distance at the time of non-freezing may be set more finely according to the weather condition and the like, for example, for road surface drying, rainfall, snowfall, and the like.

制動制御部44は、減速開始位置算出部42が算出した減速開始位置に車両1の後方側の端部2eが到達したと見なせる場合に、路面48の状態に応じた制動力を自動的に発生するようにブレーキシステム18を制御する。例えば、路面48が凍結路面であると判定された場合、制動制御部44は、車両1と対象物体50とが接触を回避し得る非凍結時の第一の制動距離より長い第二の制動距離の位置から制動制御を実行する。   When it can be considered that the rear end 2e of the vehicle 1 has reached the deceleration start position calculated by the deceleration start position calculation unit 42, the braking control unit 44 automatically generates a braking force according to the state of the road surface 48. The brake system 18 is controlled to perform the control. For example, when it is determined that the road surface 48 is a frozen road surface, the braking control unit 44 sets the second braking distance longer than the first braking distance at the time of non-freezing in which the vehicle 1 and the target object 50 can avoid contact. The braking control is executed from the position.

警報処理部46は、判定部38により路面48が凍結路面であると判定された場合に、例えば、「路面が凍結しています。注意してください。」等の警報メッセージや警報音、警報灯等を用いた警報処理を実行する。警報メッセージや警報灯は、例えば表示装置8や表示装置12に表示することができる。また、警報音は、音声出力装置9を介して出力することができる。また、警報処理部46は、対象物体50に対する接近の程度に応じたメッセージや音声等による警報を出力してもよい。なお、路面48が非凍結路面の場合は、路面状態に関する警報は省略し、対象物体50に対する接近警報のみを出力するようにしてもよい。   When the determination unit 38 determines that the road surface 48 is a frozen road surface, the alarm processing unit 46, for example, an alarm message such as “Road surface is frozen. And the like to execute an alarm process. The warning message or the warning light can be displayed on the display device 8 or the display device 12, for example. Further, the alarm sound can be output through the audio output device 9. Further, the warning processing unit 46 may output a warning by a message, a voice, or the like according to the degree of approach to the target object 50. When the road surface 48 is a non-freezing road surface, the warning regarding the road surface state may be omitted, and only the approach warning for the target object 50 may be output.

以上のように構成される走行支援装置28の動作について、図11のフローチャートを用いて説明する。なお、車両1の電源がONの場合、測距部17は常時、超音波Wの送受波を行い、車両1の周辺における対象物体50の有無や対象物体50までの距離を計測しているものとする。そして、走行支援装置28の動作により、凍結路面の有無判定が実行される。また、走行支援装置28は、対象物体50に接触しないための自動制動制御を実行する。   The operation of the driving support device 28 configured as described above will be described with reference to the flowchart of FIG. When the power of the vehicle 1 is ON, the distance measuring unit 17 constantly transmits and receives the ultrasonic wave W to measure the presence or absence of the target object 50 around the vehicle 1 and the distance to the target object 50. And Then, by the operation of the traveling support device 28, the presence or absence of the frozen road surface is determined. In addition, the traveling support device 28 executes automatic braking control for preventing the vehicle from contacting the target object 50.

まず、走行支援装置28は、操作入力部10等を用いた利用者からの走行支援開始の要求があるか否かを常時確認し(S100)、要求がない場合(S100のNo)、一旦このフローを終了する。一方、利用者が操作入力部10等を操作して、走行支援開始の要求を行った場合(S100のYes)、判定部38は、受波制御部30bが取得した反射波のデータが、路面48の凍結を示すデータであるか否かを複数の条件(例えば、第1条件〜第4条件)に基づいて判別する。そして、各条件を満たすデータの数が所定の閾値(第5条件)以上の場合に、路面48が凍結路面であると判定する。そこで、判定部38は、まず、路面48が凍結路面であるかを判定するために、RAM14c等の記憶部に一時的に記憶された凍結判定カウンタ値の初期化を行う(S102)。そして、走行支援装置28は、ブレーキシステム18の制御状態を参照し、運転者による制動操作部6(ブレーキペダル)の操作やブレーキシステム18自身による自動制動等による回避動作が実行されているか否かを判定する(S104)。回避動作が実行されていない場合(S104のNo)、情報取得部32は、例えば、空気調和装置や測距部17等に設けられた温度センサから車両1の周辺温度を取得する(S106)。   First, the driving support device 28 constantly checks whether there is a request for starting driving support from the user using the operation input unit 10 or the like (S100). End the flow. On the other hand, when the user operates the operation input unit 10 or the like to request the start of driving support (Yes in S100), the determination unit 38 determines that the data of the reflected wave acquired by the wave reception control unit 30b is It is determined based on a plurality of conditions (e.g., first to fourth conditions) whether or not the data indicates 48 freeze. If the number of data that satisfies each condition is equal to or greater than a predetermined threshold (fifth condition), it is determined that the road surface 48 is a frozen road surface. Therefore, the determination unit 38 first initializes a freeze determination counter value temporarily stored in a storage unit such as the RAM 14c to determine whether the road surface 48 is a frozen road surface (S102). Then, the driving support device 28 refers to the control state of the brake system 18 and determines whether or not the driver has operated the brake operation unit 6 (brake pedal) or performed an avoidance operation such as automatic braking by the brake system 18 itself. Is determined (S104). When the avoidance operation has not been performed (No in S104), the information acquisition unit 32 acquires the ambient temperature of the vehicle 1 from, for example, a temperature sensor provided in the air conditioner, the distance measurement unit 17, or the like (S106).

判定部38は、まず、周辺温度が温度閾値A(第1条件、例えば、「0℃」)未満の場合(S108のYes)、受波制御部30bが取得した超音波Wの反射波の信号強度(波高値)が第2条件としての所定の値(波高閾値B)以上か否かを判定する(S110)。すなわち、周辺温度が「0℃」未満の場合、受波した反射波のデータ(図7等におけるプロット点)が、路面48の凍結を示すデータである可能性があると判定し、第1条件が満たされたとする。また、取得した反射波が、例えば波高値が波高閾値B以上の場合(強い反射波が戻った場合)、凍結路面で反射した間接波が重ねあわせられて強い反射波のデータ(プロット点)になった可能性があると見なし、反射波のデータが路面48の凍結を示すデータである可能性があると判定し、第2条件が満たされたとする。なお、反射波は、伝搬距離が長くなるほど減衰する。つまり、凍結の可能性を示す反射波であっても、測距部17から遠い位置で反射した反射波の波高値は、近い位置で反射した波高値に比べ低くなる。前述したように、超音波Wの送受時間と現在の温度における音速に基づき反射の原因となる対象物体50までの距離が算出できる。したがって、第2条件である波高閾値Bは、対象物体50の位置(超音波Wが反射する原因となる物体)に応じて変化させてもよい。この場合、例えば、凍結路面における対象物体50までの距離と波高値との関係を予め波高値マップとして作成して、ROM14b等に記憶させておき、S110の判定の際に対象物体50までの距離にしたがい、その距離に応じた波高閾値Bを読み出してもよい。この場合、図7において、例えば、6000mmの距離にある対象物体50からの反射波が、低い場合でも路面48の凍結を示すデータであると判定する場合があり、判定精度を向上に寄与できる。   First, when the ambient temperature is lower than the temperature threshold value A (first condition, for example, “0 ° C.”) (Yes in S108), the determination unit 38 determines the signal of the reflected wave of the ultrasonic wave W acquired by the reception control unit 30b. It is determined whether the intensity (peak value) is equal to or greater than a predetermined value (peak value threshold B) as the second condition (S110). That is, when the ambient temperature is lower than “0 ° C.”, it is determined that the data of the received reflected wave (the plot points in FIG. 7 and the like) may be data indicating the freezing of the road surface 48 and the first condition Is satisfied. When the acquired reflected wave has a peak value equal to or higher than the peak height threshold B (when a strong reflected wave returns), the indirect wave reflected on the frozen road surface is superimposed on the reflected wave data (plot point). It is determined that there is a possibility that the second condition has been satisfied, and it is determined that the data of the reflected wave may be data indicating freezing of the road surface 48, and the second condition is satisfied. Note that the reflected wave attenuates as the propagation distance increases. In other words, even if the reflected wave indicates the possibility of freezing, the peak value of the reflected wave reflected at a position far from the distance measuring unit 17 is lower than the peak value reflected at a near position. As described above, the distance to the target object 50 causing reflection can be calculated based on the transmission / reception time of the ultrasonic wave W and the sound speed at the current temperature. Therefore, the wave height threshold value B as the second condition may be changed according to the position of the target object 50 (the object that causes the ultrasonic wave W to be reflected). In this case, for example, the relationship between the distance to the target object 50 on the frozen road surface and the peak value is created in advance as a peak value map and stored in the ROM 14b or the like, and the distance to the target object 50 is determined in the determination of S110. Accordingly, the peak value B corresponding to the distance may be read. In this case, in FIG. 7, for example, even when the reflected wave from the target object 50 at a distance of 6000 mm is low, it may be determined that the data indicates the freezing of the road surface 48, which can contribute to the improvement of the determination accuracy.

S110において、波高値≧波高閾値Bの場合(S110のYes)、次に判定部38は、第3条件として、対象物体50との距離を距離閾値Cと比較する(S112)。前述したように、測距部17から対象物体50までの距離が近い場合、路面48の凍結の有無に拘わらず、所定値以上の強い反射波が戻ってくる。また、本実施形態における走行支援装置28は、例えば、駐車等のための低速(例えば、10km/h以下)で後退走行を行いつつ制動制御を行う場合、凍結路面であることを事前に判定(検出)するとともに、凍結路面での制動距離の増加を見越して早めに制動動作(接触回避動作)を開始する。そのため、測距部17から所定距離以上からの反射波を凍結路面の判定に利用するデータとする必要がある。そこで、第3条件として、例えば、凍結路面における低速後退時の必要制動距離を参照して、例えば距離閾値C=3000mmとする。そして、対象物体50との距離≧距離閾値C(3000mm)の場合(S112のYes)、判定部38は、現在の車両1の車速を車輪速センサ22の検出値に基づき取得する(S114)。判定部38は、取得した車速を用いて、第4条件として、車両1が対象物体50に接近しているか否かの判定を行う(S116)。つまり、車両1の現在の走行状態が、対象物体50から遠ざかっている場合、すなわち、車両1が前進走行している場合、対象物体50に対する接触回避動作を行う必要がなく、車両1の後方路面の状態を判定する必要性は少ない。車両1が対象物体50に接近しているか遠ざかっているかは、例えば、対象物体50と車両1との接近速度と車両1の自車速度との比較により判定することができる。例えば、接近速度≧車両1の自車速度の場合(S116のYes)、車両1は対象物体50に接近中であると判定できる。つまり、反射波のデータは、温度が所定温度(温度閾値A)未満の場合に、所定距離(距離閾値C)以上から所定値以上の信号強度(波高閾値B)である、と判定できる。この場合、判定部38は、受波制御部30bが取得した反射波のデータが、路面48の凍結を示すデータであると判定し、凍結判定カウンタ値を「+1」更新する(S118)。一方、S116において、接近速度≧車両1の自車速度でない場合(S116のNo)、つまり、車両1が対象物体50から遠ざかっている場合、車両1の後方に関する凍結路面の検出は不要であると判定し、凍結判定カウンタ値を初期化する(S120)。   In S110, when the peak value ≧ the peak threshold B (Yes in S110), the determination unit 38 next compares the distance to the target object 50 with the distance threshold C as a third condition (S112). As described above, when the distance from the distance measurement unit 17 to the target object 50 is short, a strong reflected wave of a predetermined value or more returns regardless of whether or not the road surface 48 is frozen. In addition, for example, when performing the braking control while performing the reverse traveling at a low speed (for example, 10 km / h or less) for parking or the like, the traveling support device 28 in the present embodiment determines in advance that the vehicle is on a frozen road surface ( Detection) and start the braking operation (contact avoidance operation) early in anticipation of an increase in the braking distance on a frozen road surface. Therefore, it is necessary to use the reflected wave from the distance measuring unit 17 from a predetermined distance or more as data to be used for determining a frozen road surface. Therefore, as a third condition, for example, the required threshold distance at low speed retreat on a frozen road surface is referred to as a distance threshold C = 3000 mm, for example. If the distance from the target object 50 ≧ the distance threshold C (3000 mm) (Yes in S112), the determination unit 38 acquires the current vehicle speed of the vehicle 1 based on the detection value of the wheel speed sensor 22 (S114). The determining unit 38 determines whether the vehicle 1 is approaching the target object 50 as a fourth condition using the acquired vehicle speed (S116). That is, when the current traveling state of the vehicle 1 is moving away from the target object 50, that is, when the vehicle 1 is traveling forward, there is no need to perform a contact avoidance operation on the target object 50, and the rear road surface of the vehicle 1 is not required. There is little need to determine the state of. Whether the vehicle 1 is approaching or moving away from the target object 50 can be determined, for example, by comparing the approach speed between the target object 50 and the vehicle 1 and the own vehicle speed of the vehicle 1. For example, when the approach speed ≧ the vehicle speed of the vehicle 1 (Yes in S116), it can be determined that the vehicle 1 is approaching the target object 50. That is, when the temperature of the reflected wave is lower than the predetermined temperature (temperature threshold A), it can be determined that the signal intensity (wave height threshold B) is equal to or higher than a predetermined distance (distance threshold C) and higher than a predetermined value. In this case, the determination unit 38 determines that the data of the reflected wave acquired by the wave reception control unit 30b is data indicating that the road surface 48 is frozen, and updates the freeze determination counter value by “+1” (S118). On the other hand, in S116, if the approach speed is not equal to or more than the own vehicle speed of the vehicle 1 (No in S116), that is, if the vehicle 1 is moving away from the target object 50, it is unnecessary to detect the frozen road surface behind the vehicle 1. A determination is made and a freeze determination counter value is initialized (S120).

続いて、判定部38は、凍結判定カウンタ値の初期化から所定期間経過しているか否か確認する(S122)。本実施形態の場合、図7等で説明したように、所定温度未満の場合に、所定距離以上から所定値以上の信号強度の反射波が、例えば所定回数以上取得された場合に、車両1の進行方向の路面48が凍結路面であると判定する。したがって、実際に反射波が受波できるか否かに拘わらず、一定期間、反射波の収集処理が必要になる。凍結判定カウンタ値の初期化から所定期間経過していない場合(S122のNo)、S104の処理に戻り、判定部38は、受波制御部30bが取得した反射波のデータが、路面48の凍結を示すデータであるか否かを判定して、凍結判定カウンタ値の更新または初期化の処理を繰り返す。   Subsequently, the determination unit 38 checks whether a predetermined period has elapsed since the initialization of the freeze determination counter value (S122). In the case of the present embodiment, as described with reference to FIG. 7 and the like, when a reflected wave having a signal strength equal to or more than a predetermined value from a predetermined distance or more is obtained for a predetermined number of times or more when the temperature is lower than a predetermined temperature, the vehicle 1 It is determined that the road surface 48 in the traveling direction is a frozen road surface. Therefore, regardless of whether or not the reflected wave can be actually received, it is necessary to collect the reflected wave for a certain period. If the predetermined period has not elapsed from the initialization of the freeze determination counter value (No in S122), the process returns to S104, and the determination unit 38 determines that the reflected wave data acquired by the wave reception control unit 30b is to freeze the road surface 48. Is determined, and the process of updating or initializing the freeze determination counter value is repeated.

なお、S112において、対象物体50との距離≧距離閾値Cではない場合(S112のNo)、つまり、取得した反射波のデータが、測距部17に近い距離からの反射波に基づくデータである場合である。この場合、波高値が波高閾値B以上で、強い反射波が取得されたとしても凍結路面での反射に起因するか否か判別不能となる。したがって、判定部38は、凍結判定カウンタ値に関する処理は行わず、反射波のデータをRAM14cに記憶し、S122の処理に移行する。この場合、取得した反射波のデータは、対象物体50との距離等を示すデータとして利用される。また、S110において、波高値≧波高閾値Bではない場合(S110のNo)、つまり、反射波が低い(弱い)場合である。この場合、周囲温度が温度閾値A未満であったとしても、路面48が非凍結状態、例えば、雪路面等である場合がある。そのため、判定部38は、凍結判定カウンタ値に関する処理は行わず、反射波のデータをRAM14cに記憶し、S122の処理に移行する。この場合、取得した反射波のデータは、対象物体50との距離等を示すデータとして利用される。また、S108において、周辺温度が温度閾値A以上の場合、路面48は凍結していない可能性が高い。したがって、この場合、判定部38は、凍結判定カウンタ値に関する処理は行わず、反射波のデータをRAM14cに記憶し、S122の処理に移行する。この場合も、取得した反射波のデータは、対象物体50との距離等を示すデータとして利用される。また、S104において、現在、車両1が回避動作を実行している場合(S104のYes)、既に路面48の状態を判別する必要性は低いと判定し、判定部38は、凍結判定カウンタ値を初期化し(S124)、S122の処理に移行する。この場合も、取得した反射波のデータは、対象物体50との距離等を示すデータとして利用される。   In S112, when the distance from the target object 50 is not equal to or greater than the distance threshold C (No in S112), that is, the acquired data of the reflected wave is data based on the reflected wave from a distance close to the distance measuring unit 17. Is the case. In this case, it is impossible to determine whether or not the peak value is equal to or higher than the threshold value B and a strong reflected wave is obtained even if the reflected wave is reflected on a frozen road surface. Therefore, the determination unit 38 does not perform the process regarding the freeze determination counter value, stores the data of the reflected wave in the RAM 14c, and proceeds to the process of S122. In this case, the acquired data of the reflected wave is used as data indicating the distance to the target object 50 and the like. Further, in S110, the case where the peak value ≧ the peak value threshold B is not satisfied (No in S110), that is, the case where the reflected wave is low (weak). In this case, even if the ambient temperature is lower than the temperature threshold A, the road surface 48 may be in a non-freezing state, for example, a snowy road surface. Therefore, the determination unit 38 does not perform the process regarding the freeze determination counter value, stores the data of the reflected wave in the RAM 14c, and proceeds to the process of S122. In this case, the acquired data of the reflected wave is used as data indicating the distance to the target object 50 and the like. If the ambient temperature is equal to or higher than the temperature threshold A in S108, it is highly possible that the road surface 48 is not frozen. Therefore, in this case, the determination unit 38 does not perform the process regarding the freeze determination counter value, stores the data of the reflected wave in the RAM 14c, and proceeds to the process of S122. Also in this case, the acquired data of the reflected wave is used as data indicating the distance to the target object 50 and the like. In S104, when the vehicle 1 is currently performing the avoidance operation (Yes in S104), it is determined that it is not necessary to determine the state of the road surface 48, and the determination unit 38 sets the freeze determination counter value to Initialization (S124), the process proceeds to S122. Also in this case, the acquired data of the reflected wave is used as data indicating the distance to the target object 50 and the like.

S122において、凍結判定カウンタ値の初期化から所定期間経過している場合(S122のYes)、つまり、一定期間、反射波の収集処理が完了した場合、路面48が凍結路面であるか否かを判定する際に参照する判定閾値Dを決定する(S126)。判定閾値Dは前述したように、現在の車両1の車速によって、取得できる反射波のデータ数が変動するため、例えば、S114で取得した車両1の車速に基づき、図10のマップを参照し決定することができる。そして、判定部38は、S118において、更新された凍結判定カウンタ値とS126で決定した判定閾値Dとの比較を行う(S128)。そして、判定部38は、凍結判定カウンタ値≧判定閾値Dである場合(S128のYes)、例えば、図7に示すように、領域Eに判定閾値D以上のプロット点が存在する場合、判定部38は、路面48の状態が「凍結」であると判定する(S130)。そして、警報処理部46は、表示装置8や音声出力装置9を用いて、路面48が凍結路面であることを利用者に報知する警報処理を実行する(S132)。一方、S128において、凍結判定カウンタ値≧判定閾値Dではない場合(S128のNo)、例えば、図6に示すように、領域Eに判定閾値D以上のプロット点が存在しない場合、判定部38は、路面48の状態が「非凍結」であると判定する(S134)。   In S122, when a predetermined period has elapsed since the initialization of the freeze determination counter value (Yes in S122), that is, when the reflected wave collection processing is completed for a certain period, it is determined whether the road surface 48 is a frozen road surface. A determination threshold D to be referred to when making a determination is determined (S126). As described above, the determination threshold D is determined by referring to the map of FIG. 10 based on the vehicle speed of the vehicle 1 acquired in S114, for example, because the number of data of the reflected waves that can be acquired varies depending on the current vehicle speed of the vehicle 1. can do. Then, in S118, the determination unit 38 compares the updated freeze determination counter value with the determination threshold D determined in S126 (S128). Then, when the freeze determination counter value ≧ the determination threshold D (Yes in S128), for example, as shown in FIG. 38 determines that the state of the road surface 48 is “frozen” (S130). Then, the alarm processing unit 46 executes an alarm process of notifying the user that the road surface 48 is a frozen road surface by using the display device 8 and the audio output device 9 (S132). On the other hand, in S128, if the freeze determination counter value is not equal to or greater than the determination threshold D (No in S128), for example, as shown in FIG. It is determined that the state of the road surface 48 is "non-freezing" (S134).

路面48の状態が「凍結」であると判定された場合(S136のYes)、減速開始位置算出部42は、制動距離を延長する(S138)。例えば、凍結時必要制動距離を、同じ車速で非凍結時に必要となる非凍結時必要制動距離の、例えば1.5倍とする。そして、減速開始位置算出部42は、路面48が凍結路面である場合に、現在の車両1の車速を参照し、対象物体50との接触を回避し、かつスムーズに停止できる減速開始位置を算出する(S140)。なお、S136において、路面48の状態が凍結路面でないと判定された場合(S136のNo)、S138の処理をスキップして、S140の処理で、非凍結路面時の制動距離、つまり、通常の制動距離を用いて、減速開始位置を算出する(S140)。   When it is determined that the state of the road surface 48 is “freeze” (Yes in S136), the deceleration start position calculation unit 42 extends the braking distance (S138). For example, the required braking distance at the time of freezing is, for example, 1.5 times the required braking distance at the time of non-freezing at the same vehicle speed. Then, when the road surface 48 is a frozen road surface, the deceleration start position calculation unit 42 refers to the current vehicle speed of the vehicle 1 and calculates a deceleration start position at which contact with the target object 50 can be avoided and the vehicle can be stopped smoothly. (S140). In S136, when it is determined that the state of the road surface 48 is not a frozen road surface (No in S136), the process of S138 is skipped, and the braking distance on the non-freezing road surface, that is, the normal braking, is performed in the process of S140. The deceleration start position is calculated using the distance (S140).

制動制御部44は、距離算出部40が算出する対象物体50に対する距離を参照し、対象物体50に対する車両1の現在の位置が、減速開始位置算出部42が算出した減速開始位置に到達した場合(S142のYes)、制動制御を開始する(S144)。例えば、ブレーキシステム18を用いて自動制動を開始する。また、S142において、減速開始位置に到達していない場合、走行支援装置28は、S104の処理に移行し、凍結路面であるか否かの判定を継続して実施するために反射波の取得処理および凍結判定カウンタ値に関する処理を繰り返し実施する。   The braking control unit 44 refers to the distance to the target object 50 calculated by the distance calculation unit 40, and the current position of the vehicle 1 with respect to the target object 50 reaches the deceleration start position calculated by the deceleration start position calculation unit 42 (Yes in S142), the braking control is started (S144). For example, the automatic braking is started using the brake system 18. In S142, if the vehicle has not reached the deceleration start position, the driving support device 28 proceeds to the process of S104, and performs a process of acquiring a reflected wave in order to continuously determine whether or not the vehicle is on a frozen road surface. And the process regarding the freeze determination counter value is repeatedly performed.

このように、本実施形態の走行支援装置28によれば、対象物体50の存在の有無や対象物体50までの距離を検出する測距部17を流用して、車両1の進行方向の路面48の状態が凍結状態であるか否か予め取得(または推定)できる。その結果、1の進行方向の路面48が凍結路面である場合には、凍結路面による滑りを考慮して減速開始位置を非凍結路面の場合より手前に変更し、対象物体50との接触回避を確実に行えるようにすることができる。また、制動動作を余裕を持って実行することができるので、スムーズな減速、停止を実現することができる。   As described above, according to the traveling support device 28 of the present embodiment, the distance measuring unit 17 that detects the presence or absence of the target object 50 and the distance to the target object 50 is used, and the road surface 48 in the traveling direction of the vehicle 1 is used. It can be obtained (or estimated) in advance whether or not the state is a frozen state. As a result, when the road surface 48 in one traveling direction is a frozen road surface, the deceleration start position is changed to a position closer to the non-freezing road surface in consideration of slippage on the frozen road surface to avoid contact with the target object 50. It is possible to reliably perform the operation. In addition, since the braking operation can be performed with a margin, smooth deceleration and stop can be realized.

なお、上述した実施形態では、車両1が低速で後退走行している状態で、進行方向の路面48が凍結路面であるか否かを判定する例を説明した。別の実施形態では、車両1が低速で前進走行している状態で、進行方向の路面48が凍結路面であるか否かを判定することも可能で、同様の効果を得ることができる。この場合は、車両1の前方に設けられた測距部17e〜17hが利用される。また、路面48が凍結路面であるか否かを判定する場合に、車両1の後方側の測距部17a〜17dを用いるか、車両1の前方側の測距部17e〜17hを用いるかは、例えば、走行支援装置28が走行支援開始要求を取得したときに、シフトセンサ23から取得できる、変速操作部7の位置(R位置またはD位置)に基づいて、前進状態であるか後進状態であるかを取得し判定することができる。   In the above-described embodiment, an example has been described in which it is determined whether the road surface 48 in the traveling direction is a frozen road surface while the vehicle 1 is traveling backward at a low speed. In another embodiment, it is possible to determine whether the road surface 48 in the traveling direction is a frozen road surface while the vehicle 1 is traveling forward at a low speed, and the same effect can be obtained. In this case, the distance measuring units 17e to 17h provided in front of the vehicle 1 are used. When determining whether or not the road surface 48 is a frozen road surface, whether to use the distance measuring units 17a to 17d on the rear side of the vehicle 1 or the distance measuring units 17e to 17h on the front side of the vehicle 1 is determined. For example, when the driving support device 28 obtains a driving support start request, it is determined whether the vehicle is in the forward traveling state or the reverse traveling state based on the position (R position or D position) of the shift operation unit 7 that can be acquired from the shift sensor 23. It can be obtained and determined whether there is.

また、上述した実施形態では、車両1の進行方向の路面48が凍結路面であると判定された場合、制動距離を延ばすことにより、対象物体50と接触することなく車両1を制動させる例を示した。別の実施形態では、凍結路面であると判定され、実際に制動制御を実施している間に、周知の技術を用いて路面μを取得し、制動力の調整を行ってもよい。この場合、よりスムーズな制動が実現できる。   In the above-described embodiment, an example is shown in which, when it is determined that the road surface 48 in the traveling direction of the vehicle 1 is a frozen road surface, the vehicle 1 is braked without contacting the target object 50 by extending the braking distance. Was. In another embodiment, the road surface μ may be acquired by using a known technique and the braking force may be adjusted while it is determined that the road surface is a frozen road surface and the braking control is actually performed. In this case, smoother braking can be realized.

本実施形態において、車両1の進行方向の路面48が凍結路面であるか否かを判定する場合に、超音波を用いる例を示したが、可聴音を用いても同様な効果を得ることができる。また、本実施形態において、車両1の進行方向の路面48が凍結路面であるか否かを判定する場合に、音波(例えば、超音波)を用いている。音波(例えば、超音波)を用いる場合、周囲の明るさの影響を受けない。したがって、例えば、夜間やトンネル内等においても、凍結路面であるか否かの判定を、例えば、映像に基づいて判定する場合よりも高精度に行うことができる。   In the present embodiment, an example in which ultrasonic waves are used to determine whether or not the road surface 48 in the traveling direction of the vehicle 1 is a frozen road surface has been described. However, similar effects can be obtained by using audible sound. it can. In the present embodiment, sound waves (for example, ultrasonic waves) are used to determine whether the road surface 48 in the traveling direction of the vehicle 1 is a frozen road surface. When sound waves (for example, ultrasonic waves) are used, they are not affected by ambient brightness. Therefore, for example, even at night or in a tunnel, the determination as to whether or not the vehicle is on a frozen road surface can be performed with higher accuracy than when determining based on, for example, an image.

本実施形態のCPU14aで実行される走行支援プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。   The driving support program executed by the CPU 14a of the present embodiment is a file in an installable format or an executable format in a computer such as a CD-ROM, a flexible disk (FD), a CD-R, and a DVD (Digital Versatile Disk). You may comprise so that it may record and provide on the readable recording medium.

さらに、走行支援プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、本実施形態で実行される走行支援プログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。   Further, the driving support program may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. Further, the driving support program executed in the present embodiment may be provided or distributed via a network such as the Internet.

本発明の実施形態及び変形例を説明したが、これらの実施形態及び変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although the embodiment and the modification of the present invention have been described, the embodiment and the modification are presented as examples and are not intended to limit the scope of the invention. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

1…車両、14…ECU、14a…CPU、17(17a〜17h)…測距部、18…ブレーキシステム、28…走行支援装置、30…音波制御部、30a…送波制御部、30b…受波制御部、32…情報取得部、34…車速算出部、36…閾値決定部、38…判定部、40…距離算出部、42…減速開始位置算出部、44…制動制御部、46…警報処理部、48…路面、50…対象物体、100…走行支援システム。   DESCRIPTION OF SYMBOLS 1 ... Vehicle, 14 ... ECU, 14a ... CPU, 17 (17a-17h) ... Distance measuring part, 18 ... Brake system, 28 ... Driving assistance device, 30 ... Sound wave control part, 30a ... Wave transmission control part, 30b ... Reception Wave control unit, 32 information acquisition unit, 34 vehicle speed calculation unit, 36 threshold value determination unit, 38 determination unit, 40 distance calculation unit, 42 deceleration start position calculation unit, 44 braking control unit, 46 alarm Processing unit, 48 road surface, 50 target object, 100 driving support system.

Claims (4)

車両の進行方向に向けて音波を送波し、物体から反射した反射波を受波する測距部から、前記反射波の情報を取得する音波制御部と、
前記車両の周囲の温度情報を取得する情報取得部と、
前記温度情報に基づく温度が所定温度未満の場合に、前記反射波の情報に基づいて、所定距離以上から所定値以上の信号強度の反射波を前記測距部が受信したと判定した場合に、前記車両の進行方向の路面が凍結路面であると判定する判定部と、
を備える、走行支援装置。
A sound wave control unit that transmits a sound wave in the traveling direction of the vehicle and acquires information on the reflected wave from a distance measuring unit that receives a reflected wave reflected from an object,
An information acquisition unit that acquires temperature information around the vehicle;
When the temperature based on the temperature information is less than a predetermined temperature, based on the information of the reflected wave, when it is determined that the distance measuring unit has received a reflected wave of a signal strength of a predetermined value or more from a predetermined distance or more, A determining unit that determines that the road surface in the traveling direction of the vehicle is a frozen road surface,
A driving support device comprising:
前記凍結路面であると判定された場合、前記音波を反射した前記車両の進行方向に存在する物体に向かって走行する前記車両と前記物体とが接触を回避し得る、前記路面の非凍結時の第一の制動距離より長い第二の制動距離の位置から制動制御を実行する制御部を、さらに備える請求項1に記載の走行支援装置。   When it is determined that the frozen road surface, the vehicle and the object traveling toward the object existing in the traveling direction of the vehicle that reflected the sound wave can avoid contact, when the road surface is not frozen The driving support device according to claim 1, further comprising a control unit configured to execute a braking control from a position of a second braking distance longer than the first braking distance. 前記音波制御部は、前記車両の前記進行方向と略平行に送波可能に設けられた前記測距部から、前記反射波の情報を取得する、請求項1または請求項2に記載の走行支援装置。   The driving support according to claim 1, wherein the sound wave control unit obtains information on the reflected wave from the distance measurement unit provided so as to be capable of transmitting a wave substantially in parallel with the traveling direction of the vehicle. apparatus. 前記判定部は、前記所定値以上の信号強度の前記反射波の受波頻度が所定回数以上の場合に、前記路面が前記凍結路面であると判定する判定閾値を有し、当該判定閾値は、判定時の前記車両の速度に応じて変化させる、請求項1から請求項3のいずれか1項に記載の走行支援装置。   The determination unit has a determination threshold value for determining that the road surface is the frozen road surface when the reception frequency of the reflected wave having the signal strength equal to or greater than the predetermined value is equal to or greater than a predetermined number of times. The driving support device according to any one of claims 1 to 3, wherein the driving support device is changed according to a speed of the vehicle at the time of the determination.
JP2018157400A 2018-08-24 2018-08-24 Driving support device Active JP7087826B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018157400A JP7087826B2 (en) 2018-08-24 2018-08-24 Driving support device
CN201910778914.3A CN110895416A (en) 2018-08-24 2019-08-22 Driving support device
US16/548,966 US20200062228A1 (en) 2018-08-24 2019-08-23 Driving assistance apparatus
DE102019122696.1A DE102019122696A1 (en) 2018-08-24 2019-08-23 Driving assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157400A JP7087826B2 (en) 2018-08-24 2018-08-24 Driving support device

Publications (2)

Publication Number Publication Date
JP2020029231A true JP2020029231A (en) 2020-02-27
JP7087826B2 JP7087826B2 (en) 2022-06-21

Family

ID=69412453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157400A Active JP7087826B2 (en) 2018-08-24 2018-08-24 Driving support device

Country Status (4)

Country Link
US (1) US20200062228A1 (en)
JP (1) JP7087826B2 (en)
CN (1) CN110895416A (en)
DE (1) DE102019122696A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022024312A (en) * 2020-07-15 2022-02-09 トヨタ自動車株式会社 Driving support device, driving support method and program
KR102505159B1 (en) * 2021-11-17 2023-03-02 주식회사 모바휠 Apparatus for estimating of road surface type using sound waves and method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109305165B (en) * 2017-07-28 2022-04-12 现代摩比斯株式会社 Intelligent ultrasonic system, vehicle rear collision warning device and control method thereof
US10882538B1 (en) * 2019-07-31 2021-01-05 Karma Automotive Llc System and method for a combined visual and audible spatial warning system
KR20210135389A (en) * 2020-05-04 2021-11-15 현대자동차주식회사 Apparatus for recognizing an obstacle, a vehicle system having the same and method thereof
JP2022122197A (en) * 2021-02-09 2022-08-22 株式会社アイシン Object detection device and movable body control unit
CN116149402B (en) * 2023-04-23 2023-07-28 中建西南咨询顾问有限公司 Temperature control system and control method based on convolutional neural network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126377A (en) * 1985-11-28 1987-06-08 Nissan Motor Co Ltd Apparatus for detecting state of road surface
JPH0235016U (en) * 1988-08-31 1990-03-06
JPH095449A (en) * 1995-06-20 1997-01-10 Sumitomo Electric Ind Ltd Road surface state detecting device and control means for vehicle
JP2002112379A (en) * 2000-10-04 2002-04-12 Murata Mfg Co Ltd Ultrasonic wave sensor and electronic device using it, and vehicle use reverse sonar
JP2005297817A (en) * 2004-04-13 2005-10-27 Fujitsu Ten Ltd Driving assistance device
JP2016112967A (en) * 2014-12-12 2016-06-23 株式会社日本自動車部品総合研究所 Vehicle control system
JP2016175606A (en) * 2015-03-23 2016-10-06 三菱電機株式会社 Deceleration instruction device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230366A (en) * 2009-03-26 2010-10-14 Denso Corp Obstacle detection apparatus
CN201576094U (en) * 2009-12-25 2010-09-08 樊涛 Safety travelling positioning system of vehicle
CN101875348B (en) * 2010-07-01 2011-12-28 浙江工业大学 Device for preventing faulty operation for using accelerator as brake by mistake based on computer vision
JP2014202498A (en) * 2013-04-01 2014-10-27 三菱自動車工業株式会社 Driving support apparatus
JP6387786B2 (en) * 2014-10-22 2018-09-12 株式会社デンソー Ultrasonic object detection device
CN108052099A (en) * 2017-11-17 2018-05-18 南京视莱尔汽车电子有限公司 A kind of embedded autonomous driving vehicle automated driving system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126377A (en) * 1985-11-28 1987-06-08 Nissan Motor Co Ltd Apparatus for detecting state of road surface
JPH0235016U (en) * 1988-08-31 1990-03-06
JPH095449A (en) * 1995-06-20 1997-01-10 Sumitomo Electric Ind Ltd Road surface state detecting device and control means for vehicle
JP2002112379A (en) * 2000-10-04 2002-04-12 Murata Mfg Co Ltd Ultrasonic wave sensor and electronic device using it, and vehicle use reverse sonar
JP2005297817A (en) * 2004-04-13 2005-10-27 Fujitsu Ten Ltd Driving assistance device
JP2016112967A (en) * 2014-12-12 2016-06-23 株式会社日本自動車部品総合研究所 Vehicle control system
JP2016175606A (en) * 2015-03-23 2016-10-06 三菱電機株式会社 Deceleration instruction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022024312A (en) * 2020-07-15 2022-02-09 トヨタ自動車株式会社 Driving support device, driving support method and program
JP7348882B2 (en) 2020-07-15 2023-09-21 トヨタ自動車株式会社 Driving support devices, driving support methods and programs
KR102505159B1 (en) * 2021-11-17 2023-03-02 주식회사 모바휠 Apparatus for estimating of road surface type using sound waves and method thereof

Also Published As

Publication number Publication date
CN110895416A (en) 2020-03-20
JP7087826B2 (en) 2022-06-21
DE102019122696A1 (en) 2020-02-27
US20200062228A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP7087826B2 (en) Driving support device
EP3351459B1 (en) Parking assist apparatus
US9409574B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
US9481368B2 (en) Park exit assist system and park exit assist method
US9604638B2 (en) Parking assist system
US9592852B2 (en) Parking assist system and parking assist method
US9738276B2 (en) Parking assist system
JP5322937B2 (en) Device for detecting moving objects
US9505436B2 (en) Parking assist system
US20210300361A1 (en) Obstacle detection device and driving assistance system
US11951996B2 (en) Driver assistance system and vehicle including the same
JP7346129B2 (en) Parking support device and method of controlling the parking support device
JP2019156308A (en) Parking support device
US20210323545A1 (en) Driver assistance apparatus
US10878266B2 (en) Vehicle and method for controlling the same
CN114312756A (en) Parking assistance system, parking assistance device, parking assistance method, and recording medium
JP2014069721A (en) Periphery monitoring device, control method, and program
JP7135365B2 (en) Vehicle driving support device
FR2973320B1 (en) METHOD AND DEVICE FOR ASSISTING A PARKING MANEUVER OF A VEHICLE
WO2023090186A1 (en) Parking assistance device
JP2019138655A (en) Traveling support device
US20240132052A1 (en) Vehicle travel control device
JP2018203089A (en) Splashing prevention device
US20230093819A1 (en) Parking assistance device
CN117922577A (en) Vehicle travel control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150