JP2020024101A - Clamp sensor and clamp meter - Google Patents

Clamp sensor and clamp meter Download PDF

Info

Publication number
JP2020024101A
JP2020024101A JP2018147553A JP2018147553A JP2020024101A JP 2020024101 A JP2020024101 A JP 2020024101A JP 2018147553 A JP2018147553 A JP 2018147553A JP 2018147553 A JP2018147553 A JP 2018147553A JP 2020024101 A JP2020024101 A JP 2020024101A
Authority
JP
Japan
Prior art keywords
current value
coil
clamp
connection
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018147553A
Other languages
Japanese (ja)
Other versions
JP7034484B2 (en
Inventor
理 河本
Osamu Kawamoto
理 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Electrical Instr Works Ltd
Kyoritsu Electrical Instruments Works Ltd
Original Assignee
Kyoritsu Electrical Instr Works Ltd
Kyoritsu Electrical Instruments Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Electrical Instr Works Ltd, Kyoritsu Electrical Instruments Works Ltd filed Critical Kyoritsu Electrical Instr Works Ltd
Priority to JP2018147553A priority Critical patent/JP7034484B2/en
Publication of JP2020024101A publication Critical patent/JP2020024101A/en
Application granted granted Critical
Publication of JP7034484B2 publication Critical patent/JP7034484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

To provide a clamp meter that can measure a small current flowing through a large-area structure including a to-be-measured conductor with high accuracy while suppressing an influence of an external magnetic field without using a metallic shield or the like.SOLUTION: A clamp sensor 2 of a clamp meter 1, which has a structure in which a flexible joint core 4 is interpolated into a coil holding tube 5, surrounds a large-area structure including a to-be-measured conductor and closes itself. When an electric current flows through the to-be-measured conductor, measured currents are inputted into a measurement device 3 from an inner coil and an outer coil according to their number of turns, the coils being arranged in the coil holding tube 5. A computing equation "Ia=f(ΔI)" is stored in storage means 31, in which an inner correction current value Ia is computed based on a differential current value ΔI between an outer coil measurement current value IB and an inner coil measurement current value IA. Using this computing equation, the inner correction current value Ia is calculated by computation means 32; a true measured value I is calculated without an influence of an external magnetic field by subtracting the inner correction current value Ia from the inner coil measurement current value IA; and furthermore, a current value of the to-be-measured conductor is calculated.SELECTED DRAWING: Figure 1

Description

本発明は、被測定導体を含む大面積構造物にも対応できるクランプセンサと、このクランプセンサを用いて電流検出を行えるクランプメータに関する。   The present invention relates to a clamp sensor capable of handling a large area structure including a conductor to be measured, and a clamp meter capable of detecting a current using the clamp sensor.

回路電源を落とさずに被測定導体の電流測定(或いは、回路中の漏れ電流測定)を行う場合、被測定導体をクランプセンサでクランプし、被測定導体を流れる電流(或いは、回路中の漏れ電流)により生ずる磁界から電流値を求めるクランプメータが知られている。交流回路を検出対象とするのであれば、測定電流をコイルの巻数比に応じた二次電流に変換するCT(Current Transformer)方式のクランプメータが広く用いられている(例えば、特許文献1を参照)。CT方式のクランプメータでは、外部から受ける磁界の影響を遮断するため、透磁率の大きな強磁性材より成るシールドでセンサ部を覆って強制的に外部磁界を遮断する方法が採られている(例えば、特許文献2を参照)。   When measuring the current of the conductor to be measured (or measuring the leakage current in the circuit) without turning off the circuit power supply, clamp the conductor to be measured with a clamp sensor and set the current flowing through the conductor to be measured (or the leakage current in the circuit). 2. Description of the Related Art There is known a clamp meter which obtains a current value from a magnetic field generated by the above-mentioned method. If an AC circuit is to be detected, a CT (Current Transformer) type clamp meter that converts a measured current into a secondary current according to a turns ratio of a coil is widely used (for example, see Patent Document 1). ). In the CT-type clamp meter, in order to cut off the influence of an external magnetic field, a method is adopted in which a shield made of a ferromagnetic material having a high magnetic permeability covers the sensor section to forcibly cut off the external magnetic field (for example, And Patent Document 2).

また、被測定導体を含んだ大型の構造物(柱など)ではクランプ箇所の断面が大面積となる。このような大面積構造物の電流測定を行う場合、構造物ごとクランプして電流検出を行えるロゴスキーコイル方式のクランプメータを用いることができる(例えば、特許文献3を参照)。   In addition, in a large structure (such as a pillar) including the conductor to be measured, the cross section of the clamp location has a large area. When measuring the current of such a large-area structure, a Rogowski coil-type clamp meter that can perform current detection by clamping the entire structure can be used (for example, see Patent Document 3).

特開2018−031608号公報JP 2018-031608 A 特開平11−295346号公報JP-A-11-295346 特開2011−174769号公報JP 2011-174770 A

しかしながら、上述した特許文献1に記載のCT式クランプセンサは、mAレベルの微小電流の測定が可能であるものの、標準的な市販品では70mm程度のクランプ径しかなく、被測定導体を含む大面積構造物ごと大口径でクランプすることはできない。対して、特許文献2に記載のロゴスキーコイル(空芯コイル)は、被測定導体を含む大面積構造物ごと大口径でクランプできるものの、10A以下の低電流(微小な漏れ電流など)の測定ができない。加えて、ロゴスキーコイル方式のクランプメータで、外部磁界の影響を遮断するためにシールド構造を採ることができない。   However, although the CT clamp sensor described in Patent Document 1 described above can measure a small current of mA level, a standard commercial product has a clamp diameter of only about 70 mm, and has a large area including a conductor to be measured. Large structures cannot be clamped together with structures. On the other hand, the Rogowski coil (air-core coil) described in Patent Literature 2 can clamp a large-area structure including a conductor to be measured with a large diameter, but measures a low current of 10 A or less (a minute leakage current or the like). Can not. In addition, in the Rogowski coil type clamp meter, a shield structure cannot be adopted to cut off the influence of an external magnetic field.

電気の保守点検では、絶縁状態の良否判定に微小な漏れ電流(或いは接地電流)を測定することが必要であり、対象が大面積構造物であっても、その絶縁状態の判別には微小電流の測定を可能にする必要がある。しかも、クランプメータによる微小電流の測定においては、外部磁界の影響による検出誤差も無視できず、計測精度を落とすことになる。   In the maintenance and inspection of electricity, it is necessary to measure a small leakage current (or ground current) to determine the quality of the insulation state. Even if the target is a large-area structure, a minute current is required to determine the insulation state. Measurement must be possible. In addition, in the measurement of a minute current by the clamp meter, the detection error due to the influence of the external magnetic field cannot be ignored, and the measurement accuracy is reduced.

そこで、本発明は、クランプ径の大型化や軽量化の妨げとなる金属製シールド等を用いること無く外部磁界の影響を抑制し、被測定導体を含む大面積構造物に流れる微小電流を検知できるクランプセンサとクランプメータの提供を目的とする。   Therefore, the present invention can suppress the influence of an external magnetic field without using a metal shield or the like that hinders an increase in the clamp diameter and weight, and can detect a minute current flowing in a large-area structure including a conductor to be measured. An object is to provide a clamp sensor and a clamp meter.

上記の課題を解決するために、請求項1に係る発明は、両端部を連結することで被測定導体を非接触で囲む環状鉄心となる連結コアと、該連結コアの外周にコイルを配置可能なコイル体と、から成るクランプセンサであって、前記コイル体は、前記連結コアを内挿可能な内空部を有すると共に、各端部から前記連結コアの第1着脱端部と第2着脱端部をそれぞれ露出させ得る長さで、前記連結コアの変形に追随して無理なく変形し得る可撓性を有する内層チューブと、該内層チューブの外表面にマグネットワイヤを巻回して成る内側コイルと、該内側コイルの外側を覆うように配置する中層チューブと、該中層チューブの外表面にマグネットワイヤを巻回して成る外側コイルと、を備え、前記コイル体の外面側を絶縁性の外層チューブで覆うと共に、コイル体の内空部に連結コアを内挿し、内側コイルと外側コイルで被測定導体を流れる電流を同時に検出可能としたたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 can connect the both ends to form a connection core that forms an annular core that surrounds the conductor to be measured in a non-contact manner, and a coil can be arranged on the outer periphery of the connection core. A coil body having an inner space in which the connection core can be inserted, and a first attachment / detachment end of the connection core and a second attachment / detachment end from each end. A flexible inner tube having a length that allows each end to be exposed and that can be deformed without difficulty following the deformation of the connecting core; and an inner coil formed by winding a magnet wire around the outer surface of the inner tube. A middle tube arranged to cover the outside of the inner coil, and an outer coil formed by winding a magnet wire around the outer surface of the middle tube. Cover with Both interpolates couple core into the inner hollow portion of the coil body, characterized in that the current through the measured conductor in the inner coil and the outer coil was simultaneously detectable.

また、請求項2に係る発明は、前記請求項1に記載のクランプセンサにおいて、前記連結コアは、高透磁率軟磁性材料で形成され、最も離隔する一対の端部にそれぞれ第1連結部と第2連結部を形成した連結素体を複数用い、互いの第1連結部と第2連結部が回動可能な1軸性関節となるように連結することで両端が開いた数珠つなぎ状の連結構造と成し、一方端の連結素体における連結されていない第1連結部を第1着脱端部とし、他方端の連結素体における連結されていない第2連結部を第2着脱端部とし、これら第1着脱端部と第2着脱端部とを連結することで、全ての連結素体が環状に閉じた環状鉄心を構成するようにしたことを特徴とする。   According to a second aspect of the present invention, in the clamp sensor according to the first aspect, the connecting core is formed of a high-permeability soft magnetic material, and the first connecting portion is formed at a pair of ends that are most separated from each other. By using a plurality of connection element bodies forming the second connection part and connecting the first connection part and the second connection part to each other so as to form a rotatable uniaxial joint, a rosary-like joint having both ends opened. A first connecting portion of the connecting element at one end that is not connected is a first attaching / detaching end, and a second connecting section that is not connected at the other end of the connecting element is a second attaching / detaching end. By connecting the first detachable end portion and the second detachable end portion, all the connection element bodies constitute an annular core closed in an annular shape.

また、請求項3に係る発明は、前記請求項2に記載のクランプセンサにおいて、前記連結コアの連結素体は、高透磁率軟磁性材料の板材であるベース材を複数枚積層して所要の厚さとなるように構成し、前記ベース材は、一軸性関節となるように連結される軸位置から等距離となる円弧状に突出する凸状端縁部を一端側に、該突状端縁部と同等程度の曲率で円弧状に窪む凹状端縁部を他端側に、それぞれ備えるものとし、前記ベース材の凸状端縁部と凹状端縁部を交互に積層して連結素体を構成することで、第1連結部と第2連結部は互いに凸状端縁部と凹状端縁部とが噛み合う嵌合構造とし、且つ、1軸性関節で連結される各連結素体のベース材は互いの凸状端縁部と凹状端縁部とが阻害し合うこと無く所要範囲で回動できるようにしたことを特徴とする。   According to a third aspect of the present invention, in the clamp sensor according to the second aspect, the connecting element of the connecting core is formed by laminating a plurality of base materials that are plates of a high magnetic permeability soft magnetic material. The base material has a convex edge protruding in an arc shape equidistant from an axial position connected so as to form a uniaxial joint on one end side, and the projecting edge is The other end side is provided with a concave edge portion which is depressed in an arc shape with the same degree of curvature as the portion, and the connection element body is formed by alternately stacking the convex edge portion and the concave edge portion of the base material. With the configuration, the first connecting portion and the second connecting portion have a fitting structure in which the convex edge portion and the concave edge portion mesh with each other, and each of the connection element bodies connected by the uniaxial joint. The base material should be able to rotate within the required range without interference between the convex and concave edges. The features.

上記の課題を解決するために、請求項4に係るクランプメータは、前記請求項1〜請求項3の何れか1項に記載のクランプセンサを備え、前記クランプセンサの内側コイルと外側コイルから夫々検出された内側コイル測定電流値と外側コイル測定電流値を取得し、内側コイル測定電流値と外側コイル測定電流値に基づいて被測定導体を流れる電流値を演算する計測装置を設けたことを特徴とする。   In order to solve the above-mentioned problem, a clamp meter according to claim 4 includes the clamp sensor according to any one of claims 1 to 3, and each of the clamp meter includes an inner coil and an outer coil of the clamp sensor. A measuring device is provided for acquiring the detected inner coil measurement current value and outer coil measurement current value, and calculating a current value flowing through the conductor to be measured based on the inner coil measurement current value and the outer coil measurement current value. And

また、請求項5に係る発明は、前記請求項4に記載のクランプメータにおいて、前記外側コイルと内側コイルの巻線を同一とし、外部磁界の影響をクランプセンサが受けないときには、内側コイル測定電流値と外側コイル測定電流値が一致するようにしたことを特徴とする。   The invention according to claim 5 is the clamp meter according to claim 4, wherein the windings of the outer coil and the inner coil are the same, and when the clamp sensor is not affected by an external magnetic field, the inner coil measuring current is measured. The value and the measured value of the outer coil current are matched.

また、請求項6に係る発明は、前記請求項5に記載のクランプメータにおいて、前記計測装置は、前記クランプセンサより取得した外側コイル測定電流値と内側コイル測定電流値との差である差電流値から、外部磁界が内側コイルに作用して生じた内側補正電流値を求める演算式を記憶する記憶手段と、前記記憶手段の演算式を用いて内側補正電流値を演算し、内側コイル測定電流値から内側補正電流値を減ずることで、クランプセンサによる真の計測値を求め、真の計測値から被測定導体を流れる電流値を求める演算手段と、を備えることを特徴とする。   According to a sixth aspect of the present invention, in the clamp meter according to the fifth aspect, the measuring device includes a difference current that is a difference between the outer coil measurement current value and the inner coil measurement current value acquired from the clamp sensor. Storage means for storing an arithmetic expression for obtaining an inner correction current value generated by the external magnetic field acting on the inner coil from the value, and calculating the inner correction current value by using the arithmetic expression of the storage means; Calculating means for obtaining a true measurement value by the clamp sensor by subtracting the inside correction current value from the value, and obtaining a current value flowing through the conductor to be measured from the true measurement value.

また、請求項7に係る発明は、前記請求項5に記載のクランプメータにおいて、前記計測装置は、前記クランプセンサより取得した外側コイル測定電流値と内側コイル測定電流値との差である差電流値から、外部磁界が外側コイルに作用して生じた外側補正電流値を求める演算式を記憶する記憶手段と、前記記憶手段の演算式を用いて外側補正電流値を演算し、外側コイル測定電流値から外側補正電流値を減ずることで、クランプセンサによる真の計測値を求め、真の計測値から被測定導体を流れる電流値を求める演算手段と、を備えることを特徴とする。   According to a seventh aspect of the present invention, in the clamp meter according to the fifth aspect, the measuring device includes a difference current that is a difference between the outer coil measurement current value and the inner coil measurement current value acquired from the clamp sensor. Storage means for storing an arithmetic expression for obtaining an outer correction current value generated by the external magnetic field acting on the outer coil from the value, and calculating the outer correction current value using the arithmetic expression of the storage means to obtain an outer coil measurement current value. Calculating means for obtaining a true measurement value by the clamp sensor by subtracting the outside correction current value from the value, and calculating a current value flowing through the conductor to be measured from the true measurement value.

本発明に係るクランプセンサによれば、計測対象の被測定導体を含む大面積構造物に応じて、連結素体を適数連結した連結コアによって必要十分な径の環状鉄心を構成することができる。そして、連結コアの第1着脱部と第2着脱部を開いた状態で大面積構造物を囲み、第1着脱部と第2着脱部を連結して環状鉄心となったその外周には、コイル体によりコイルが配置された状態となる。よって、大面積構造物をクランプセンサでクランプすれば、検出対象の交流電流により生ずる磁界変化から、コイルの巻数比に応じた二次電流を内側コイルおよび外側コイルより取得できる。クランプセンサより内側コイル測定電流値と外側コイル測定電流値を取得した計測装置は、外側コイルと内側コイルが外部磁界から受けた影響を補正した真の計測値を演算し、真の計測値から被測定導体を流れる電流値を演算する。これにより、外部磁界の影響を受けずに微小電流の測定を行えるクランプメータとなる。   ADVANTAGE OF THE INVENTION According to the clamp sensor which concerns on this invention, the annular core of a necessary and sufficient diameter can be comprised by the connection core which connected the connection element body by the appropriate number according to the large area structure containing the measured conductor to be measured. . The first core portion surrounds the large-area structure with the first core portion and the second core portion opened, and the first core portion is connected to the second core portion to form an annular core. The coil is placed by the body. Therefore, if the large-area structure is clamped by the clamp sensor, a secondary current corresponding to the turn ratio of the coil can be obtained from the inner coil and the outer coil from the change in the magnetic field caused by the AC current to be detected. The measuring device that obtains the inner coil measurement current value and the outer coil measurement current value from the clamp sensor calculates the true measurement value in which the influence of the outer coil and the inner coil on the external magnetic field is corrected, and calculates the true measurement value from the true measurement value. Calculate the value of the current flowing through the measuring conductor. Thus, the clamp meter can measure a small current without being affected by an external magnetic field.

本発明の実施形態に係るクランプメータの概略構成図である。It is a schematic structure figure of a clamp meter concerning an embodiment of the present invention. クランプメータに用いるクランプセンサを示し、(a)は一部欠截平面図、(b)は一部欠截側面図である。3A and 3B show a clamp sensor used in a clamp meter, wherein FIG. 3A is a partially cutaway plan view, and FIG. 連結コアを構成する基本リンクの俯瞰斜視図である。It is a bird's-eye perspective view of a basic link which constitutes a connection core. 基本リンクを構成するベース材の平面図である。It is a top view of the base material which comprises a basic link. ベース材を用いた基本リンクの組立説明図である。It is assembly explanatory drawing of the basic link using a base material. (a)は基本リンクの背面図である。(b)は図6(a)のVIb−VIb線矢視方向の拡大概略端面図である。(A) is a rear view of the basic link. FIG. 7B is an enlarged schematic end view taken along line VIb-VIb of FIG. (a)は連結された第1基本リンクと第2基本リンクの平面図である。(b)は図7(a)のVIIb−VIIb線矢視方向の拡大概略端面図である。(A) is a top view of the connected 1st basic link and 2nd basic link. FIG. 7B is an enlarged schematic end view taken along line VIIb-VIIb of FIG. 7A. コイル体の製造工程説明図である。It is a manufacturing process explanatory view of a coil body. クランプセンサの組み立て工程説明図である。It is an assembly process explanatory view of a clamp sensor. 本実施形態に係るクランプメータにより電柱の接地電流(或いは漏れ電流)を計測するときの使用方法説明図である。FIG. 5 is an explanatory diagram of a method of using the clamp meter according to the present embodiment when measuring a ground current (or a leakage current) of a utility pole. 内側コイルと外側コイルによる測定原理の説明図である。It is explanatory drawing of the measurement principle by an inner coil and an outer coil.

以下、本発明の実施形態を、添付図面に基づいて詳細に説明する。図1は、クランプメータ1の概略構成を示し、このクランプメータ1は、被測定線をクランプするクランプセンサ2と、クランプセンサ2の検知電流に基づいて所定の演算を行い、計測結果をデジタル値(或いはアナログ値)で表示する計測装置3とで構成される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a schematic configuration of a clamp meter 1. The clamp meter 1 performs a predetermined calculation based on a clamp sensor 2 for clamping a line to be measured and a detection current of the clamp sensor 2, and converts a measurement result into a digital value. (Or an analog value).

クランプセンサ2は、両端部を連結することで被測定導体を非接触で囲む環状鉄心となる連結コア4と、連結コア4の外周にコイルを配置した状態を保持するコイル保持チューブ5とから成る。なお、連結コア4は、後述するように、第1着脱端部4aと第2着脱端部4bを外すことで曲げ伸ばしができる。よって、被測定導体を含む大面積構造物(例えば、電柱)をクランプセンサ2で囲み、第1着脱端部4aと第2着脱端部4bを連結すると、電柱の周面等を囲む環状鉄心とすることができる。環状鉄心となった連結コア4は、被測定導体を流れる電流により生じた磁束を効率良く通す閉磁路として機能する。   The clamp sensor 2 includes a connection core 4 serving as an annular core surrounding the conductor to be measured in a non-contact manner by connecting both ends thereof, and a coil holding tube 5 for holding a state in which a coil is arranged on the outer periphery of the connection core 4. . The connecting core 4 can be bent and stretched by removing the first detachable end 4a and the second detachable end 4b, as described later. Therefore, when a large-area structure (for example, a utility pole) including the conductor to be measured is surrounded by the clamp sensor 2 and the first detachable end 4a and the second detachable end 4b are connected, an annular core surrounding the peripheral surface of the utility pole is formed. can do. The connection core 4 serving as an annular core functions as a closed magnetic path for efficiently passing a magnetic flux generated by a current flowing through the conductor to be measured.

更に、コイル保持チューブ5は、連結コア4の変形に追随して無理なく変形し得る可撓性と絶縁性を備える。よって、連結コア4を閉じて環状鉄心としたときには、コイル保持チューブ5内のコイルも環状に配置されることとなり、被測定導体を交流電流が流れることで生じた磁束が環状鉄心に集中し、この磁束変化を打ち消すようにコイル保持チューブ5のコイルに二次電流が流れる。この二次電流は、被測定導体を流れる一次電流に対して、コイル保持チューブ5内コイルの巻数比に応じた大きさとして得ることができるので、数mA程度の微小電流を検出可能な検出感度に設定することが容易である。   Further, the coil holding tube 5 has flexibility and insulation that can be deformed without difficulty following the deformation of the connection core 4. Therefore, when the connecting core 4 is closed to form an annular core, the coils in the coil holding tube 5 are also arranged in an annular shape, and the magnetic flux generated by the alternating current flowing through the conductor to be measured concentrates on the annular core. A secondary current flows through the coil of the coil holding tube 5 so as to cancel this change in magnetic flux. Since the secondary current can be obtained as a magnitude corresponding to the turns ratio of the coil in the coil holding tube 5 with respect to the primary current flowing through the conductor to be measured, the detection sensitivity capable of detecting a small current of about several mA is detected. Is easy to set.

また、クランプセンサ2により大面積構造物をクランプする作業が繁雑とならないよう、本実施形態のクランプセンサ2における連結コア4の第1着脱端部4a側には第1連結ガイド6を、第2着脱端部4b側には第2連結ガイド7を設ける。これら第1,第2連結ガイド6,7は、第1着脱端部4aと第2着脱端部4bの着脱を簡易に行える公知既存の適宜な構造を適用することができる。なお、クランプセンサ2における第1連結ガイド6から接続ケーブル8を延出させ、計測装置3と接続する。   Further, in order to prevent the operation of clamping a large-area structure by the clamp sensor 2 from becoming complicated, a first connection guide 6 is provided on the first detachable end 4a side of the connection core 4 in the clamp sensor 2 of the present embodiment, and a second connection guide is provided. A second connection guide 7 is provided on the detachable end 4b side. As the first and second connection guides 6 and 7, a known existing appropriate structure capable of easily attaching and detaching the first detachable end 4a and the second detachable end 4b can be applied. The connection cable 8 extends from the first connection guide 6 of the clamp sensor 2 and is connected to the measuring device 3.

計測装置3は、この接続ケーブル8を介して、コイル保持チューブ5内のコイル(後に詳述する)から検出信号を受け、電流検出用のシャント抵抗によって、検出信号(電圧信号)を電流情報に変換する。また、計測装置3は、少なくとも、クランプセンサ2の検出電流から被測定導体を流れる電流値を演算する演算式を予め記憶させておく記憶手段31、この演算式を用いて演算を行う演算手段32、演算結果を可視表示する表示部33等の機能を備える。このほか、計測値の履歴を保存しておく機能や、履歴情報を外部へ出力する機能、計測結果や警告などを音声で知らせる音声出力機能等を計測装置3に付加しても構わない。   The measuring device 3 receives a detection signal from a coil (described later in detail) in the coil holding tube 5 via the connection cable 8 and converts the detection signal (voltage signal) into current information by a shunt resistor for current detection. Convert. The measuring device 3 includes at least a storage unit 31 that previously stores an arithmetic expression for calculating a current value flowing through the conductor to be measured from the current detected by the clamp sensor 2, and an arithmetic unit 32 that performs an arithmetic operation using the arithmetic expression And a function of a display unit 33 for visually displaying the calculation result. In addition, a function of storing a history of measured values, a function of outputting history information to the outside, a sound output function of notifying a measurement result, a warning, or the like by voice may be added to the measuring device 3.

上述したクランプセンサ2の概略構造を図2に示す。なお、クランプセンサ2は被測定導体の向きに応じて、任意の方向に使用できるが、以下の説明においては、便宜上、クランプセンサ2によってクランプできる断面方向を横方向(或いは水平方向)、これに直交する方向を縦方向(或いは上下方向)として説明する。よって、図2(a)はクランプセンサ2の一部を横方向に切り欠いて内部を示したもので、図2(b)はクランプセンサ2の一部を縦方向に切り欠いて内部を示したものである。   FIG. 2 shows a schematic structure of the clamp sensor 2 described above. The clamp sensor 2 can be used in any direction depending on the direction of the conductor to be measured. However, in the following description, for convenience, the cross-sectional direction that can be clamped by the clamp sensor 2 is defined as a horizontal direction (or a horizontal direction). The direction orthogonal to the vertical direction is described as a vertical direction (or a vertical direction). Therefore, FIG. 2A shows the inside of a part of the clamp sensor 2 cut out in a horizontal direction, and FIG. 2B shows the inside of a part of the clamp sensor 2 cut out in a vertical direction. It is a thing.

連結コア4は、例えば、14個の連結素体である第1基本リンク40−1、第2基本リンク40−2、…、第12基本リンク40−12、第13基本リンク40−13、第14基本リンク40−14を連結したものである。なお、第1〜第14基本リンク40−1〜40−14は、全て同一形状であり、特に区別する必要が無い場合は、単に基本リンク40という。これら第1〜第14基本リンク40−1〜40−14は、後述するベース材41を積層してリベット42で固定したものであり、最も離隔する一対の端部にそれぞれ第1連結部14aと第2連結部14bを形成する。   The connection core 4 includes, for example, a first basic link 40-1, a second basic link 40-2,..., A twelfth basic link 40-12, a thirteenth basic link 40-13, 14 basic links 40-14. The first to fourteenth basic links 40-1 to 40-14 have the same shape, and are simply referred to as the basic link 40 unless it is necessary to distinguish them. These first to fourteenth basic links 40-1 to 40-14 are formed by laminating a base material 41, which will be described later, and fixing the base material 41 with a rivet 42. The second connecting portion 14b is formed.

第1基本リンク40−1と第2基本リンク40−2を連結する場合、第1基本リンク40−1における第2連結部40b(これを第1基本リンク第2連結部40−1bという。以下、同様)と第2基本リンク第1連結部40−2aを1軸性関節連結部43によって、回動可能な1軸性関節となるように連結する。第2基本リンク40−2と第3基本リンク40−3を連結する場合、第2基本リンク第2連結部40−2bと第3基本リンク第1連結部40−3aを1軸性関節連結部43によって連結する。第3基本リンク40−3〜第12基本リンク40−12を連結する場合も同様であるから、省略する。第12基本リンク40−12と第13基本リンク40−13を連結する場合、第12基本リンク第2連結部40−12bと第13基本リンク第1連結部40−13aを1軸性関節連結部43によって連結する。第13基本リンク40−13と第14基本リンク40−14を連結する場合、第13基本リンク第2連結部40−13bと第14基本リンク第1連結部40−14aを、1軸性関節連結部43によって連結する。斯くすることで、連結コア4は、両端が開いた数珠つなぎ状の連結構造と成る。このとき、一方端の連結素体である第1基本リンク40−1には連結されていない第1基本リンク第1連結部40−1aが残り、他方端の連結素体である第14基本リンク40−14には連結されていない第14基本リンク第2連結部40−14bが残る。   When connecting the first basic link 40-1 and the second basic link 40-2, the second connecting portion 40b of the first basic link 40-1 (this is called a first basic link second connecting portion 40-1b. And the same) and the second basic link first connecting portion 40-2a are connected by a uniaxial joint connecting portion 43 so as to form a rotatable uniaxial joint. When connecting the second basic link 40-2 and the third basic link 40-3, the second basic link second connecting portion 40-2b and the third basic link first connecting portion 40-3a are connected to the uniaxial joint connecting portion. 43. The same applies to the case where the third basic link 40-3 to the twelfth basic link 40-12 are connected, so that the description is omitted. When connecting the twelfth basic link 40-12 and the thirteenth basic link 40-13, the twelfth basic link second connection part 40-12b and the thirteenth basic link first connection part 40-13a are connected to a uniaxial joint connection part. 43. When the thirteenth basic link 40-13 and the fourteenth basic link 40-14 are connected, the thirteenth basic link second connection part 40-13b and the fourteenth basic link first connection part 40-14a are uniaxially connected. They are connected by a part 43. Thus, the connection core 4 has a rosary connection structure with both ends open. At this time, the first basic link 40-1a which is not connected to the first basic link 40-1 which is the connection element at one end remains, and the 14th basic link which is the connection element at the other end remains. The fourteenth basic link second connection part 40-14b which is not connected to 40-14 remains.

従って、第1基本リンク第1連結部40−1aを第1着脱端部4aとすることができ、第14基本リンク第2連結部40−14bを第2着脱端部4bとすることができる。そして、これら第1着脱端部4aと第2着脱端部4bとを連結することで、第1〜第14基本リンク40−1〜40−14が環状に閉じた環状鉄心を構成できる。なお、第1基本リンク40−1〜第14基本リンク40−14は、全て1軸性関節の向きを上下方向に統一して連結することにより、第1基本リンク40−1〜第14基本リンク40−14の回動方向を水平方向に規制することができる。このように、第1基本リンク40−1〜第14基本リンク40−14の回動方向が水平方向に規制されていれば、第1着脱端部4aと第2着脱端部4bとの連結もほぼ水平面内で行うことができる。   Therefore, the first basic link first connecting portion 40-1a can be the first detachable end 4a, and the fourteenth basic link second connecting portion 40-14b can be the second detachable end 4b. By connecting the first detachable end 4a and the second detachable end 4b, an annular core in which the first to fourteenth basic links 40-1 to 40-14 are closed annularly can be configured. Note that the first basic link 40-1 to the fourteenth basic link 40-14 are all connected by unifying the direction of the uniaxial joint in the up-down direction, thereby forming the first basic link 40-1 to the fourteenth basic link. The rotation direction of 40-14 can be restricted to the horizontal direction. As described above, if the rotation direction of the first basic link 40-1 to the fourteenth basic link 40-14 is regulated in the horizontal direction, the connection between the first detachable end 4a and the second detachable end 4b is also reduced. It can be performed in a substantially horizontal plane.

一方、コイル保持チューブ5は、可撓性のチューブをコイルボビンとして用いることで、コイルを保持するものである。具体的には、内層チューブ51の外周面にマグネットワイヤ521を巻回して内側コイル52を形成して中層チューブ53で覆い、中層チューブ53の外周面にマグネットワイヤ541を巻回して外側コイル54を形成して、コイル体55をとする。そして、コイル体55の外面(外側コイル54が形成された面)を絶縁性の外層チューブ54で覆うことにより、コイル保持チューブ5となる。   On the other hand, the coil holding tube 5 holds a coil by using a flexible tube as a coil bobbin. Specifically, a magnet wire 521 is wound around the outer peripheral surface of the inner tube 51 to form the inner coil 52, which is covered with the middle tube 53, and a magnet wire 541 is wound around the outer peripheral surface of the middle tube 53 to form the outer coil 54. The coil 55 is formed. Then, the outer surface of the coil body 55 (the surface on which the outer coil 54 is formed) is covered with an insulating outer layer tube 54 to form the coil holding tube 5.

内層チューブ51と中層チューブ53と外層チューブ56は、連結コア4の変形に追随して無理なく変形し得る可撓性および絶縁性を有する。内層チューブ51は、上記連結コア4を内挿可能な内空部51bを有すると共に、各端部から連結コア4の第1着脱端部4aと第2着脱端部4bをそれぞれ露出させ得る長さである。内層チューブ53および外層チューブ56も同等程度の長さに設定しておき、各端部を絶縁キャップ57にて覆う。なお、コイル保持チューブ5の一方からは、内側コイル51を構成するマグネットワイヤ521の巻き始め部分あるいは巻き終わり部分である内側第1引出線521aおよび内側第2引出線521bを引き出しておく。同様に、外側コイル54を構成するマグネットワイヤ541の巻き始め部分あるいは巻き終わり部分である外側第1引出線541aおよび外側第2引出線541bを引き出しておく。   The inner tube 51, the middle tube 53, and the outer tube 56 have flexibility and insulation that can be easily deformed following the deformation of the connection core 4. The inner tube 51 has an inner space 51b into which the connection core 4 can be inserted, and a length capable of exposing the first detachable end 4a and the second detachable end 4b of the connection core 4 from each end. It is. The inner layer tube 53 and the outer layer tube 56 are also set to have approximately the same length, and each end is covered with an insulating cap 57. From one side of the coil holding tube 5, an inner first lead wire 521 a and an inner second lead wire 521 b which are a winding start portion or a winding end portion of the magnet wire 521 constituting the inner coil 51 are drawn out. Similarly, the outer first lead wire 541a and the outer second lead wire 541b which are the winding start portion or the winding end portion of the magnet wire 541 constituting the outer coil 54 are drawn out.

次に、連結コア4を構成する基本リンク40の詳細構造について説明する。図3は、連結素体である基本リンク40の外観を示すものである。この基本リンク40は、高透磁率軟磁性材料(例えば、パーマロイ)の板材(例えば、厚さ1〔mm〕)である第1ベース材41−1、第2ベース材41−2、…、第6ベース材41−6、第7ベース材41−7を積層した構造である。第1ベース材41−1〜第7ベース材41−7を重ねた状態で、かしめ固定方式のリベット42で一体に固定する。なお、第1〜第7ベース材41−1〜41−7は、全て同一形状であり、特に区別する必要が無い場合は、単にベース材41という。   Next, the detailed structure of the basic link 40 constituting the connecting core 4 will be described. FIG. 3 shows an appearance of a basic link 40 which is a connecting element body. The basic link 40 includes a first base material 41-1, a second base material 41-2,..., Which is a plate material (for example, a thickness of 1 mm) made of a high-permeability soft magnetic material (for example, Permalloy). This is a structure in which a sixth base material 41-6 and a seventh base material 41-7 are stacked. In a state where the first base member 41-1 to the seventh base member 41-7 are overlapped, they are integrally fixed by a rivet 42 of a caulking fixing system. The first to seventh base materials 41-1 to 41-7 have the same shape, and are simply referred to as the base material 41 when there is no particular need to distinguish them.

ベース材41の平面(例えば、上面41aが臨む面)を図4に示す。ベース材41は、緩やかな弧状の長尺板材であり、概略、長手方向の二辺である外側弧状縁部411と内側弧状縁部412、短手方向の二辺である凸状端縁部413と凹状端縁部414を備える。例えば、仮想の原点OからR160〔mm〕の円弧(以下、仮想中心円弧という)を想定し、仮想中心円弧の外側へ3.5〔mm〕程度離れた円弧(例えば、原点OからR163.5〔mm〕の円弧)と重なるように形成したのが外側弧状縁部411である。また、仮想中心円弧の内側へ3.5〔mm〕程度離れた円弧(例えば、原点OからR156.5〔mm〕の円弧)と重なるように形成したのが内側弧状縁部412である。また、ベース材41における一方の短手側(例えば、上面41aから見て左側、或いは下面41bから見て右側)に設けたのが凸状端縁部413である。また、ベース材における他方の短手側(例えば、上面41aから見て右側、或いは下面41bから見て左側)に設けたのが凹状端縁部414である。なお、外側弧状縁部411と内側弧状縁部412との離隔距離は約7〔mm〕(3.5〔mm〕×2)とし、第1〜第7ベース材41−1〜41−7を重ねた厚さも約7〔mm〕であるから、基本リンク40の短手方向の縦断面は略正方形となる。   FIG. 4 shows a plane of the base material 41 (for example, a surface facing the upper surface 41a). The base member 41 is a long plate member having a gentle arc shape, and generally includes an outer arc edge 411 and an inner arc edge 412 which are two sides in the longitudinal direction, and a convex edge 413 which is two sides in the short direction. And a concave edge 414. For example, assuming an arc of R160 [mm] from the virtual origin O (hereinafter, referred to as a virtual center arc), an arc approximately 3.5 [mm] away from the virtual center arc (for example, R163.5 from the origin O). The outer arc-shaped edge 411 is formed so as to overlap with the [mm] arc. The inner arc-shaped edge portion 412 is formed so as to overlap with an arc (for example, an arc of R156.5 [mm] from the origin O) which is about 3.5 [mm] away from the inside of the virtual center arc. The convex edge portion 413 is provided on one short side of the base member 41 (for example, on the left side when viewed from the upper surface 41a or on the right side when viewed from the lower surface 41b). The concave edge portion 414 is provided on the other short side of the base material (for example, on the right side when viewed from the upper surface 41a or on the left side when viewed from the lower surface 41b). The distance between the outer arc-shaped edge portion 411 and the inner arc-shaped edge portion 412 is about 7 [mm] (3.5 [mm] × 2), and the first to seventh base members 41-1 to 41-7 are used. Since the overlapped thickness is also about 7 [mm], the longitudinal cross section of the basic link 40 in the lateral direction is substantially square.

ベース材41における仮想中心円弧上には、各々φ2〔mm〕の第1固着孔415a、第2固着孔415b、第3固着孔415cを設けてある。例えば、原点Oから第2固着孔415bの中心を通る仮想線に対して、原点Oから第1固着孔415aの中心へ至る角度と、原点Oから第3固着孔415cの中心へ至る角度が同じになるように、第1〜第3固着孔415a〜415cの開設位置を定める。斯くすれば、2枚のベース材41を、その上面41aと下面41bとが向き合うように重ねたとき(凸状端縁部413と凹状端縁部414の向きが逆になるように重ねたとき)、重ねた2枚のベース材41における3箇所の孔を全て一致させることができる。すなわち、2枚のベース材41を、それぞれの第2固着孔415bが連通するように位置合わせすると、一方のベース材41における第1固着孔415aと第3固着孔415cが、他方のベース材41における第3固着孔415cと第1固着孔415aに重なる。このとき、重ねた2枚のベース材41は、外側弧状縁部411と内側弧状縁部412も一致した状態を保てる。   A first fixing hole 415a, a second fixing hole 415b, and a third fixing hole 415c each having a diameter of 2 mm are provided on the virtual center arc of the base material 41. For example, for an imaginary line passing from the origin O to the center of the second fixing hole 415b, the angle from the origin O to the center of the first fixing hole 415a is the same as the angle from the origin O to the center of the third fixing hole 415c. The opening positions of the first to third fixing holes 415a to 415c are determined so that In this case, when the two base materials 41 are overlapped so that the upper surface 41a and the lower surface 41b face each other (when the convex edge 413 and the concave edge 414 are overlapped with each other, ), All three holes in the two base materials 41 overlapped can be matched. That is, when the two base members 41 are aligned so that the respective second fixing holes 415b communicate with each other, the first fixing holes 415a and the third fixing holes 415c in one base member 41 are connected to the other base member 41. Overlap the third fixing hole 415c and the first fixing hole 415a. At this time, the two base materials 41 overlapped with each other can keep the outer arc-shaped edge 411 and the inner arc-shaped edge 412 in alignment.

従って、基本リンク40は、複数枚(例えば、7枚)のベース材41を重ねた構造とするとき、図5に示すように、ベース材41の向きを交互に変えて重ねることができる。先ず、上面41aを上向きにした第1ベース材41−1の下に、下面41bを上向きにした第2ベース材41−2を重ねる。その下に、上面41aを上向きにした第3ベース材41−3を重ねる。その下に、下面41bを上向きにした第4ベース材41−4を重ねる。その下に、上面41aを上向きにした第5ベース材41−5を重ねる。その下に、下面41bを上向きにした第6ベース材41−6を重ねる。その下に、上面41aを上向きにした第7ベース材41−7を重ねる。このように重ねた第1ベース材41−1から第7ベース材41−7まで貫通する第1〜第3固着孔415cに、リベット42を挿通させ、かしめて固定する。なお、リベット42は、図6に示すように、第1ベース材41−1の上面41a側に頭部42aを位置させて、第1〜第3固着孔415a〜415cに軸部42bを挿通し、第7ベース材41−7の下面41b側にかしめ部42cを形成する。   Therefore, when the basic link 40 has a structure in which a plurality of (for example, seven) base materials 41 are stacked, as shown in FIG. 5, the directions of the base materials 41 can be alternately changed and stacked. First, a second base member 41-2 having a lower surface 41b facing upward is stacked under a first base member 41-1 having an upper surface 41a facing upward. The third base member 41-3 with the upper surface 41a facing upward is placed under the third base member 41-3. The fourth base member 41-4 with the lower surface 41b facing upward is placed under the lower surface. The fifth base member 41-5 with the upper surface 41a facing upward is stacked thereunder. A sixth base member 41-6 with the lower surface 41b facing upward is superimposed below it. A seventh base member 41-7 with the upper surface 41a facing upward is laid underneath. The rivet 42 is inserted into the first to third fixing holes 415c penetrating from the first base member 41-1 to the seventh base member 41-7 thus stacked, and is caulked and fixed. As shown in FIG. 6, the rivet 42 has the head 42a positioned on the upper surface 41a side of the first base member 41-1 and the shaft 42b is inserted through the first to third fixing holes 415a to 415c. The caulking portion 42c is formed on the lower surface 41b side of the seventh base member 41-7.

上記のように第1〜第7ベース材41−1〜41−7を積層して形成した基本リンク40における第1,第2連結部40a,40bは、何れも凸状端縁部413と凹状端縁部414が交互に重なったものである。第1連結部40aは、第1ベース材41−1から第7ベース材41−7に向かって「凹凸凹凸凹凸凹」の構造となり、第2連結部40bは、第1ベース材41−1から第7ベース材41−7に向かって「凸凹凸凹凸凹凸」の構造となる。すなわち、基本リンク40の第1連結部40aと第2連結部40bは、互いに噛み合う嵌合構造となるのである。   The first and second connecting portions 40a and 40b of the basic link 40 formed by laminating the first to seventh base members 41-1 to 41-7 as described above have a convex edge 413 and a concave edge. The edge portions 414 are alternately overlapped. The first connecting portion 40a has a structure of “concavo-convex unevenness concave and convex concave” from the first base material 41-1 to the seventh base material 41-7, and the second connecting portion 40b is formed from the first base material 41-1. The structure of “convex unevenness unevenness” is formed toward the seventh base material 41-7. That is, the first connecting portion 40a and the second connecting portion 40b of the basic link 40 have a fitting structure that meshes with each other.

しかも、基本リンク40の第1連結部40aと第2連結部40bは、1軸性関節連結部43によって連結することで、円滑に回動できる1軸性関節となるように、凸状端縁部413の突出形状および凹状端縁部414の窪み形状を以下のように設定してある。   In addition, the first connecting portion 40a and the second connecting portion 40b of the basic link 40 are connected by the uniaxial joint connecting portion 43, so that the first connecting portion 40a and the second connecting portion 40b become convex uniaxial joints which can be smoothly rotated. The protruding shape of the portion 413 and the concave shape of the concave edge portion 414 are set as follows.

ベース材41の凸状端縁部413側には、1軸性関節連結部43によって連結するための連通孔416を設ける。この連通孔416の中心から半径r1の円弧が凸状端縁部413の膨出縁とほぼ重なるような、連通孔416の位置を定める(図5の各凸状端縁部413を参照)。また、2枚の基本リンク40を逆向きに重ねたとき、凹状端縁部414と近接する連通孔416の中心から半径r2の円弧が凹状端縁部414の窪み縁と重なるようにする(例えば、図5の各凹状端縁部414を参照)。このとき、「r1≦r2」に設定しておけば、一対の基本リンク40における一方の第1連結部40aと他方の第2連結部40bとを噛み合わせた状態で、全ての連通孔416の開口位置を合わせることができる。   On the side of the convex edge portion 413 of the base member 41, a communication hole 416 for connection by the uniaxial joint connection portion 43 is provided. The position of the communication hole 416 is determined such that an arc having a radius r1 from the center of the communication hole 416 substantially overlaps with the bulging edge of the convex edge 413 (see each convex edge 413 in FIG. 5). Further, when the two basic links 40 are overlapped in the opposite direction, an arc having a radius r2 from the center of the communication hole 416 adjacent to the concave edge portion 414 overlaps with the concave edge of the concave edge portion 414 (for example, , Each concave edge 414 in FIG. 5). At this time, if “r1 ≦ r2” is set, all of the communication holes 416 of the pair of basic links 40 are meshed with one first connecting portion 40a and the other second connecting portion 40b. The opening position can be adjusted.

上述したベース材41の設計に際して、凸状端縁部413と凹状端縁部414が共に180゜近い弧状範囲を備えたものにすると、一対の基本リンク40の第1連結部40aと第2連結部40bとが噛み合ったまま回動不能になってしまう。そこで、許容する回動範囲に応じて、凸状端縁部413と凹状端縁部414の弧状範囲を適宜に設定しておくことが望ましい。なお、凸状端縁部413と凹状端縁部414は、それぞれ外側弧状縁部411および内側弧状縁部412と滑らかに接続される外縁形状とすることが望ましい。凸状端縁部413および凹状端縁部414と外側弧状縁部411および内側弧状縁部412との接続部分に段差や鋭角が生じていると、連結コア4をコイル保持チューブ5内へ内挿したとき、内層チューブ51の内面を傷つけてしまう危険性がある。   In designing the base member 41 described above, if both the convex edge portion 413 and the concave edge portion 414 have an arc-shaped range close to 180 °, the first connection portion 40a and the second connection portion of the pair of basic links 40 are provided. Rotation becomes impossible with the portion 40b engaged. Therefore, it is desirable to appropriately set the arc-shaped range of the convex edge 413 and the concave edge 414 according to the allowable rotation range. In addition, it is preferable that the convex edge 413 and the concave edge 414 have an outer edge shape that is smoothly connected to the outer arc edge 411 and the inner arc edge 412, respectively. If there is a step or an acute angle at the connection between the convex edge 413 and the concave edge 414 and the outer arc-shaped edge 411 and the inner arc-shaped edge 412, the connecting core 4 is inserted into the coil holding tube 5. In such a case, there is a risk that the inner surface of the inner tube 51 may be damaged.

しかし、本実施形態のクランプセンサ2で用いる連結コア4のベース材41においては、短手方向の幅(外側弧状縁部411と内側弧状縁部412との離隔距離)が概ねr1〔mm〕×2である。よって、凸状端縁部413の弧状範囲を概ね180゜にすると、凸状端縁部413の一方端と外側弧状縁部411との接続部分および凸状端縁部413の他方端と内側弧状縁部412との接続部分は滑らかとなり、段差等は生じない。一方、凹状端縁部414の一方端と外側弧状縁部411との接続部分および凹状端縁部414の他方端と内側弧状縁部412との接続部分には、面取り(例えば、R1)を施して、角が生じないよう滑らかに接続する形状とした。   However, in the base member 41 of the connecting core 4 used in the clamp sensor 2 of the present embodiment, the width in the short direction (the separation distance between the outer arc edge 411 and the inner arc edge 412) is approximately r1 [mm] × 2. Therefore, when the arc-shaped range of the convex edge 413 is set to approximately 180 °, a connection portion between one end of the convex edge 413 and the outer arc edge 411 and the other end of the convex edge 413 and an inner arc are formed. The connection portion with the edge portion 412 becomes smooth, and no step is formed. On the other hand, the connecting portion between one end of the concave edge portion 414 and the outer arc-shaped edge portion 411 and the connecting portion between the other end of the concave edge portion 414 and the inner arc-shaped edge portion 412 are chamfered (for example, R1). Therefore, the connection was made smooth so that no corners were formed.

また、凸状端縁部413を決定する半径r1と凹状端縁部414を決定する半径r2を等しくすると、一対の基本リンク40の第1連結部40aと第2連結部40bを連結したとき、加工精度によっては、連結口416の開口位置を合わせられない可能性がある。仮に、加工精度が良く、「r1=r2」としも連結口416の開口位置がぴったり合ったとしても、凸状端縁部413と凹状端縁部414は長い範囲で面接触することとなる。凸状端縁部413と凹状端縁部414が面接触していると、それだけ摺動抵抗が高くなるので、連結コア4の変形作業を困難にしてしまう可能性がある。かといって、極端に凸状端縁部413の半径r1を凹状端縁部414の半径r2よりも小さくしてしまうと、第1連結部40aと第2連結部40bとを噛み合わせたときの対向面積が少なくなってしまう。第1連結部40aと第2連結部40bとの対向面積が減ると、ベース材41同士の連結部における磁気抵抗を高めてしまう可能性があるし、ベース材41同士の連結部における強度低下という問題も懸念される。そこで、一対の基本リンク40の第1連結部40aと第2連結部40bとを噛み合わせたとき、凸状端縁部413と凹状端縁部414が点接触するかしないか程度に設定しておくことが望ましい。例えば、図4に示すように、凸状端縁部413を決定する半径r1を3.5〔mm〕、凹状端縁部414を決定する半径r2を3.6〔mm〕に設定すると、連結コア4の変形作業に支障はないし、連結部で極端に磁気抵抗が高まることも無い。   When the radius r1 for determining the convex edge portion 413 and the radius r2 for determining the concave edge portion 414 are equal, when the first connection portion 40a and the second connection portion 40b of the pair of basic links 40 are connected, Depending on the processing accuracy, there is a possibility that the opening position of the connection port 416 cannot be adjusted. Even if the processing accuracy is good and “r1 = r2” and the opening position of the connection port 416 is exactly matched, the convex edge 413 and the concave edge 414 are in surface contact in a long range. If the convex edge portion 413 and the concave edge portion 414 are in surface contact with each other, the sliding resistance is increased accordingly, and there is a possibility that the work of deforming the connecting core 4 becomes difficult. However, if the radius r1 of the convex edge portion 413 is extremely smaller than the radius r2 of the concave edge portion 414, when the first connection portion 40a and the second connection portion 40b are engaged with each other. The facing area is reduced. When the facing area between the first connecting portion 40a and the second connecting portion 40b decreases, the magnetic resistance at the connecting portion between the base materials 41 may be increased, and the strength at the connecting portion between the base materials 41 may decrease. Issues are also a concern. Therefore, when the first connecting portion 40a and the second connecting portion 40b of the pair of basic links 40 are engaged with each other, it is set so that the convex edge portion 413 and the concave edge portion 414 are in point contact with each other. It is desirable to keep. For example, as shown in FIG. 4, when the radius r1 for determining the convex edge 413 is set to 3.5 [mm] and the radius r2 for determining the concave edge 414 is set to 3.6 [mm], the connection is established. There is no hindrance to the work of deforming the core 4 and the magnetic resistance does not extremely increase at the connection portion.

上記のように構成した第1着脱端部4aと第2着脱端部4bを備える一対の基本リンク40を連結する1軸性関節連結部43の一構成例を図7に示す。第1連結部40aと第2連結部40bとを噛み合わせて、全ての凸状端縁部413における連通孔416の開口位置を一致させ、この状態で連結ネジ431を挿入する。連結ネジ431の頭部が第1ベース材41−1の上面41aに押し当たったとき、431のネジ先が第7ベース材41−7の下面41bより適宜突出するので、平座金432およびスプリングワッシャ433を介挿してナット434で締結する。   FIG. 7 shows a configuration example of the uniaxial joint connecting portion 43 that connects the pair of basic links 40 having the first detachable end portion 4a and the second detachable end portion 4b configured as described above. The first connection portion 40a and the second connection portion 40b are engaged with each other so that the opening positions of the communication holes 416 in all the convex edge portions 413 are matched, and the connection screw 431 is inserted in this state. When the head of the connecting screw 431 presses against the upper surface 41a of the first base member 41-1, the screw tip of 431 protrudes from the lower surface 41b of the seventh base member 41-7 as appropriate, so that the flat washer 432 and the spring washer are provided. 433 is inserted and fastened with a nut 434.

このとき、ナット434をきつく締め付け過ぎると基本リンク40同士の円滑な回動が阻害されてしまうし、逆に、締め付けが弱過ぎると連結コア4自身の形状保持が困難になるので、クランプセンサ2で被測定導体をクランプするときの作業が繁雑となる。したがって、1軸性関節連結部43の機能としては、適切な締結状態を保持することも重要である。例えば、連結ネジ431に対してナット434を所定の締め付けトルク(例えば、1.8〔kgf・cm〕)で締め付けた後、ナット434を90゜戻すことで一定量だけ緩め、ナット434にネジロック剤435を塗布して、この締め付け状態に固定する。斯くすれば、基本リンク40同士の円滑な回動を阻害することも、連結コア4自身の形状保持を困難にすることも無いので、計測作業における連結コア4の取り扱いが良くなり、作業性の向上にも寄与できる。   At this time, if the nut 434 is excessively tightened, smooth rotation of the basic links 40 is hindered. Conversely, if the nut 434 is excessively weak, it becomes difficult to maintain the shape of the connecting core 4 itself. The operation when clamping the conductor to be measured becomes complicated. Therefore, it is also important for the function of the uniaxial joint connecting part 43 to maintain an appropriate fastening state. For example, after the nut 434 is tightened to the connection screw 431 with a predetermined tightening torque (for example, 1.8 [kgf · cm]), the nut 434 is returned by 90 ° to loosen the nut 434 by a predetermined amount. 435 is applied and fixed in this tightened state. By doing so, the smooth rotation between the basic links 40 is not hindered, and the shape of the connecting core 4 itself is not made difficult, so that the handling of the connecting core 4 in the measurement operation is improved, and the workability is improved. It can also contribute to improvement.

上述した連結コア4の外周に内側コイル52を配置可能なコイル体55の製造工程の一例を、図8に基づいて説明する。まず、円筒状の外周面51aを有する可撓性・絶縁性の内層チューブ51を用意する。内層チューブ51は、連結コア4を内挿するのに必要十分な口径の内空部51bを備えると共に、連結コア4の第1連結部40aと第2着脱端部4bが両端開口から突出する程度の長さである。また内層チューブ51の内空部51bに直線状の金属棒58を貫通させることで、内層チューブ51を直線状に固定する(図8(a)を参照)。かくすれば、剛性のある金属棒58を回転軸として軸回転式の巻線機にセットすることができるので、巻線機によってマグネットワイヤ521を内層チューブ51の外周面51aに単層もしくは複層に効率よく巻回してゆき、内側コイル52を形成できる(図8(b)を参照)。   An example of a manufacturing process of the coil body 55 in which the inner coil 52 can be arranged on the outer periphery of the connection core 4 described above will be described with reference to FIG. First, a flexible and insulating inner layer tube 51 having a cylindrical outer peripheral surface 51a is prepared. The inner tube 51 includes an inner space portion 51b having a diameter sufficient for inserting the connection core 4 and a degree that the first connection portion 40a and the second detachable end portion 4b of the connection core 4 protrude from the openings at both ends. Is the length of The inner tube 51 is fixed linearly by penetrating a linear metal rod 58 into the inner space 51b of the inner tube 51 (see FIG. 8A). With this configuration, the rigid metal rod 58 can be set as a rotation axis on a shaft-rotating winding machine, so that the magnet wire 521 is attached to the outer peripheral surface 51a of the inner tube 51 by a single-layer or multiple-layer by the winding machine. Thus, the inner coil 52 can be formed efficiently (see FIG. 8B).

内層チューブ51の外周面51aに内側コイル52を形成した後、内側コイル52を覆うように中層チューブ53を被せ、中層チューブ53の外周面53aにマグネットワイヤ541を単層もしくは複層に巻回して行き、外側コイル54を形成する(図8(c)を参照)。その後、内層チューブ51を巻線機から外して金属棒58を抜き取る(図8(d)を参照)。こうして、内層チューブ51の外表面にマグネットワイヤ521を巻回して形成した内側コイル52と、中層チューブ53の外表面にマグネットワイヤ541を巻回して形成した外側コイル54とで二重構造としたコイル体55が形成される(図8(e)を参照)。なお、マグネットワイヤ521およびマグネットワイヤ541の巻き始め部分と巻き終わり部分は、それぞれ、内側第1引出線521aおよび内側第2引出線521b、外側第1引出線541aおよび外側第2引出線541bとして用いることができる。   After the inner coil 52 is formed on the outer peripheral surface 51 a of the inner tube 51, the inner tube 53 is covered so as to cover the inner coil 52, and the magnet wire 541 is wound on the outer peripheral surface 53 a of the inner tube 53 in a single layer or multiple layers. Go to form the outer coil 54 (see FIG. 8 (c)). Thereafter, the inner tube 51 is detached from the winding machine, and the metal bar 58 is extracted (see FIG. 8D). Thus, a coil having a double structure of the inner coil 52 formed by winding the magnet wire 521 on the outer surface of the inner tube 51 and the outer coil 54 formed by winding the magnet wire 541 on the outer surface of the middle tube 53. The body 55 is formed (see FIG. 8E). The winding start portion and the winding end portion of the magnet wire 521 and the magnet wire 541 are used as an inner first lead line 521a, an inner second lead line 521b, an outer first lead line 541a, and an outer second lead line 541b, respectively. be able to.

上記のようにして形成したコイル体55は、可撓性・絶縁性の外層チューブ56のコイル体内挿空部56aに内挿することで(図9(a)を参照)、外側コイル54の外表面を外層チューブ56で覆うことができる。なお、外層チューブ56はコイル体55と同程度の長さで、コイル体内挿空部56aはコイル体55を内挿するのに必要十分な口径である。外層チューブ56にコイル体55を内挿した後、その両端には、沿面距離を確保するための絶縁キャップ57をそれぞれ取り付けてコイル保持チューブ5を構成する(図9(b)を参照)。次いで、コイル保持チューブ5のコア内挿空部5a(内層チューブ51の内空部51bと同じ)へ連結コア4を内挿し、コイル保持チューブ5の両端部より第1着脱端部4aおよび第2着脱端部4bをそれぞれ露出させる。かくして、クランプセンサ2を構成できる(図9(c)を参照)。   The coil body 55 formed as described above is inserted into the coil insertion portion 56a of the flexible and insulating outer layer tube 56 (see FIG. 9A), so that the outer coil 54 is removed. The surface can be covered with an outer tube 56. The outer tube 56 has substantially the same length as the coil body 55, and the coil insertion portion 56a has a diameter necessary and sufficient for inserting the coil body 55. After the coil body 55 is inserted into the outer layer tube 56, insulating caps 57 for securing a creepage distance are attached to both ends thereof to form the coil holding tube 5 (see FIG. 9B). Next, the connecting core 4 is inserted into the core insertion space 5a (the same as the inner space 51b of the inner tube 51) of the coil holding tube 5, and the first detachable end 4a and the second The detachable end portions 4b are respectively exposed. Thus, the clamp sensor 2 can be configured (see FIG. 9C).

図9(c)に示すように、クランプセンサ2の両端には、第1着脱端部4aと第2着脱端部4bがそれぞれ適宜長さ露出している。したがって、被測定導体をクランプセンサ2で囲むように曲げて、第1着脱端部4aである第1連結部40aと第2着脱端部4bである第2連結部40bとを嵌合させ、連結コア4を環状鉄心にする作業を使用者が行うようにしても良い。しかしながら、第1連結部40aと第2連結部40bとの正確な位置合わせを使用者が目視で行うのは、とても効率的な作業とはいえない。そこで、クランプセンサ2では、第1着脱端部4aと第2着脱端部4bとを効率良く嵌合させたり、取り外したりできるように、第1着脱端部4a側には第1連結ガイド6を、第2着脱端部4b側には第2連結ガイド7をそれぞれ設けておく。なお、第1連結ガイド6と第2連結ガイド7による着脱構造は特に限定されず、公知既存の適宜な着脱構造を採用して構わない。   As shown in FIG. 9C, a first detachable end 4a and a second detachable end 4b are exposed at both ends of the clamp sensor 2 as appropriate. Therefore, the conductor to be measured is bent so as to be surrounded by the clamp sensor 2, and the first connecting portion 40a as the first attaching / detaching end 4a and the second connecting portion 40b as the second attaching / detaching end 4b are fitted and connected. The operation of turning the core 4 into an annular core may be performed by a user. However, it is not a very efficient operation for the user to visually perform accurate alignment between the first connecting portion 40a and the second connecting portion 40b. Therefore, in the clamp sensor 2, the first connection guide 6 is provided on the first detachable end 4a side so that the first detachable end 4a and the second detachable end 4b can be fitted and removed efficiently. The second connection guide 7 is provided on the side of the second detachable end 4b. In addition, the attachment / detachment structure by the first connection guide 6 and the second connection guide 7 is not particularly limited, and an appropriate existing attachment / detachment structure may be adopted.

上記のように構成したクランプセンサ2を備えるクランプメータ1の使用例を図10に示す。クランプセンサ2の第1連結ガイド6と第2連結ガイド7を外し、電柱9を囲んだ状態で第1連結ガイド6と第2連結ガイド7を接続するだけで、電柱9を丸ごとクランプすることができ、電柱9の接地電流Ieや漏れ電流Irの測定を容易に行える。しかも、ロゴスキー方式のクランプセンサとは異なり、0.5mA〜5mA程度の微小電流を測定することが可能である。また、3相3線式の回路における配電盤で、3本の電線が離れている場合でも、本実施形態に係るクランプメータ1によれば、離れた3本の電線をクランプセンサ2で一括してクランプできるので、当該回路における微小漏れ電流の測定が可能となる。更に、電柱に並行した3相3線の太い引き込み線であっても、本実施形態に係るクランプメータ1によれば、これらの引き込み線を一括クランプして、微小漏れ電流を測定することができる。   FIG. 10 shows a usage example of the clamp meter 1 including the clamp sensor 2 configured as described above. By simply removing the first connection guide 6 and the second connection guide 7 of the clamp sensor 2 and connecting the first connection guide 6 and the second connection guide 7 in a state surrounding the power pole 9, the power pole 9 can be entirely clamped. Thus, the measurement of the ground current Ie and the leakage current Ir of the telephone pole 9 can be easily performed. Moreover, unlike the Rogowski clamp sensor, it is possible to measure a small current of about 0.5 mA to 5 mA. Further, according to the clamp meter 1 according to the present embodiment, even when three electric wires are separated from each other in a switchboard in a three-phase three-wire circuit, the three separated electric wires are collectively used by the clamp sensor 2. Since it can be clamped, it is possible to measure a small leakage current in the circuit. Further, according to the clamp meter 1 according to the present embodiment, even with a thick three-phase three-wire lead-in line parallel to the telephone pole, these lead-in lines can be collectively clamped to measure a minute leakage current. .

なお、クランプセンサ2で被測定導体をクランプすると、被測定導体を流れる電流に応じた計測値を内側コイル52と外側コイル54の両方から取得できる。しかも、内側コイル52と外側コイル54の巻数を一致させてあるので、内側コイル52によって検知される電流値と外側コイル54によって検知される電流値は、ほぼ同一となる。よって、計測装置3では、内側コイル52の検出値を用いても、外側コイル54の検出値を用いても、適切な電流値を演算できるはずである。   When the conductor to be measured is clamped by the clamp sensor 2, a measured value corresponding to the current flowing through the conductor to be measured can be obtained from both the inner coil 52 and the outer coil 54. Moreover, since the number of turns of the inner coil 52 and the number of turns of the outer coil 54 are matched, the current value detected by the inner coil 52 and the current value detected by the outer coil 54 are substantially the same. Therefore, the measuring device 3 should be able to calculate an appropriate current value using either the detected value of the inner coil 52 or the detected value of the outer coil 54.

しかしながら、クランプセンサ2には、外部磁界に対する遮蔽機能が無いので、測定環境における外部磁界がクランプセンサ2に作用すると、内側コイル52と外側コイル54の検出値が異なってしまう。このような外部磁界による計測誤差を補正して、精度の高い電流測定を行うための機能として、記憶手段31と演算手段32を計測装置3に設けてある。以下、外部磁界の影響を補正できる原理を、図11に基づき説明する。   However, since the clamp sensor 2 does not have a function of shielding an external magnetic field, if an external magnetic field in the measurement environment acts on the clamp sensor 2, the detection values of the inner coil 52 and the outer coil 54 will be different. As a function for correcting a measurement error due to such an external magnetic field and performing high-accuracy current measurement, a storage unit 31 and a calculation unit 32 are provided in the measurement device 3. Hereinafter, the principle by which the influence of the external magnetic field can be corrected will be described with reference to FIG.

図11は、被測定導体に流れる交流電流の周波数および振幅を一定とし、作用する外部磁界(交流磁界)の大きさを変化させたときに、クランプセンサ2の内側コイル52と外側コイル54が夫々検出する電流値の変化を示した特性図である。外部磁界が全く作用しないとき、内側コイル52により測定される電流(以下、内側コイル測定電流)の値と、外側コイル54により測定される電流(以下、外側コイル測定電流)の値は、共にI[A]である。しかしながら、外部磁界がクランプセンサ2に作用すると、その分だけ、内側コイル測定電流値と外側コイル測定電流値は高くなる。   FIG. 11 shows that, when the frequency and amplitude of the alternating current flowing through the conductor to be measured are fixed and the magnitude of the external magnetic field (alternating magnetic field) acting is changed, the inner coil 52 and the outer coil 54 of the clamp sensor 2 respectively FIG. 4 is a characteristic diagram illustrating a change in a detected current value. When no external magnetic field is applied, the value of the current measured by the inner coil 52 (hereinafter referred to as the inner coil measured current) and the value of the current measured by the outer coil 54 (hereinafter referred to as the outer coil measured current) are both I. [A]. However, when the external magnetic field acts on the clamp sensor 2, the inner coil measurement current value and the outer coil measurement current value increase accordingly.

クランプセンサ2に作用する外部磁界が強くなると、内側コイル測定電流および外側コイル測定電流のどちらも上昇して行くこととなるが、外部磁界に近い外側コイル54の方が影響を強く受けるため、外側コイル測定電流の上昇が顕著となる。内側コイル52と外側コイル54との間には、一定厚さで同じ材質の中層チューブ53が介在しているだけなので、内側コイル52と外側コイル54の外部磁界に対する感度差は一定である。すなわち、外部磁界の影響で内側コイル52に生じた誤差の値(以下、内側補正電流値Iaという)と、外部磁界の影響で外側コイル54に生じた誤差の値(以下、外側補正電流値Ibという)には、所定の関係性が認められるはずである。よって、両者の関係性を示す演算式が特定されれば、外部磁界の影響を排除して、被測定導体に流れる電流を高精度に求めることができる。   When the external magnetic field acting on the clamp sensor 2 increases, both the inner coil measurement current and the outer coil measurement current increase, but the outer coil 54 closer to the external magnetic field is more strongly affected. The increase in the coil measurement current becomes significant. Since only the middle tube 53 having the same thickness and the same material is interposed between the inner coil 52 and the outer coil 54, the sensitivity difference between the inner coil 52 and the outer coil 54 with respect to the external magnetic field is constant. That is, the value of the error generated in the inner coil 52 due to the influence of the external magnetic field (hereinafter referred to as the inner correction current value Ia) and the value of the error generated in the outer coil 54 due to the influence of the external magnetic field (hereinafter referred to as the outer correction current value Ib) ) Should have a predetermined relationship. Therefore, if an arithmetic expression indicating the relationship between the two is specified, the current flowing through the conductor to be measured can be obtained with high accuracy while eliminating the influence of the external magnetic field.

例えば、図11に示した内側コイル測定電流の変化特性および外側コイル測定電流の変化特性のように、極めて線形性が強ければ、両者の傾斜比率から内側補正電流値Iaと外側補正電流値Ibの関係性を比例定数kの単純な演算式で表すことができる。なお、内側コイル測定電流および外側コイル測定電流が非線形に変化する場合であっても、内側コイル52と外側コイル54の外部磁界に対する感度差が一定であるから、2次関数や3次関数等を用いた演算式で両者の関係性を表すことが可能である。   For example, if the linearity is extremely strong as in the change characteristics of the inner coil measurement current and the change characteristics of the outer coil measurement current illustrated in FIG. The relationship can be represented by a simple arithmetic expression of the proportionality constant k. Even when the inner coil measurement current and the outer coil measurement current change non-linearly, since the sensitivity difference between the inner coil 52 and the outer coil 54 with respect to the external magnetic field is constant, a quadratic function, a cubic function, or the like is required. The relationship between the two can be expressed by the used arithmetic expression.

ここで、外部磁界の大きさがH[A/m]のときを考える。内側コイル測定電流の値はIAで、真の計測値I[A]よりも内側補正電流値Iaだけ高い値となる。すなわち、「IA=I+Ia」である。一方、外側コイル測定電流の値はIBで、真の計測値I[A]よりも外側補正電流値Ibだけ高い値となる。すなわち、「IB=I+Ib」である。しかしながら、内側補正電流値Iaも外側補正電流値Ibも未知数であるから、これらの関係式からダイレクトに計測値Iを求めることはできない。   Here, the case where the magnitude of the external magnetic field is H [A / m] is considered. The value of the inner coil measurement current is IA, which is higher than the true measurement value I [A] by the inner correction current value Ia. That is, “IA = I + Ia”. On the other hand, the value of the outer coil measurement current is IB, which is higher than the true measurement value I [A] by the outer correction current value Ib. That is, “IB = I + Ib”. However, since both the inner correction current value Ia and the outer correction current value Ib are unknown numbers, the measurement value I cannot be directly obtained from these relational expressions.

そこで、外側コイル測定電流値IBと内側コイル測定電流値IAとの差(IB−IA=Ib−Ia)である差電流値ΔIに着目する。内側補正電流値Iaと外側補正電流値Ibとの関係性を演算式で表せるのであるから、内側補正電流値Iaと差電流値ΔI(=Ib−Ia)との関係性も演算式で表せる。すなわち、内側補正電流値Iaは差電流値ΔIから一意的に定まり、この演算式を「Ia=f(ΔI)」とする。そして、クランプセンサ2の特性に応じて定めた「Ia=f(ΔI)」の演算式を記憶手段31に予め記憶させておけば、演算手段32によって、外側コイル測定電流値IBと内側コイル測定電流値IAに応じた内側補正電流値Iaを求めることができる。   Therefore, attention is paid to a difference current value ΔI, which is a difference (IB−IA = Ib−Ia) between the outer coil measurement current value IB and the inner coil measurement current value IA. Since the relationship between the inside correction current value Ia and the outside correction current value Ib can be expressed by an arithmetic expression, the relationship between the inside correction current value Ia and the difference current value ΔI (= Ib−Ia) can also be expressed by an arithmetic expression. That is, the inner correction current value Ia is uniquely determined from the difference current value ΔI, and this arithmetic expression is set to “Ia = f (ΔI)”. If an arithmetic expression of “Ia = f (ΔI)” determined according to the characteristics of the clamp sensor 2 is stored in the storage means 31 in advance, the arithmetic means 32 calculates the outer coil measurement current value IB and the inner coil measurement current IB. The inside correction current value Ia according to the current value IA can be obtained.

真の計測値Iは、内側コイル測定電流値IAから内側補正電流値Iaを減ずることで求まる。よって、演算手段32は「IA−f(ΔI)」の演算を行うことで真の計測値Iを求めることができ、内側コイル52の巻数による検知感度を加味した所定の演算式に真の計測値Iを適用すれば、被測定導体を流れる電流値を求めることができる。   The true measurement value I is obtained by subtracting the inner correction current value Ia from the inner coil measurement current value IA. Therefore, the calculation means 32 can obtain the true measurement value I by performing the calculation of “IA−f (ΔI)”, and the true measurement value can be obtained by a predetermined calculation formula taking into account the detection sensitivity based on the number of turns of the inner coil 52. By applying the value I, the value of the current flowing through the conductor to be measured can be obtained.

なお、外側補正電流値Ibも差電流値ΔIから一意的に定まるので、記憶手段31に記憶させる演算式を「Ib=f(ΔI)」とし、演算手段32が「IB−f(ΔI)」の演算を行うことで真の計測値Iを求めるようにしても構わない。真の計測値Iが求まれば、外側コイル54の巻数による検知感度を加味した所定の演算式に真の計測値Iを適用すれば、被測定導体を流れる電流値を求めることができる。   Since the outer correction current value Ib is also uniquely determined from the difference current value ΔI, the arithmetic expression stored in the storage means 31 is “Ib = f (ΔI)”, and the arithmetic means 32 is “IB−f (ΔI)”. , The true measurement value I may be obtained. When the true measurement value I is obtained, the current value flowing through the conductor to be measured can be obtained by applying the true measurement value I to a predetermined arithmetic expression that takes into account the detection sensitivity based on the number of turns of the outer coil 54.

上述したように、本実施形態に係るクランプメータ1によれば、内側コイル52と外側コイル54を備えるクランプセンサ2の特性を活かし、内側コイル測定電流値と外側コイル測定電流値から外部磁界による誤差を補正することができる。よって、クランプ径の大型化や軽量化の妨げとなる金属製シールド等を用いること無く、外部磁界のクランプセンサ2への影響を抑制し、被測定導体を流れる電流を高精度に求めることが可能なクランプメータ1を提供できる。   As described above, according to the clamp meter 1 according to the present embodiment, by utilizing the characteristics of the clamp sensor 2 including the inner coil 52 and the outer coil 54, the error caused by the external magnetic field from the inner coil measured current value and the outer coil measured current value is utilized. Can be corrected. Therefore, it is possible to suppress the influence of the external magnetic field on the clamp sensor 2 and to obtain the current flowing through the conductor to be measured with high accuracy without using a metal shield or the like that hinders the increase in the clamp diameter and the weight reduction. A simple clamp meter 1 can be provided.

なお、本実施形態のクランプメータ1では、内側コイル52と外側コイル54の巻数を一致させることで、内側補正電流値あるいは外側補正電流値を求める演算式を簡素化するものとした。しかし、内側コイル52と外側コイル54の巻数を変えてクランプセンサ2を作成しなければならない場合には、連結コア4の磁界変化に対する検知感度と外部磁界に対する検知感度が両コイルで異なるため、上述した比較的単純な演算式は使えない。そのため、両コイルの検知感度の差を相殺する補正要件を加味して、内側補正電流値あるいは外側補正電流値を求める複雑な演算式を設定する必要がある。或いは、一方のコイルの巻数を他方のコイルの巻数に変えたときの測定電流に変換する演算式を設定しておけば、コイルの巻数を同じにしたときの変換測定電流値を求められるので、上述した比較的単純な演算式をそのまま適用できる。   In the clamp meter 1 of the present embodiment, the arithmetic expression for obtaining the inner correction current value or the outer correction current value is simplified by matching the number of turns of the inner coil 52 and the outer coil 54. However, when the clamp sensor 2 has to be created by changing the number of turns of the inner coil 52 and the outer coil 54, the detection sensitivity of the coupling core 4 to a magnetic field change and the detection sensitivity to an external magnetic field are different between the two coils. A relatively simple arithmetic expression cannot be used. Therefore, it is necessary to set a complicated arithmetic expression for obtaining the inner correction current value or the outer correction current value in consideration of a correction requirement for canceling the difference between the detection sensitivities of the two coils. Alternatively, if an arithmetic expression that converts the number of turns of one coil to the number of turns of the other coil is set, the converted measurement current value when the number of turns of the coil is the same can be obtained. The relatively simple arithmetic expression described above can be applied as it is.

以上、本発明に係るクランプセンサおよびこのクランプセンサを用いたクランプメータの実施形態を添付図面に基づいて説明した。しかしながら、本発明は、この実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。   The embodiments of the clamp sensor and the clamp meter using the clamp sensor according to the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to this embodiment, and may be embodied by diverting known existing equivalent technical means as long as the configuration described in the claims is not changed.

1 クランプメータ
2 クランプセンサ
3 計測装置
31 記憶手段
32 演算手段
4 連結コア
4a 第1着脱端部
4b 第2着脱端部
40 基本リンク
40a 第1連結部
40b 第2連結部
43 1軸性関節連結部
5 コイル保持チューブ
5a コア内挿空部
51 内層チューブ
52 内側コイル
521 マグネットワイヤ
53 中層チューブ
54 外側コイル
541 マグネットワイヤ
55 コイル体
56 外層チューブ
DESCRIPTION OF SYMBOLS 1 Clamp meter 2 Clamp sensor 3 Measuring device 31 Storage means 32 Computing means 4 Connecting core 4a First detachable end 4b Second detachable end 40 Basic link 40a First connecting part 40b Second connecting part 43 Uniaxial joint connecting part 5 Coil holding tube 5a Core insertion space 51 Inner tube 52 Inner coil 521 Magnet wire 53 Middle tube 54 Outer coil 541 Magnet wire 55 Coil body 56 Outer tube

Claims (7)

両端部を連結することで被測定導体を非接触で囲む環状鉄心となる連結コアと、該連結コアの外周にコイルを配置可能なコイル体と、から成るクランプセンサであって、
前記コイル体は、前記連結コアを内挿可能な内空部を有すると共に、各端部から前記連結コアの第1着脱端部と第2着脱端部をそれぞれ露出させ得る長さで、前記連結コアの変形に追随して無理なく変形し得る可撓性を有する内層チューブと、該内層チューブの外表面にマグネットワイヤを巻回して成る内側コイルと、該内側コイルの外側を覆うように配置する中層チューブと、該中層チューブの外表面にマグネットワイヤを巻回して成る外側コイルと、を備え、
前記コイル体の外面側を絶縁性の外層チューブで覆うと共に、コイル体の内空部に連結コアを内挿し、内側コイルと外側コイルで被測定導体を流れる電流を同時に検出可能としたたことを特徴とするクランプセンサ。
A clamp sensor comprising: a connection core serving as an annular core surrounding the conductor to be measured in a non-contact manner by connecting both ends, and a coil body capable of disposing a coil on the outer periphery of the connection core,
The coil body has an inner space in which the connection core can be inserted, and the connection body has such a length that a first detachable end and a second detachable end of the connection core can be exposed from each end. A flexible inner layer tube that can be deformed without difficulty following the deformation of the core, an inner coil formed by winding a magnet wire around the outer surface of the inner layer tube, and a cover arranged to cover the outside of the inner coil. A middle tube, and an outer coil formed by winding a magnet wire around the outer surface of the middle tube,
While covering the outer surface side of the coil body with an insulating outer layer tube, a connecting core is inserted into the inner space of the coil body, and the current flowing through the conductor to be measured can be simultaneously detected by the inner coil and the outer coil. Characteristic clamp sensor.
前記連結コアは、高透磁率軟磁性材料で形成され、最も離隔する一対の端部にそれぞれ第1連結部と第2連結部を形成した連結素体を複数用い、互いの第1連結部と第2連結部が回動可能な1軸性関節となるように連結することで両端が開いた数珠つなぎ状の連結構造と成し、一方端の連結素体における連結されていない第1連結部を第1着脱端部とし、他方端の連結素体における連結されていない第2連結部を第2着脱端部とし、これら第1着脱端部と第2着脱端部とを連結することで、全ての連結素体が環状に閉じた環状鉄心を構成するようにしたことを特徴とする請求項1に記載のクランプセンサ。   The connection core is formed of a high-permeability soft magnetic material, and uses a plurality of connection bodies each having a first connection portion and a second connection portion formed at a pair of ends that are furthest apart from each other. By connecting the second connecting portion so as to form a rotatable uniaxial joint, a rosary-like connecting structure having both ends opened is formed, and the first connecting portion of the connecting element body at one end that is not connected is connected. As a first detachable end, a second unconnected portion of the other end of the connecting element body as a second detachable end, and connecting the first detachable end and the second detachable end, 2. The clamp sensor according to claim 1, wherein all of the connecting elements constitute an annular core closed in an annular shape. 前記連結コアの連結素体は、高透磁率軟磁性材料の板材であるベース材を複数枚積層して所要の厚さとなるように構成し、
前記ベース材は、一軸性関節となるように連結される軸位置から等距離となる円弧状に突出する凸状端縁部を一端側に、該突状端縁部と同等程度の曲率で円弧状に窪む凹状端縁部を他端側に、それぞれ備えるものとし、
前記ベース材の凸状端縁部と凹状端縁部を交互に積層して連結素体を構成することで、第1連結部と第2連結部は互いに凸状端縁部と凹状端縁部とが噛み合う嵌合構造とし、且つ、1軸性関節で連結される各連結素体のベース材は互いの凸状端縁部と凹状端縁部とが阻害し合うこと無く所要範囲で回動できるようにしたことを特徴とする請求項2に記載のクランプセンサ。
The connection body of the connection core is configured to have a required thickness by laminating a plurality of base materials which are plate materials of a high magnetic permeability soft magnetic material,
The base material has a convex edge protruding in an arc shape equidistant from an axial position connected so as to form a uniaxial joint on one end side, with a curvature approximately equal to the projecting edge. At the other end side, a concave edge portion depressed in an arc shape shall be provided,
The first connection part and the second connection part are mutually convex edge part and concave edge part by alternately laminating the convex edge part and the concave edge part of the base material to form a connection body. And the base material of each connecting element connected by a uniaxial joint rotates within a required range without interference between the convex edge and the concave edge of each other. The clamp sensor according to claim 2, wherein the clamp sensor can be used.
前記請求項1〜請求項3の何れか1項に記載のクランプセンサを備え、
前記クランプセンサの内側コイルと外側コイルから夫々検出された内側コイル測定電流値と外側コイル測定電流値を取得し、内側コイル測定電流値と外側コイル測定電流値に基づいて被測定導体を流れる電流値を演算する計測装置を設けたことを特徴とするクランプメータ。
The clamp sensor according to any one of claims 1 to 3,
Obtain the inner coil measurement current value and the outer coil measurement current value respectively detected from the inner coil and the outer coil of the clamp sensor, and calculate the current value flowing through the conductor to be measured based on the inner coil measurement current value and the outer coil measurement current value. A clamp meter provided with a measuring device for calculating the following.
前記外側コイルと内側コイルの巻線を同一とし、外部磁界の影響をクランプセンサが受けないときには、内側コイル測定電流値と外側コイル測定電流値が一致するようにしたことを特徴とする請求項4に記載のクランプメータ。   The coil of the outer coil and the inner coil have the same winding, and the measured current value of the inner coil and the measured current value of the outer coil match when the clamp sensor is not affected by an external magnetic field. The clamp meter according to 1. 前記計測装置は、
前記クランプセンサより取得した外側コイル測定電流値と内側コイル測定電流値との差である差電流値から、外部磁界が内側コイルに作用して生じた内側補正電流値を求める演算式を記憶する記憶手段と、
前記記憶手段の演算式を用いて内側補正電流値を演算し、内側コイル測定電流値から内側補正電流値を減ずることで、クランプセンサによる真の計測値を求め、真の計測値から被測定導体を流れる電流値を求める演算手段と、
を備えることを特徴とする請求項5に記載のクランプメータ。
The measuring device,
A storage for storing an arithmetic expression for obtaining an inner correction current value generated by an external magnetic field acting on the inner coil from a difference current value which is a difference between the outer coil measurement current value and the inner coil measurement current value obtained from the clamp sensor. Means,
The inside correction current value is calculated using the arithmetic expression of the storage means, and the true measurement value by the clamp sensor is obtained by subtracting the inside correction current value from the inside coil measurement current value, and the measured conductor is measured from the true measurement value. Calculating means for determining a current value flowing through
The clamp meter according to claim 5, comprising:
前記計測装置は、
前記クランプセンサより取得した外側コイル測定電流値と内側コイル測定電流値との差である差電流値から、外部磁界が外側コイルに作用して生じた外側補正電流値を求める演算式を記憶する記憶手段と、
前記記憶手段の演算式を用いて外側補正電流値を演算し、外側コイル測定電流値から外側補正電流値を減ずることで、クランプセンサによる真の計測値を求め、真の計測値から被測定導体を流れる電流値を求める演算手段と、
を備えることを特徴とする請求項5に記載のクランプメータ。
The measuring device,
A storage for storing an arithmetic expression for obtaining an outer correction current value generated by an external magnetic field acting on the outer coil from a difference current value which is a difference between the outer coil measurement current value and the inner coil measurement current value obtained from the clamp sensor. Means,
The outer correction current value is calculated using the arithmetic expression of the storage means, and the outer correction current value is subtracted from the outer coil measurement current value to obtain a true measurement value by the clamp sensor, and the conductor to be measured is calculated from the true measurement value. Calculating means for determining a current value flowing through
The clamp meter according to claim 5, comprising:
JP2018147553A 2018-08-06 2018-08-06 Clamp sensor and clamp meter Active JP7034484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018147553A JP7034484B2 (en) 2018-08-06 2018-08-06 Clamp sensor and clamp meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018147553A JP7034484B2 (en) 2018-08-06 2018-08-06 Clamp sensor and clamp meter

Publications (2)

Publication Number Publication Date
JP2020024101A true JP2020024101A (en) 2020-02-13
JP7034484B2 JP7034484B2 (en) 2022-03-14

Family

ID=69619434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018147553A Active JP7034484B2 (en) 2018-08-06 2018-08-06 Clamp sensor and clamp meter

Country Status (1)

Country Link
JP (1) JP7034484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952043A (en) * 2020-08-10 2020-11-17 广东电网有限责任公司 Portable power supply device utilizing flexible mutual inductor to obtain energy from cable
CN112147395A (en) * 2020-09-25 2020-12-29 广东电网有限责任公司广州供电局 Clamp-on ammeter adapter and current measuring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242070U (en) * 1985-08-30 1987-03-13
JPH09311143A (en) * 1996-05-24 1997-12-02 Tatsuo Nagata Clamp meter
JP2000155133A (en) * 1998-11-24 2000-06-06 Hioki Ee Corp Clamp-type current sensor
JP2004014897A (en) * 2002-06-10 2004-01-15 Mitsubishi Electric Corp Transformer and manufacturing method thereof
US20110043190A1 (en) * 2009-08-20 2011-02-24 Farr Lawrence B Rogowski coil, medium voltage electrical apparatus including the same, and method of providing electrostatic shielding for a rogowski coil
JP2017191018A (en) * 2016-04-14 2017-10-19 日置電機株式会社 Current measurement device
JP2018105678A (en) * 2016-12-26 2018-07-05 日置電機株式会社 Current sensor and current detector
JP2019211423A (en) * 2018-06-08 2019-12-12 共立電気計器株式会社 Clamp sensors and clamp meter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242070B2 (en) 2013-04-18 2017-12-06 新日鐵住金株式会社 Steel sheet pile or steel pipe sheet pile anticorrosion structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242070U (en) * 1985-08-30 1987-03-13
JPH09311143A (en) * 1996-05-24 1997-12-02 Tatsuo Nagata Clamp meter
JP2000155133A (en) * 1998-11-24 2000-06-06 Hioki Ee Corp Clamp-type current sensor
JP2004014897A (en) * 2002-06-10 2004-01-15 Mitsubishi Electric Corp Transformer and manufacturing method thereof
US20110043190A1 (en) * 2009-08-20 2011-02-24 Farr Lawrence B Rogowski coil, medium voltage electrical apparatus including the same, and method of providing electrostatic shielding for a rogowski coil
JP2017191018A (en) * 2016-04-14 2017-10-19 日置電機株式会社 Current measurement device
JP2018105678A (en) * 2016-12-26 2018-07-05 日置電機株式会社 Current sensor and current detector
JP2019211423A (en) * 2018-06-08 2019-12-12 共立電気計器株式会社 Clamp sensors and clamp meter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「フレキシブルクランプメータ KEW 2210R」, JPN6021038786, 4 July 2014 (2014-07-04), ISSN: 0004700912 *
「交流電流測定用クランプメータ[共立電気計器] | 日本電計株式会社が運営する計測機器、試験機器の総合, JPN6021038785, 4 July 2014 (2014-07-04), ISSN: 0004700911 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952043A (en) * 2020-08-10 2020-11-17 广东电网有限责任公司 Portable power supply device utilizing flexible mutual inductor to obtain energy from cable
CN112147395A (en) * 2020-09-25 2020-12-29 广东电网有限责任公司广州供电局 Clamp-on ammeter adapter and current measuring device
CN112147395B (en) * 2020-09-25 2024-02-27 广东电网有限责任公司广州供电局 Clamp ammeter adapter and current measuring device

Also Published As

Publication number Publication date
JP7034484B2 (en) 2022-03-14

Similar Documents

Publication Publication Date Title
US5207105A (en) Electromagnetic flow meter
US8212549B2 (en) Ammeter with improved current sensing
FI83998C (en) Measuring transformer for measuring current in an electrical conductor
US8952680B2 (en) Magnetic sensor and current measuring apparatus
JP6541962B2 (en) Current sensor and measuring device
US9541581B2 (en) Flexible current sensor
JP4788922B2 (en) Current sensor
JP2001066328A (en) Current sensor and electric circuit using same
WO2015133621A1 (en) Amperage detector
JP2020024101A (en) Clamp sensor and clamp meter
WO2017125728A1 (en) Measurement device
JP2016148620A (en) Current sensor
JP2010529425A (en) Device for measuring the current through a conductor
JP3971158B2 (en) Current sensor
JP2006105955A (en) Device for sensing energization of electrical equipment
JP6974898B2 (en) Current converter
JP7034482B2 (en) Clamp sensor and clamp meter
EP2948779B1 (en) Flexible magnetic field sensor
JP6587875B2 (en) Current sensor and measuring device
JPH06174753A (en) High current detector
KR101607025B1 (en) Fulxgate current sensing unit
JPH08220141A (en) Split dc zero-phase current transformer
JP2020141455A (en) Power conversion device
JP2009092538A (en) Clamp tester
JPH0126028B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7034484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150