JP2019105616A - レーザ超音波装置 - Google Patents

レーザ超音波装置 Download PDF

Info

Publication number
JP2019105616A
JP2019105616A JP2017240100A JP2017240100A JP2019105616A JP 2019105616 A JP2019105616 A JP 2019105616A JP 2017240100 A JP2017240100 A JP 2017240100A JP 2017240100 A JP2017240100 A JP 2017240100A JP 2019105616 A JP2019105616 A JP 2019105616A
Authority
JP
Japan
Prior art keywords
laser
pulse width
laser light
ultrasonic
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017240100A
Other languages
English (en)
Inventor
一男 石山
Kazuo Ishiyama
一男 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017240100A priority Critical patent/JP2019105616A/ja
Priority to US16/178,263 priority patent/US10921290B2/en
Publication of JP2019105616A publication Critical patent/JP2019105616A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/008Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means by using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/104Number of transducers two or more emitters, one receiver

Abstract

【課題】パルス幅圧縮ならびにパルス幅拡大手段により、一台のレーザ装置を用いた安価なレーザ超音波装置を提供することを目的とする。【解決手段】レーザ超音波装置は、レーザ装置と、レーザ装置からのパルスレーザ光を第一レーザ光と第二レーザ光に分岐する分岐部と、第一レーザ光のパルス幅を変換する第一パルス幅変換部と、第一パルス幅変換部によってパルス幅が変換された第一レーザ光を検査対象物に導く第一光学系と、第二レーザ光のパルス幅を変換する第二パルス幅変換部と、第二パルス変換部によってパルス幅が変換された第二レーザ光の伝搬時間を調整するパルス伝搬時間調整部と、パルス幅が変換され、かつ伝搬時間が調整された第二レーザ光を検査対象物に導く第二光学系と、第二レーザ光が検査対象物で反射されたときに、第一レーザ光で発生した超音波によって生じた検査対象物の表面変位の変化を検出する検出部とを有する。【選択図】図1

Description

本発明は、レーザ超音波装置に関する。
レーザ超音波装置は、レーザによる超音波励起部とレーザによる超音波検出部から構成される。
レーザによる超音波励起は、時間的にパルス状のレーザ光(励起用レーザ)を検査対象物に照射することで行なう。レーザ光のパワー密度が小さい場合には、表面の微小領域の急加熱−急冷却過程により熱応力が発生し、発生した熱応力が材料の歪みの元となって超音波信号が発生する(熱弾性モード)。一方、レーザ光のパワー密度が大きいと検査対象物の表面層がプラズマ化し、プラズマ膨張の反作用として検査対象物に圧力が加わって振動が発生する(アブレーションモード)。
レーザによる超音波受信は、前記モードによって励起された超音波によって生じる表面変位をレーザ変位計で計測することで行われる。その方法として、マイケルソン干渉計、ファブリペロー干渉計、位相共役光学素子を用いた干渉計などのレーザ干渉計をベースにしたものと、Speckle Knife Edge Detector(以下、SKED)などのナイフエッジ型をベースにしたものが提案されている。この中で、ファブリペロー干渉計、位相共役光学素子干渉計、SKEDは粗表面適用可能であり、これら受信器を用いることで、実用的なレーザ超音波装置が実現可能である。
レーザ超音波法の測定には、一般的に、超音波励起用レーザ装置と受信器用レーザ装置の二台のレーザ装置が必要である。超音波励起用レーザ装置としては、高いピークパワーを有するナノ秒オーダーまたはそれ以下のパルスレーザ装置が必要である。一方、受信器用レーザ装置としては、CW(連続波)レーザ装置またはマイクロ秒オーダー以上のパルス幅を有するパルスレーザ装置が必要となる。従って、従来のレーザ超音波装置は、これら仕様の異なる二種類のレーザ装置が必要であり、そのためコストが高く、レーザ装置のメンテナンスならびに調整が煩雑である等の問題があった。
本技術分野の背景技術として、特許文献1がある。特許文献1には、一台のレーザ装置を用いたレーザ超音波検査装置及びレーザ超音波検査方法が開示されている。すなわち、特許文献1では、励起用レーザ装置のレーザビームを2分岐し、その一方のパルス幅を拡大することで、受信器用レーザビームとして用いる点が開示されている。
特開2003−215110号公報
特許文献1では、パルス幅を拡大する手段として光ファイバの分散のみを用いており、必要な光ファイバの長さが非常に長く、そのコストは受信器用レーザ装置一台分のコストより高いという課題がある。
本発明は、上記の課題を鑑みなされたものであり、実用的で一台のレーザ装置を用いた安価なレーザ超音波装置を提供することを目的とする。
本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、レーザ超音波装置は、レーザ装置と、レーザ装置からのパルスレーザ光を第一レーザ光と第二レーザ光に分岐する分岐部と、第一レーザ光のパルス幅を変換する第一パルス幅変換部と、第一パルス幅変換部によってパルス幅が変換された第一レーザ光を検査対象物に導く第一光学系と、第二レーザ光のパルス幅を変換する第二パルス幅変換部と、第二パルス変換部によってパルス幅が変換された第二レーザ光の伝搬時間を調整するパルス伝搬時間調整部と、パルス幅が変換され、かつ伝搬時間が調整された第二レーザ光を検査対象物に導く第二光学系と、第二レーザ光が検査対象物で反射されたときに、第一レーザ光で発生した超音波によって生じた検査対象物の表面変位の変化を検出する検出部とを有する。
本発明によれば、一台のレーザ装置を用いた安価なレーザ超音波装置を得ることができる。
実施例1におけるレーザ超音波装置を示す図である。 実施例2におけるレーザ超音波装置を示す図である。 実施例3におけるレーザ超音波装置を示す図である。 実施例4におけるレーザ超音波装置を示す図である。 実施例5におけるレーザ超音波装置を示す図である。 実施例6におけるレーザ超音波装置を示す図である。
以下、本発明の実施例を図面を用いて説明する。
図1は本実施例におけるレーザ超音波装置の構成図である。図1において、レーザ超音波装置は、パルスレーザを発生するレーザ装置1と、レーザ装置1から出射したパルスレーザ光2を第一レーザ光4と第二レーザ光13に分岐するレーザビームスプリッタ3と、スペクトル幅拡大用光ファイバ6に第一レーザ光4を集光する集光レンズ5と、スペクトル幅拡大用光ファイバ6から出射したレーザ光を第一パルス幅変換用光ファイバ8に集光する集光レンズ7と、第一パルス幅変換用光ファイバ8から出射したレーザビームをコリメートするコリメートレンズ9と、前記コリメートされたレーザ光10を検査対象物12の表面に集光するための集光レンズ11とを有する。
また、レーザビームスプリッタ3で分岐された第二レーザ光13を波長変換用結晶15に集光するための集光レンズ14と、第二パルス幅変換用光ファイバ17に集光する集光レンズ16と、第二パルス幅変換用光ファイバ17から出射されたレーザ光をコリメートするコリメートレンズ18と、前記コリメートされた第二レーザ光19の検査対象物12まで到達する時間を調節するレーザ光遅延回路20と第二レーザ光19を検査対象物12に導くためのミラー22と、第二レーザ光21を検査対象物12の表面に集光するための集光レンズ23とを有する。
さらに、検査対象物12による第二レーザ光21の反射光を選択的に透過させる光学フィルタ24と、光学フィルタ24を透過した光をナイフエッジ型検出器(SKED)26に集光する集光レンズ25と、ナイフエッジ型検出器26からの電気信号を増幅する電気増幅器27と、前記増幅された電気信号を表示するデジタルオシロスコープ28から構成される。
MHzオーダーの超音波を発生かつ受信する場合、励起用レーザと受信器用レーザのパルス幅は、それぞれ、数十ナノ秒とマイクロ秒以上が必要である。本実施例では、レーザ装置1のパルス幅を励起用と受信用で必要なパルス幅の中間のパルス幅とする。例えば数百ナノ秒とすると、第一レーザ光のパルス幅は約1/10に圧縮、第二レーザ光のパルス幅は数倍に拡大する必要がある。具体的には、例えば、最もよく使われているYAGレーザの波長1064 nmを用いる。
第一レーザ光のパルス幅を1/10に圧縮するには、まずスペクトルを10倍に拡大し、次に波長の分散補償をすることでパルス幅を1/10に圧縮する方法が考えられる。ここで、分散(波長分散)とは波長により光の伝搬時間が異なる現象である。分散には正の分散と負の分散がある。正の分散は長波成分が速く、短波成分が遅く進む。負の分散はこの逆の特性を有する。この現象を用いることでパルス幅を短くしたり長くしたりできる。例えば、光パルスを構成する各波長成分が同じ速度で伝搬している場合は、正の分散でも負の分散でもパルス幅は長くなる。長波成分の方が短波成分よりも先に進んでいる場合では、正の分散ではパルス幅は長くなり、負の分散ではパルス幅が短くなる。短波成分の方が長波成分よりも先に進んでいる場合では、正の分散ではパルス幅は短くなり、負の分散ではパルス幅が長くなる。スペクトル幅拡大用部材であるスペクトル幅拡大用光ファイバ6としては、高非線形光ファイバまたはフォトニック結晶ファイバなどが望ましい。自己位相変調、相互位相変調、四光波混合、ラマン散乱などの非線形光学現象を用いることで、スペクトル幅を拡大することができる(スーパーコンティニウム現象)。また、第一パルス幅変換用光ファイバ8として、分散補償に必要な符号の波長分散を有する光ファイバが必要となる。
第二レーザ光に関しては、KTP(KTiOPO4)結晶などの波長変換用部材である波長変換結晶15を用いて第二高調波を発生することで、波長を1064nmから532nmに短波長変換する。次に、第二パルス幅変換用光ファイバ17を用いて、光ファイバの分散によりパルス幅を数倍に拡大する。波長を短波長に変換することで、光ファイバの分散量を1桁から2桁大きくすることが可能となり、光ファイバ長を1桁から2桁短くすることができる。たとえば、光ファイバの分散量は、1064 nmの場合は約10ps/nm/km、532nmの場合は1000ps/nm/km以上である。マイクロ秒のパルス幅に拡大するには、数百kmの光ファイバが必要である。
第二レーザ光の波長を変換することで、受信信号の雑音の原因となる第一レーザ光の検査対象による反射光を光学フィルタ24を用いて抑制することができる。
レーザ光遅延回路20は、第一レーザ光4によって発生した超音波が受信点に到達するタイミングと同時または少し前に、第二レーザ光13が検査対象物12に照射するように、多重反射させることで第二レーザ光13の光路長を調整する。
以上のように、本実施例によれば、単一のレーザ装置からのレーザ光を2つのレーザ光に分岐し、それぞれのレーザ光を励起用と検出用となるように、パルス幅圧縮ならびにパルス幅拡大手段によりパルス幅変換し、それらを検査対象物に照射させることにより検査対象物の表面変位の変化を検出部であるナイフエッジ型検出器26で検出する。これにより、1台のレーザ装置で構成できるので、安価で、かつレーザ装置のメンテナンスならびに調整を容易にしたレーザ超音波装置を得ることができる。
図2は本実施例におけるレーザ超音波装置の構成図である。図2において、図1と同じ構成要件は同じ符号を付し、その説明は省略する。図2において、図1と異なる点は、スペクトル幅拡大用光ファイバ29と、第二パルス幅変換用光ファイバ17に集光する集光レンズ30を有する点である。
スペクトル幅拡大用部材であるスペクトル幅拡大用光ファイバ29により第二パルスのスペクトル幅を拡大することで、次の第二パルス幅変換用光ファイバ17でのパルス幅拡大を増大させることができる。スペクトル幅拡大用光ファイバ29としては、高非線形光ファイバまたはフォトニック結晶ファイバが望ましい。実施例1で述べたスーパーコンティニウム現象によりスペクトル幅を1nmから100nmに拡大することで、光ファイバ長を1/100に短縮できる。具体的には、例えば、実施例1に、このスペクトル幅拡大を追加することで、光ファイバ長を数百kmから数kmに短縮できる。
以上のように、本実施例によれば、さらに安価なレーザ超音波装置を提供できる。
図3は本実施例におけるレーザ超音波装置の構成図である。図3において、図2と同じ構成要件は同じ符号を付し、その説明は省略する。図3において、図2と異なる点は、第一パルス幅変換用光ファイバ8および第二パルス幅変換用光ファイバ17の代わりに、回折格子対32、34を用いた点である。
回折格子対の間隔を調整することで、パルス幅圧縮またはパルス幅拡大に必要な分散量を調整することができる。
なお、本実施例では、一組の回折格子対を用いているが、所望の分散量を得るため、複数の回折格子対を用いてもよいし、パルス変換用光ファイバと組合せてもよい。また、実施例1の構成に適用してもよい。
図4は本実施例におけるレーザ超音波装置の構成図である。図4において、図2と同じ構成要件は同じ符号を付し、その説明は省略する。図4において、図2と異なる点は、ミラー22と集光レンズ23との間にビームスプリッタ36を有している点である。ビームスプリッタ36は、ミラー22からの第二レーザ光21を透過させて集光レンズ23を介して検査対象物12の表面に集光させ、集光レンズ23を介して入射された検査対象物12による第二レーザ光21の反射光を反射して、光学フィルタ24に導く。
また、光学フィルタ24を透過した光が集光レンズ25を介してレーザ干渉変位計37に集光する点が異なる。ここで、レーザ干渉変位計37は、ファブリペロー干渉計、位相共役光学素子を用いたレーザ干渉計が望ましい。
なお、本実施例は、実施例2をべースに説明したが、実施例1や3の構成に適用してもよい。
本実施例は、レーザ超音波装置が欠陥を検査するレーザ超音波欠陥検査装置である場合について説明する。
図5は本実施例におけるレーザ超音波装置のブロック構成図である。図5において、図1と同じ構成要件は同じ符号を付し、その説明は省略する。
図5において、第一パルス幅変換部38は、レーザ装置1から出射したレーザ光がレーザビームスプリッタ3により分岐された第一レーザ光のパルス幅を変換する第一パルス幅変換部であり、図1における第一パルス幅変換用光ファイバ8、または、図3における回折格子対32に対応する。なお、スペクトル幅拡大用光ファイバ6を有していてもよい。
また、第二パルス幅変換部39は、レーザビームスプリッタ3により分岐された第二レーザ光のパルス幅を変換する第二パルス幅変換部であり、図1における第二パルス幅変換用光ファイバ17、または、図3における回折格子対34に対応する。なお、図1における波長変換用結晶15、または、図2におけるスペクトル幅拡大用光ファイバ29を有していてもよい。
パルス伝搬時間調整部40は、第一レーザ光の伝搬時間を調整するパルス伝搬時間調整部であり、図1におけるレーザ光遅延回路20に相当する。なお、図1では、レーザ光遅延回路20は第二レーザ光の伝搬時間を調整するためのものであるが、第一レーザ光によって発生した超音波が受信点に到達するタイミングに第二レーザ光を合わせるためのものであるので、第一レーザ光と第二レーザ光の相対時間を調整すればよく、第一レーザ光の伝搬時間を調整するようにしてもよい。
走査型ミラー42は、パルス伝搬時間調整部40によって伝搬時間を調整された第一レーザ光を検査対象物12に照射するために走査する走査型ミラーである。
第一レーザ光を検査対象物12に照射させることにより検査対象物12に励起された超音波47を発生させ、内部に欠陥48がある場合には欠陥48から欠陥エコー超音波49が発生する。
受信部43は、欠陥エコー超音波49によって生じる表面変位を第二レーザ光を照射することで欠陥エコー超音波49を検出する。これは、図1における光学フィルタ24とナイフエッジ型検出器26に対応し、また、図4における光学フィルタ24とレーザ干渉変位計37に相当する。
また、受信部43からの信号をアナログ信号からデジタル信号に変換するA/D(Analog/Digital)変換器44、A/D変換器44からの信号を処理して欠陥検出する信号処理ユニット45、信号処理ユニット45での処理結果から検出画像を生成する画像化装置46から構成される。
このように、単一のレーザ装置からのレーザ光を2つのレーザ光に分岐し、それぞれのレーザ光を励起用と検出用となるようにパルス幅変換し、それらを検査対象物に照射させることにより検査対象物に超音波47を発生させ、内部欠陥48からの欠陥エコー超音波49を検出し、その検出結果に基づいて検査対象物表面または内部の欠陥を検出する。これにより、安価でかつレーザ装置のメンテナンスならびに調整を容易にしたレーザ超音波装置を得ることができる。
本実施例は、レーザ超音波装置が検査対象物表面の特性を評価するレーザ超音波評価装置である場合について説明する。
図6は、本実施例におけるレーザ超音波装置のブロック構成図である。図6において、図5と同じ構成要件は同じ符号を付し、その説明は省略する。
図6において、図5と異なる点は、パルス伝搬時間調整部40によって伝搬時間を調整された第一レーザ光をミラー22を介して移動ステージ51に載せた検査対象物12に照射させることにより検査対象物12に表面超音波50を発生させ、その表面超音波50の伝搬速度を、受信部43、A/D変換器44、信号処理ユニット45、画像化装置46で評価する点である。測定位置は移動ステージ51を使用することで変えることができる。
これにより、本実施例では、検査対象物表面の特性を評価することができる。
1:レーザ装置、2:レーザ光、3、36:レーザビームスプリッタ、4、10:第一レーザ光、5:集光レンズ、6:スペクトル幅拡大用光ファイバ、7、11、14、16、23、25、30:集光レンズ、8:第一パルス幅変換用光ファイバ、9、18、31、33、35:コリメートレンズ、12:検査対象物、13、19、21:第二レーザ光、15:波長変換用結晶、17:第二パルス幅変換用光ファイバ、20:レーザ光遅延回路、22:ミラー、24:光学フィルタ、26:ナイフエッジ型光検出器、27:電気増幅器、28:デジタルオシロスコープ、29:スペクトル幅拡大用光ファイバ、32、34:回折格子対、37:レーザ干渉変位計、38:第一パルス幅変換部、39:第二パルス幅変換部、40:パルス伝搬時間調整部、41:制御コントローラ、42:走査型ミラー、43:受信部、44:A/D変換器、45:信号処理ユニット、46:画像化装置、47:レーザ励起の超音波、48:欠陥、49:欠陥エコー超音波、50:表面超音波、51:移動ステージ

Claims (12)

  1. レーザ装置と、
    該レーザ装置からのパルスレーザ光を第一レーザ光と第二レーザ光に分岐する分岐部と、
    該第一レーザ光のパルス幅を変換する第一パルス幅変換部と、
    該第一パルス幅変換部によってパルス幅が変換された第一レーザ光を検査対象物に導く第一光学系と、
    前記第二レーザ光のパルス幅を変換する第二パルス幅変換部と、
    該第二パルス幅変換部によってパルス幅が変換された第二レーザ光の伝搬時間を調整するパルス伝搬時間調整部と、
    前記パルス幅が変換され、かつ伝搬時間が調整された第二レーザ光を前記検査対象物に導く第二光学系と、
    前記第二レーザ光が検査対象物で反射されたときに、前記第一レーザ光で発生した超音波によって生じた検査対象物の表面変位の変化を検出する検出部とを具備していることを特徴とするレーザ超音波装置。
  2. 請求項1に記載のレーザ超音波装置であって、
    前記第一パルス幅変換部でパルス幅を変換する前記第一レーザ光のスペクトル幅を拡大するスペクトル幅拡大用部材をさらに有することを特徴とするレーザ超音波装置。
  3. 請求項1に記載のレーザ超音波装置であって、
    前記第二パルス幅変換部でパルス幅を変換する前記第二レーザ光の波長を変換する波長変換用部材をさらに有することを特徴とするレーザ超音波装置。
  4. 請求項1に記載のレーザ超音波装置であって、
    前記第二パルス幅変換部でパルス幅を変換する前記第二レーザ光のスペクトル幅を拡大するスペクトル幅拡大用部材をさらに有することを特徴とするレーザ超音波装置。
  5. 請求項2から4の何れか1項に記載のレーザ超音波装置であって、
    前記パルス伝搬時間調整部は、前記第一レーザ光によって発生した超音波が前記検査対象物を伝搬後、前記第二レーザ光が前記検査対象物上に照射された位置に到達するタイミングと同じタイミングで該第二レーザ光を前記検査対象物に照射するように調整することを特徴とするレーザ超音波装置。
  6. 請求項5記載のレーザ超音波装置であって、
    前記第一パルス幅変換部ならびに前記第二パルス幅変換部は、所定の長さを有する光ファイバであって、該光ファイバを介して該光ファイバの分散特性を用いて、前記第一レーザ光と前記第二レーザ光を所望のパルス幅に変換することを特徴とするレーザ超音波装置。
  7. 請求項5記載のレーザ超音波装置であって、
    前記第一パルス幅変換部ならびに前記第二パルス幅変換部は回折格子対であり、該回折格子対を介して該回折格子対の分散特性を用いて、前記第一レーザ光と前記第二レーザ光を所望のパルス幅に変換することを特徴とするレーザ超音波装置。
  8. 請求項5記載のレーザ超音波装置であって、
    前記パルス伝搬時間調整部は、前記第二レーザ光を多重反射させることにより該第二レーザ光の前記検査対象物に到達する時間を調整することを特徴とするレーザ超音波装置。
  9. 請求項6から8の何れか1項に記載のレーザ超音波装置であって、
    前記検出部はレーザ干渉計であることを特徴とするレーザ超音波装置。
  10. 請求項6から8の何れか1項に記載のレーザ超音波装置において、
    前記検出部はナイフエッジ法を用いて検出することを特徴とするレーザ超音波装置。
  11. 請求項9または10に記載のレーザ超音波装置であって、
    前記第一レーザ光を前記検査対象物に照射させることにより該検査対象物に超音波を発生させ、一方、前記第二レーザ光を前記検査対象物に照射し、その反射光を検出し、その検出結果に基づいて前記検査対象物の表面または内部の欠陥を検出することを特徴とするレーザ超音波装置。
  12. 請求項9または10に記載のレーザ超音波装置であって、
    前記第一レーザ光を前記検査対象物に照射させることにより該検査対象物に超音波を発生させ、一方、前記第二レーザ光を前記検査対象物に照射し、その反射光を検出し、その検出結果に基づいて、超音波の伝搬速度を評価することで、前記検査対象物の表面の特性を評価することを特徴とするレーザ超音波装置。
JP2017240100A 2017-12-15 2017-12-15 レーザ超音波装置 Pending JP2019105616A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017240100A JP2019105616A (ja) 2017-12-15 2017-12-15 レーザ超音波装置
US16/178,263 US10921290B2 (en) 2017-12-15 2018-11-01 Laser ultrasonic testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240100A JP2019105616A (ja) 2017-12-15 2017-12-15 レーザ超音波装置

Publications (1)

Publication Number Publication Date
JP2019105616A true JP2019105616A (ja) 2019-06-27

Family

ID=66814332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240100A Pending JP2019105616A (ja) 2017-12-15 2017-12-15 レーザ超音波装置

Country Status (2)

Country Link
US (1) US10921290B2 (ja)
JP (1) JP2019105616A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061905A (zh) * 2021-09-28 2022-02-18 长春理工大学 组合激光产生激光吸收波装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255306A (ja) * 2000-03-09 2001-09-21 Natl Inst Of Advanced Industrial Science & Technology Meti レーザ超音波装置
JP2003215110A (ja) * 2002-01-17 2003-07-30 Nippon Steel Corp レーザ超音波検査装置及びレーザ超音波検査方法
JP2004055626A (ja) * 2002-07-16 2004-02-19 Nippon Telegr & Teleph Corp <Ntt> パルス幅制御装置並びにそれを用いたTHz電磁波発生装置及び発生方法
JP2006251247A (ja) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology 超短パルスレーザー発生方法および装置
JP2007017301A (ja) * 2005-07-07 2007-01-25 Toshiba Corp レーザ超音波受信装置
JP2008116209A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 超音波多重エコー計測装置
JP2010008054A (ja) * 2008-06-24 2010-01-14 Olympus Corp 多光子励起測定装置
JP2011179928A (ja) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd レーザ超音波探傷装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8312772B2 (en) * 2007-02-28 2012-11-20 Rudolph Technologies, Inc. Characterization with picosecond ultrasonics of metal portions of samples potentially subject to erosion
US9576862B2 (en) * 2013-03-15 2017-02-21 Rudolph Technologies, Inc. Optical acoustic substrate assessment system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255306A (ja) * 2000-03-09 2001-09-21 Natl Inst Of Advanced Industrial Science & Technology Meti レーザ超音波装置
JP2003215110A (ja) * 2002-01-17 2003-07-30 Nippon Steel Corp レーザ超音波検査装置及びレーザ超音波検査方法
JP2004055626A (ja) * 2002-07-16 2004-02-19 Nippon Telegr & Teleph Corp <Ntt> パルス幅制御装置並びにそれを用いたTHz電磁波発生装置及び発生方法
JP2006251247A (ja) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology 超短パルスレーザー発生方法および装置
JP2007017301A (ja) * 2005-07-07 2007-01-25 Toshiba Corp レーザ超音波受信装置
JP2008116209A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 超音波多重エコー計測装置
JP2010008054A (ja) * 2008-06-24 2010-01-14 Olympus Corp 多光子励起測定装置
JP2011179928A (ja) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd レーザ超音波探傷装置
US20120304774A1 (en) * 2010-02-26 2012-12-06 Masahito Ishioka Laser ultrasonic flaw detection apparatus

Also Published As

Publication number Publication date
US20190187103A1 (en) 2019-06-20
US10921290B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
JP4830096B2 (ja) 距離測定装置および距離測定方法
JP6386655B2 (ja) テラヘルツ波発生装置及びそれを用いた分光装置
KR20170003086A (ko) 테라헤르츠파를 이용한 실시간 비접촉 비파괴 두께 측정장치
US20150369742A1 (en) Measuring apparatus and measuring method
JP5095289B2 (ja) 干渉縞安定化装置およびそれを用いた非破壊検査装置
CN110567595B (zh) 一种瞬态超短脉冲时间宽度的实时测量方法及系统
WO2020075441A1 (ja) 分光分析用光源、分光分析装置及び分光分析方法
EP3376207B1 (en) Optical test apparatus
CN104880258B (zh) 超短光脉冲近场关联脉宽测量装置和测量方法
EP3877724B1 (en) Method and device for in situ process monitoring
KR20120113161A (ko) 푸아송비의 계측 방법 및 계측 장치
JP6877713B2 (ja) 周波数シフトテラヘルツ波発生装置及び発生方法、周波数シフトテラヘルツ波計測装置及び計測方法、断層状態検出装置及び検出方法、サンプル特性計測装置、計測方法
JP2019105616A (ja) レーザ超音波装置
JPH08285823A (ja) 超音波検査装置
JP4853255B2 (ja) ガス分析装置
CN113677951B (zh) 光距离测定装置
JP5600374B2 (ja) テラヘルツ分光装置
CN107907980B (zh) 一种干涉仪
JP2007101370A (ja) テラヘルツ分光装置
JP2003185639A (ja) レーザ超音波検査装置
Rousseau et al. Hadamard multiplexing in laser ultrasonics
JP2017053743A (ja) 速度測定装置および速度測定方法
JP2016029340A (ja) 計測装置
KR20100043463A (ko) 테라헤르츠 펄스파 푸리에 변환 분광기 및 그 분광기를 이용한 분광방법
US10302487B2 (en) Noise reduction apparatus and detection apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005