JP2017189045A - Storage battery system and storage battery control method - Google Patents

Storage battery system and storage battery control method Download PDF

Info

Publication number
JP2017189045A
JP2017189045A JP2016077011A JP2016077011A JP2017189045A JP 2017189045 A JP2017189045 A JP 2017189045A JP 2016077011 A JP2016077011 A JP 2016077011A JP 2016077011 A JP2016077011 A JP 2016077011A JP 2017189045 A JP2017189045 A JP 2017189045A
Authority
JP
Japan
Prior art keywords
storage battery
threshold value
storage
charge
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016077011A
Other languages
Japanese (ja)
Inventor
佑輝 茗荷谷
Yuki Myogadani
佑輝 茗荷谷
博充 今野
Hiromitsu Konno
博充 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016077011A priority Critical patent/JP2017189045A/en
Publication of JP2017189045A publication Critical patent/JP2017189045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a performance in a whole power storage system and extend a storage battery life after eliminating restrictions on characteristics of a plurality of storage batteries.SOLUTION: A storage battery system comprises: a plurality of storage batteries 106A and 106B to which invertors 104A and 104B are individually connected and which can be individually charged and discharged; and a storage battery monitoring control device 103 that monitors a charging amount of the plurality of storage batteries and individually applies a charging command or a discharging command to the plurality of storage batteries. The storage battery monitoring control device 103 sets a first threshold value and a second threshold value, which is a charging amount smaller than the first threshold value, between an upper limit charging amount and a lower limit charging amount determined by a charging capacity of the storage battery as the charging amount of each storage battery. The storage battery monitoring control device 103 performs load distribution control in which the charge or discharge in the plurality of storage batteries are combined so that a charging amount between the first and second thresholds is preferentially set for each storage battery.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電池システム及び蓄電池制御方法に関する。   The present invention relates to a storage battery system and a storage battery control method.

現在、電力会社から供給される電力の大部分は火力発電、水力発電、原子力発電によって生成されたものである。しかし近年、環境負荷軽減の観点から、再生可能エネルギー(太陽光発電、風力発電等)を利用する発電システムの導入が増加している。   Currently, most of the power supplied by electric power companies is generated by thermal power generation, hydroelectric power generation, and nuclear power generation. However, in recent years, the introduction of power generation systems that use renewable energy (solar power generation, wind power generation, etc.) is increasing from the viewpoint of reducing environmental impact.

太陽光や風力などの自然エネルギーを用いて発電するシステムは、環境変化の影響を受けやすいため出力変動が激しく、電力系統を不安定にさせる要因となっている。そのため、再生可能エネルギーによる発電システムには、複数の蓄電池が複数直並列に接続されている大容量の蓄電池システムを併設し、電力系統の安定化を図ることが行われている。   Systems that generate electricity using natural energy such as sunlight and wind power are susceptible to environmental changes, and output fluctuations are severe, causing the power system to become unstable. For this reason, a power generation system using renewable energy is provided with a large-capacity storage battery system in which a plurality of storage batteries are connected in series and parallel to stabilize the power system.

蓄電池を用いて電力系統を安定化させる為には、電力系統の需要と供給のバランスを取る必要があり、必要に応じて併設された蓄電池に充放電させている。しかし、充電と放電の割合が1対1となる事は極めて少なく、通常はどちらか一方に偏る傾向がある。具体的には、蓄電池の充電率(SOC:State Of Charge)は、蓄電池の充放電可能な容量から決まる上限値又は下限値に到達しやすく、上限値又は下限値に到達した場合、蓄電池が過充電又は過放電にならないよう出力を制限又は停止することになる。なお、以下の説明では、実際の運用時に設定される上限値及び下限値を、SOC上限値及びSOC下限値と称する。   In order to stabilize an electric power system using a storage battery, it is necessary to balance the demand and supply of the electric power system, and the storage battery provided side by side is charged and discharged as necessary. However, the ratio of charging and discharging is extremely rare, and usually tends to be biased to either one. Specifically, the state of charge (SOC) of the storage battery easily reaches an upper limit value or a lower limit value determined from the chargeable / dischargeable capacity of the storage battery. The output is limited or stopped so as not to be charged or overdischarged. In the following description, the upper limit value and the lower limit value set during actual operation are referred to as the SOC upper limit value and the SOC lower limit value.

蓄電池は、充電池時にはSOC上限値まで充電され、放電時にはSOC下限値まで放電される。例えばある蓄電池システムでは、蓄電池の満充電容量を100%としたとき、SOC上限値を85%、SOC下限値を15%として、その85%と15%との間で充放電を行う運用が行われる。これは、100%までの満充電や0%までの完全な放電で蓄電池が劣化することを防ぐためである。
しかしながら、上述したSOC上限値やSOC下限値は、蓄電池の特性上劣化が完全に防げる値ではなく、蓄電池を使う上での経済性と電池寿命とのバランスを取った値に設定される。すなわち、SOC上限値とSOC下限値との間で決まる蓄電池の実充電容量が少なすぎると、蓄電池システムが充電できる容量が非常に少なくなってしまうため、ある程度の劣化があることを前提として、上述した85%や15%の値を設定している。したがって、実際の運用上では、蓄電池の充電率がSOC上限値やSOC下限値の状態で継続することは好ましくない。
The storage battery is charged to the SOC upper limit value when the battery is charged, and discharged to the SOC lower limit value when discharging. For example, in a certain storage battery system, assuming that the full charge capacity of the storage battery is 100%, the SOC upper limit value is 85%, the SOC lower limit value is 15%, and charging / discharging is performed between 85% and 15%. Is called. This is to prevent the storage battery from being deteriorated by full charge up to 100% or complete discharge up to 0%.
However, the above-described SOC upper limit value and SOC lower limit value are not values that can completely prevent deterioration due to the characteristics of the storage battery, but are set to values that balance economics and battery life in using the storage battery. That is, if the actual charge capacity of the storage battery determined between the SOC upper limit value and the SOC lower limit value is too small, the capacity that can be charged by the storage battery system will be very small. The values of 85% and 15% are set. Therefore, in actual operation, it is not preferable that the charging rate of the storage battery continues in a state where the SOC upper limit value or the SOC lower limit value is reached.

特許文献1には、蓄電池システムにおいて、特性の異なる複数の蓄電池を備えて、その特性の異なる複数の蓄電池への分配状況を変化させる技術が開示されている。特許文献1に記載の技術によれば、特性の異なる複数の蓄電池を用意して、それぞれの蓄電池の特性に合わせた制御を行うことで、蓄電システム全体としてのパフォーマンスの向上を図ることができるとされている。   Patent Document 1 discloses a technique in which a storage battery system includes a plurality of storage batteries having different characteristics and changes the distribution status to the plurality of storage batteries having different characteristics. According to the technology described in Patent Document 1, by preparing a plurality of storage batteries having different characteristics and performing control according to the characteristics of each storage battery, it is possible to improve the performance of the entire storage system. Has been.

WO2014/118903WO2014 / 118903

ところが、特許文献1に記載されるように特性の異なる複数の蓄電池でシステムを構築した場合には、既存の蓄電池システムにそのまま適用することができないという問題がある。通常、複数の蓄電池で構成される大容量の蓄電池システムは、同じ特性の蓄電池を多数使用したシステムが一般的である。したがって、既存の蓄電池システムに、制御用ソフトウェアの変更で、特許文献1に記載された蓄電池制御技術を適用することは困難であり、蓄電池の入れ替えなどの大規模な改修が必要になってしまう。   However, as described in Patent Document 1, when a system is constructed with a plurality of storage batteries having different characteristics, there is a problem that it cannot be applied to an existing storage battery system as it is. In general, a large-capacity storage battery system including a plurality of storage batteries is generally a system using a large number of storage batteries having the same characteristics. Therefore, it is difficult to apply the storage battery control technique described in Patent Document 1 to the existing storage battery system by changing the control software, and a large-scale modification such as replacement of the storage battery becomes necessary.

本発明の目的は、複数の蓄電池の特性についての制約をなくした上で、蓄電システム全体としてのパフォーマンスの向上及び蓄電池の寿命の長寿命化を図ることができる蓄電池システム及び蓄電池制御方法を提供することにある。   An object of the present invention is to provide a storage battery system and a storage battery control method capable of improving the performance of the entire power storage system and extending the life of the storage battery while eliminating restrictions on characteristics of a plurality of storage batteries. There is.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならは、個別にインバーターが接続されて個別に充電及び放電が可能な複数の蓄電池と、複数の蓄電池の充電量を監視して、複数の蓄電池に対して個別に充電指令又は放電指令を与える蓄電池監視制御装置とを備える蓄電池システムに適用される。
そして、蓄電池監視制御装置は、それぞれの蓄電池の充電量として、蓄電池の充電容量から決まる上限充電量と下限充電量との間に、第1閾値と第1閾値よりも小さな充電量の第2閾値を設定し、それぞれの蓄電池が、第1閾値と第2閾値の間の充電量が優先的に設定されるように、複数の蓄電池での充電又は放電を組み合わせた負荷分散制御を行う。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-mentioned problems. For example, a plurality of storage batteries that are individually connected to an inverter and can be charged and discharged individually, and a charge amount of the plurality of storage batteries are monitored. And it applies to a storage battery system provided with the storage battery monitoring control apparatus which gives a charge command or a discharge command separately with respect to a some storage battery.
Then, the storage battery monitoring and control device sets the charge amount of each storage battery between the upper limit charge amount determined from the charge capacity of the storage battery and the lower limit charge amount, and a second threshold value with a charge amount smaller than the first threshold value. Is set, and each storage battery performs load distribution control that combines charging or discharging with a plurality of storage batteries so that the charge amount between the first threshold value and the second threshold value is set preferentially.

本発明によれば、複数設置した蓄電池の内で、特定の蓄電池の充電量が第1閾値に達したとき、別の蓄電池の充電量を調整して、SOC上限値に到達するのを防ぐ運用が可能になり、SOC上限値やSOC下限値に達する回数を減少させる運用が可能になる。したがって、本発明によれば、蓄電池の劣化を防ぎつつ、蓄電池システムのパフォーマンスを改善することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, among a plurality of installed storage batteries, when the charge amount of a specific storage battery reaches the first threshold value, the charge amount of another storage battery is adjusted to prevent reaching the SOC upper limit value. Thus, it is possible to reduce the number of times the SOC upper limit value or SOC lower limit value is reached. Therefore, according to the present invention, it is possible to improve the performance of the storage battery system while preventing the deterioration of the storage battery.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施の形態例の蓄電池システム全体の例を示す構成図である。It is a block diagram which shows the example of the whole storage battery system of one embodiment of this invention. 本発明の一実施の形態例のインバーター負荷率と電力変換効率との対応の例を示す特性図である。It is a characteristic view which shows the example of a response | compatibility with the inverter load factor of one embodiment of this invention, and power conversion efficiency. 本発明の一実施の形態例による蓄電池の制御処理例を示すフローチャートである。It is a flowchart which shows the control processing example of the storage battery by one embodiment of this invention. 本発明の一実施の形態例による複数の蓄電池の運用例を示す制御状態図である。It is a control state figure showing an example of operation of a plurality of storage batteries by one example of an embodiment of the present invention. 本発明の一実施の形態例による変換効率によって変更する制御処理例を示すフローチャートである。It is a flowchart which shows the example of control processing changed with the conversion efficiency by one embodiment of this invention. 本発明の一実施の形態例による累積充放電時間によって変更する制御処理例を示すフローチャートである。It is a flowchart which shows the example of a control process changed with the accumulation charge / discharge time by the example of 1 embodiment of this invention. 本発明の一実施の形態例による需給バランスの変化によって閾値を変更する制御処理例を示すフローチャートである。It is a flowchart which shows the example of control processing which changes a threshold value with the change of the supply-and-demand balance by the example of 1 embodiment of this invention.

以下、本発明の一実施の形態の例(以下、「本例」と称する。)を、図1〜図7を参照して説明する。
[1.蓄電池システムの構成例]
図1は、本例の蓄電池システム100の構成例を示す。
蓄電池システム100は、電力系統101が備える交流ライン107に接続される。蓄電池システム100は、電源ライン107に接続された複数のインバーター104A,104Bを備え、それぞれのインバーター104A,104Bに直流ライン105A,105Bを介して蓄電池106A,106Bが接続される。本例の蓄電池システム100が備える各蓄電池106A,106Bは、同じ特性及び容量の電池を使用する場合と、異なる特性又は容量のものを使用する場合のいずれでもよい。また、2つの蓄電池106A,106Bを備える例としたのは一例であり、蓄電池システム100は、より多くの蓄電池を備える構成としてもよい。
Hereinafter, an example of an embodiment of the present invention (hereinafter referred to as “this example”) will be described with reference to FIGS.
[1. Configuration example of storage battery system]
FIG. 1 shows a configuration example of a storage battery system 100 of this example.
Storage battery system 100 is connected to AC line 107 provided in power system 101. The storage battery system 100 includes a plurality of inverters 104A and 104B connected to a power supply line 107, and storage batteries 106A and 106B are connected to the inverters 104A and 104B via DC lines 105A and 105B, respectively. Each of the storage batteries 106A and 106B provided in the storage battery system 100 of this example may be either a case where batteries having the same characteristics and capacity are used or a case where batteries having different characteristics or capacities are used. Moreover, the example provided with two storage batteries 106A and 106B is an example, and the storage battery system 100 may be configured to include more storage batteries.

インバーター104A,104B及び蓄電池106A,106Bは、蓄電池監視制御装置103により充電及び放電が個別に制御される。すなわち、蓄電池監視制御装置103は、それぞれの蓄電池106A,106Bの充電量をSOC情報SOC1,SOC2として取得し、各インバーター104A,104Bに充放電指令P1,P2を送り、充電又は放電を個別に制御する。
蓄電池監視制御装置103は、それぞれの蓄電池106A,106Bの充放電を個別に制御して、蓄電池106A,106Bに過度な充放電負荷が掛らないよう負荷分散処理を行う。
Charging and discharging of the inverters 104A and 104B and the storage batteries 106A and 106B are individually controlled by the storage battery monitoring control device 103. That is, the storage battery monitoring and control device 103 acquires the charge amounts of the respective storage batteries 106A and 106B as SOC information SOC1 and SOC2, and sends charge / discharge commands P1 and P2 to the inverters 104A and 104B to control charging or discharging individually. To do.
The storage battery monitoring control device 103 individually controls charging / discharging of the storage batteries 106A, 106B, and performs load distribution processing so that excessive charging / discharging loads are not applied to the storage batteries 106A, 106B.

蓄電池監視制御装置103には、外部のリモート監視制御装置102から充放電指令情報PXが供給される。リモート監視制御装置102は、電力系統101の状態に基づいて、蓄電池監視制御装置103に充放電指令情報PXを供給する。リモート監視制御装置102は、例えば、電力系統101に接続された太陽光発電所での発電量に基づいて、充電指令を行う。あるいは、電力系統101に接続された負荷の稼働状況に応じて、放電指令を行う。蓄電池監視制御装置103は、リモート監視制御装置102から供給される充放電指令情報PXに基づいて、蓄電池システム100全体の充電量又は放電量を決めて、各蓄電池106A,106Bの個々の充放電を設定する。   The storage battery monitoring control device 103 is supplied with charging / discharging command information PX from the external remote monitoring control device 102. The remote monitoring control device 102 supplies charge / discharge command information PX to the storage battery monitoring control device 103 based on the state of the power system 101. For example, the remote monitoring and control apparatus 102 issues a charging command based on the amount of power generated at a solar power plant connected to the power system 101. Alternatively, a discharge command is issued according to the operating status of the load connected to the power system 101. The storage battery monitoring control device 103 determines the charging amount or discharging amount of the entire storage battery system 100 based on the charging / discharging command information PX supplied from the remote monitoring control device 102, and performs individual charging / discharging of each storage battery 106A, 106B. Set.

蓄電池監視制御装置103は、各蓄電池106A,106Bの充放電を制御する際には、各蓄電池106A,106Bの充電残量が最適になるように、各蓄電池106A,106Bでの充電又は放電を組み合わせた負荷分散制御を行う。ここでの蓄電池監視制御装置103による負荷分散制御には、例えば一方の蓄電池106Aを充電させ、他方の蓄電池106Bでの充電を停止させる処理の他、一方の蓄電池106Aでの充電状況と他方の蓄電池106Bでの充電状況を変化させる処理がある。あるいは、蓄電池監視制御装置103による負荷分散制御として、一方の蓄電池106Aを充電させ、他方の蓄電池106Bを放電させるような、充電と放電を組み合わせた分散制御を行う場合もある。   When the storage battery monitoring control device 103 controls charging / discharging of each storage battery 106A, 106B, the storage battery 106A, 106B is combined with charging or discharging so that the remaining charge of each storage battery 106A, 106B is optimized. Perform load balancing control. The load distribution control by the storage battery monitoring and control device 103 here includes, for example, the process of charging one storage battery 106A and stopping the charging of the other storage battery 106B, as well as the charging status of the one storage battery 106A and the other storage battery. There is a process of changing the charging status at 106B. Alternatively, as load distribution control by the storage battery monitoring control device 103, distributed control combining charging and discharging, such as charging one storage battery 106A and discharging the other storage battery 106B, may be performed.

また、蓄電池監視制御装置103が充放電を制御する際には、各蓄電池106A,106Bの充電量として、SOC上限値及びSOC下限値の他に、そのSOC上限値とSOC下限値との間に、2つの閾値(第1閾値及び第2閾値)を設定して管理する。SOC上限値とSOC下限値は、各蓄電池106A,106Bの特性から決まる最大充電残量及び最低充電残量の値である。
第1閾値及び第2閾値の具体的な例としては、例えばSOC上限値及びSOC下限値を電池容量の85%及び15%としたとき、第1閾値を60%、第2閾値を40%とする(後述する図4参照)。各蓄電池106A,106Bの充電量がこの第1閾値と第2閾値との間であるとき、蓄電池の劣化が最も少ない状態になる。但し、蓄電池の劣化は、充放電回数や累積の使用時間などの様々な要因から発生し、第1閾値と第2閾値との間に充電残量を設定することは、蓄電池の劣化を抑える1つの要因となっている。
In addition, when the storage battery monitoring control device 103 controls charging / discharging, the charge amount of each storage battery 106A, 106B is between the SOC upper limit value and the SOC lower limit value in addition to the SOC upper limit value and the SOC lower limit value. Two threshold values (first threshold value and second threshold value) are set and managed. The SOC upper limit value and the SOC lower limit value are values of the maximum charge remaining amount and the minimum charge remaining amount determined from the characteristics of the storage batteries 106A and 106B.
As specific examples of the first threshold value and the second threshold value, for example, when the SOC upper limit value and the SOC lower limit value are 85% and 15% of the battery capacity, the first threshold value is 60% and the second threshold value is 40%. (See FIG. 4 described later). When the amount of charge of each storage battery 106A, 106B is between the first threshold value and the second threshold value, the storage battery is least deteriorated. However, the deterioration of the storage battery occurs due to various factors such as the number of times of charging / discharging and the cumulative usage time, and setting the remaining charge amount between the first threshold value and the second threshold value suppresses the deterioration of the storage battery 1 This is one factor.

なお、各蓄電池106A,106Bの充電や放電は、上述したようにインバーター106A,106Bの稼働により実行するが、以下の説明では、特に必要な場合を除いてインバーターの動作制御は省略し、単に蓄電池を充電又は放電と述べる。   The charging and discharging of the storage batteries 106A and 106B are performed by the operation of the inverters 106A and 106B as described above. However, in the following description, the operation control of the inverter is omitted unless particularly necessary, and the storage batteries are simply stored. Is referred to as charging or discharging.

[2.インバーターの変換効率の例]
図2は、インバーター104A,104Bの負荷率による電力変換効率の変化特性の一例を示す。図2の横軸はインバーター負荷率を示し、縦軸は電力変換効率を示す。但し、電力変換効率については、単にその傾向のみを示している。
図2に示すように、電力変換効率は、インバーター負荷率が10%以下の非常に低い状態では低く、インバーター負荷率が約30%になるまでインバーター負荷率の上昇に伴って電力変換効率が高くなる。電力変換効率のピークは、インバーター負荷率が約30%から約40%の範囲であり、40%よりもインバーター負荷率が高くなるに従って、電力変換効率が徐々に低くなる。
[2. Example of inverter conversion efficiency]
FIG. 2 shows an example of a change characteristic of the power conversion efficiency depending on the load factor of the inverters 104A and 104B. The horizontal axis in FIG. 2 indicates the inverter load factor, and the vertical axis indicates the power conversion efficiency. However, only the tendency is shown about power conversion efficiency.
As shown in FIG. 2, the power conversion efficiency is low when the inverter load factor is very low, 10% or less, and the power conversion efficiency increases as the inverter load factor increases until the inverter load factor reaches about 30%. Become. The peak of the power conversion efficiency is in the range where the inverter load factor is about 30% to about 40%, and the power conversion efficiency gradually decreases as the inverter load factor becomes higher than 40%.

したがって、電力変換効率に着目した場合には、各インバーター104A,104Bは、インバーター負荷率が10%以下になることを避けるのが好ましい。また、より高い効率で運転する場合には、負荷率が約30%から約40%の範囲であるのが好ましい。但し、この範囲は一例であり、電力変換効率が最も高くなる負荷率の範囲は、インバーターの形式によって異なる。
蓄電池監視制御装置103が各蓄電池106A,106Bでの充電又は放電を組み合わせた負荷分散制御を行う際には、制御要因の1つとして、この電力変換効率に着目する。蓄電池監視制御装置103が負荷分散制御を行う際に着目する他の制御要因については後述する。
Therefore, when paying attention to the power conversion efficiency, it is preferable that the inverters 104A and 104B avoid the inverter load factor of 10% or less. When operating with higher efficiency, the load factor is preferably in the range of about 30% to about 40%. However, this range is an example, and the range of the load factor at which the power conversion efficiency is highest differs depending on the inverter type.
When the storage battery monitoring control device 103 performs load distribution control that combines charging or discharging of the storage batteries 106A and 106B, attention is paid to the power conversion efficiency as one of the control factors. Other control factors of interest when the storage battery monitoring control device 103 performs load distribution control will be described later.

[3.蓄電池監視制御装置による制御処理例]
図3のフローチャートは、蓄電池監視制御装置103による複数の蓄電池106A,106Bの充放電を制御する処理例を示す。
まず、蓄電池監視制御装置103は、リモート監視制御装置102からの充放電指令情報PXにより、充電又は放電の指示があるか否かを判断する(ステップS11)。充電又は放電の指示がない場合には(ステップS11のNO)、充放電指令情報PXが供給されるまで待機する。
[3. Example of control processing by storage battery monitoring and control device]
The flowchart of FIG. 3 shows a processing example for controlling charging / discharging of the plurality of storage batteries 106 </ b> A and 106 </ b> B by the storage battery monitoring control device 103.
First, the storage battery monitoring control device 103 determines whether there is an instruction for charging or discharging based on the charging / discharging command information PX from the remote monitoring control device 102 (step S11). If there is no charge or discharge instruction (NO in step S11), the process waits until the charge / discharge command information PX is supplied.

充電又は放電の指示がある場合(ステップS11のYES)、蓄電池監視制御装置103は、現在の蓄電池106A,106Bの充電量が、第1閾値と第2閾値との間で管理可能な状態か否かを判断する(ステップS12)。ここでの第1閾値と第2閾値との間で管理可能な状態とは、例えば充電指示があるときに、第1閾値を超えた充電残量の蓄電池がある場合、あるいは、放電指示があるときに、第2閾値未満の充電残量の蓄電池がある場合に相当する。
ここで、第1閾値と第2閾値との間で管理可能な状態でない場合には(ステップS12のNO)、蓄電池監視制御装置103は、SOC上限値までの充電又はSOC下限値までの放電により、蓄電池106A,106Bを充放電する(ステップS13)。ステップS13での充電又は放電を開始した後、充電状況又は放電状況に変化があったときには、蓄電池監視制御装置103はステップS11の判断に戻る。
When there is an instruction for charging or discharging (YES in step S11), the storage battery monitoring control device 103 determines whether the current charge amount of the storage batteries 106A and 106B can be managed between the first threshold value and the second threshold value. Is determined (step S12). The state that can be managed between the first threshold value and the second threshold value here is, for example, when there is a charge instruction, when there is a storage battery with a remaining charge exceeding the first threshold value, or there is a discharge instruction. Sometimes this corresponds to the case where there is a storage battery with a remaining charge less than the second threshold.
Here, when the state is not manageable between the first threshold value and the second threshold value (NO in step S12), the storage battery monitoring control device 103 performs charging to the SOC upper limit value or discharging to the SOC lower limit value. Then, the storage batteries 106A and 106B are charged and discharged (step S13). When the charge state or the discharge state has changed after the start of the charge or discharge in step S13, the storage battery monitoring control device 103 returns to the determination in step S11.

ステップS12で、第1閾値と第2閾値との間で管理可能な状態であると判断した場合には(ステップS12のYES)、複数の蓄電池106A,106Bの充放電負荷を分散させた上で、第1閾値と第2閾値との間で充電又は放電を行う(ステップS14)。ここでの充放電負荷分散制御例は後述するが、単純に複数の蓄電池に充電や放電を分散させる以外に、充電時に一部の蓄電池を放電させる制御や、放電時に一部の蓄電池を充電させる制御を行う場合もある。
ステップS14での負荷分散制御が行われた状態での充電又は放電を開始した後、蓄電池監視制御装置103は、現在の負荷分散制御状態による蓄電池の組み合わせが適正か否かを判断する(ステップS15)。ここで、組み合わせが適正でない状況が発生した場合には(ステップS15のNO)、蓄電池監視制御装置103は、複数の蓄電池106A,106Bの充放電の組み合わせを変更して(ステップS16)、ステップS14の負荷分散制御状態に戻る。
また、組み合わせが適正である場合には(ステップS15のYES)、蓄電池監視制御装置103はステップS11の判断に戻る。
If it is determined in step S12 that the state can be managed between the first threshold value and the second threshold value (YES in step S12), the charge / discharge loads of the plurality of storage batteries 106A and 106B are dispersed. Then, charging or discharging is performed between the first threshold value and the second threshold value (step S14). An example of charge / discharge load distribution control will be described later, but in addition to simply distributing charge and discharge to a plurality of storage batteries, control for discharging some storage batteries during charging and charging some storage batteries during discharging In some cases, control is performed.
After starting charging or discharging in the state where the load distribution control is performed in step S14, the storage battery monitoring control device 103 determines whether or not the combination of storage batteries according to the current load distribution control state is appropriate (step S15). ). Here, when a situation where the combination is not appropriate occurs (NO in step S15), the storage battery monitoring control device 103 changes the combination of charging / discharging of the plurality of storage batteries 106A and 106B (step S16), and step S14. Return to the load balancing control state.
If the combination is appropriate (YES in step S15), the storage battery monitoring control device 103 returns to the determination in step S11.

なお、この図3のフローチャートに示す制御例では、蓄電池監視制御装置103は、各蓄電池106A,106Bの充電残量が第1閾値と第2閾値の間のとき、ステップS14で負荷分散制御を行うようにした。これに対して、ステップS13でのSOC上限値までの充電やSOC下限値までの放電を行う際にも、蓄電池監視制御装置103は、負荷分散制御を行うようにしてもよい。   In the control example shown in the flowchart of FIG. 3, the storage battery monitoring control device 103 performs load distribution control in step S14 when the remaining charge amount of each of the storage batteries 106A and 106B is between the first threshold value and the second threshold value. I did it. On the other hand, the storage battery monitoring control device 103 may perform load distribution control when performing charging to the SOC upper limit value or discharging to the SOC lower limit value in Step S13.

[4.具体的な充放電例]
図4は、2つの蓄電池106A,106Bを使って負荷分散制御を行う1つの例を示す。
ここでは、2つの蓄電池106A,106Bは同じ特性及び容量であり、SOC上限値を85%、SOC下限値を15%、第1閾値を60%、第2閾値を40%に設定した例である。図4において、縦軸は各蓄電池106A,106Bの充電残量であり、横軸は時間である。図4中で、実線の特性SOC1が一方の蓄電池106Aの充電残量を示し、破線の特性SOC2が他方の蓄電池106Bの充電残量を示す。また、図4中に二点差線で示す放電量IV1,IV2は、インバーター104A,104Bで変換した電力の積算量を示す。
[4. Specific charge / discharge example]
FIG. 4 shows an example in which load distribution control is performed using two storage batteries 106A and 106B.
Here, the two storage batteries 106A and 106B have the same characteristics and capacity, and are an example in which the SOC upper limit value is set to 85%, the SOC lower limit value is set to 15%, the first threshold value is set to 60%, and the second threshold value is set to 40%. . In FIG. 4, the vertical axis represents the remaining charge of each of the storage batteries 106A and 106B, and the horizontal axis represents time. In FIG. 4, a solid-line characteristic SOC1 indicates the remaining charge of one storage battery 106A, and a broken-line characteristic SOC2 indicates the remaining charge of the other storage battery 106B. In addition, discharge amounts IV1 and IV2 indicated by two-point difference lines in FIG. 4 indicate integrated amounts of electric power converted by the inverters 104A and 104B.

図4は、リモート監視制御装置102から放電指令が蓄電池監視制御装置103に届いた状態であって、各蓄電池106A,106Bは、いずれも充電残量が第1閾値(60%)で待機した状態を示している。そして、必要な放電量は、1個の蓄電池106Aの放電で確保でき、かつ負荷分散制御の点から蓄電池106Aだけを放電させるのが好ましいとする。この場合、蓄電池監視制御装置103は、蓄電池106Aを放電するように、インバーター104Aに充放電指令P1を送る。この充放電指令P1により、図4の期間t1での放電IV1が行われ、実線で示すように、蓄電池106Aの充電残量SOC1が徐々に低下する。   FIG. 4 shows a state in which a discharge command has arrived from the remote monitoring control device 102 to the storage battery monitoring control device 103, and each of the storage batteries 106A, 106B is in a standby state with the remaining charge remaining at the first threshold (60%). Is shown. The necessary amount of discharge can be secured by discharging one storage battery 106A, and it is preferable to discharge only the storage battery 106A from the viewpoint of load distribution control. In this case, the storage battery monitoring control device 103 sends a charge / discharge command P1 to the inverter 104A so as to discharge the storage battery 106A. With this charge / discharge command P1, discharge IV1 is performed in the period t1 in FIG. 4, and the remaining charge SOC1 of the storage battery 106A gradually decreases as shown by the solid line.

そして、放電開始から所定期間(図4の期間t1)放電が継続することで、蓄電池106Aの充電残量SOC1が、第2閾値(40%)未満に低下したとする。このとき、蓄電池監視制御装置103は、蓄電池106Aの放電を停止し、別の蓄電池106Bの放電を開始する。蓄電池106Bの放電を開始するために、蓄電池監視制御装置103は、インバーター104Bに充放電指令P2を送る。この充放電指令P2により、図4の期間t2に示す放電IV2が行われ、破線で示すように、蓄電池106Bの充電残量SOC2が徐々に低下する。   Then, it is assumed that the remaining charge SOC1 of the storage battery 106A has decreased to less than the second threshold (40%) by continuing the discharge for a predetermined period (period t1 in FIG. 4) from the start of discharge. At this time, the storage battery monitoring controller 103 stops discharging the storage battery 106A and starts discharging another storage battery 106B. In order to start the discharge of the storage battery 106B, the storage battery monitoring control device 103 sends a charge / discharge command P2 to the inverter 104B. With this charge / discharge command P2, discharge IV2 shown in period t2 in FIG. 4 is performed, and as shown by the broken line, the remaining charge SOC2 of storage battery 106B gradually decreases.

ここでは、蓄電池監視制御装置103は、蓄電池106Bの放電時に、インバーター104Aが充電用として作動するように充放電指令P1を送り、蓄電池106Bから放電した電流で蓄電池106Aを充電する。この充電により、第2閾値未満に低下した蓄電池106Aの充電残量SOC1が、第1閾値と第2閾値の間の範囲内に復帰する。   Here, the storage battery monitoring control device 103 sends a charge / discharge command P1 so that the inverter 104A operates for charging when the storage battery 106B is discharged, and charges the storage battery 106A with the current discharged from the storage battery 106B. As a result of this charging, the remaining charge SOC1 of the storage battery 106A that has dropped below the second threshold value returns to the range between the first threshold value and the second threshold value.

そして、蓄電池106Aの充電残量SOC1がある程度の値(例えば50%)になると、蓄電池監視制御装置103は、インバーター104Aが放電用として作動するように充放電指令P1を送り、蓄電池106Aを放電する。この充放電指令P1により、図4の期間t3での放電IV1が行われる。
このようにして、蓄電池監視制御装置103が、2つの蓄電池106A,106Bを交互に作動させる負荷分散処理を制御する。
When the remaining charge SOC1 of the storage battery 106A reaches a certain value (for example, 50%), the storage battery monitoring control device 103 sends a charge / discharge command P1 so that the inverter 104A operates for discharging, and discharges the storage battery 106A. . By this charge / discharge command P1, the discharge IV1 is performed in the period t3 in FIG.
In this way, the storage battery monitoring control device 103 controls the load distribution process that alternately operates the two storage batteries 106A and 106B.

[5.負荷分散処理時の判断要因の例]
次に、蓄電池監視制御装置103が負荷分散処理を実行する際の判断要因の例を説明する。
図5は、インバーター104A,104Bの変換効率から負荷分散処理状態を判断する処理例を示すフローチャートである。
まず、蓄電池監視制御装置103は、現在作動中の状態よりも変換効率が高くなる別の蓄電池(インバーター)の組み合わせがあるか否かを判断する(ステップS21)。ここで、現在作動中の組み合わせより変換効率が高くなる別の組み合わせがないと判断した場合には(ステップS21のNO)、蓄電池監視制御装置103は、現在の組み合わせを継続し、ステップS21の判断を繰り返し行う。
[5. Example of judgment factors during load balancing processing]
Next, an example of a determination factor when the storage battery monitoring control device 103 executes the load distribution process will be described.
FIG. 5 is a flowchart illustrating a processing example for determining the load distribution processing state from the conversion efficiency of the inverters 104A and 104B.
First, the storage battery monitoring control device 103 determines whether there is another storage battery (inverter) combination that has a higher conversion efficiency than the currently operating state (step S21). Here, if it is determined that there is no other combination that has higher conversion efficiency than the currently operating combination (NO in step S21), the storage battery monitoring control device 103 continues the current combination and determines in step S21. Repeat.

そして、現在作動中の組み合わせより変換効率が高くなる別の組み合わせが存在する場合には(ステップS21のYES)、蓄電池監視制御装置103は、充電又は放電する蓄電池の組み合わせを変更する(ステップS22)。ここでの組み合わせの変更には、作動中の各インバーター104A,104Bの負荷率の変更も含まれる。
ステップS22で充電又は放電する蓄電池の組み合わせを変更した後、ステップS21の判断に戻る。
このようにすることで、変換効率が常に高い状態で充電及び放電が行われるようになる。
And when there exists another combination whose conversion efficiency becomes higher than the combination currently actuated (YES of step S21), the storage battery monitoring control apparatus 103 changes the combination of the storage battery to charge or discharge (step S22). . The change of the combination here includes the change of the load factor of each of the inverters 104A and 104B in operation.
After changing the combination of storage batteries to be charged or discharged in step S22, the process returns to the determination in step S21.
By doing in this way, charging and discharging are performed in a state where the conversion efficiency is always high.

図6は、インバーター104A,104Bの累積充放電時間から負荷分散処理状態を判断して、インバーター104A,104Bの累積充放電時間をほぼ均等にする処理例を示すフローチャートである。
まず、蓄電池監視制御装置103は、現在のインバーター104A,104Bの累積充放電時間に偏りがあるか否かを判断する(ステップS31)。ここで、現在のインバーター104A,104Bの累積充放電時間に偏りがないと判断した場合には(ステップS31のNO)、蓄電池監視制御装置103は、現在の組み合わせを継続し、ステップS31の判断を繰り返す。
FIG. 6 is a flowchart showing a processing example in which the load distribution processing state is determined from the cumulative charge / discharge times of the inverters 104A and 104B, and the cumulative charge / discharge times of the inverters 104A and 104B are made substantially equal.
First, the storage battery monitoring control device 103 determines whether or not there is a bias in the current cumulative charge / discharge time of the inverters 104A and 104B (step S31). If it is determined that there is no bias in the current cumulative charge / discharge time of the inverters 104A and 104B (NO in step S31), the storage battery monitoring control device 103 continues the current combination and determines in step S31. repeat.

そして、現在の累積充放電時間に偏りがある場合には(ステップS31のYES)、蓄電池監視制御装置103は、累積充放電時間が少ないインバーターを優先的に使うように、充電又は放電する蓄電池の組み合わせを変更する(ステップS32)。ステップS32で充電又は放電する蓄電池の組み合わせを変更した後、ステップS31の判断に戻る。このようにすることで、インバーターや蓄電池の累積充放電時間がほぼ均等になる。   If there is a bias in the current accumulated charge / discharge time (YES in step S31), the storage battery monitoring control device 103 determines the storage battery to be charged or discharged so as to preferentially use an inverter having a short accumulated charge / discharge time. The combination is changed (step S32). After changing the combination of storage batteries to be charged or discharged in step S32, the process returns to the determination in step S31. By doing in this way, the accumulation charge / discharge time of an inverter or a storage battery becomes substantially equal.

蓄電池監視制御装置103は、これらの要因ごとの最適な負荷分散状態を総合的に判断して、実際に設定する負荷分散状態を決める。このとき、蓄電池監視制御装置103は、例えばそれぞれの要因ごとに優先度を決めて、優先度の高い要因をより反映させた負荷分散状態を行うようにしてもよい。なお、変換効率と累積充放電時間の2つの要因を使うのは一例であり、蓄電池監視制御装置103は、その他の要因を加えて負荷分散状態を決めるようにしてもよい。   The storage battery monitoring control device 103 comprehensively determines the optimum load distribution state for each of these factors, and determines the load distribution state to be actually set. At this time, the storage battery monitoring control device 103 may determine the priority for each factor, for example, and perform a load distribution state that more reflects the factor having a higher priority. Note that the use of two factors of conversion efficiency and cumulative charge / discharge time is merely an example, and the storage battery monitoring control device 103 may determine the load distribution state by adding other factors.

このように本例の蓄電池システム100によると、蓄電池106A,106B及びインバーター104A,104Bが適切に分散して使用されると共に、蓄電池106A,106Bの充電残量が適切に管理される。したがって、蓄電システム全体としてのパフォーマンスの向上及び蓄電池の寿命の長寿命化を図ることができる。例えば、蓄電池106Aの充電量が第1閾値に達したとき、別の蓄電池106Bの充電量を調整して、SOC上限値に到達するのを防ぐ運用が可能になり、SOC上限値やSOC下限値に達する回数を減少させる運用が可能になる。また、複数の蓄電池106A,106Bの累積充放電時間の偏りを防ぐこともできるようになり、蓄電システム全体としてのパフォーマンスの向上や蓄電池の寿命の長寿命化を図ることができる。   As described above, according to the storage battery system 100 of this example, the storage batteries 106A and 106B and the inverters 104A and 104B are appropriately dispersed and used, and the remaining charge of the storage batteries 106A and 106B is appropriately managed. Therefore, it is possible to improve the performance of the entire power storage system and extend the life of the storage battery. For example, when the amount of charge of the storage battery 106A reaches the first threshold, it becomes possible to adjust the amount of charge of another storage battery 106B to prevent the SOC upper limit value from being reached, and the SOC upper limit value or SOC lower limit value Operation to reduce the number of times to reach is possible. In addition, it is possible to prevent a bias in the accumulated charge / discharge time of the plurality of storage batteries 106A and 106B, and it is possible to improve the performance of the entire power storage system and extend the life of the storage battery.

しかも、本例の蓄電池システム100の場合には、複数の蓄電池106A,106Bの特性や容量がどのような組み合わせであっても適用が可能であり、複数の蓄電池を備えた種々の蓄電池システムに適用できるようになる。具体的には、複数の蓄電池106A,106Bは、特性や容量が同じである場合と、相違した場合のいずれであっても、本例の蓄電池システム100に適用が可能になる。このため、新規に作成する蓄電池システムに適用できることは勿論であるが、既存の蓄電池システムに、蓄電池監視制御装置103が行う制御機能を追加することでも適用できるようになる。   In addition, in the case of the storage battery system 100 of this example, it can be applied to any combination of characteristics and capacities of the plurality of storage batteries 106A and 106B, and can be applied to various storage battery systems including a plurality of storage batteries. become able to. Specifically, the plurality of storage batteries 106A and 106B can be applied to the storage battery system 100 of this example regardless of whether the characteristics and capacity are the same or different. Therefore, it can be applied to a newly created storage battery system, but it can also be applied by adding a control function performed by the storage battery monitoring control device 103 to an existing storage battery system.

[6.閾値を変更する例]
ここまでの説明では、SOC上限値やSOC下限値との間に設定する第1閾値及び第2閾値は、60%と40%に設定する例とした。これに対して、第1閾値と第2閾値は、そのときの状況に応じて可変設定するようにしてもよい。
図7は、蓄電池監視制御装置103が第1閾値と第2閾値を可変設定する処理例を示すフローチャートである。
[6. Example of changing threshold]
In the description so far, the first threshold value and the second threshold value set between the SOC upper limit value and the SOC lower limit value are set to 60% and 40%. On the other hand, the first threshold value and the second threshold value may be variably set according to the situation at that time.
FIG. 7 is a flowchart illustrating a processing example in which the storage battery monitoring control device 103 variably sets the first threshold value and the second threshold value.

まず蓄電池監視制御装置103は、電力系統101の状況と蓄電池システム100の状況から現在(又は近い将来)の需給バランスに変化があるか否かを判断する(ステップS41)。ここで、需給バランスに変化がないと判断したときには(ステップS41のNO)、各閾値を変更せずにそのまま待機する。   First, the storage battery monitoring and control apparatus 103 determines whether or not there is a change in the current supply / demand balance from the status of the power system 101 and the status of the storage battery system 100 (step S41). Here, when it is determined that there is no change in the supply-demand balance (NO in step S41), the process stands by without changing each threshold value.

そして、需給バランスに変化があると判断したとき、蓄電池監視制御装置103は、現在(又は予想される)需給バランスに基づいて第1閾値と第2閾値を、SOC上限値やSOC下限値との間で再設定する閾値設定処理を行う(ステップS42)。そして、蓄電池監視制御装置103は、その再設定した第1閾値と第2閾値で負荷分散制御を行う。その後、蓄電池監視制御装置103は、ステップS41の判断処理に戻る。   When determining that there is a change in the supply-demand balance, the storage battery monitoring control device 103 sets the first threshold value and the second threshold value based on the current (or expected) supply-demand balance to the SOC upper limit value and the SOC lower limit value. A threshold setting process is performed to reset the interval (step S42). And the storage battery monitoring control apparatus 103 performs load distribution control with the reset 1st threshold value and 2nd threshold value. Thereafter, the storage battery monitoring control device 103 returns to the determination process in step S41.

ステップS41での需給バランスの変化とは、例えば、電力系統101に接続された負荷機器が多く作動して、電力消費が増える状況になった場合や、電力系統101に接続された発電所(太陽光、風力など)での発電量が増える状況になった場合などが想定される。
また、予想される需給バランスとしては、特定の時間に稼働する機器がある場合や、天気予報などから発電量の変化が予想される場合などがある。
The change in the supply and demand balance in step S41 is, for example, when a large number of load devices connected to the power system 101 are activated to increase power consumption, or when a power plant connected to the power system 101 (solar It is assumed that the amount of power generated by light, wind power, etc. increases.
Moreover, as an expected supply and demand balance, there is a case where there is a device that operates at a specific time, and a case where a change in power generation amount is predicted from a weather forecast or the like.

このように需給バランスの変化に基づいて第1閾値と第2閾値を可変設定することで、各蓄電池106A,106Bを適切に負荷分散制御できる範囲が可変し、そのときの需給バランスに基づいた適切な運用が可能になる。   Thus, by variably setting the first threshold value and the second threshold value based on the change in the supply and demand balance, the range in which each storage battery 106A, 106B can be appropriately subjected to load distribution control is varied, and the appropriate value based on the supply and demand balance at that time Operation becomes possible.

[7.変形例]
なお、本発明は上述した実施の形態例に限定されるものではなく、様々な変形例又は応用例が含まれる。例えば、上述した実施の形態例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも図1などで説明した全ての構成を備えるものに限定されるものではない。
[7. Modified example]
Note that the present invention is not limited to the above-described embodiments, and includes various modifications and application examples. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described in FIG.

また、図1に示す構成では、説明を簡単にするために2組の蓄電池106A,106Bと2組のインバーター104A,104Bを備えたものとしたが、本発明は、3組以上の多数の蓄電池やインバーターを備えた蓄電システムに適用可能である。   Further, in the configuration shown in FIG. 1, two sets of storage batteries 106A and 106B and two sets of inverters 104A and 104B are provided for the sake of simplicity. However, the present invention is not limited to three sets of storage batteries. And can be applied to power storage systems equipped with inverters.

また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

100…蓄電池システム、101…電力系統、102…リモート監視制御装置、103…蓄電池監視制御装置、104A,104B…インバーター、105A,105B…直流ライン、106A,106B…蓄電池、107…交流ライン   DESCRIPTION OF SYMBOLS 100 ... Storage battery system, 101 ... Electric power system, 102 ... Remote monitoring control apparatus, 103 ... Storage battery monitoring control apparatus, 104A, 104B ... Inverter, 105A, 105B ... DC line, 106A, 106B ... Storage battery, 107 ... AC line

Claims (6)

個別にインバーターが接続されて個別に充電及び放電が可能な複数の蓄電池と、複数の前記蓄電池の充電量を監視して、複数の前記蓄電池に対して個別に充電指令又は放電指令を与える蓄電池監視制御装置とを備える蓄電池システムであり、
前記蓄電池監視制御装置は、それぞれの前記蓄電池の充電量として、蓄電池の充電容量から決まる上限充電量と下限充電量との間に、第1閾値と前記第1閾値よりも小さな充電量の第2閾値を設定し、それぞれの前記蓄電池が、前記第1閾値と前記第2閾値の間の充電量が優先的に設定されるように、複数の前記蓄電池での充電又は放電を組み合わせた負荷分散制御を行う
蓄電池システム。
A plurality of storage batteries that are individually connected to each other and can be charged and discharged individually, and a storage battery monitor that individually monitors a charge amount of the plurality of storage batteries and gives a charge command or a discharge command to the plurality of storage batteries individually A storage battery system comprising a control device,
The storage battery monitoring and control device has a first threshold value and a second charge amount smaller than the first threshold value between the upper limit charge amount and the lower limit charge amount determined from the charge capacity of the storage battery as the charge amount of each storage battery. Load balancing control combining charging or discharging of a plurality of the storage batteries so that a threshold value is set and each of the storage batteries is preferentially set with a charge amount between the first threshold value and the second threshold value Do a storage battery system.
前記蓄電池監視制御装置による前記負荷分散制御は、特定の前記蓄電池で充電を行うと同時に、特定の前記蓄電池以外の他の前記蓄電池で放電を行う
請求項1に記載の蓄電池システム。
The storage battery system according to claim 1, wherein the load distribution control by the storage battery monitoring control device is charged by the specific storage battery and simultaneously discharged by the storage battery other than the specific storage battery.
前記蓄電池監視制御装置は、複数の前記蓄電池での充電又は放電を組み合わせて、前記インバーターでの電力変換効率が高い所定の範囲内の負荷率を優先して使用する制御を行う
請求項1に記載の蓄電池システム。
The said storage battery monitoring control apparatus performs control which preferentially uses the load factor in the predetermined range with high power conversion efficiency in the said inverter combining the charge or discharge in the said some storage battery. Storage battery system.
前記蓄電池監視制御装置は、複数の前記蓄電池での充電又は放電を組み合わせて、複数の前記インバーターでの累積充放電時間がほぼ均等になる制御を行う
請求項1に記載の蓄電池システム。
The storage battery system according to claim 1, wherein the storage battery monitoring and control device performs control such that cumulative charge / discharge times in the plurality of inverters are substantially equal by combining charging or discharging in the plurality of storage batteries.
前記蓄電池監視制御装置は、接続された電力系統の需給バランスに関する情報を取得し、取得した需給バランスに関する情報に基づいて、前記第1閾値及び前記第2閾値を可変設定する
請求項1〜4のいずれか1項に記載の蓄電池システム。
The said storage battery monitoring control apparatus acquires the information regarding the supply-and-demand balance of the connected electric power grid | system, and variably sets the said 1st threshold value and the said 2nd threshold value based on the information regarding the acquired supply-and-demand balance. The storage battery system according to any one of the above.
個別にインバーターが接続されて個別に充電及び放電が可能な複数の蓄電池に対して、個別に充電指令又は放電指令を与える蓄電池制御方法であり、
それぞれの前記蓄電池の充電量として、蓄電池の充電容量から決まる上限充電量と下限充電量との間に、第1閾値と前記第1閾値よりも小さな充電量の第2閾値を設定する閾値設定処理と、
それぞれの前記蓄電池が、前記第1閾値と前記第2閾値の間の充電量が優先的に設定されるように、複数の前記蓄電池での充電又は放電を組み合わせた負荷分散制御を行う負荷分散制御処理とを含む
蓄電池制御方法。
A storage battery control method that individually gives a charge command or a discharge command to a plurality of storage batteries that can be individually charged and discharged by being individually connected to an inverter.
Threshold setting processing for setting a first threshold value and a second threshold value with a charge amount smaller than the first threshold value between the upper limit charge amount and the lower limit charge amount determined from the charge capacity of the storage battery as the charge amount of each storage battery When,
Load balancing control that performs load balancing control that combines charging or discharging of the plurality of storage batteries so that each of the storage batteries is preferentially set with a charge amount between the first threshold value and the second threshold value. A storage battery control method including processing.
JP2016077011A 2016-04-07 2016-04-07 Storage battery system and storage battery control method Pending JP2017189045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077011A JP2017189045A (en) 2016-04-07 2016-04-07 Storage battery system and storage battery control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077011A JP2017189045A (en) 2016-04-07 2016-04-07 Storage battery system and storage battery control method

Publications (1)

Publication Number Publication Date
JP2017189045A true JP2017189045A (en) 2017-10-12

Family

ID=60045082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077011A Pending JP2017189045A (en) 2016-04-07 2016-04-07 Storage battery system and storage battery control method

Country Status (1)

Country Link
JP (1) JP2017189045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123529A1 (en) * 2017-12-19 2019-06-27 東芝三菱電機産業システム株式会社 Storage battery system and operating method therefor
CN111162550A (en) * 2019-12-18 2020-05-15 安徽天尚清洁能源科技有限公司 Micro-grid complementary power supply method through storage battery transition
JPWO2021074976A1 (en) * 2019-10-15 2021-04-22

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097760A (en) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd Electric energy storage system
WO2011016273A1 (en) * 2009-08-04 2011-02-10 日本電気株式会社 Energy system
JP2014030334A (en) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd Power management device, power management method, and program
JP2014233096A (en) * 2011-09-27 2014-12-11 三洋電機株式会社 Charge and discharge system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097760A (en) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd Electric energy storage system
WO2011016273A1 (en) * 2009-08-04 2011-02-10 日本電気株式会社 Energy system
JP2014233096A (en) * 2011-09-27 2014-12-11 三洋電機株式会社 Charge and discharge system
JP2014030334A (en) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd Power management device, power management method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123529A1 (en) * 2017-12-19 2019-06-27 東芝三菱電機産業システム株式会社 Storage battery system and operating method therefor
JPWO2021074976A1 (en) * 2019-10-15 2021-04-22
WO2021074976A1 (en) * 2019-10-15 2021-04-22 株式会社東芝 Power storage system and control method
JP7458408B2 (en) 2019-10-15 2024-03-29 株式会社東芝 Power storage system and control method
CN111162550A (en) * 2019-12-18 2020-05-15 安徽天尚清洁能源科技有限公司 Micro-grid complementary power supply method through storage battery transition
CN111162550B (en) * 2019-12-18 2024-03-29 安徽尚特杰电力技术有限公司 Micro-grid complementary power supply method through storage battery transition

Similar Documents

Publication Publication Date Title
US11669144B2 (en) Methods and systems for distributed power control of flexible datacenters
KR101661704B1 (en) Microgrid energy management system and power storage method of energy storage system
JP2013192327A (en) Storage battery control device, storage battery control method, program, electricity storage system, and power supply system
US8084994B2 (en) System to extend the service life of portable devices
CN112585837A (en) Enhanced battery management system for battery packs
US20190148956A1 (en) Control of parallel battery utilization
US10211667B2 (en) Uninterrupted power supply systems and methods
EP3850462A1 (en) System of critical datacenters and behind-the-meter flexible datacenters
JP6430775B2 (en) Storage battery device
JP2013179729A (en) Storage battery control device, storage battery control method, program, power storage system and power supply system
JP6166338B2 (en) Energy storage system
US20160190821A1 (en) Energy storage system, method and apparatus for controlling charging and discharging of the same
WO2017101453A1 (en) Power supply control method and apparatus
US20150263564A1 (en) Energy storage system and method for driving the same
JP2017189045A (en) Storage battery system and storage battery control method
JP2016226120A (en) Power conditioner operation controller, operation control method, operation control program, and photovoltaic system
CN106159980B (en) Power generation system and energy management method
KR102243021B1 (en) Hybrid energy storage system and method of contolling the same
US9450417B2 (en) Method for efficiency-driven operation of dispatchable sources and storage units in energy systems
JP2014236602A (en) Multiple purpose controller, multiple purpose control system and program of multiple storage batteries
KR20210055283A (en) Method for controlling grid sustaining and distribution operation of distributed resources and apparatus thereof
WO2013162500A1 (en) Moderating a charging
US20160359327A1 (en) Microgrid system and control method for the same
EP3567691B1 (en) Composite power storage system and power storage method
JP6482170B2 (en) Energy management system, power system, energy management method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128