JP2017020795A - Bridge kinetic response evaluation method - Google Patents

Bridge kinetic response evaluation method Download PDF

Info

Publication number
JP2017020795A
JP2017020795A JP2015136079A JP2015136079A JP2017020795A JP 2017020795 A JP2017020795 A JP 2017020795A JP 2015136079 A JP2015136079 A JP 2015136079A JP 2015136079 A JP2015136079 A JP 2015136079A JP 2017020795 A JP2017020795 A JP 2017020795A
Authority
JP
Japan
Prior art keywords
bridge
acceleration
vehicle
coefficient
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015136079A
Other languages
Japanese (ja)
Inventor
弘大 松岡
Kota Matsuoka
弘大 松岡
渡辺 勉
Tsutomu Watanabe
勉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2015136079A priority Critical patent/JP2017020795A/en
Publication of JP2017020795A publication Critical patent/JP2017020795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bridge kinetic response evaluation method capable of performing an evaluation of a kinetic response/health of a bridge by acquiring an impact coefficient of the bridge without performing a deflection measurement operation by using an index based on a vertical acceleration response of a vehicle by paying an attention to a vehicle acceleration speed response of a train travelling on the bridge.SOLUTION: An acceleration speed meter for measuring a vertical acceleration speed is provided on all vehicles of a train, respectively and measures the vertical acceleration of each vehicle at the travelling time. Measurement data of the acceleration meter at the time of passing the bridge is extracted, and an individual vehicle amplification rate is calculated by dividing a feature amount of the waveform of the vertical acceleration speed measured by the acceleration speed meters of all vehicles by the feature amount of the vertical acceleration speed measured by an arbitrary reference vehicle in front of a traveling direction. The maximum value is extracted from among the individual vehicle amplification rates of all vehicles so as to calculate an acceleration speed amplification coefficient, and an impact coefficient of the bridge is calculated by applying the acceleration speed amplification coefficient to the relationship between the impact coefficient and the acceleration amplification coefficient of the bridge.SELECTED DRAWING: Figure 4

Description

本発明は、鉄道橋の動的応答評価方法に関し、特に橋梁を通過する際の走行列車の車両上下加速度応答を用いて橋梁の衝撃係数(動的応答成分)を求める方法に関する。   The present invention relates to a method for evaluating a dynamic response of a railway bridge, and more particularly to a method for determining an impact coefficient (dynamic response component) of a bridge using a vehicle vertical acceleration response of a traveling train when passing through the bridge.

高速鉄道用橋梁、高架橋などの鉄道橋では、図9に示すように、走行列車の規則的な車軸配置に起因した周期的な加振によって共振が発生し、大きな動的応答が生じる場合がある。   In railway bridges such as high-speed railway bridges and viaducts, as shown in FIG. 9, resonance may occur due to periodic excitation caused by the regular axle arrangement of the traveling train, and a large dynamic response may occur. .

そして、このような列車走行時に生じる大きな動的応答は、従来、衝撃係数として設計に反映されてきた。
この一方で、列車走行速度が飛躍的に高まり、また、鉄道橋の大半にPRC構造(プレストレストコンクリート構造)が採用されて低剛性桁が普及していることなどから、設計に用いる式の適用外になる事例が多くなり、現地測定でも従来を上回る列車走行時の橋梁の共振の発生が確認されている。なお、桁の低剛性化によって200km/h台の走行速度であっても共振により大きな応答が励起されるケースが確認されている。
Such a large dynamic response generated during train travel has been reflected in the design as an impact coefficient.
On the other hand, the train traveling speed has increased dramatically, and because the PRC structure (prestressed concrete structure) has been adopted for the majority of railway bridges and low-stiffness girders have become popular, the formulas used for design are not applicable. There are many cases that become, and on-site measurement has confirmed that the resonance of the bridge when traveling by train is higher than before. It has been confirmed that a large response is excited by resonance even at a traveling speed of 200 km / h due to the reduction in rigidity of the girders.

また、高速鉄道橋は列車走行時のたわみ制限が設けられているため、列車走行時の共振によって動的応答成分が大きく励起される場合には、その動的応答を評価するための重要な指標として衝撃係数が用いられている。さらに、衝撃係数は、鉄道橋のひび割れ等の劣化現象にも関連が深いことから維持管理における重要な指標でもある。   In addition, because high-speed railway bridges have a deflection limit during train travel, if dynamic response components are greatly excited by resonance during train travel, this is an important index for evaluating the dynamic response. The impact coefficient is used as Furthermore, the impact coefficient is also an important indicator in maintenance management because it is closely related to deterioration phenomena such as cracks in railway bridges.

そして、従来、鉄道橋の衝撃係数/動的応答を評価する際には、リング式変位計やビデオ計測、Uドップラー(レーザドップラー速度計を内蔵した構造物用非接触振動測定システム)などを用い、列車通過時の橋梁鉛直変位を橋梁側(地上側)で測定(たわみ測定)し、この測定結果を用いて衝撃係数を求めるようにしている(例えば、特許文献1参照)。   Conventionally, when evaluating the impact coefficient / dynamic response of a railway bridge, a ring displacement meter, video measurement, U Doppler (non-contact vibration measurement system for structures with built-in laser Doppler velocimeter), etc. are used. The vertical displacement of the bridge when passing through the train is measured on the bridge side (ground side) (deflection measurement), and the impact coefficient is obtained using this measurement result (see, for example, Patent Document 1).

特開2012−233758号公報JP 2012-233758 A

しかしながら、上記従来の橋梁動的応答評価方法では、各橋梁に対し、たわみ測定を橋梁側(地上側)で1箇所ずつ行う必要がある。このため、施工や共用環境に起因して構造性能(劣化の程度など)が大きく異なる場合もあるため、可能な限り長大な路線を構成する全ての鉄道橋に対して実施することが望ましいが、長大な路線の全ての鉄道橋に対して実施することは莫大な労力を要し、人的にも時間的にも困難である。   However, in the conventional bridge dynamic response evaluation method described above, it is necessary to perform one deflection measurement on each bridge side (on the ground side) for each bridge. For this reason, structural performance (such as the degree of deterioration) may vary greatly due to construction and shared environments, so it is desirable to implement it on all railway bridges that make up the longest possible route. Carrying out all railway bridges on a long line requires a lot of labor and is difficult both in terms of human and time.

なお、代表的な鉄道橋に対して実施するようにしたとしても、国道や鉄道、河川等の上に架設されている場合や、常に風が強い箇所では、たわみ測定自体が行えない場合もある。   Even if it is implemented for a typical railway bridge, there are cases where deflection measurement itself cannot be performed when it is built on national roads, railways, rivers, etc., or at places where wind is always strong. .

上記事情に鑑み、本発明は、橋梁上を走行する列車の車両加速度応答に着目し、車両の上下加速度応答に基づく指標を用いることにより、たわみ測定作業を行うことなく橋梁の衝撃係数を求め、動的応答の評価/橋梁の健全性の評価を行うことを可能にする橋梁動的応答評価方法を提供することを目的とする。   In view of the above circumstances, the present invention pays attention to the vehicle acceleration response of a train traveling on a bridge, and by using an index based on the vertical acceleration response of the vehicle, the impact coefficient of the bridge is obtained without performing a deflection measurement work. It is an object of the present invention to provide a bridge dynamic response evaluation method that enables dynamic response evaluation / bridge soundness evaluation.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の橋梁動的応答評価方法は、列車の全車両にそれぞれ上下加速度を計測する加速度計を設け、走行時の各車両の上下加速度を計測する車両加速度計測工程と、橋梁通過時の前記加速度計の計測データを抽出する橋梁通過時加速度データ抽出工程と、全車両の加速度計で計測した上下加速度の波形の特徴量を、走行方向前方の任意の基準車両で計測した上下加速度の特徴量で除して個別車両増幅率を算出する個別車両増幅率算出工程と、全車両の前記個別車両増幅率の中から最大値を抽出して加速度増幅係数を算出する加速度増幅係数算出工程と、予め求めた橋梁の衝撃係数と加速度増幅係数の関係に前記加速度増幅係数を当てはめて橋梁の衝撃係数を算出する衝撃係数算出工程とを備えていることを特徴とする。   The bridge dynamic response evaluation method according to the present invention includes a vehicle acceleration measuring step in which an accelerometer for measuring vertical acceleration is provided for all vehicles of a train, and the vertical acceleration of each vehicle during traveling is measured. The acceleration data extraction process at the time of passing the bridge that extracts the measurement data of the meter and the feature quantity of the waveform of the vertical acceleration measured by the accelerometer of all vehicles is the feature quantity of the vertical acceleration measured by any reference vehicle ahead in the running direction An individual vehicle amplification factor calculation step for calculating the individual vehicle amplification factor, an acceleration amplification factor calculation step for calculating an acceleration amplification factor by extracting a maximum value from the individual vehicle amplification factors of all vehicles, and a calculation in advance An impact coefficient calculating step of calculating the impact coefficient of the bridge by applying the acceleration amplification coefficient to the relationship between the impact coefficient of the bridge and the acceleration amplification coefficient.

また、本発明の橋梁動的応答評価方法においては、前記上下加速度の特徴量が橋梁通過時の加速度波形の最大値、最小値、RMSの少なくとも一つであることが望ましい。   In the bridge dynamic response evaluation method according to the present invention, it is desirable that the vertical acceleration feature amount is at least one of a maximum value, a minimum value, and an RMS of an acceleration waveform when passing through the bridge.

本発明の橋梁動的応答評価方法においては、走行する列車の車両の応答から簡易に且つ網羅的に橋梁の衝撃係数を求めて評価することができる。すなわち、各橋梁のたわみ測定を行うことなく、路線を構成する膨大な数の橋梁の衝撃係数を容易に把握することができる。   In the bridge dynamic response evaluation method of the present invention, the impact coefficient of the bridge can be obtained and evaluated simply and comprehensively from the response of the vehicle of the traveling train. That is, the impact coefficient of a huge number of bridges constituting a route can be easily grasped without measuring the deflection of each bridge.

また、走行する列車の車両の応答から簡易に且つ網羅的に橋梁の衝撃係数を求めることができるため、国道や鉄道、河川等の上に架設されている橋梁や、常に風が強い箇所の橋梁など、たわみ測定の実施が困難な橋梁であっても衝撃係数を取得することが可能になる。   In addition, since the impact coefficient of the bridge can be easily and comprehensively determined from the response of the train train, it is possible to determine the bridge constructed on national roads, railways, rivers, etc. The impact coefficient can be obtained even for bridges where it is difficult to perform deflection measurement.

さらに、列車の走行が日常的に実施されている場合には、衝撃係数の経時変化を追跡することも可能である。   Furthermore, when the train travels on a daily basis, it is also possible to track the change in impact coefficient with time.

よって、本発明の橋梁動的応答評価方法によれば、実際の構造性能に基づく弱点箇所の抽出、詳細測定箇所の選定が格段に容易になり、調査や管理を大幅に効率化することが可能になる。   Therefore, according to the bridge dynamic response evaluation method of the present invention, extraction of weak points based on actual structural performance and selection of detailed measurement points become much easier, and investigation and management can be made more efficient. become.

列車走行に伴ううなり現象による橋梁最大たわみ発生時点の変化を示す図である。It is a figure which shows the change at the time of the bridge | bridging maximum deflection | deviation generation | occurrence | production by the beating phenomenon accompanying train travel. 橋梁たわみと車両加速度の関係を示す図である。It is a figure which shows the relationship between bridge deflection and vehicle acceleration. 本発明の一実施形態に係る橋梁動的応答評価方法において、走行車両に対する加速度計の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the accelerometer with respect to a traveling vehicle in the bridge dynamic response evaluation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る橋梁動的応答評価方法を示す図であり、走行車両の加速度を用いた橋梁の衝撃係数推定方法を示すフロー図である。It is a figure which shows the bridge dynamic response evaluation method which concerns on one Embodiment of this invention, and is a flowchart which shows the impact coefficient estimation method of a bridge using the acceleration of a traveling vehicle. 径間長10mの橋梁における加速度振幅率と衝撃係数の関係の一例を示す図である。It is a figure which shows an example of the relationship between the acceleration amplitude rate and impact coefficient in a bridge with span length of 10 m. 加速度振幅率に基づく推定式(3)の推定精度を示す図である。It is a figure which shows the estimation precision of the estimation formula (3) based on an acceleration amplitude rate. 径間長45mの橋梁における加速度振幅率と衝撃係数の関係の一例を示す図である。It is a figure which shows an example of the relationship between the acceleration amplitude rate and impact coefficient in a bridge with span length of 45 m. 加速度振幅率に基づく推定式(4)の推定精度を示す図である。It is a figure which shows the estimation precision of the estimation formula (4) based on an acceleration amplitude rate. 列車走行時の鉄道橋の共振波形の一例を示す図である。It is a figure which shows an example of the resonance waveform of the railway bridge at the time of train travel.

以下、図1から図8を参照し、本発明の一実施形態に係る橋梁動的応答評価方法について説明する。   Hereinafter, a bridge dynamic response evaluation method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 8.

はじめに、鉄道橋においては、橋梁のたわみが大きいほど、車両に大きな加速度が励起される。また、列車の先頭車両通過時には橋梁に動的応答がほとんど発生しない(静的応答のみ)。   First, in a railway bridge, the greater the deflection of the bridge, the greater the acceleration of the vehicle. In addition, there is almost no dynamic response on the bridge when the train passes the top vehicle (only static response).

さらに、図1及び図2に示すように、列車1の各車両1aは前後2軸(各車両の前方の第1台車1bの2軸、後方の第2台車1cの2軸)、計4軸の車軸を備え、前後車両の連結部には前後車両の2軸ずつ、計4軸の車軸が集中配置されるのに対し、列車1の先頭と最後尾の車軸は2軸が配されることになる。このため、列車1の先頭と最後尾の2軸の車軸が通過する際の橋梁の動的応答は、車両1aの連結部の4軸の車軸が通過する際の動的応答よりも必然的に小さくなる(略半分になる)。   Further, as shown in FIGS. 1 and 2, each vehicle 1a of the train 1 has two front and rear axes (two axes of the first bogie 1b at the front of each vehicle and two axes of the second bogie 1c at the rear), for a total of four axes. A total of 4 axles are concentrated on the connecting part of the front and rear vehicles for each of the front and rear vehicles, whereas the front and rear axles of the train 1 have two axles. become. For this reason, the dynamic response of the bridge when the first and last two axles of the train 1 pass is inevitably more than the dynamic response when the four axles of the connecting portion of the vehicle 1a pass. It becomes small (almost half).

また、図1及び図2に示すように、共振速度での列車走行時には、後方車両であるほど、通過時により大きな動的応答が励起される。一方、共振速度付近での列車走行時には、うなり現象が生じるため、必ずしも後方車両であるほど、通過時により大きな動的応答が励起されるとは限らず、中間車両通過時に大きな動的応答が励起される。   Also, as shown in FIGS. 1 and 2, when the train travels at the resonance speed, a larger dynamic response is excited when the vehicle is passing as the vehicle is behind. On the other hand, since a whirling phenomenon occurs when the train travels near the resonance speed, the larger the dynamic response is not necessarily excited when passing the vehicle, the greater the dynamic response is excited when passing the intermediate vehicle. Is done.

本実施形態の橋梁動的応答評価方法では、上記の鉄道橋の特徴に着目し、図3に示すように、列車1の全ての車両1aの第1台車1b上及び/又は第2台車1c上に加速度計2を設け、列車走行時の上下方向の加速度を計測する(車両加速度計測工程)。また、列車の走行速度を随時計測する。   In the bridge dynamic response evaluation method of the present embodiment, paying attention to the characteristics of the above-mentioned railway bridge, as shown in FIG. 3, on the first carriage 1b and / or on the second carriage 1c of all the vehicles 1a of the train 1. Is provided with an accelerometer 2 to measure the acceleration in the vertical direction when the train travels (vehicle acceleration measurement step). In addition, the traveling speed of the train is measured at any time.

なお、加速度計2は、必ずしも各車両1aの第1台車1b上及び/又は第2台車1c上に設けることに限定しなくてもよい。また、この場合においても、できる限り測定箇所や車両振動に起因する誤差を減らすように、各車両1aで同じ箇所を加速度計設置位置に選定することが望ましい。   Note that the accelerometer 2 is not necessarily limited to being provided on the first carriage 1b and / or the second carriage 1c of each vehicle 1a. Also in this case, it is desirable to select the same location as the accelerometer installation position in each vehicle 1a so as to reduce errors caused by measurement locations and vehicle vibration as much as possible.

そして、図4に示すように、本実施形態の橋梁動的応答評価方法では、列車1の走行速度、径間長、始点キロ程、終点キロ程及び設計衝撃係数を収納した橋梁データに基づき、対象橋梁を列車1が通過しているときの全加速度計2の計測データを抽出する(橋梁通過時加速度データ抽出工程)。   And, as shown in FIG. 4, in the bridge dynamic response evaluation method of the present embodiment, based on the bridge data storing the traveling speed of the train 1, the span length, the starting kilometer, the terminal kilometer and the design impact coefficient, Measurement data of all accelerometers 2 when the train 1 is passing through the target bridge is extracted (acceleration data extraction process when passing through the bridge).

次に、下記の式(1)に示すように、全車両1aの第1台車1b上及び/又は第2台車1c上の加速度計2で計測した上下加速度の波形の特徴量を、走行方向前方の任意の基準車両(例えば2両目の車両(第2車両)1a)で計測した上下加速度の特徴量で除した値(個別車両増幅率Cai)を算出する(個別車両増幅率算出工程)。   Next, as shown in the following formula (1), the feature amount of the waveform of the vertical acceleration measured by the accelerometer 2 on the first carriage 1b and / or the second carriage 1c of all the vehicles 1a A value (individual vehicle gain Cai) divided by the feature amount of the vertical acceleration measured by any reference vehicle (for example, the second vehicle (second vehicle) 1a) is calculated (individual vehicle gain calculation step).

なお、前述の通り、列車1の先頭と最後尾の2軸の車軸が通過する際の橋梁の動的応答は、車両1aの連結部の4軸の車軸が通過する際の動的応答よりも必然的に小さくなるため、すなわち、先頭車両第1台車1bと最後尾車両第2台車1cの橋梁通過時は、他の台車通過時と比べ橋梁のたわみ量が小さいため、先頭や最後尾車両を除いた車両1aの上下加速度波形の特徴量を、基準車両1aで測定された上下加速度の特徴量で除した値を算出することが好ましい。   As described above, the dynamic response of the bridge when the first and last two axles of the train 1 pass is more than the dynamic response when the four axles of the connecting portion of the vehicle 1a pass. Since it is inevitably small, that is, the amount of flexure of the bridge is smaller when the first vehicle 1st carriage 1b and the last vehicle 2nd carriage 1c pass through the bridge than when the other carriage passes, It is preferable to calculate a value obtained by dividing the feature amount of the vertical acceleration waveform of the removed vehicle 1a by the feature amount of the vertical acceleration measured by the reference vehicle 1a.

ここで、各車両1aの上下加速度の特徴量としては、例えば橋梁通過時の加速度波形の最大値、最小値、RMS(平均振幅)などが挙げられる。   Here, examples of the feature amount of the vertical acceleration of each vehicle 1a include the maximum value, the minimum value, and RMS (average amplitude) of the acceleration waveform when passing through the bridge.

Figure 2017020795
Figure 2017020795

次に、下記の式(2)により、全車両1aの個別車両増幅率Caiの中から最大値を抽出して加速度増幅係数Caを算出する(加速度増幅係数算出工程)。なお、式(2)中のvec()はベクトルを、Max()は括弧内ベクトルから最大値を抽出することを意味する。   Next, the acceleration amplification coefficient Ca is calculated by extracting the maximum value from the individual vehicle amplification factors Cai of all the vehicles 1a by the following equation (2) (acceleration amplification coefficient calculation step). In equation (2), vec () means extracting a vector, and Max () means extracting a maximum value from a parenthesized vector.

Figure 2017020795
Figure 2017020795

次に、予め求めた橋梁の衝撃係数と加速度増幅係数の関係式に、式(2)で算出した加速度増幅係数Caを当てはめて橋梁の衝撃係数/衝撃係数推定値ia(=(静的+動的たわみ)/(静的たわみ)−1)を算出する(衝撃係数算出工程)。   Next, by applying the acceleration amplification coefficient Ca calculated in Expression (2) to the relational expression between the impact coefficient and acceleration amplification coefficient obtained in advance, the bridge impact coefficient / impact coefficient estimated value ia (= (static + dynamic) Target deflection) / (static deflection) -1) is calculated (impact coefficient calculation step).

ここで、図5、図6、下記の式(3)は、径間長40m未満の橋梁、車両1aの上下加速度の特徴量としてRMSを用いた場合の橋梁の衝撃係数と加速度増幅係数の関係、関係式を示している。   Here, FIG. 5, FIG. 6 and the following expression (3) are the relationship between the impact coefficient and acceleration amplification coefficient of the bridge when the RMS is used as the feature amount of the vertical acceleration of the bridge with a span length of less than 40 m. , Shows the relational expression.

また、図7、図8、下記の式(4)は、径間長40m以上の橋梁、車両1aの上下加速度の特徴量としてRMSを用いた場合の橋梁の衝撃係数と加速度増幅係数の関係、関係式を示している。   7 and 8, the following equation (4) is the relationship between the impact coefficient and acceleration amplification coefficient of the bridge when the RMS is used as the feature amount of the vertical acceleration of the bridge having a span length of 40 m or more, Relational expressions are shown.

Figure 2017020795
Figure 2017020795
Figure 2017020795
Figure 2017020795

これらの図に示す通り、実際の10両編成の新幹線車両及び鉄道橋での実測結果に基づき、径間長40m未満の橋梁の衝撃係数iaの推定式である式(3)は、車両/橋梁の動的相互作用を考慮した数値シミュレーション結果との比較により、0.7以上の衝撃係数を概ね誤差30%以下で推定可能であることが確認されている。   As shown in these figures, Equation (3), which is an estimation formula for the impact coefficient ia of a bridge with a span length of less than 40 m, based on the actual measurement results of Shinkansen vehicles with 10-car trains and railway bridges, is vehicle / bridge It is confirmed that an impact coefficient of 0.7 or more can be estimated with an error of 30% or less by comparing with the numerical simulation result in consideration of the dynamic interaction.

径間長40m以上の橋梁の衝撃係数iaの推定式である式(4)は、車両/橋梁の動的相互作用を考慮した数値シミュレーション結果との比較により、0.4以上の衝撃係数を概ね誤差15%以下で推定可能であることが確認されている。   Equation (4), which is an estimation formula for the impact coefficient ia of a bridge with a span length of 40 m or more, is roughly equivalent to an impact coefficient of 0.4 or more by comparison with the numerical simulation result considering the vehicle / bridge dynamic interaction. It has been confirmed that estimation is possible with an error of 15% or less.

また、本実施形態の橋梁動的応答評価方法では、複数回の走行が実施され、より多くの車両加速度波形がある場合には、逐次、図4に示した処理を行い、橋梁データベースに推定衝撃係数を蓄積していく。   Further, in the bridge dynamic response evaluation method of the present embodiment, when a plurality of runs are performed and there are more vehicle acceleration waveforms, the process shown in FIG. 4 is sequentially performed and the estimated impact is stored in the bridge database. Accumulate coefficients.

さらに、複数の車両加速度波形がある場合には、橋梁データベースに記録する情報として測定日を加える。また、推定した衝撃係数と列車速度および橋梁IDを橋梁データベースに収納する。   Furthermore, when there are a plurality of vehicle acceleration waveforms, the measurement date is added as information to be recorded in the bridge database. Further, the estimated impact coefficient, train speed, and bridge ID are stored in the bridge database.

そして、路線全体における各橋梁の推定衝撃係数を出力する(対象橋梁の衝撃係数出力工程)。このとき、例えば、推定衝撃係数が大きい橋梁上位数%、設計衝撃係数に対して推定衝撃係数が大きい橋梁上位数%、同一構造形式もしくは同一径間長の橋梁の中での推定衝撃係数が大きい橋梁上位数%など、指標に着目したランキング形式を用いることで、実際の構造性能に基づく弱点箇所の抽出、詳細測定箇所の選定が可能になる。   And the estimated impact coefficient of each bridge in the whole route is output (impact coefficient output process of object bridge). At this time, for example, the top number% of bridges with a large estimated impact coefficient, the top number% of bridges with a large estimated impact coefficient relative to the design impact coefficient, and the estimated impact coefficient in a bridge of the same structural type or the same span length is large. By using a ranking format that focuses on indicators, such as the top several percent of bridges, it is possible to extract weak spots based on actual structural performance and select detailed measurement locations.

したがって、本実施形態の橋梁動的応答評価方法においては、走行する列車1の車両1aの加速度応答から簡易に且つ網羅的に橋梁の衝撃係数を求めて評価することができる。すなわち、各橋梁のたわみ測定を行うことなく、路線を構成する膨大な数の橋梁の衝撃係数を容易に把握することができる。   Therefore, in the bridge dynamic response evaluation method of the present embodiment, the impact coefficient of the bridge can be easily and comprehensively determined and evaluated from the acceleration response of the vehicle 1a of the traveling train 1. That is, the impact coefficient of a huge number of bridges constituting a route can be easily grasped without measuring the deflection of each bridge.

また、走行する列車1の車両1aの応答から簡易に且つ網羅的に橋梁の衝撃係数を求めることができるため、国道や鉄道、河川等の上に架設されている橋梁や、常に風が強い箇所の橋梁など、たわみ測定の実施が困難な橋梁であっても衝撃係数を取得することが可能になる。   In addition, since the impact coefficient of the bridge can be obtained easily and comprehensively from the response of the vehicle 1a of the traveling train 1, the bridge constructed on a national road, railway, river, etc., or a place where wind is always strong It is possible to obtain the impact coefficient even for bridges where it is difficult to perform deflection measurement, such as bridges.

さらに、列車1の走行が日常的に実施されている場合には、衝撃係数の経時変化を追跡することも可能である。   Furthermore, when the traveling of the train 1 is carried out on a daily basis, it is also possible to track the change with time of the impact coefficient.

よって、本実施形態の橋梁動的応答評価方法によれば、実際の構造性能に基づく弱点箇所の抽出、詳細測定箇所の選定が格段に容易になり、調査や管理を大幅に効率化することが可能になる。   Therefore, according to the bridge dynamic response evaluation method of this embodiment, extraction of weak points based on actual structural performance and selection of detailed measurement points become much easier, and the efficiency of investigation and management can be greatly improved. It becomes possible.

また、本実施形態のように列車1の全車両1aに加速度計2を設け、全車両1aの上下加速度を計測して橋梁の衝撃係数を算出するようにしたことにより、例えば先頭車両と最後尾車両など、特定車両にのみ加速度計2を設けて上下加速度を計測して衝撃係数を算出する場合と比較し、高精度で衝撃係数を求めることができる。   Further, as in this embodiment, the accelerometer 2 is provided in all the vehicles 1a of the train 1, and the vertical acceleration of all the vehicles 1a is measured to calculate the impact coefficient of the bridge. The impact coefficient can be obtained with higher accuracy compared to the case where the accelerometer 2 is provided only in a specific vehicle such as a vehicle, and the impact coefficient is calculated by measuring the vertical acceleration.

すなわち、共振速度での列車走行時には、後方車両であるほど、通過時により大きな動的応答が励起されるのに対し、共振速度付近での列車走行時には、うなり現象が生じるため、必ずしも後方車両であるほど、通過時により大きな動的応答が励起されるとは限らず、中間車両通過時に大きな動的応答が励起される。   That is, when a train is traveling at a resonance speed, a larger dynamic response is excited when the vehicle is behind, whereas a whirling phenomenon occurs when a train is traveling near the resonance speed. As it is, a larger dynamic response is not always excited when passing, and a larger dynamic response is excited when passing an intermediate vehicle.

これに対し、どの中間車両通過時に大きな動的応答が励起されるか分からなくても、列車1の全車両1aに加速度計2を設け、全車両1aの上下加速度を計測して橋梁の衝撃係数を算出するようにしていることで、精度よく衝撃係数を求めることが可能になる。   On the other hand, even if it does not know which intermediate vehicle passes when a large dynamic response is excited, the accelerometer 2 is provided in all the vehicles 1a of the train 1, and the vertical acceleration of all the vehicles 1a is measured to measure the impact coefficient of the bridge. It is possible to calculate the impact coefficient with high accuracy.

さらに、式(3)によって、径間長40m未満の橋梁における0.7以上の衝撃係数を、概ね誤差30%程度で推定できる。また、0.7未満においても30%以上過小に評価することがないため、衝撃係数が大きな橋梁を見落とすようなことがない。   Furthermore, by equation (3), an impact coefficient of 0.7 or more in a bridge with a span length of less than 40 m can be estimated with an error of about 30%. Moreover, even if it is less than 0.7, since it is not underestimated by 30% or more, a bridge having a large impact coefficient is not overlooked.

また、式(4)によって、径間長40m以上の橋梁における0.4以上の衝撃係数を、概ね誤差15%程度で推定できる。また、0.4未満においても15%以上過小に評価することがないため、衝撃係数が大きな橋梁を見落とすようなことがない。   Further, according to the equation (4), an impact coefficient of 0.4 or more in a bridge having a span length of 40 m or more can be estimated with an error of about 15%. Moreover, since it is not underestimated 15% or more even if it is less than 0.4, a bridge with a large impact coefficient is not overlooked.

以上、本発明に係る本実施形態の本実施形態の橋梁動的応答評価方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the bridge dynamic response evaluation method of this embodiment of this embodiment concerning this invention was described, this invention is not limited to said one embodiment, and does not deviate from the meaning. The range can be changed as appropriate.

1 列車
1a 車両
1b 第1台車
1c 第2台車
2 加速度計
1 train 1a vehicle 1b first cart 1c second cart 2 accelerometer

Claims (2)

列車の全車両にそれぞれ上下加速度を計測する加速度計を設け、走行時の各車両の上下加速度を計測する車両加速度計測工程と、
橋梁通過時の前記加速度計の計測データを抽出する橋梁通過時加速度データ抽出工程と、
全車両の加速度計で計測した上下加速度の波形の特徴量を、走行方向前方の任意の基準車両で計測した上下加速度の特徴量で除して個別車両増幅率を算出する個別車両増幅率算出工程と、
全車両の前記個別車両増幅率の中から最大値を抽出して加速度増幅係数を算出する加速度増幅係数算出工程と、
予め求めた橋梁の衝撃係数と加速度増幅係数の関係に前記加速度増幅係数を当てはめて橋梁の衝撃係数を算出する衝撃係数算出工程とを備えていることを特徴とする橋梁動的応答評価方法。
An accelerometer that measures the vertical acceleration of each vehicle in each train is provided, and a vehicle acceleration measurement process that measures the vertical acceleration of each vehicle during travel,
Acceleration data extraction process at the time of passing through the bridge for extracting measurement data of the accelerometer when passing through the bridge;
Individual vehicle amplification factor calculation step of calculating the individual vehicle amplification factor by dividing the feature amount of the waveform of vertical acceleration measured by the accelerometer of all vehicles by the feature amount of vertical acceleration measured by any reference vehicle ahead in the running direction When,
An acceleration amplification coefficient calculation step of calculating an acceleration amplification coefficient by extracting a maximum value from the individual vehicle amplification factors of all vehicles;
A bridge dynamic response evaluation method comprising: an impact coefficient calculation step of calculating an impact coefficient of a bridge by applying the acceleration amplification coefficient to a relationship between an impact coefficient and an acceleration amplification coefficient obtained in advance.
請求項1記載の橋梁動的応答評価方法において、
前記上下加速度の特徴量が橋梁通過時の加速度波形の最大値、最小値、RMSの少なくとも一つであることを特徴とする橋梁動的応答評価方法。
In the bridge dynamic response evaluation method according to claim 1,
The bridge dynamic response evaluation method, wherein the feature amount of the vertical acceleration is at least one of a maximum value, a minimum value, and an RMS of an acceleration waveform when passing through the bridge.
JP2015136079A 2015-07-07 2015-07-07 Bridge kinetic response evaluation method Pending JP2017020795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136079A JP2017020795A (en) 2015-07-07 2015-07-07 Bridge kinetic response evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136079A JP2017020795A (en) 2015-07-07 2015-07-07 Bridge kinetic response evaluation method

Publications (1)

Publication Number Publication Date
JP2017020795A true JP2017020795A (en) 2017-01-26

Family

ID=57889541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136079A Pending JP2017020795A (en) 2015-07-07 2015-07-07 Bridge kinetic response evaluation method

Country Status (1)

Country Link
JP (1) JP2017020795A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228724A (en) * 2017-05-24 2017-10-03 中南大学 bridge power impact coefficient extracting method
CN111735591A (en) * 2020-07-06 2020-10-02 中铁二十四局集团江苏工程有限公司 Bridge dynamic deformation measuring method
JP2021021282A (en) * 2019-07-30 2021-02-18 公益財団法人鉄道総合技術研究所 Bridge resonance pre-detection method and resonance pre-detection device for the same
CN112948925A (en) * 2021-02-08 2021-06-11 湖南省交通规划勘察设计院有限公司 Bridge health state assessment method, system and storage medium
CN113418595A (en) * 2021-06-22 2021-09-21 欧梯恩智能科技(苏州)有限公司 Pier collision detection method and system
CN113494952A (en) * 2020-03-18 2021-10-12 精工爱普生株式会社 Measuring method, measuring apparatus, measuring system, and recording medium
WO2022056677A1 (en) * 2020-09-15 2022-03-24 西门子股份公司 Monitoring, collection and analysis systems and methods thereof, and device, storage medium, program and program product
JP7482584B2 (en) 2021-07-08 2024-05-14 公益財団法人鉄道総合技術研究所 Bridge deflection measurement method, deflection measurement device, and bridge deflection measurement program
JP7488776B2 (en) 2021-01-26 2024-05-22 公益財団法人鉄道総合技術研究所 Bridge resonance detection method, resonance detection device, and bridge resonance detection program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228724A (en) * 2017-05-24 2017-10-03 中南大学 bridge power impact coefficient extracting method
CN107228724B (en) * 2017-05-24 2019-05-24 中南大学 Bridge power impact coefficient extracting method
JP2021021282A (en) * 2019-07-30 2021-02-18 公益財団法人鉄道総合技術研究所 Bridge resonance pre-detection method and resonance pre-detection device for the same
JP7095947B2 (en) 2019-07-30 2022-07-05 公益財団法人鉄道総合技術研究所 Resonance pre-detection method for bridges and their resonance pre-detector
CN113494952A (en) * 2020-03-18 2021-10-12 精工爱普生株式会社 Measuring method, measuring apparatus, measuring system, and recording medium
CN111735591A (en) * 2020-07-06 2020-10-02 中铁二十四局集团江苏工程有限公司 Bridge dynamic deformation measuring method
WO2022056677A1 (en) * 2020-09-15 2022-03-24 西门子股份公司 Monitoring, collection and analysis systems and methods thereof, and device, storage medium, program and program product
JP7488776B2 (en) 2021-01-26 2024-05-22 公益財団法人鉄道総合技術研究所 Bridge resonance detection method, resonance detection device, and bridge resonance detection program
CN112948925A (en) * 2021-02-08 2021-06-11 湖南省交通规划勘察设计院有限公司 Bridge health state assessment method, system and storage medium
CN113418595A (en) * 2021-06-22 2021-09-21 欧梯恩智能科技(苏州)有限公司 Pier collision detection method and system
JP7482584B2 (en) 2021-07-08 2024-05-14 公益財団法人鉄道総合技術研究所 Bridge deflection measurement method, deflection measurement device, and bridge deflection measurement program

Similar Documents

Publication Publication Date Title
JP6467304B2 (en) Bridge dynamic response evaluation method
JP2017020795A (en) Bridge kinetic response evaluation method
JP6543863B2 (en) Structural performance survey method of railway bridge
CN108775993B (en) A kind of damage detection for bridges method
JP2017020796A (en) Bridge dynamic response analysis method
Karoumi et al. Monitoring traffic loads and dynamic effects using an instrumented railway bridge
JP2018031676A (en) Method for inspecting structural performance of railroad bridge
Wang et al. Identification of moving train loads on railway bridge based on strain monitoring
CN104575004A (en) Urban environment vehicle speed measurement method and system based on intelligent mobile terminal
SE1150470A1 (en) Method for determining the deflection and / or stiffness of a supporting structure
JP6592827B2 (en) Apparatus, method, program, and recording medium for identifying weight of vehicle traveling on traffic road
Sekiya et al. Visualization system for bridge deformations under live load based on multipoint simultaneous measurements of displacement and rotational response using MEMS sensors
CN104063543A (en) Wheel-rail combination roughness identification method for rail traffic
JP2019039810A (en) Method of estimating temporal stiffness degradation of railroad concrete structure
JP2018031189A (en) Scheduling method of operation management of railway bridge
JP7257729B2 (en) Bridge resonance detection method, its resonance detection device, and bridge resonance detection program
JP5434765B2 (en) Start / end traffic volume calculation device, traffic simulator, and start / end traffic volume calculation method
US10386265B2 (en) Estimating method, information processing device, and non-transitory computer-readable recording medium storing estimating program
JP7095947B2 (en) Resonance pre-detection method for bridges and their resonance pre-detector
Ozdagli et al. Measuring total transverse reference-free displacements for condition assessment of timber railroad bridges: Experimental validation
Chen et al. Alignment control for a long span urban rail-transit cable-stayed bridge considering dynamic train loads
JP7402594B2 (en) Bridge resonance detection method, resonance detection device, and bridge resonance detection program
Greisen Measurement, simulation, and analysis of the mechanical response of railroad track
JP7482584B2 (en) Bridge deflection measurement method, deflection measurement device, and bridge deflection measurement program
Yu et al. Identifying structural properties of a steel railway bridge for structural health monitoring using laser Doppler vibrometry