JP2017020796A - Bridge dynamic response analysis method - Google Patents

Bridge dynamic response analysis method Download PDF

Info

Publication number
JP2017020796A
JP2017020796A JP2015136080A JP2015136080A JP2017020796A JP 2017020796 A JP2017020796 A JP 2017020796A JP 2015136080 A JP2015136080 A JP 2015136080A JP 2015136080 A JP2015136080 A JP 2015136080A JP 2017020796 A JP2017020796 A JP 2017020796A
Authority
JP
Japan
Prior art keywords
bridge
response
speed
calculating
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015136080A
Other languages
Japanese (ja)
Inventor
弘大 松岡
Kota Matsuoka
弘大 松岡
渡辺 勉
Tsutomu Watanabe
勉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2015136080A priority Critical patent/JP2017020796A/en
Publication of JP2017020796A publication Critical patent/JP2017020796A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bridge kinetic response analysis method which can find impact coefficient with complexity fewer than a finite element model.SOLUTION: A method analyzing dynamic response of a bridge when a train runs includes the steps of: inputting input data of the bridge, the train and numerical analysis; calculating displacement response from the input data and a formula (1)/a formula (27); calculating speed response from the input data and a formula (2)/a formula (28); and calculating an impact fraction from the relation of the speed response and the displacement response.SELECTED DRAWING: Figure 8

Description

本発明は、走行列車が通過することによる鉄道橋の動的応答を簡易に解析する方法に関する。   The present invention relates to a method for easily analyzing a dynamic response of a railway bridge caused by a traveling train passing.

高速鉄道用橋梁、高架橋などの鉄道橋では、図9に示すように、走行列車の規則的な車軸配置に起因した周期的な加振によって共振が発生し、大きな動的応答が生じる場合がある。   In railway bridges such as high-speed railway bridges and viaducts, as shown in FIG. 9, resonance may occur due to periodic excitation caused by the regular axle arrangement of the traveling train, and a large dynamic response may occur. .

そして、このような列車走行時に生じる大きな動的応答は、従来、衝撃係数として設計に反映されてきた。
この一方で、列車走行速度が飛躍的に高まり、また、鉄道橋の大半にPRC構造(プレストレストコンクリート構造)が採用されて低剛性桁が普及していることなどから、設計に用いる式の適用外になる事例が多くなり、現地測定でも従来を上回る列車走行時の橋梁の共振の発生が確認されている。なお、桁の低剛性化によって200km/h台の走行速度であっても共振により大きな応答が励起されるケースが確認されている。
Such a large dynamic response generated during train travel has been reflected in the design as an impact coefficient.
On the other hand, the train traveling speed has increased dramatically, and because the PRC structure (prestressed concrete structure) has been adopted for the majority of railway bridges and low-stiffness girders have become popular, the formulas used for design are not applicable. There are many cases that become, and on-site measurement has confirmed that the resonance of the bridge when traveling by train is higher than before. It has been confirmed that a large response is excited by resonance even at a traveling speed of 200 km / h due to the reduction in rigidity of the girders.

また、高速鉄道橋は列車走行時のたわみ制限が設けられているため、列車走行時の共振によって動的応答成分が大きく励起される場合には、その動的応答を評価するための重要な指標として衝撃係数が用いられている。さらに、衝撃係数は、鉄道橋のひび割れ等の劣化現象にも関連が深いことから維持管理における重要な指標でもある。   In addition, because high-speed railway bridges have a deflection limit during train travel, if dynamic response components are greatly excited by resonance during train travel, this is an important index for evaluating the dynamic response. The impact coefficient is used as Furthermore, the impact coefficient is also an important indicator in maintenance management because it is closely related to deterioration phenomena such as cracks in railway bridges.

従来、鉄道橋の衝撃係数/動的応答を評価する際には、リング式変位計やビデオ計測、Uドップラー(レーザドップラー速度計を内蔵した構造物用非接触振動測定システム)などを用い、列車通過時の橋梁鉛直変位を橋梁側(地上側)で測定(たわみ測定)し、設計図面や走行車両諸元に基づいて、測定したたわみの時系列応答を再現可能な数値解析モデルを構築する(例えば、特許文献1参照)。そして、速度をパラメータにした数値解析を行い、衝撃係数を求めるようにしている。
なお、測定データがない場合には、数値解析モデルの構築、速度をパラメータにした数値解析によって衝撃係数を推定するようにしている。
Conventionally, when evaluating the impact coefficient / dynamic response of a railway bridge, a ring displacement meter, video measurement, U Doppler (non-contact vibration measurement system for structures with a built-in laser Doppler velocimeter), etc. are used. Measure the vertical displacement of the bridge at the time of passing (deflection measurement) on the bridge side (ground side), and build a numerical analysis model that can reproduce the time series response of the measured deflection based on design drawings and traveling vehicle specifications ( For example, see Patent Document 1). Then, a numerical analysis using the speed as a parameter is performed to obtain an impact coefficient.
When there is no measurement data, the impact coefficient is estimated by constructing a numerical analysis model and numerical analysis using the speed as a parameter.

また、数値解析モデルに関しては、構造物を有限要素で、列車を移動荷重列もしくはマルチボディでそれぞれモデル化し、時間積分を伴う動的応答解析を行うことが一般的である。   As for the numerical analysis model, it is common to model a structure with a finite element and model a train with a moving load train or a multibody, and perform dynamic response analysis with time integration.

特開2012−233758号公報JP 2012-233758 A

しかしながら、上記従来の鉄道橋の衝撃係数の算出方法では、有限要素モデルに基づく数値解析によって衝撃係数の算出するため、その解析に非常に手間がかかってしまう。   However, in the conventional method for calculating the impact coefficient of a railway bridge, since the impact coefficient is calculated by a numerical analysis based on a finite element model, the analysis is very laborious.

上記事情に鑑み、本発明は、有限要素モデルと比較し、少ない計算量で衝撃係数を求めることが可能な橋梁動的応答解析方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a bridge dynamic response analysis method capable of obtaining an impact coefficient with a small amount of calculation compared to a finite element model.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の橋梁動的応答解析方法は、列車が走行する際の橋梁の動的応答を解析する方法であって、橋梁の径間長、固有振動数、モード減衰比、単位長さあたりの質量、前記列車の車両の静止輪重、編成数、車両長、台車間隔、台車内車軸間隔、数値解析の解析時間、時間刻み、列車の最低速度及び最高速度、速度刻みの入力データを入力する初期条件入力工程と、前記入力データと下記の式(1)から変位応答を算出する変位応答算出工程と、前記入力データと下記の式(2)から速度応答を算出する速度応答算出工程と、速度応答と変位応答の関係から衝撃係数を算出する衝撃係数算出工程とを備えることを特徴とする。   The bridge dynamic response analysis method of the present invention is a method for analyzing the dynamic response of a bridge when a train travels. The bridge span length, natural frequency, mode damping ratio, mass per unit length , Initial input of input data for the train's stationary wheel load, number of trains, vehicle length, bogie interval, bogie axle interval, numerical analysis time, time increment, train minimum and maximum speed, and step increment A condition input step, a displacement response calculation step of calculating a displacement response from the input data and the following equation (1), a speed response calculation step of calculating a velocity response from the input data and the following equation (2), and a speed And an impact coefficient calculating step of calculating an impact coefficient from the relationship between the response and the displacement response.

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

ここで、tは先頭車両の第一車軸が橋梁に進入する直前を0とした時間、xは橋梁上の位置、u(x,t)は橋梁のx地点における時間tの鉛直変位、τk,iはk(k=1,・・・・・,n)台目の車両の先頭からi(i=1,・・,4)番目の車軸が通過するまでの時間を示し、u(z)はz<0で0、0≦zで1の値をとる単位ステップ関数である。 Here, t is the time when the first axle of the first vehicle enters the bridge is 0, x is the position on the bridge, u (x, t) is the vertical displacement at time t at the point x of the bridge, τ k , I indicates the time from the beginning of the k (k = 1,..., N w ) th vehicle to the passage of the i (i = 1,..., 4) th axle, and u ( z) is a unit step function that takes a value of 0 when z <0 and 1 when 0 ≦ z.

また、本発明の橋梁動的応答解析方法においては、前記入力データと下記の式(3)から加速度応答を算出する加速度応答算出工程を備えることが望ましい。   Moreover, in the bridge dynamic response analysis method of this invention, it is desirable to provide the acceleration response calculation process of calculating an acceleration response from the said input data and following formula (3).

Figure 2017020796
Figure 2017020796

本発明の橋梁動的応答解析方法においては、単純梁構造の橋梁の場合、列車のような規則的な軸配置のもとで励起される橋梁応答を微分方程式で表して解析的に解けることを見出し、微分方程式の解を用いることにより、対象橋梁の図面がなくとも測定情報から得られた静的たわみ量や固有振動数等の限られた情報のみで簡易に衝撃係数を算出することが可能になる。   In the bridge dynamic response analysis method of the present invention, in the case of a bridge with a simple beam structure, the bridge response excited under a regular axial arrangement such as a train can be solved analytically by expressing it with a differential equation. By using the headline and the solution of the differential equation, it is possible to easily calculate the impact coefficient using only limited information such as static deflection and natural frequency obtained from measurement information without drawing the target bridge. become.

また、微分方程式の解を用いることで、有限要素モデルと比較して格段に少ない計算量で衝撃係数を算出することが可能になる。   Also, by using a differential equation solution, it is possible to calculate the impact coefficient with a much smaller amount of calculation compared to the finite element model.

移動荷重列が作用する梁モデルを示す図である。It is a figure which shows the beam model in which a moving load row | line acts. 本発明の一実施形態に係る橋梁動的応答解析方法による解析結果と、相互作用解析結果を比較した図であり、橋梁径間長が10mの場合の時間と橋梁のたわみの関係を示す図である。It is the figure which compared the analysis result by the bridge dynamic response analysis method which concerns on one Embodiment of this invention, and an interaction analysis result, and is a figure which shows the relationship between the time when a bridge span length is 10 m, and a bridge deflection. is there. 本発明の一実施形態に係る橋梁動的応答解析方法による解析結果と、相互作用解析結果を比較した図であり、橋梁径間長が35mの場合の時間と橋梁のたわみの関係を示す図である。It is the figure which compared the analysis result by the bridge dynamic response analysis method which concerns on one Embodiment of this invention, and an interaction analysis result, and is a figure which shows the relationship between the time when a bridge span length is 35 m, and a bridge deflection. is there. 本発明の一実施形態に係る橋梁動的応答解析方法による解析結果と、相互作用解析結果を比較した図であり、橋梁径間長が45mの場合の時間と橋梁のたわみの関係を示す図である。It is the figure which compared the analysis result by the bridge dynamic response analysis method which concerns on one Embodiment of this invention, and an interaction analysis result, and is a figure which shows the relationship between the time when a bridge span length is 45m, and a bridge deflection. is there. 本発明の一実施形態に係る橋梁動的応答解析方法による解析結果と、相互作用解析結果を比較した図であり、橋梁径間長が10mの場合の走行速度と橋梁のたわみ、衝撃係数の関係を示す図である。It is the figure which compared the analysis result by the bridge dynamic response analysis method which concerns on one Embodiment of this invention, and an interaction analysis result, and the relationship between the running speed, bridge deflection, and impact coefficient in case the bridge span length is 10m. FIG. 本発明の一実施形態に係る橋梁動的応答解析方法による解析結果と、相互作用解析結果を比較した図であり、橋梁径間長が35mの場合の走行速度と橋梁のたわみ、衝撃係数の関係を示す図である。It is the figure which compared the analysis result by the bridge dynamic response analysis method which concerns on one Embodiment of this invention, and an interaction analysis result, and the relationship between the travel speed, bridge deflection, and impact coefficient in case a bridge span length is 35m. FIG. 本発明の一実施形態に係る橋梁動的応答解析方法による解析結果と、相互作用解析結果を比較した図であり、橋梁径間長が45mの場合の走行速度と橋梁のたわみ、衝撃係数の関係を示す図である。It is the figure which compared the analysis result by the bridge dynamic response analysis method which concerns on one Embodiment of this invention, and an interaction analysis result, and the relationship between the running speed in case a bridge span length is 45m, a bridge deflection, and an impact coefficient. FIG. 本発明の一実施形態に係る橋梁動的応答解析方法における計算フローを示す図である。It is a figure which shows the calculation flow in the bridge dynamic response analysis method which concerns on one Embodiment of this invention. 列車走行時の鉄道橋の共振波形の一例を示す図である。It is a figure which shows an example of the resonance waveform of the railway bridge at the time of train travel.

以下、図1から図8を参照し、本発明の一実施形態に係る橋梁動的応答解析方法について説明する。なお、本実施形態の橋梁動的応答解析方法は、列車走行時の動的応答の重要な指標となる衝撃係数を解析的に求める方法に関するものである。   Hereinafter, a bridge dynamic response analysis method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 8. Note that the bridge dynamic response analysis method of the present embodiment relates to a method for analytically obtaining an impact coefficient that is an important index of dynamic response during train travel.

はじめに、本実施形態の橋梁動的応答解析方法においては、単純支持された梁構造物を列車1(複数の車両1a)が一定速度で通過する場合を対象とし、図1に示すような移動荷重列が作用する単純支持された梁モデルを考える。   First, in the bridge dynamic response analysis method of the present embodiment, a moving load as shown in FIG. 1 is intended for a case where a train 1 (a plurality of vehicles 1a) passes through a simply supported beam structure at a constant speed. Consider a simply supported beam model in which rows act.

図1では、走行列車荷重を大きさ一定の移動荷重列と仮定し、車軸間隔a、台車間隔b、車両長さLの車両n台で構成される列車1が、径間長Lの線路方向に断面変化のない橋梁を一定速度vで走行(図中左から右へ走行)していく状態を示している。
なお、時間tは先頭車両の第一車軸が橋梁に進入する直前を0とする。
In Figure 1, the running train load assuming the size constant moving load column, the axle spacing a, bogie distance b, train 1 consists of a vehicle n w of vehicles length L v, span length L b The figure shows a state where the vehicle travels at a constant speed v (running from the left to the right in the figure) with no cross-sectional change in the track direction.
Time t is set to 0 immediately before the first axle of the leading vehicle enters the bridge.

ここで、梁はベルヌーイ−オイラーばりとし、表面は十分に滑らかであるとすると、橋梁上の任意地点x(0≦x≦L)における時間t(0≦t)の鉛直変位u(x,t)における運動方程式は、変位が微小である場合に次の式(4)のように表すことができる。 Here, if the beam is a Bernoulli-Euler beam and the surface is sufficiently smooth, the vertical displacement u (x, x, t) at an arbitrary point x (0 ≦ x ≦ L b ) on the bridge at time t (0 ≦ t). The equation of motion at t) can be expressed as the following equation (4) when the displacement is very small.

Figure 2017020796
m(上に−)は単位長さ当たりの橋梁の質量、cは減衰係数、EIは曲げ剛性をそれぞれ表している。
Figure 2017020796
m (above) represents the mass of the bridge per unit length, c represents the damping coefficient, and EI represents the bending rigidity.

また、J(x,t)は荷重入力の時系列であり、図1から、次の式(5)のように表すことができる。なお、δはDiracのデルタ関数を表している。τk,iは次の式(6−a)〜式(6−d)に示すk(k=1,・・・・・,n)台目の車両の先頭からi(i=1,・・,4)番目の車軸通過時点を示している。 J (x, t) is a time series of load input, and can be expressed as in the following equation (5) from FIG. Δ represents the Dirac delta function. τ k, i is i (i = 1, 1) from the head of the kth (k = 1,..., n w ) th vehicle shown in the following equations (6-a) to (6-d). .., 4) Indicates the time when the axle passes.

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

ここで、式(4)の各移動荷重に対する応答がそれぞれ独立であると考えれば、次の式(7)に分解でき、式(4)を式(8)のように各移動荷重に対する応答の重ね合わせとして表すことが可能になる。   Here, if the response to each moving load in equation (4) is considered to be independent, it can be decomposed into the following equation (7), and equation (4) can be divided into the response to each moving load as in equation (8). It can be expressed as a superposition.

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

そして、式(8)より、k台目の車両の先頭からi番目の車軸通過時の橋梁上の任意地点(0≦x≦L)における時間t(τk,i≦t)の鉛直変位uk,i(x,t)に関する運動方程式を、次の式(9)のように表すことができる。 Then, from equation (8), the vertical displacement at time t (τ k, i ≦ t) at an arbitrary point (0 ≦ x ≦ L b ) on the bridge when passing the i th axle from the head of the kth vehicle. u k, i motion equation for the (x, t), can be expressed as the following equation (9).

Figure 2017020796
Figure 2017020796

このように定式化した式(9)の運動方程式の境界条件を式(10−a)、(10−b)のように設定する。ここで、フーリエ正弦変換の式(11)により、橋梁上の位置xをn(n=1,・・・)次の振動モード形Φ=sin(nπx/L)へと変数変換する。そして、式(11)を計算するとともに移動荷重の定義域に留意して整理すると、次の式(12)、式(13)を得ることができる。 The boundary conditions of the equation of motion of Formula (9) formulated in this way are set as Formulas (10-a) and (10-b). Here, the position x on the bridge is variable-transformed into n (n = 1,...) Order vibration mode shape Φ n = sin (nπx / L b ) by the Fourier sine transformation equation (11). Then, when the formula (11) is calculated and arranged while paying attention to the moving load definition area, the following formulas (12) and (13) can be obtained.

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

なお、T=L/vであるとともに、ω、ξ、ω(上に−)はそれぞれ、次の式(14)、式(15)、式(16)で表されるn次固有周期、n次モード減衰比、n次車軸通過周期である。また、固有振動数fは固有周期とf=ω/2πの関係を有する。 Note that T = L b / v and ω n , ξ n , ω n (upward −) are n-orders represented by the following expressions (14), (15), and (16), respectively. The natural period, the n-th mode attenuation ratio, and the n-th axle passage period. The natural frequency f n has a relationship of natural period and f n = ω n / 2π.

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

また、式(12)の微分方程式における初期条件を下記の式(17)、式(13)の微分方程式における初期条件を下記の式(18)のように設定する。   In addition, initial conditions in the differential equation of Expression (12) are set as shown in the following Expression (17), and initial conditions in the differential equation of Expression (13) are set as in the following Expression (18).

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

ここで、式(18)中のUn,T,U(上に・)n,Tは式(12)の定義域の終了時点 τk,i+Tにおける状態を表しており、τk,i+Tにおいては式(12)、式(13)の値が等しくなる。この上で、ラプラス変換Vk,i(n,m)=L[Uk,i(n,t)]を考えると、下記の式(19)、式(20)から、式(21)、式(22)のようにそれぞれ定式化することができる。なお、α=ξωである。 Here, U n, T , U (above) n, T in equation (18) represent the state at the end time τ k, i + T of the domain of equation (12), and τ k, i At + T, the values of Expression (12) and Expression (13) are equal. On this basis, considering the Laplace transform V k, i (n, m) = L [U k, i (n, t)], from the following equations (19) and (20), equations (21), Each can be formulated as shown in Equation (22). Note that α n = ξ n ω n .

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

そして、式(21)においては、単一の移動荷重が作用する梁の極が式(22)に見られる梁の固有振動に起因した−α±iω√(1−ξ)のみならず、移動速度に起因した ±iω(上に−)にも配置されるという特徴がある。 In Equation (21), if the pole of the beam on which a single moving load acts is only -α n ± iω n √ (1-ξ 2 ) due to the natural vibration of the beam seen in Equation (22). In addition, there is a feature that it is also arranged in ± iω n (upward-) due to the moving speed.

また、式(21)、式(22)の逆ラプラス変換L−1[Vk,i(n,t)]により、モード座標系における時刻歴応答Uk,i(n,t)を算出して整理すると、式(23)、式(24)を得ることができる。なお、β=ω(上に−)/ω、tanψ=ωn,T/U(上に・)n,Tであるとともに、式(23)、式(24)の算出に際して橋梁応答を低減衰系としてとし、ω√(1−ξ )≒ωの近似を採用している。 Further, the time history response U k, i (n, t) in the mode coordinate system is calculated by the inverse Laplace transform L −1 [V k, i (n, t)] of the expressions (21) and (22). When arranged, the equations (23) and (24) can be obtained. It should be noted that β = ω (upward −) 1 / ω 1 , tan ψ = ω n Un , T / U (upper side) n, T , and a bridge for calculation of equations (23) and (24) city response as low attenuation system, ω n √ (1-ξ n 2) adopts the approximation ≒ omega n.

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

さらに、式(23)、式(24)に対して逆フーリエ正弦変換を施すとともにN次モードまでの応答により近似すると、下記の式(25)、式(26)を得ることができる。
ここで、式(25)中のuは、u=PL /48EI≒2PL /πω =2P/m(上に−)Lω の関係により、x=L/2地点に荷重Pが作用した際の同地点の静的なたわみを示している。
Further, when the inverse Fourier sine transformation is applied to the equations (23) and (24) and approximated by the response up to the Nth mode, the following equations (25) and (26) can be obtained.
Here, u 0 in the formula (25), u 0 = PL b 3 / 48EI ≒ 2PL b 3 / π 4 ω 1 2 = 2P / m ( above -) by L b ω 1 2 relationship, x = L b / 2 shows the static deflection at the same point when the load P acts on the point.

Figure 2017020796
Figure 2017020796

Figure 2017020796
Figure 2017020796

以上のようにして、単一の移動荷重Pが橋梁上を一定速度vで移動する場合の橋梁の動的応答が定式化される。また、このとき、図1に示す移動荷重列作用下における橋梁の動的応答は、式(7)の関係により、次の式(27)のように定式化される。
ここで、u(z)はz<0で0、0≦zで1の値をとる単位ステップ関数である。
As described above, the dynamic response of the bridge when the single moving load P moves on the bridge at a constant speed v is formulated. At this time, the dynamic response of the bridge under the action of the moving load train shown in FIG. 1 is formulated as the following equation (27) based on the relationship of equation (7).
Here, u (z) is a unit step function that takes a value of 0 when z <0 and 1 when 0 ≦ z.

Figure 2017020796
Figure 2017020796

また、速度応答∂u/∂tと加速度応答∂u/∂tはそれぞれ、式(27)の時間微分の式(28)、式(29)と表される。 Further, the speed response ∂u / ∂t and the acceleration response ∂ 2 u / ∂t 2 are respectively expressed as time differential expressions (28) and (29) of Expression (27).

Figure 2017020796
Figure 2017020796
Figure 2017020796
Figure 2017020796

なお、

Figure 2017020796
Figure 2017020796
Figure 2017020796
Figure 2017020796
である。 In addition,
Figure 2017020796
Figure 2017020796
Figure 2017020796
Figure 2017020796
It is.

次に、式(27)、式(28)、式(29)に示す理論解を簡易解析法として、Matlabに実装し、その精度について検証した結果について説明する。   Next, a description will be given of a result obtained by mounting the theoretical solutions shown in Expression (27), Expression (28), and Expression (29) in Matlab as a simple analysis method and verifying the accuracy thereof.

図2から図4は、径間長10m、35m、45mとした場合の式(27)、式(28)、式(29)による簡易解析と、従来の相互作用解析を比較した結果を示している。
なお、計算条件は図中の実測値に併せ、10両編成の新幹線車両が表示の速度で走行した場合とした。また、簡易解析においては、相互作用解析と同じ固有振動数、コンクリートの単位質量、断面積、モード減衰比を用いている。
FIG. 2 to FIG. 4 show the results of comparing the simple analysis based on the equations (27), (28), and (29) with the span lengths of 10 m, 35 m, and 45 m and the conventional interaction analysis. Yes.
The calculation conditions were the case where a Shinkansen vehicle with 10 trains traveled at the indicated speed in accordance with the actual measurement values in the figure. In the simple analysis, the same natural frequency, concrete unit mass, cross-sectional area, and mode damping ratio as in the interaction analysis are used.

そして、これら図2から図4により、いずれも良好に一致することが確認され、理論解に基づく簡易解析によって列車走行時の時系列応答を良好に再現できることが確認された。  2 to 4 confirm that both agree well, and that it is possible to satisfactorily reproduce the time series response during train travel by simple analysis based on the theoretical solution.

また、図5から図7は、式(27)、式(28)、式(29)による簡易解析と 相互作用解析でそれぞれ計算した列車速度と最大たわみ及び衝撃係数の関係を示している。
これら図5から図7により、共振時において最大たわみに僅かな差異が認められるものの、いずれも良好に一致していると言え、理論解に基づく簡易解析によって列車走行時の単純桁の最大たわみ量及び衝撃係数を良好に再現できることが確認された。
FIGS. 5 to 7 show the relationship between the train speed, maximum deflection, and impact coefficient calculated by the simple analysis and the interaction analysis using Equation (27), Equation (28), and Equation (29), respectively.
5 to 7, although there is a slight difference in the maximum deflection at the time of resonance, it can be said that they all agree well, and the maximum deflection amount of the simple girder during the train run by simple analysis based on the theoretical solution. It was also confirmed that the impact coefficient can be reproduced well.

なお、上記の簡易解析は三角関数の重ね合わせを行っているのみであり、編成数にもよるが必要な計算時間が本解析(1000ケース)でわずか10秒程度であり、非常に簡易に動的応答倍率を算出できる。   Note that the above simple analysis only performs trigonometric function superposition, and the required calculation time is only about 10 seconds in this analysis (1000 cases) although it depends on the number of formations. Response magnification can be calculated.

したがって、本実施形態の橋梁動的応答解析方法においては、移動荷重作用下の梁応答に関する微分方程式を解くことによって、移動荷重作用下の橋梁応答を、荷重の移動に伴う準静的応答と移動荷重の作用に伴う衝撃応答として表現できる。   Therefore, in the bridge dynamic response analysis method of the present embodiment, by solving a differential equation related to the beam response under the moving load action, the bridge response under the moving load action is changed into a quasi-static response and a movement along with the load movement. It can be expressed as an impact response accompanying the action of a load.

また、移動荷重作用下の梁応答を位相をずらして重ね合わせることにより、列車走行時の橋梁応答を表現できる。   Moreover, the bridge response at the time of train travel can be expressed by superimposing the beam responses under the action of moving load while shifting the phases.

そして、理論解を用いることにより、対象橋梁の径間長、固有振動数、単位長さ当たりの質量、減衰比を入力とすることで列車走行時の変位、速度、加速度時系列応答を得る ことが可能になる。   By using the theoretical solution, the displacement, speed, and acceleration time series response during train travel can be obtained by inputting the span length, natural frequency, mass per unit length, and damping ratio of the target bridge. Is possible.

また、理論解をプログラムとして実装し、動的相互作用を考慮した有限要素法に基づく 数値解析結果と比較した結果、列車走行時の橋梁径問中央のたわみ時系列及び衝撃係数が良く一致することが確認され、信頼性の高い列車走行時の橋梁の動的応答を簡易に計算できることが実証された。   In addition, as a result of implementing a theoretical solution as a program and comparing it with the numerical analysis result based on the finite element method considering dynamic interaction, the deflection time series at the center of the bridge diameter during train running and the impact coefficient agree well. As a result, it was proved that the dynamic response of the bridge when traveling with high reliability can be calculated easily.

そして、上記の結果に基づき、本実施形態の橋梁動的応答解析方法においては、列車走行時の橋梁応答簡易解析プログラムを用い、図8の衝撃係数の推定フローのようにして衝撃係数を解析的に算出する。   Based on the above results, in the bridge dynamic response analysis method of the present embodiment, the impact coefficient is analyzed analytically by using the bridge response simple analysis program at the time of train travel as in the impact coefficient estimation flow of FIG. To calculate.

具体的に、本実施形態の橋梁動的応答解析方法における衝撃係数の推定フローでは、はじめに、橋梁については径間長、固有振動数、モード減衰比、単位長さ当たりの質量など、車両については静止輪重、編成数、車両長、台車間隔、台車内車軸間隔などを入力データとする。また、数値解析については解析時間、時間刻み、最低速度、最高速度、速度刻みなどを入力データとする。   Specifically, in the estimation flow of the impact coefficient in the bridge dynamic response analysis method of the present embodiment, first, the span length, natural frequency, mode damping ratio, mass per unit length, etc. The stationary wheel weight, the number of trains, the vehicle length, the distance between the trucks, the distance between the axles inside the truck, etc. are used as input data. For numerical analysis, the analysis time, time increment, minimum speed, maximum speed, speed increment, etc. are used as input data.

ここで、橋梁の固有振動数とモード減衰比は測定データに基づいて設定する。また、橋梁の径間長及び単位長さ当たりの質量は路線図もしくは橋梁図面に基づいて設定する。   Here, the natural frequency and mode damping ratio of the bridge are set based on the measurement data. The span length of the bridge and the mass per unit length are set based on the route map or the bridge drawing.

図面がない場合には、前述のu=PL /48EI≒2PL /πω =2P/m(上に−)Lω の関係により、橋梁の単位長さ当たりの質量を測定たわみ量から輪重との比として算出する。さらに、車両の静止輪重は車両データベース、もしくは橋梁の単位長さ当たりの質量との比として算出する。また、車両のその他のデータは車両データベースから設定する。 When there is no drawing, the unit length of the bridge is based on the relationship of u 0 = PL b 3 / 48EI≈2PL b 3 / π 4 ω 1 2 = 2P / m (above) L b ω 1 2 described above. The hit mass is calculated as a ratio to the wheel load from the measured deflection. Furthermore, the stationary wheel weight of the vehicle is calculated as a ratio with the vehicle database or the mass per unit length of the bridge. Further, other data of the vehicle is set from the vehicle database.

そして、設定諸量を前述の式(27)に代入することで繰り返し計算を行うことなく変位応答を算出する。また、速度をパラメータとした解析結果に基づいて衝撃係数を算定する。   Then, the displacement response is calculated without performing repeated calculations by substituting the set quantities into the above-described equation (27). Also, the impact coefficient is calculated based on the analysis result using the speed as a parameter.

これにより、本実施形態の橋梁動的応答解析方法においては、有限要素法に基づく数値解析と比較して単純桁形式の高速鉄道橋の動的応答を少ない入力データ(橋梁の径間長、固有振動数、単位長さ当たりの質量、モード減衰比など)で高速に計算することができる。このため、モデル作成の人的、時間的負荷及び数値解析の計算負荷を大幅に削減することが可能になる。   As a result, in the bridge dynamic response analysis method of this embodiment, the dynamic response of the high-speed railway bridge in the simple girder format is reduced compared to the numerical analysis based on the finite element method. Frequency, mass per unit length, mode damping ratio, etc.). For this reason, it is possible to greatly reduce the human and time load of model creation and the computational load of numerical analysis.

また、有限要素法と異なり空間的な離散化を行っていないため、要素分割に起因した誤差がなく、任意時間且つ任意場所での応答を算出できる。このため、橋梁上を移動する車両への入力データとして活用できる。   Further, unlike the finite element method, since spatial discretization is not performed, there is no error caused by element division, and a response at an arbitrary time and an arbitrary place can be calculated. For this reason, it can utilize as input data to the vehicle which moves on a bridge.

さらに、車両の軸重が不明な場合においても、橋梁のたわみデータが存在する場合にはたわみ量から動的応答及び衝撃係数を算出することが可能である。   Further, even when the axle weight of the vehicle is unknown, it is possible to calculate the dynamic response and the impact coefficient from the deflection amount when there is deflection data of the bridge.

また、設定諸量から一意に変位応答が得られるため。実測データに基づく固有振動数や輪重等の推定問題へ容易に応用することも可能である。   In addition, the displacement response can be uniquely obtained from the set quantities. It can be easily applied to estimation problems such as natural frequency and wheel load based on measured data.

以上、本発明に係る本実施形態の本実施形態の橋梁動的応答解析方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the bridge dynamic response analysis method of this embodiment of this embodiment concerning this invention was described, this invention is not limited to said one Embodiment, It does not deviate from the meaning. The range can be changed as appropriate.

1 列車
1a 車両
1 Train 1a Vehicle

Claims (2)

列車が走行する際の橋梁の動的応答を解析する方法であって、
橋梁の径間長、固有振動数、モード減衰比、単位長さあたりの質量、前記列車の車両の静止輪重、編成数、車両長、台車間隔、台車内車軸間隔、数値解析の解析時間、時間刻み、列車の最低速度及び最高速度、速度刻みの入力データを入力する初期条件入力工程と、
前記入力データと下記の式(1)から変位応答を算出する変位応答算出工程と、
前記入力データと下記の式(2)から速度応答を算出する速度応答算出工程と、
速度応答と変位応答の関係から衝撃係数を算出する衝撃係数算出工程とを備えることを特徴とする橋梁動的応答解析方法。
Figure 2017020796
Figure 2017020796
ここで、tは先頭車両の第一車軸が橋梁に進入する直前を0とした時間、xは橋梁上の位置、u(x,t)は橋梁のx地点における時間tの鉛直変位、τk,iはk(k=1,・・・・・,n)台目の車両の先頭からi(i=1,・・,4)番目の車軸が通過するまでの時間を示し、u(z)はz<0で0、0≦zで1の値をとる単位ステップ関数である。
A method for analyzing the dynamic response of a bridge when a train travels,
Span length of bridge, natural frequency, mode damping ratio, mass per unit length, stationary wheel weight of train vehicle, number of trains, vehicle length, distance between trucks, axle distance inside truck, analysis time for numerical analysis, Initial condition input process for inputting input data of time step, train minimum speed and maximum speed, speed step,
A displacement response calculating step of calculating a displacement response from the input data and the following equation (1):
A speed response calculating step of calculating a speed response from the input data and the following equation (2);
A bridge dynamic response analysis method comprising: an impact coefficient calculation step of calculating an impact coefficient from a relationship between a speed response and a displacement response.
Figure 2017020796
Figure 2017020796
Here, t is the time when the first axle of the first vehicle enters the bridge is 0, x is the position on the bridge, u (x, t) is the vertical displacement at time t at the point x of the bridge, τ k , I indicates the time from the beginning of the k (k = 1,..., N w ) th vehicle to the passage of the i (i = 1,..., 4) th axle, and u ( z) is a unit step function that takes a value of 0 when z <0 and 1 when 0 ≦ z.
請求項1記載の橋梁動的応答解析方法において、
前記入力データと下記の式(3)から加速度応答を算出する加速度応答算出工程を備えることを特徴とする橋梁動的応答解析方法。
Figure 2017020796
In the bridge dynamic response analysis method according to claim 1,
A bridge dynamic response analysis method comprising an acceleration response calculation step of calculating an acceleration response from the input data and the following equation (3).
Figure 2017020796
JP2015136080A 2015-07-07 2015-07-07 Bridge dynamic response analysis method Pending JP2017020796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136080A JP2017020796A (en) 2015-07-07 2015-07-07 Bridge dynamic response analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136080A JP2017020796A (en) 2015-07-07 2015-07-07 Bridge dynamic response analysis method

Publications (1)

Publication Number Publication Date
JP2017020796A true JP2017020796A (en) 2017-01-26

Family

ID=57889328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136080A Pending JP2017020796A (en) 2015-07-07 2015-07-07 Bridge dynamic response analysis method

Country Status (1)

Country Link
JP (1) JP2017020796A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147263A1 (en) 2017-02-07 2018-08-16 株式会社フジクラ Power supply cable, and power supply cable with connector
CN110362891A (en) * 2019-06-28 2019-10-22 上海东华地方铁路开发有限公司 A kind of bridge construction frame chip off-falling impact force prediction method
CN113200077A (en) * 2021-03-26 2021-08-03 邯黄铁路有限责任公司 Railway equipment facility state monitoring and management method and system based on 5G
US11408761B2 (en) 2020-03-18 2022-08-09 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
US11714021B2 (en) 2020-03-18 2023-08-01 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
US11713993B2 (en) 2020-03-18 2023-08-01 Seiko Epson Corporation Bridge displacement measurement method
US11761811B2 (en) 2020-03-18 2023-09-19 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
US11761812B2 (en) 2020-03-18 2023-09-19 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
US11881102B2 (en) 2020-03-18 2024-01-23 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147263A1 (en) 2017-02-07 2018-08-16 株式会社フジクラ Power supply cable, and power supply cable with connector
CN110362891A (en) * 2019-06-28 2019-10-22 上海东华地方铁路开发有限公司 A kind of bridge construction frame chip off-falling impact force prediction method
US11408761B2 (en) 2020-03-18 2022-08-09 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
US11714021B2 (en) 2020-03-18 2023-08-01 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
US11713993B2 (en) 2020-03-18 2023-08-01 Seiko Epson Corporation Bridge displacement measurement method
US11761811B2 (en) 2020-03-18 2023-09-19 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
US11761812B2 (en) 2020-03-18 2023-09-19 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
JP7396139B2 (en) 2020-03-18 2023-12-12 セイコーエプソン株式会社 Measurement method, measurement device, measurement system and measurement program
US11881102B2 (en) 2020-03-18 2024-01-23 Seiko Epson Corporation Measurement method, measurement device, measurement system, and measurement program
CN113200077A (en) * 2021-03-26 2021-08-03 邯黄铁路有限责任公司 Railway equipment facility state monitoring and management method and system based on 5G
CN113200077B (en) * 2021-03-26 2022-08-23 邯黄铁路有限责任公司 Railway equipment facility state monitoring and management method and system based on 5G

Similar Documents

Publication Publication Date Title
JP2017020796A (en) Bridge dynamic response analysis method
JP6543863B2 (en) Structural performance survey method of railway bridge
Lee et al. Dynamic response of a monorail steel bridge under a moving train
JP6467304B2 (en) Bridge dynamic response evaluation method
Quirke et al. Railway bridge damage detection using vehicle-based inertial measurements and apparent profile
JP2018031676A (en) Method for inspecting structural performance of railroad bridge
Deng et al. Identification of dynamic vehicular axle loads: Demonstration by a field study
Li et al. Dynamic response prediction of vehicle-bridge interaction system using feedforward neural network and deep long short-term memory network
CN113392451A (en) Bridge model updating method, system, storage medium and equipment based on vehicle-bridge coupling acting force correction
Lansdell et al. Development and testing of a bridge weigh-in-motion method considering nonconstant vehicle speed
Carassale et al. Dynamic response of trackside structures due to the aerodynamic effects produced by passing trains
CN103853896A (en) Method for calculating vehicle induced vibration response of railway bridge structure
Victor et al. When autonomous vehicles are introduced on a larger scale in the road transport system: The Drive Me project
Gao et al. A simple method for dynamically measuring the diameters of train wheels using a one-dimensional laser displacement transducer
Patel et al. Infrastructure health monitoring using signal processing based on an industry 4.0 System
JP2018031189A (en) Scheduling method of operation management of railway bridge
Morichika et al. Estimation of displacement response in steel plate girder bridge using a single MEMS accelerometer
Bao et al. Impact coefficient analysis of track beams due to moving suspended monorail vehicles
Peng et al. Mobile crowdsensing framework for drive-by-based dense spatial-resolution bridge mode shape identification
JP2019039810A (en) Method of estimating temporal stiffness degradation of railroad concrete structure
JP5434765B2 (en) Start / end traffic volume calculation device, traffic simulator, and start / end traffic volume calculation method
JP2021152250A (en) Resonance detection method for bridge and resonance detection device for the same and bridge resonance detection program
JP2021098968A (en) Bridge condition evaluation method and condition evaluation system thereof
JP2020148018A (en) Ground vibration prediction method
Liu et al. Prediction of track irregularities using NARX neural network