JP2017005952A - Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system - Google Patents

Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system Download PDF

Info

Publication number
JP2017005952A
JP2017005952A JP2015120833A JP2015120833A JP2017005952A JP 2017005952 A JP2017005952 A JP 2017005952A JP 2015120833 A JP2015120833 A JP 2015120833A JP 2015120833 A JP2015120833 A JP 2015120833A JP 2017005952 A JP2017005952 A JP 2017005952A
Authority
JP
Japan
Prior art keywords
power transmission
power
coil
metal magnetic
magnetic sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015120833A
Other languages
Japanese (ja)
Inventor
耕太 斉藤
Kota Saito
耕太 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2015120833A priority Critical patent/JP2017005952A/en
Publication of JP2017005952A publication Critical patent/JP2017005952A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission system capable of reducing radiation noise or electromagnetic interference in another electronic apparatus when common mode noise has been input to a power transmission coil.SOLUTION: A non-contact power transmission system 1 comprises a non-contact power transmission device 2 and a non-contact power reception device 3. The non-contact power transmission device 2 comprises: a power transmission side substrate 22 electrically connected to a power transmission coil 21; and a power transmission side metal magnetic sheet 23 that contains metal magnetic material as a main component and is disposed on the back surface side of the power transmission coil 21. The power transmission side metal magnetic sheet 23 is electrically connected to the ground of the power transmission side substrate 22. The non-contact power reception device 3 comprises: a power reception side substrate 32 electrically connected to a power reception coil 31; and a power reception side metal magnetic sheet 33 that contains metal magnetic material as a main component and is disposed on the back surface side of the power reception coil 31. The power reception side metal magnetic sheet 33 is electrically connected to the ground of the power reception side substrate 32.SELECTED DRAWING: Figure 1

Description

本発明は、非接触電力送電装置、非接触電力受電装置、及び、該非接触電力送電装置並びに該非接触電力受電装置を備えた非接触電力伝送システムに関する。   The present invention relates to a contactless power transmission device, a contactless power reception device, the contactless power transmission device, and a contactless power transmission system including the contactless power reception device.

従来から、対向したコイルの電磁誘導により電力(信号を含む)を伝送する技術、すなわち、2つのコイルを近接させて置き、一方のコイルに電流を流すことで発生する磁束を他方のコイルに結合させることで電力を送る技術が知られている。近年、このような技術(原理)を利用し(すなわち、隣接したコイルの電磁誘導を利用し)、例えば、携帯電話やスマートフォン、デジタルカメラ等を非接触で充電する非接触充電器(非接触電力伝送システム)が実用化されている(例えば、特許文献1参照)。   Conventionally, technology to transmit power (including signals) by electromagnetic induction of opposing coils, that is, two coils are placed close to each other, and magnetic flux generated by passing current through one coil is coupled to the other coil There is known a technique for transmitting power by causing the power to be generated. In recent years, using such technology (principle) (that is, using electromagnetic induction of adjacent coils), for example, a non-contact charger (non-contact power) for charging a mobile phone, a smartphone, a digital camera, etc. in a non-contact manner. (Transmission system) has been put into practical use (for example, see Patent Document 1).

ここで、特許文献1には、1次側非接触充電モジュール(送信側非接触充電モジュール)と、2次側非接触充電モジュール(受信側非接触充電モジュール)とから構成され、電磁誘導作用を利用して1次側非接触充電モジュールから2次側非接触充電モジュールに電力伝送を行う非接触電力伝送機器(非接触充電機器)が開示されている。   Here, Patent Document 1 includes a primary-side non-contact charging module (transmission-side non-contact charging module) and a secondary-side non-contact charging module (receiving-side non-contact charging module). A non-contact power transmission device (non-contact charging device) that performs power transmission from a primary-side non-contact charging module to a secondary-side non-contact charging module is disclosed.

より詳細には、1次側非接触充電モジュールは、1次側コイル、磁性シート、共振コンデンサ、電力入力部を備えて構成されている。電力入力部は、外部電源としての商用電源に接続されて100〜240V程度の電力供給を受け、所定電流(直流12V、1A)に変換して1次側コイルに供給する。1次側コイルは、その形状、巻数及び供給を受けた電流に応じた磁界を発生させる。   More specifically, the primary side non-contact charging module includes a primary side coil, a magnetic sheet, a resonance capacitor, and a power input unit. The power input unit is connected to a commercial power source as an external power source, receives power supply of about 100 to 240 V, converts it into a predetermined current (DC 12 V, 1 A), and supplies it to the primary coil. The primary coil generates a magnetic field according to its shape, number of turns, and supplied current.

一方、2次側非接触充電モジュールは、2次側コイル、磁性シート、共振コンデンサ、整流回路、電力出力部から構成されている。2次側コイルは、1次側コイルから発生した磁界を受けて、その磁界を電磁誘導作用により所定電流に変換して、整流回路、電力出力部を介して、2次側非接触充電モジュールの外部に出力する。整流回路は、交流電流である所定電流を整流して直流電流である所定電流(直流5V、1.5A)に変換する。また、電力出力部は2次側非接触充電モジュールの外部出力部であり、この電力出力部を介して、2次側非接触充電モジュールに接続される電子機器に電力供給を行う。   On the other hand, the secondary side non-contact charging module includes a secondary side coil, a magnetic sheet, a resonant capacitor, a rectifier circuit, and a power output unit. The secondary side coil receives the magnetic field generated from the primary side coil, converts the magnetic field into a predetermined current by electromagnetic induction action, and passes through the rectifier circuit and the power output unit of the secondary side non-contact charging module. Output to the outside. The rectifier circuit rectifies a predetermined current that is an alternating current and converts it into a predetermined current that is a direct current (DC 5 V, 1.5 A). The power output unit is an external output unit of the secondary side non-contact charging module, and supplies power to the electronic device connected to the secondary side non-contact charging module via the power output unit.

特開2013−59195号公報JP 2013-59195 A

ところで、上述した非接触電力伝送機器(非接触充電機器)において、1次側コイル(送電側コイル)にコモンモードノイズが入力された場合、該コモンモードノイズは、1次側コイルと2次側コイルとによる電磁誘導ではなく、主として、双方の面積や距離に応じて生じる寄生容量による結合で伝送されると考えられる。   By the way, in the contactless power transmission device (contactless charging device) described above, when common mode noise is input to the primary side coil (power transmission side coil), the common mode noise is generated from the primary side coil and the secondary side coil. Instead of electromagnetic induction by the coil, it is considered that transmission is mainly performed by coupling due to parasitic capacitance generated according to both areas and distances.

しかしながら、特許文献1の非接触電力伝送機器(非接触充電機器)では、例えば、1次側非接触充電モジュールと2次側非接触充電モジュールとの間で生じる寄生容量が充分に得られない場合には、2次側非接触充電モジュールから1次側非接触充電モジュールへのコモンモードノイズのリターン(戻り)が不十分になるおそれがある。そのため、コモンモードノイズの伝送経路が大きなループを描き、放射ノイズや他の電子機器への電磁波干渉などを引き起こすおそれがあった。   However, in the non-contact power transmission device (non-contact charging device) of Patent Document 1, for example, the parasitic capacitance generated between the primary-side non-contact charging module and the secondary-side non-contact charging module cannot be sufficiently obtained. There is a possibility that the return of the common mode noise from the secondary side non-contact charging module to the primary side non-contact charging module becomes insufficient. Therefore, the transmission path for common mode noise draws a large loop, which may cause radiation noise or electromagnetic interference to other electronic devices.

本発明は、上記問題点を解消する為になされたものであり、送電コイルにコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能な非接触電力送電装置、非接触電力受電装置、及び、非接触電力伝送システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a non-contact type capable of reducing radiation noise and electromagnetic interference to other electronic devices when common mode noise is input to the power transmission coil. It aims at providing a power transmission device, a non-contact power receiving device, and a non-contact power transmission system.

本発明に係る非接触電力送電装置は、対向して受電コイルが配置されたときに、電磁誘導により、受電コイルに対して電力を送電する送電コイルと、送電コイルと電気的に接続され、送電する電力を送電コイルに供給する送電側基板と、金属磁性材料を主成分とし、送電コイルの背面側に配置される送電側金属磁性シートとを備え、送電側金属磁性シートが、送電側基板のグランドと電気的に接続されていることを特徴とする。   A non-contact power transmission device according to the present invention is configured to transmit power to a power receiving coil by electromagnetic induction when the power receiving coil is disposed opposite to the power receiving coil, and to be electrically connected to the power transmitting coil. A power transmission side substrate that supplies power to the power transmission coil, and a power transmission side metal magnetic sheet that is mainly composed of a metal magnetic material and is disposed on the back side of the power transmission coil. It is electrically connected to the ground.

本発明に係る非接触電力送電装置によれば、導電率、透磁率が高い金属磁性材料を主成分とし、送電コイルの背面側(すなわち、送電コイルの受電コイルと対向する面の反対側の面)に配置される送電側金属磁性シートを備え、該送電側金属磁性シートが、送電側基板のグランドと電気的に接続されている。そのため、送電コイルと対向して受電コイルが配置されたときに、送信側金属磁性シートが、コンデンサとして振る舞い、例えば、送電コイル、受電コイル、受電側基板のグランドなどと容量結合する。そのため、送電コイルに入力されたコモンモードノイズを効果的に送電側基板のグランドにリターンする(戻す)ことができる。よって、コモンモードノイズの伝送経路(ループ)を短縮することができる。その結果、送電コイルにコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   According to the non-contact power transmission device according to the present invention, a metal magnetic material having high conductivity and high magnetic permeability is the main component, and the back side of the power transmission coil (that is, the surface opposite to the surface facing the power reception coil of the power transmission coil). The power transmission side metal magnetic sheet is electrically connected to the ground of the power transmission side board. Therefore, when the power receiving coil is disposed facing the power transmitting coil, the transmitting metal magnetic sheet behaves as a capacitor, and is capacitively coupled with, for example, the power transmitting coil, the power receiving coil, the ground of the power receiving side substrate, and the like. Therefore, the common mode noise input to the power transmission coil can be effectively returned (returned) to the ground of the power transmission side substrate. Therefore, the transmission path (loop) for common mode noise can be shortened. As a result, when common mode noise is input to the power transmission coil, it is possible to reduce radiation noise and electromagnetic interference to other electronic devices.

本発明に係る非接触電力送電装置では、送電側基板のグランド面が露出されており、該グランド面に送電側金属磁性シートが電気的に接続されていることが好ましい。   In the non-contact power transmission apparatus according to the present invention, it is preferable that the ground surface of the power transmission side substrate is exposed, and the power transmission side metal magnetic sheet is electrically connected to the ground surface.

この場合、送電側基板のグランド面が露出され、該グランド面に送電側金属磁性シートが電気的に接続されている。そのため、送電側金属磁性シートとグランドとの接触面積を拡大することができる。よって、送電コイルにコモンモードノイズが入力された場合の、ノイズ低減効果をより高めることが可能となる。   In this case, the ground surface of the power transmission side substrate is exposed, and the power transmission side metal magnetic sheet is electrically connected to the ground surface. Therefore, the contact area between the power transmission side metal magnetic sheet and the ground can be increased. Accordingly, it is possible to further enhance the noise reduction effect when common mode noise is input to the power transmission coil.

本発明に係る非接触電力送電装置では、送電側金属磁性シートと送電側基板のグランドとが、ねじによって電気的に接続されていることが好ましい。   In the non-contact power transmission device according to the present invention, it is preferable that the power transmission side metal magnetic sheet and the ground of the power transmission side substrate are electrically connected by screws.

この場合、送電側金属磁性シートが、ねじによって送電側基板のグランドと電気的に接続されている。よって、送電側金属磁性シートをより強固にグランドに接続することができる。   In this case, the power transmission side metal magnetic sheet is electrically connected to the ground of the power transmission side substrate by screws. Therefore, the power transmission side metal magnetic sheet can be more firmly connected to the ground.

本発明に係る非接触電力受電装置は、対向して送電コイルが配置されたときに、電磁誘導により、送電コイルから電力を受電する受電コイルと、受電コイルと電気的に接続され、受電コイルにより受電された電力が供給される受電側基板と、金属磁性材料を主成分とし、受電コイルの背面側に配置される受電側金属磁性シートとを備え、受電側金属磁性シートが、受電側基板のグランドと電気的に接続されていることを特徴とする。   The contactless power receiving device according to the present invention is configured to receive power from a power transmission coil by electromagnetic induction and to be electrically connected to the power receiving coil when the power transmitting coil is arranged opposite to the power receiving coil. A power receiving side substrate to which the received power is supplied; and a power receiving side metal magnetic sheet mainly composed of a metal magnetic material and disposed on the back side of the power receiving coil. The power receiving side metal magnetic sheet is provided on the power receiving side substrate. It is electrically connected to the ground.

本発明に係る非接触電力受電装置によれば、導電率、透磁率が高い金属磁性材料を主成分とし、受電コイルの背面側(すなわち、受電コイルの送電コイルと対向する面の反対側の面)に配置される受電側金属磁性シートを備え、該受電側金属磁性シートが、受電側基板のグランドと電気的に接続されている。そのため、受電側金属磁性シートと受電側基板のグランドとが接続されて一体的な導体となり、容量が増加することから、コモンモードノイズの送電側基板のグランドへのリターンを強化することができる。その結果、送電コイルにコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   According to the non-contact power receiving apparatus according to the present invention, a metal magnetic material having high conductivity and magnetic permeability is the main component, and the back side of the power receiving coil (that is, the surface opposite to the surface facing the power transmitting coil of the power receiving coil). And the power receiving side metal magnetic sheet is electrically connected to the ground of the power receiving side substrate. For this reason, the power-receiving-side metal magnetic sheet and the ground of the power-receiving-side substrate are connected to form an integral conductor, and the capacity increases, so that the return of common mode noise to the ground of the power-transmitting-side substrate can be enhanced. As a result, when common mode noise is input to the power transmission coil, it is possible to reduce radiation noise and electromagnetic interference to other electronic devices.

本発明に係る非接触電力伝送システムは、上記いずれかの非接触電力送電装置と、上記非接触電力受電装置とを備えることを特徴とする。   A contactless power transmission system according to the present invention includes any one of the above contactless power transmission devices and the contactless power reception device.

本発明に係る非接触電力伝送システムによれば、上記いずれかの非接触電力送電装置と、上記非接触電力受電装置とを備えているため、上述したように、送電コイルにコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   According to the non-contact power transmission system according to the present invention, since any one of the non-contact power transmission devices and the non-contact power reception device is provided, common mode noise is input to the power transmission coil as described above. In this case, it is possible to reduce radiation noise and electromagnetic interference to other electronic devices.

本発明に係る非接触電力伝送システムでは、送電側基板が、送電側金属磁性シートの背面側に配置され、受電側基板が、受電側金属磁性シートの側方に配置されていることが好ましい。   In the non-contact power transmission system according to the present invention, it is preferable that the power transmission side substrate is disposed on the back side of the power transmission side metal magnetic sheet, and the power reception side substrate is disposed on the side of the power reception side metal magnetic sheet.

この場合、送電側基板が送電側金属磁性シートの背面側に配置されているため(すなわち、送電側金属磁性シートの送電コイルと対向する面の反対側の面に配置されているため)、非接触電力送電装置を小型化(面積を縮小)することができる。一方、受電側基板が受電側金属磁性シートの側方(すなわち、横に並べて)配置されているため、非接触電力受電装置を薄くすることが可能となる。   In this case, since the power transmission side substrate is disposed on the back side of the power transmission side metal magnetic sheet (that is, on the surface opposite to the surface facing the power transmission coil of the power transmission side metal magnetic sheet), non- The contact power transmission device can be downsized (the area can be reduced). On the other hand, since the power receiving side substrate is arranged on the side of the power receiving side metal magnetic sheet (that is, arranged side by side), the non-contact power receiving device can be made thin.

本発明によれば、非接触電力送電装置、非接触電力受電装置、及び、該非接触電力送電装置並びに該非接触電力受電装置を備えた非接触電力伝送システムにおいて、送電コイルにコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   According to the present invention, in the contactless power transmission device, the contactless power reception device, and the contactless power transmission system including the contactless power transmission device and the contactless power reception device, common mode noise is input to the power transmission coil. In this case, it is possible to reduce radiation noise and electromagnetic interference to other electronic devices.

実施形態に係る非接触電力伝送システムの構成を示す斜視図である。It is a perspective view showing composition of a non-contact electric power transmission system concerning an embodiment. 実施形態に係る非接触電力伝送システムを構成する非接触電力送電装置における金属磁性シートの取り付け方法を示す図である。It is a figure which shows the attachment method of the metal magnetic sheet in the non-contact electric power transmission apparatus which comprises the non-contact electric power transmission system which concerns on embodiment. 非接触電力伝送システムのシミュレーションモデルを示す斜視図である。It is a perspective view which shows the simulation model of a non-contact electric power transmission system. 非接触電力伝送システムを構成する非接触電力送電装置のシミュレーションモデルを示す上面図である。It is a top view which shows the simulation model of the non-contact electric power transmission apparatus which comprises a non-contact electric power transmission system. シミュレーションの観測面を示す図である。It is a figure which shows the observation surface of simulation. 実施形態に係る非接触電力伝送システム、及び比較例それぞれの磁界分布のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result of each magnetic field distribution of the non-contact electric power transmission system which concerns on embodiment, and a comparative example. 変形例に係る非接触電力伝送システムの構成を模式的に示した側面図である。It is the side view which showed typically the structure of the non-contact electric power transmission system which concerns on a modification. (a)は、送電側金属磁性シート23が送電側基板22のグランドに接続された非接触電力伝送システムの構成を模式的に示した側面図である。(b)は、(a)の非接触電力伝送システムにおけるコモンモードノイズの伝達経路を模式的に示した図である。(A) is the side view which showed typically the structure of the non-contact electric power transmission system with which the power transmission side metal magnetic sheet 23 was connected to the ground of the power transmission side board | substrate 22. FIG. (B) is the figure which showed typically the transmission path | route of the common mode noise in the non-contact electric power transmission system of (a). 比較例におけるコモンモードノイズの伝達経路を模式的に示した図である。It is the figure which showed typically the transmission path | route of the common mode noise in a comparative example.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used for the same or corresponding parts. Moreover, in each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.

まず、図1、図2を併せて用いて、実施形態に係る信号伝達用通信体1の構成について説明する。図1は、非接触電力伝送システム1の全体構成を示す図である。また、図2は、非接触電力伝送システム1を構成する非接触電力送電装置2における金属磁性シート23の取り付け方法を示す図である。なお、ここで、通常、本システムの送電側は充電器などの筐体中、受電側は携帯機器などの筐体中に配置されるが、図1などでは、それらの筐体は省略して示した。   First, the configuration of the signal transmission communication body 1 according to the embodiment will be described using FIG. 1 and FIG. 2 together. FIG. 1 is a diagram illustrating an overall configuration of a non-contact power transmission system 1. Moreover, FIG. 2 is a figure which shows the attachment method of the metal magnetic sheet 23 in the non-contact electric power transmission apparatus 2 which comprises the non-contact electric power transmission system 1. FIG. Here, normally, the power transmission side of this system is arranged in a case such as a charger, and the power reception side is arranged in a case such as a portable device. However, these cases are omitted in FIG. Indicated.

非接触電力伝送システム1は、対向したコイル(送電コイル21、受電コイル31)の電磁誘導により非接触で電力(信号を含む)を送受するシステムであり、非接触電力送電装置2と、非接触電力受電装置3とを備えて構成されている。   The non-contact power transmission system 1 is a system that transmits and receives power (including signals) in a non-contact manner by electromagnetic induction of opposing coils (a power transmission coil 21 and a power reception coil 31). The power receiving device 3 is provided.

非接触電力送電装置(モジュール)2は、主として、送電コイル21と、送電側基板22と、送電側金属磁性シート23とを備えて構成されている。   The non-contact power transmission device (module) 2 mainly includes a power transmission coil 21, a power transmission side substrate 22, and a power transmission side metal magnetic sheet 23.

送電コイル21は、非接触状態で対向して受電コイル31が配置されたときに、電磁誘導により、受電コイル31に対して電力を送電する。送電コイル21は、例えば、円形に渦を描くように中心部から外方向に向けて導電線が平面状に巻回された平面コイルである。送電コイル21は、その形状、巻き数、供給電力(電流)に応じた磁界を発生させる。なお、導電線としては、例えば、ポリウレタン銅線、ポリエステル銅線、エナメル銅線等を用いることができるまた、コイル形状としては、円形形状のほか、角形形状、長円形形状等であってもよい。   The power transmission coil 21 transmits electric power to the power reception coil 31 by electromagnetic induction when the power reception coil 31 is arranged to face in a non-contact state. The power transmission coil 21 is, for example, a planar coil in which conductive wires are wound in a planar shape from the center toward the outside so as to draw a vortex in a circle. The power transmission coil 21 generates a magnetic field according to its shape, number of turns, and supplied power (current). In addition, as a conductive wire, a polyurethane copper wire, a polyester copper wire, an enameled copper wire etc. can be used, for example. As a coil shape, a square shape, an oval shape, etc. may be sufficient besides circular shape. .

送電側基板22は、送電コイル21と電気的に接続され、送電コイル21に高周波交流電圧を印加するための送電回路等を有している。送電側基板22は、送電する電力(高周波交流電圧)を送電コイル21に供給する。なお、送電側基板22には、ノイズ源となり得るICが実装されている。また、送電側基板22は、後述する送電側金属磁性シート23の背面側(すなわち、送電側金属磁性シート23の送電コイル21と対向する面の反対側の面)に配置される。   The power transmission side substrate 22 is electrically connected to the power transmission coil 21 and includes a power transmission circuit for applying a high-frequency AC voltage to the power transmission coil 21. The power transmission side substrate 22 supplies power to be transmitted (high frequency AC voltage) to the power transmission coil 21. Note that an IC that can be a noise source is mounted on the power transmission side substrate 22. Moreover, the power transmission side board | substrate 22 is arrange | positioned at the back side (namely, surface on the opposite side of the surface facing the power transmission coil 21 of the power transmission side metal magnetic sheet 23) of the power transmission side metal magnetic sheet 23 mentioned later.

送電側金属磁性シート23は、導電率及び透磁率が高い金属磁性材料、例えば、鉄、ニッケル、コバルト等を主成分とし、矩形に形成されたシート状の部材である。送電側金属磁性シート23は、送電コイル21の背面側(すなわち、送電コイル21の受電コイル31と対向する面の反対側の面)に配置される。よって、送電側金属磁性シート23は、送電コイル21と送電側基板22との間に配置される。   The power transmission-side metal magnetic sheet 23 is a sheet-like member that has a metal magnetic material having high conductivity and magnetic permeability, such as iron, nickel, cobalt, etc., and is formed in a rectangular shape. The power transmission side metal magnetic sheet 23 is disposed on the back side of the power transmission coil 21 (that is, the surface opposite to the surface facing the power reception coil 31 of the power transmission coil 21). Therefore, the power transmission side metal magnetic sheet 23 is disposed between the power transmission coil 21 and the power transmission side substrate 22.

送電側金属磁性シート23は、送電側基板22のグランドと電気的に接続されている。より具体的には、送電側基板22では、図2に示されるように、例えば、レジストが剥がされてグランド面221が露出されており、該グランド面221に送電側金属磁性シート23が電気的に接続される。さらに、送電側金属磁性シート23と送電側基板22のグランド(ねじ穴の周囲のグランド222)とは、複数(図2では4つ)の金属製のねじ50によって電気的に接続されることが好ましい。すなわち、ねじ50がねじ止めされたときに、送電側基板22に形成されたねじ穴の側面のグランド222と金属製のねじ50の側面とが接触して電気的に接続されることが好ましい。その際に、送電側金属磁性シート23は、送電側基板22と共に、ねじ50によって、筐体60に固定される。このように、ねじ止めすることにより送電側金属磁性シート23と送電側基板22との間に一定の圧力がかかるため電力伝達の効率が向上する。なお、送電側金属磁性シート23は、ねじ止めの他、はんだ付け、導電性テープによる接着などの方法で接続することもできる。送電側金属磁性シート23を配置することにより、受電コイル31との電磁結合が強まり、電力伝達の効率が向上する。   The power transmission side metal magnetic sheet 23 is electrically connected to the ground of the power transmission side substrate 22. More specifically, in the power transmission side substrate 22, as shown in FIG. 2, for example, the resist is removed to expose the ground surface 221, and the power transmission side metal magnetic sheet 23 is electrically connected to the ground surface 221. Connected to. Furthermore, the power transmission side metal magnetic sheet 23 and the ground of the power transmission side substrate 22 (the ground 222 around the screw hole) can be electrically connected by a plurality (four in FIG. 2) of metal screws 50. preferable. That is, when the screw 50 is screwed, it is preferable that the ground 222 on the side surface of the screw hole formed in the power transmission side substrate 22 and the side surface of the metal screw 50 are in contact with each other and electrically connected. At that time, the power transmission side metal magnetic sheet 23 is fixed to the housing 60 by the screw 50 together with the power transmission side substrate 22. Thus, since the fixed pressure is applied between the power transmission side metal magnetic sheet 23 and the power transmission side board | substrate 22 by screwing, the efficiency of electric power transmission improves. The power-transmission-side metal magnetic sheet 23 can be connected by a method such as soldering or bonding with a conductive tape in addition to screwing. By arranging the power transmission side metal magnetic sheet 23, the electromagnetic coupling with the power receiving coil 31 is strengthened, and the efficiency of power transmission is improved.

一方、非接触電力受電装置(モジュール)3は、主として、受電コイル31と、受電側基板32と、受電側金属磁性シート33とを備えて構成されている。   On the other hand, the non-contact power receiving device (module) 3 mainly includes a power receiving coil 31, a power receiving side substrate 32, and a power receiving side metal magnetic sheet 33.

受電コイル31は、非接触状態で対向して送電コイル21が配置されたときに、電磁誘導により、送電コイル21から電力を受電する。受電コイル31は、上述した送電コイル21と同様に、例えば、円形に渦を描くように中心部から外方向に向けて導電線が平面状に巻回された平面コイルである。なお、コイル形状としては、円形形状のほか、角形形状、長円形形状等であってもよい。   The power receiving coil 31 receives electric power from the power transmitting coil 21 by electromagnetic induction when the power transmitting coil 21 is arranged to face in a non-contact state. Similarly to the power transmission coil 21 described above, the power reception coil 31 is, for example, a planar coil in which a conductive wire is wound in a planar shape from the center to the outside so as to draw a vortex in a circular shape. In addition to the circular shape, the coil shape may be a square shape, an oval shape, or the like.

受電側基板32は、導電性を有する接続部34を介して、受電コイル31と電気的に接続され、受電コイル31により受電された電力が供給される。より具体的には、受電側基板32は、整流回路、及びレギュレータ回路等を有しており、受電した電力(高周波電流/電圧)を整流した後、所定の電圧にレギュレートして出力する(又は、接続されている二次電池等を充電する)。なお、受電側基板32は、後述する受電側金属磁性シート33の側方(横に並べて)配置されることが好ましい。   The power receiving side substrate 32 is electrically connected to the power receiving coil 31 via the conductive connecting portion 34, and the power received by the power receiving coil 31 is supplied. More specifically, the power receiving side substrate 32 has a rectifier circuit, a regulator circuit, and the like, rectifies the received power (high frequency current / voltage), and then regulates and outputs it to a predetermined voltage ( Alternatively, the connected secondary battery or the like is charged). In addition, it is preferable that the power receiving side board | substrate 32 is arrange | positioned beside the power receiving side metal magnetic sheet 33 mentioned later (arranged horizontally).

受電側金属磁性シート33は、上述した送電側金属磁性シート23と同様に、導電率及び透磁率が高い金属磁性材料、例えば、鉄、ニッケル、コバルト等を主成分とし、矩形に形成されたシート状の部材である。受電側金属磁性シート33は、受電コイル31の背面側(すなわち、受電コイル31の送電コイル21と対向する面の反対側の面)に配置される。また、装置の厚みを薄くする観点から、受電側金属磁性シート33は、受電側基板32の側方(横に並べて)配置されることが好ましい。   Similarly to the power transmission side metal magnetic sheet 23 described above, the power reception side metal magnetic sheet 33 is a rectangular sheet mainly composed of a metal magnetic material having high conductivity and high permeability, such as iron, nickel, cobalt, and the like. Shaped member. The power receiving side metal magnetic sheet 33 is disposed on the back side of the power receiving coil 31 (that is, the surface opposite to the surface facing the power transmitting coil 21 of the power receiving coil 31). Further, from the viewpoint of reducing the thickness of the device, the power receiving side metal magnetic sheet 33 is preferably disposed on the side (side by side) of the power receiving side substrate 32.

受電側金属磁性シート33は、上記接続部34を介して、受電側基板32のグランドと電気的に接続されている。なお、上述した非接触電力送電装置2の場合と同様に、受電側金属磁性シート33を受電コイル31と受電側基板32との間に配置し、受電側基板32のグランド面に接触させるとともに、ねじによって固定する構成としてもよい。受電側金属磁性シート33を配置することにより、送電コイル21との電磁結合が強まり、電力伝達の効率が向上する。   The power receiving side metal magnetic sheet 33 is electrically connected to the ground of the power receiving side substrate 32 through the connecting portion 34. As in the case of the non-contact power transmission apparatus 2 described above, the power receiving side metal magnetic sheet 33 is disposed between the power receiving coil 31 and the power receiving side substrate 32 and is brought into contact with the ground surface of the power receiving side substrate 32. It is good also as a structure fixed with a screw | thread. By arranging the power receiving side metal magnetic sheet 33, the electromagnetic coupling with the power transmission coil 21 is strengthened, and the efficiency of power transmission is improved.

上述したように構成されることにより、送電コイル21と受電コイル31とを非接触状態で対向するように置き、送電コイル21に高周波交流電圧(電流)を印加することで、電磁誘導により送電コイル21から受電コイル31に非接触で電力が伝送される。その際、すなわち、送電コイル21と対向して受電コイル31が配置されたときに、送電側金属磁性シート23及び受電側金属磁性シート33が、コンデンサ(又はその一部)として振る舞い、例えば、双方のコイル21,31間や双方の基板22,32間に形成される寄生容量に加えて、例えば、双方の金属磁性シート23,33間や、送電側金属磁性シート23と送電コイル21との間、送電側金属磁性シート23と受電コイル31との間、及び送電コイル21と受電側基板32との間などにも寄生容量が生じる。そのため、寄生容量が増大し、送電コイル21に入力されたコモンモードノイズを効果的に送電側基板22のグランドにリターンする(戻す)ことができる。よって、コモンモードノイズの伝送経路(ループ)が短縮(最短化)される。   By being configured as described above, the power transmission coil 21 and the power reception coil 31 are placed so as to face each other in a non-contact state, and a high-frequency alternating voltage (current) is applied to the power transmission coil 21, so that the power transmission coil is electromagnetically induced. Power is transmitted from 21 to the power receiving coil 31 in a contactless manner. In that case, that is, when the power receiving coil 31 is arranged opposite to the power transmitting coil 21, the power transmitting side metal magnetic sheet 23 and the power receiving side metal magnetic sheet 33 behave as capacitors (or a part thereof), for example, both In addition to the parasitic capacitance formed between the coils 21 and 31 and between the substrates 22 and 32, for example, between the metal magnetic sheets 23 and 33, or between the power transmission side metal magnetic sheet 23 and the power transmission coil 21. Parasitic capacitance also occurs between the power transmission side metal magnetic sheet 23 and the power reception coil 31 and between the power transmission coil 21 and the power reception side substrate 32. Therefore, the parasitic capacitance is increased, and the common mode noise input to the power transmission coil 21 can be effectively returned (returned) to the ground of the power transmission side substrate 22. Therefore, the transmission path (loop) of common mode noise is shortened (minimized).

ここで、本実施形態に係る非接触電力伝送システム1のノイズ対策効果を確認するために、3次元の電磁界シミュレーションを用いて磁界分布を解析した。そこで、次に、図3〜図6を併せて参照しつつ、本実施形態に係る非接触電力伝送システム1、及び比較例(金属磁性シート23,33がグランドに接続されていない場合)それぞれのノイズ低減効果(磁界分布)について、シミュレーション結果を示して説明する。   Here, in order to confirm the noise countermeasure effect of the non-contact power transmission system 1 according to the present embodiment, the magnetic field distribution was analyzed using a three-dimensional electromagnetic field simulation. Then, next, referring also to FIGS. 3 to 6, each of the non-contact power transmission system 1 according to the present embodiment and the comparative example (when the metal magnetic sheets 23 and 33 are not connected to the ground). The noise reduction effect (magnetic field distribution) will be described by showing simulation results.

ここで、シミュレーションにおいては、図3,4に示されるように、本実施形態のモデルとして、金属磁性シート材に鉄を用い、接続部24,34を介して、送電側金属磁性シート23及び受電側金属磁性シート33をグランドに接続する設定とした。一方、比較例のモデルとして、金属磁性シート材に鉄を用い、金属磁性シート23,33とグランドとを電気的接続しない設定とした。また、非接触電力送電装置2、非接触電力受電装置3ともに、コイル(送電コイル21、受電コイル31)と、基板(送電側基板22、受電側基板32)とが横並びの構成とした。   Here, in the simulation, as shown in FIGS. 3 and 4, as a model of the present embodiment, iron is used for the metal magnetic sheet material, and the power transmission side metal magnetic sheet 23 and the power reception are connected via the connection parts 24 and 34. The side metal magnetic sheet 33 was set to be connected to the ground. On the other hand, as a model of the comparative example, iron was used as the metal magnetic sheet material, and the metal magnetic sheets 23 and 33 and the ground were not electrically connected. Further, in both the non-contact power transmission device 2 and the non-contact power reception device 3, the coils (the power transmission coil 21 and the power reception coil 31) and the substrates (the power transmission side substrate 22 and the power reception side substrate 32) are arranged side by side.

そして、送電コイル21に対してコモンモードノイズを入力し、それぞれの磁界分布を観測した。なお、観測面としては、図5に示されるように、y方向が送電側基板22、受電側基板32の面と平行となるように設定し、xz平面の電磁界、すなわち、送電側基板22、受電側基板32の寄生容量を通してリターンする(戻る)電磁界の拡がりを解析した。   And common mode noise was inputted into power transmission coil 21, and each magnetic field distribution was observed. As shown in FIG. 5, the observation plane is set so that the y direction is parallel to the surfaces of the power transmission side substrate 22 and the power reception side substrate 32, and the electromagnetic field in the xz plane, that is, the power transmission side substrate 22. The spread of the electromagnetic field returning (returning) through the parasitic capacitance of the power receiving side substrate 32 was analyzed.

本実施形態に係る非接触電力伝送システム1、及び比較例(金属磁性シート23,33がグランドに接続されていない場合)それぞれのシミュレーション結果(磁界分布)を図6に示す。なお、図6では、本実施形態に係る非接触電力伝送システム1のシミュレーション結果(磁界分布)を右側に、比較例のシミュレーション結果(磁界分布)を左側に示した。   FIG. 6 shows simulation results (magnetic field distribution) of the non-contact power transmission system 1 according to the present embodiment and the comparative example (when the metal magnetic sheets 23 and 33 are not connected to the ground). In FIG. 6, the simulation result (magnetic field distribution) of the non-contact power transmission system 1 according to the present embodiment is shown on the right side, and the simulation result (magnetic field distribution) of the comparative example is shown on the left side.

図6に示されるように、本実施形態(右側の画像)では、比較例(左側の画像)と比べて、磁界の拡がりが縮小することが確認された。すなわち、本実施形態では、コモンモードノイズのループが短縮(最短化)されることにより、磁界の拡がりが縮小し、放射ノイズや他の電子機器に対する電磁波障害(干渉)が低減されることが確認された。   As shown in FIG. 6, in this embodiment (right image), it was confirmed that the expansion of the magnetic field was reduced compared to the comparative example (left image). That is, in the present embodiment, it is confirmed that the common mode noise loop is shortened (minimized), thereby reducing the spread of the magnetic field and reducing radiated noise and electromagnetic interference (interference) with other electronic devices. It was done.

本実施形態に係る非接触電力送電装置2によれば、導電率、透磁率が高い金属磁性材料を主成分とし、送電コイル21の背面側に配置される送電側金属磁性シート23を備え、該送電側金属磁性シート23が、送電側基板22のグランドと電気的に接続されている。そのため、送電コイル21と対向して受電コイル31が配置されたときに、送電側金属磁性シート23が、コンデンサ(又はその一部)として振る舞い、例えば、送電コイル21、受電コイル31、受電側基板32のグランドなどと容量結合する。そのため、送電コイル21に入力されたコモンモードノイズを効果的に送電側基板22のグランドにリターンする(戻す)ことができる。よって、コモンモードノイズの伝送経路(ループ)が短縮(最短化)される。その結果、送電コイル21にコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   According to the non-contact power transmission apparatus 2 according to the present embodiment, the metal magnetic material having high conductivity and magnetic permeability is a main component, and the power transmission side metal magnetic sheet 23 disposed on the back side of the power transmission coil 21 is provided. The power transmission side metal magnetic sheet 23 is electrically connected to the ground of the power transmission side substrate 22. Therefore, when the power receiving coil 31 is disposed opposite to the power transmitting coil 21, the power transmitting side metal magnetic sheet 23 behaves as a capacitor (or a part thereof), for example, the power transmitting coil 21, the power receiving coil 31, and the power receiving side substrate. Capacitive coupling with 32 grounds. Therefore, the common mode noise input to the power transmission coil 21 can be effectively returned (returned) to the ground of the power transmission side substrate 22. Therefore, the transmission path (loop) of common mode noise is shortened (minimized). As a result, when common mode noise is input to the power transmission coil 21, radiation noise and electromagnetic interference to other electronic devices can be reduced.

本実施形態によれば、送電側基板22のグランド面221が露出され、該グランド面221に送電側金属磁性シート23が電気的に接続されている。そのため、送電側金属磁性シート23とグランドとの接触面積を拡大することができる。よって、送電コイル21にコモンモードノイズが入力された場合の、ノイズ低減効果をより高めることが可能となる。   According to this embodiment, the ground surface 221 of the power transmission side substrate 22 is exposed, and the power transmission side metal magnetic sheet 23 is electrically connected to the ground surface 221. Therefore, the contact area between the power transmission side metal magnetic sheet 23 and the ground can be enlarged. Therefore, it is possible to further enhance the noise reduction effect when common mode noise is input to the power transmission coil 21.

本実施形態によれば、送電側金属磁性シート23が、ねじ50によって送電側基板22のグランドと電気的に接続されている。よって、送電側金属磁性シート23を、より強固にグランドに接続することができる。   According to the present embodiment, the power transmission side metal magnetic sheet 23 is electrically connected to the ground of the power transmission side substrate 22 by the screw 50. Therefore, the power transmission side metal magnetic sheet 23 can be more firmly connected to the ground.

本実施形態に係る非接触電力受電装置3によれば、導電率、透磁率が高い金属磁性材料を主成分とし、受電コイル31の背面側に配置される受電側金属磁性シート33を備え、該受電側金属磁性シート33が、受電側基板32のグランドと電気的に接続されている。そのため、受電側金属磁性シート33と受電側基板32のグランドとが接続されて一体的な導体となり、容量が増加することから、コモンモードノイズの送電側基板21のグランドへのリターンを強化することができる。その結果、送電コイル21にコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   According to the non-contact power receiving device 3 according to the present embodiment, a metal magnetic material having a high conductivity and magnetic permeability is a main component, and the power receiving side metal magnetic sheet 33 disposed on the back side of the power receiving coil 31 is provided. The power receiving side metal magnetic sheet 33 is electrically connected to the ground of the power receiving side substrate 32. Therefore, the power-receiving-side metal magnetic sheet 33 and the ground of the power-receiving-side substrate 32 are connected to become an integral conductor, and the capacity is increased, thereby strengthening the return of common mode noise to the ground of the power-transmitting-side substrate 21. Can do. As a result, when common mode noise is input to the power transmission coil 21, radiation noise and electromagnetic interference to other electronic devices can be reduced.

本実施形態に係る非接触電力伝送システム1によれば、上記非接触電力送電装置2と、上記非接触電力受電装置3とを備えているため、上述したように、送電コイル21にコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   According to the non-contact power transmission system 1 according to the present embodiment, since the non-contact power transmission device 2 and the non-contact power reception device 3 are provided, the common mode noise is generated in the power transmission coil 21 as described above. When is input, it is possible to reduce radiation noise and electromagnetic interference to other electronic devices.

本実施形態によれば、送電側金属磁性シート23が、送電コイル21と送電側基板22との間に配置されているため、非接触電力送電装置2を小型化(設置面積を縮小)することができる。一方、受電側金属磁性シート33が、受電側基板32の側方(すなわち、横に並べて)配置されているため、非接触電力受電装置3を薄くすることが可能となる。   According to the present embodiment, since the power transmission side metal magnetic sheet 23 is disposed between the power transmission coil 21 and the power transmission side substrate 22, the contactless power transmission device 2 can be reduced in size (reduction in installation area). Can do. On the other hand, since the power-receiving-side metal magnetic sheet 33 is disposed on the side (that is, side by side) of the power-receiving-side substrate 32, the non-contact power receiving device 3 can be made thin.

(変形例)
次に、図7を用いて、変形例に係る非接触電力伝送システム1Bの構成について説明する。図7は、変形例に係る非接触電力伝送システム1Bの構成を模式的に示した側面図である。すなわち、上述した実施形態では、送電側金属磁性シート23を送電側基板22のグランドに接続するとともに、受電側金属磁性シート33を受電側基板32のグランドに接続したが、例えば、送電側金属磁性シート23のみを送電側基板22のグランドに接続し、受電側金属磁性シート33を受電側基板32のグランドに接続しない構成としてもよい。なお、その他の構成は、上述した非接触電力伝送システム1と同一または同様であるので、ここでは詳細な説明を省略する。
(Modification)
Next, the configuration of a non-contact power transmission system 1B according to a modification will be described with reference to FIG. FIG. 7 is a side view schematically showing the configuration of the non-contact power transmission system 1B according to the modification. That is, in the above-described embodiment, the power transmission side metal magnetic sheet 23 is connected to the ground of the power transmission side substrate 22 and the power reception side metal magnetic sheet 33 is connected to the ground of the power reception side substrate 32. Only the sheet 23 may be connected to the ground of the power transmission side substrate 22, and the power reception side metal magnetic sheet 33 may not be connected to the ground of the power reception side substrate 32. In addition, since the other structure is the same as that of the non-contact electric power transmission system 1 mentioned above, it abbreviate | omits detailed description here.

ここで、図8(b)及び図9に、送電側金属磁性シート23が送電側基板22のグランドに接続された非接触電力伝送システム1B(図8(a)参照)におけるコモンモードノイズの伝達経路、及び、比較例(送電側金属磁性シート23が送電側基板22のグランドに接続されていないシステム)におけるコモンモードノイズの伝達経路を模式的に示す。図9に示されるように、比較例では、コモンモードノイズの伝送経路が大きなループを描く。そのため、放射ノイズや他の電子機器への電磁波干渉などを引き起こすおそれがある。一方、図8(b)に示されるように、送電側金属磁性シート23が送電側基板22のグランドに接続された場合には、送電側金属磁性シート23が送電側基板22のグランドに接続されることに伴う寄生容量の増加により、コモンモードノイズのループ(伝達経路)が短縮(最短化)される。   Here, in FIGS. 8B and 9, transmission of common mode noise in the non-contact power transmission system 1 </ b> B (see FIG. 8A) in which the power transmission side metal magnetic sheet 23 is connected to the ground of the power transmission side substrate 22. The transmission path | route of the common mode noise in a path | route and a comparative example (system in which the power transmission side metal magnetic sheet 23 is not connected to the ground of the power transmission side board | substrate 22) is shown typically. As shown in FIG. 9, in the comparative example, the common mode noise transmission path draws a large loop. Therefore, there is a risk of causing radiation noise or electromagnetic wave interference with other electronic devices. On the other hand, as shown in FIG. 8B, when the power transmission side metal magnetic sheet 23 is connected to the ground of the power transmission side substrate 22, the power transmission side metal magnetic sheet 23 is connected to the ground of the power transmission side substrate 22. As the parasitic capacitance increases, the common mode noise loop (transmission path) is shortened (shortened).

そのため、本変形例によっても、上述したように、送電コイル21にコモンモードノイズが入力された場合に、放射ノイズや他の電子機器に対する電磁波障害を低減することが可能となる。   Therefore, also according to this modification, as described above, when common mode noise is input to the power transmission coil 21, it is possible to reduce radiation noise and electromagnetic interference to other electronic devices.

以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、送電コイル21並びに受電コイル31の形状や巻回数、及び、送電側金属磁性シート23並びに受電側金属磁性シート33の形状やグランドとの接続形態等は上記実施形態には限られることなく、所望される特性に応じて任意に設定することができる。   Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made. For example, the shape and number of turns of the power transmission coil 21 and the power reception coil 31, the shape of the power transmission side metal magnetic sheet 23 and the power reception side metal magnetic sheet 33, the connection form with the ground, and the like are not limited to the above embodiments. It can be arbitrarily set according to desired characteristics.

上記実施形態では、送電側金属磁性シート23を送電コイル21と送電側基板22との間に配置するとともに、受電側金属磁性シート33を受電側基板32の側方に配置したが、金属磁性シート23,33の配置は上記実施形態には限られない。すなわち、例えば、送電側金属磁性シート23を送電側基板22の側方に配置してもよく、受電側金属磁性シート33を受電コイル31と受電側基板32との間に配置してもよい。   In the above embodiment, the power transmission side metal magnetic sheet 23 is disposed between the power transmission coil 21 and the power transmission side substrate 22, and the power reception side metal magnetic sheet 33 is disposed on the side of the power reception side substrate 32. The arrangement of 23 and 33 is not limited to the above embodiment. That is, for example, the power transmission side metal magnetic sheet 23 may be disposed on the side of the power transmission side substrate 22, and the power reception side metal magnetic sheet 33 may be disposed between the power reception coil 31 and the power reception side substrate 32.

また、上記実施形態では、本発明を電磁誘導方式のシステムに適用した場合を例にして説明したが、本発明は、例えば、電磁界共鳴方式のシステムなどにも適用することができる。   In the above embodiment, the case where the present invention is applied to an electromagnetic induction system has been described as an example. However, the present invention can also be applied to an electromagnetic field resonance system, for example.

1,1B 非接触電力伝送システム
2 非接触電力送電装置
3,3B 非接触電力受電装置
21 送電コイル
22 送電側基板
221 グランド面
23 送電側金属磁性シート
24 接続部
31 受電コイル
32 受電側基板
33 受電側金属磁性シート
34 接続部
50 ねじ
60 筐体
DESCRIPTION OF SYMBOLS 1,1B Non-contact electric power transmission system 2 Non-contact electric power transmission apparatus 3, 3B Non-contact electric power reception apparatus 21 Power transmission coil 22 Power transmission side board | substrate 221 Ground surface 23 Power transmission side metal magnetic sheet 24 Connection part 31 Power reception coil 32 Power reception side board | substrate 33 Power reception Side metal magnetic sheet 34 Connection 50 Screw 60 Case

Claims (6)

対向して受電コイルが配置されたときに、電磁誘導により、前記受電コイルに対して電力を送電する送電コイルと、
前記送電コイルと電気的に接続され、送電する電力を前記送電コイルに供給する送電側基板と、
金属磁性材料を主成分とし、前記送電コイルの背面側に配置される送電側金属磁性シートと、を備え、
前記送電側金属磁性シートは、前記送電側基板のグランドと電気的に接続されていることを特徴とする非接触電力送電装置。
When the power receiving coil is disposed opposite to the power receiving coil, the power transmitting coil transmits power to the power receiving coil by electromagnetic induction; and
A power transmission side board that is electrically connected to the power transmission coil and supplies power to the power transmission coil;
A metal power material as a main component, and a power transmission side metal magnetic sheet disposed on the back side of the power transmission coil,
The non-contact power transmission device, wherein the power transmission side metal magnetic sheet is electrically connected to a ground of the power transmission side substrate.
前記送電側基板は、グランド面が露出されており、該グランド面に前記送電側金属磁性シートが電気的に接続されていることを特徴とする請求項1に記載の非接触電力送電装置。   The contactless power transmission device according to claim 1, wherein a ground surface of the power transmission side substrate is exposed, and the power transmission side metal magnetic sheet is electrically connected to the ground surface. 前記送電側金属磁性シートと前記送電側基板のグランドとは、ねじによって電気的に接続されていることを特徴とする請求項2に記載の非接触電力送電装置。   The contactless power transmission device according to claim 2, wherein the power transmission side metal magnetic sheet and the ground of the power transmission side substrate are electrically connected by screws. 対向して送電コイルが配置されたときに、電磁誘導により、前記送電コイルから電力を受電する受電コイルと、
前記受電コイルと電気的に接続され、前記受電コイルにより受電された電力が供給される受電側基板と、
金属磁性材料を主成分とし、前記受電コイルの背面側に配置される受電側金属磁性シートと、を備え、
前記受電側金属磁性シートは、前記受電側基板のグランドと電気的に接続されていることを特徴とする非接触電力受電装置。
A power receiving coil that receives power from the power transmitting coil by electromagnetic induction when the power transmitting coil is arranged oppositely;
A power receiving side substrate that is electrically connected to the power receiving coil and is supplied with the power received by the power receiving coil;
A power-receiving-side metal magnetic sheet mainly composed of a metal magnetic material and disposed on the back side of the power-receiving coil,
The non-contact power receiving apparatus, wherein the power receiving side metal magnetic sheet is electrically connected to a ground of the power receiving side substrate.
請求項1〜3のいずれか1項に記載の非接触電力送電装置と、
請求項4に記載の非接触電力受電装置と、を備えることを特徴とする非接触電力伝送システム。
The contactless power transmission device according to any one of claims 1 to 3,
A contactless power transmission system comprising: the contactless power receiving device according to claim 4.
前記送電側基板は、前記送電側金属磁性シートの背面側に配置され、
前記受電側基板は、前記受電側金属磁性シートの側方に配置されていることを特徴とする請求項5に記載の非接触電力伝送システム。
The power transmission side substrate is disposed on the back side of the power transmission side metal magnetic sheet,
The contactless power transmission system according to claim 5, wherein the power receiving side substrate is disposed on a side of the power receiving side metal magnetic sheet.
JP2015120833A 2015-06-16 2015-06-16 Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system Pending JP2017005952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015120833A JP2017005952A (en) 2015-06-16 2015-06-16 Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015120833A JP2017005952A (en) 2015-06-16 2015-06-16 Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system

Publications (1)

Publication Number Publication Date
JP2017005952A true JP2017005952A (en) 2017-01-05

Family

ID=57754583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120833A Pending JP2017005952A (en) 2015-06-16 2015-06-16 Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP2017005952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066086A1 (en) * 2018-09-25 2020-04-02 株式会社村田製作所 Wireless power receiving circuit module
RU2796516C2 (en) * 2018-08-15 2023-05-25 Конинклейке Филипс Н.В. Device and method for wireless power transmission

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796516C2 (en) * 2018-08-15 2023-05-25 Конинклейке Филипс Н.В. Device and method for wireless power transmission
WO2020066086A1 (en) * 2018-09-25 2020-04-02 株式会社村田製作所 Wireless power receiving circuit module
WO2020066085A1 (en) * 2018-09-25 2020-04-02 株式会社村田製作所 Planar-type wireless power-receiving circuit module
JPWO2020066085A1 (en) * 2018-09-25 2021-08-30 株式会社村田製作所 Flat wireless power receiving circuit module
JPWO2020066086A1 (en) * 2018-09-25 2021-08-30 株式会社村田製作所 Wireless power receiving circuit module
US11218031B2 (en) 2018-09-25 2022-01-04 Murata Manufacturing Co., Ltd. Planar-type wireless power-receiving circuit module
US11228211B2 (en) 2018-09-25 2022-01-18 Murata Manufacturing Co., Ltd. Wireless power receiving circuit module
JP7044168B2 (en) 2018-09-25 2022-03-30 株式会社村田製作所 Flat wireless power receiving circuit module
JP7044169B2 (en) 2018-09-25 2022-03-30 株式会社村田製作所 Wireless power receiving circuit module

Similar Documents

Publication Publication Date Title
US10367267B2 (en) Flexible printed circuit board for dual mode antennas, dual mode antenna and user device
US10461585B2 (en) Power-receiving device, wireless power-feeding system including power-receiving device, and wireless communication system including power-receiving device
US20220085654A1 (en) Wireless power transfer using multiple coil arrays
US20170256990A1 (en) Receiver Coil Arrangements for Inductive Wireless Power Transfer for Portable Devices
US11056918B2 (en) System for inductive wireless power transfer for portable devices
CN102570630B (en) Wireless power transfer equipment and wireless power transmission system thereof
US20150137742A1 (en) Wireless charging receiving device and wireless charging system using the same
US20200176990A1 (en) Transmitting assembly for a universal wireless charging device and a method thereof
US10090710B2 (en) Power receiving apparatus with a plurality of resonance coils
KR20130028448A (en) Wireless power relay apparatus and wireless power transmission system
JP2012143091A (en) Remotely and wirelessly driven charger
US9570935B2 (en) Magnetic coupling unit and magnetic coupling system
KR102637679B1 (en) Apparatus for transmitting and receiving wireless power
KR20140021694A (en) Dual-mode antenna
KR20150045985A (en) Flexible Circuit Board for Dual-Mode Antenna, Dual-Mode Antenna and User Device
JP2017005952A (en) Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system
KR20140021693A (en) Dual-mode antenna
JP2014150698A (en) Wireless power supply system
JP6498376B1 (en) Power receiving device
JP2012143093A (en) Proximity wireless charging ac adapter
KR20140021695A (en) Dual-mode antenna
CN110679060B (en) Transmission assembly for universal wireless charging device and method thereof
KR20130068646A (en) Apparatus for transmitting wireless power and system for transmitting wireless power