JP2016142672A - Thickness measuring apparatus using optical distance detectors - Google Patents

Thickness measuring apparatus using optical distance detectors Download PDF

Info

Publication number
JP2016142672A
JP2016142672A JP2015020029A JP2015020029A JP2016142672A JP 2016142672 A JP2016142672 A JP 2016142672A JP 2015020029 A JP2015020029 A JP 2015020029A JP 2015020029 A JP2015020029 A JP 2015020029A JP 2016142672 A JP2016142672 A JP 2016142672A
Authority
JP
Japan
Prior art keywords
distance
thickness
measured
pair
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015020029A
Other languages
Japanese (ja)
Inventor
将太 竹村
Shota Takemura
将太 竹村
相沢 健治
Kenji Aizawa
健治 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015020029A priority Critical patent/JP2016142672A/en
Publication of JP2016142672A publication Critical patent/JP2016142672A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thickness measuring apparatus using optical distance detectors for detecting changes in signals of the distance detectors and correcting a measurement error due to a change in a tilt angle of a to-be-measured object.SOLUTION: A thickness measuring apparatus using optical distance detectors, comprises: a pair of distance detectors 7T, 7B provided with a pair of distance detection units 1T, 1B and a pair of distance arithmetic units 5T, 5B, respectively; a fixing section 1c for making a setting to put the distance detectors 7T, 7B apart from each other at a preset set distance; and a tilt-angle arithmetic unit 6 for determining a ratio of the detection signals of the pair of distance detection units as a relative light intensity ratio. In the thickness measuring apparatus, a thickness arithmetic unit 20 comprises a tilt-angle calibration table 201 for associating the light intensity relative ratio with a tilt angle of a to-be-measured object 10, determining a first thickness of the to-be-measured object, determining a tilt angle corresponding to the determined light intensity relative ratio while referring to the tilt-angle calibration table, and correcting the determined thickness by multiplying the determined thickness by a cosine value of the tilt angle.SELECTED DRAWING: Figure 1

Description

本発明は、搬送中の被測定物との距離を、鋼板の両側に設ける光学式距離検出器を使用して求め、被測定物の厚さを求める光学式距離検出器を用いた厚さ測定装置に関する。   The present invention obtains the distance to the object under measurement using an optical distance detector provided on both sides of the steel sheet, and uses the optical distance detector to determine the thickness of the object to be measured. Relates to the device.

従来、搬送される鋼板等の被測定物を挟むように設けられるC型フレームの上下の腕部にレーザビームを用いた一対の距離検出器を、対向して予め設定される設定距離離間して備え、基準位置と鋼板との距離変化を一対の距離検出器で求めて、厚さを測定する厚さ測定装置が知られている(例えば、特許文献1参照。)。   Conventionally, a pair of distance detectors using laser beams are spaced apart from each other by a set distance set in advance on the upper and lower arms of a C-shaped frame provided so as to sandwich an object to be measured such as a steel plate to be conveyed. A thickness measuring device is known that measures a thickness by obtaining a change in distance between a reference position and a steel plate with a pair of distance detectors (see, for example, Patent Document 1).

このような光学式距離検出器による距離測定方法は、被測定物の表面状態により反射光の拡散状態が変化するために十分な精度が得られなかった。そのため、複数のレーザビームを用いて測定点を増やしたり、測定値を平均化したりして精度向上を図っている。   Such a distance measuring method using the optical distance detector cannot obtain sufficient accuracy because the diffusion state of the reflected light changes depending on the surface state of the object to be measured. Therefore, the accuracy is improved by increasing the number of measurement points using a plurality of laser beams or averaging the measurement values.

また、被測定物の姿勢が動揺することにより測定誤差が発生するため、被測定物の傾斜角度を測定して測定値を補正する方法も知られている。(例えば、特許文献2参照。)。   In addition, since a measurement error occurs when the posture of the object to be measured fluctuates, a method for measuring the inclination angle of the object to be measured and correcting the measurement value is also known. (For example, refer to Patent Document 2).

特許第3245003号公報Japanese Patent No. 3245033 特許第3966804号公報Japanese Patent No. 3966804

従来の光学式距離検出器を用いた厚さ測定装置においては、被測定物が傾斜した場合に測定誤差が発生する。図5は、被測定物10が基準面に対して角度θ傾斜した場合の厚さ測定誤差を説明する図である。   In a thickness measuring apparatus using a conventional optical distance detector, a measurement error occurs when the object to be measured is tilted. FIG. 5 is a diagram for explaining a thickness measurement error when the DUT 10 is inclined at an angle θ with respect to the reference plane.

一般に、レーザビームを生成する光源部2と、被測定物10からの反射光を受光して被測定物10からの反射光の位置の変化を検出するCCDカメラ4T(4B)を備える距離検出器11T(11B)を用いた厚さ測定装置は、一対の距離検出器11Tと距離検出器11Bを、予め設定される設定距離Ld離間して対向して備え、鋼板との距離Lt及びLbを求め、鋼板の厚さtを下記式により演算で求める。   In general, a distance detector including a light source unit 2 that generates a laser beam and a CCD camera 4T (4B) that receives reflected light from the object to be measured 10 and detects a change in the position of the reflected light from the object to be measured 10. A thickness measuring apparatus using 11T (11B) includes a pair of distance detectors 11T and 11B facing each other with a preset set distance Ld therebetween, and obtaining distances Lt and Lb from the steel plate. The thickness t of the steel sheet is calculated by the following formula.

t=Ld−(Lt+Lb)
しかしながら、鋼板が角度θ傾斜すると演算により求めた厚さtは、θ=0の場合に対して下記の誤差(Δt)が発生する。
t = Ld− (Lt + Lb)
However, when the steel sheet is inclined at an angle θ, the thickness t obtained by calculation has the following error (Δt) with respect to the case where θ = 0.

Δt=t(1/cosθ―1)
そのため、特許文献2に開示された厚さ測定装置では、被測定物の傾斜角を、被測定物の表面に照射さするレーザビームのパターン寸法変化を利用して求める技術が開示されている。
Δt = t (1 / cos θ−1)
For this reason, the thickness measuring device disclosed in Patent Document 2 discloses a technique for obtaining the inclination angle of the object to be measured by using the pattern dimension change of the laser beam that irradiates the surface of the object to be measured.

しかしながら、この方法では、新たな検出器を構成することは不要であるが、被測定物の表面性状が変化した場合、微細なレーザビームの形状が変化し、正確な傾斜角度を求めることが難しい問題がある。   However, with this method, it is not necessary to construct a new detector. However, when the surface property of the object to be measured changes, the shape of the fine laser beam changes and it is difficult to obtain an accurate tilt angle. There's a problem.

本発明は、上述した従来の上記問題点を解決するためになされたもので、本実施形態の光学式距離検出器を用いた厚さ測定装置は、新たな検出器を設けることなく、距離検出器自身の信号の変化を検出して、被測定物の傾斜角度の変化による測定誤差を補正する光学式距離検出器を用いた厚さ測定装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and the thickness measurement apparatus using the optical distance detector according to the present embodiment can detect the distance without providing a new detector. It is an object of the present invention to provide a thickness measuring device using an optical distance detector that detects a change in the signal of the device itself and corrects a measurement error due to a change in the tilt angle of the object to be measured.

上記目的を達成するために、本実施形態の光学式距離検出器を用いた請求項1の厚さ測定装置は、被測定物の表面、及び裏面にレーザビームを照射してその反射光の位置を検出する一対の距離検出部と、前記距離検出部の検出信号から前記レーザビームの照射表面との距離を求める一対の距離演算部と、を備える一対の距離検出器と、前記被測定物との距離を測定する予め設定された基準面に対して、一対の前記距離検出部を前記被測定物の両面で対向して、予め定める設定距離で離間させて設定する固定部と、一対の前記距離検出部の前記検出信号の比を相対光量比として求める傾斜角演算部と、一対の前記距離演算部の距離出力から前記被測定物の厚さを求めるとともに、前記相対光量比に基づいて求めた当該厚さを補正する厚さ演算部と、を備え、前記距離検出部は、前記基準面に対して鉛直軸方向からレーザビームを投光する光源部と、前記被測定物からの当該レーザビームの反射光を予め設定する受光角度で受光し、当該レーザビームの反射光の受光位置に対応する前記検出信号を生成するCCDカメラと、を備え、前記固定部は、一対の前記距離検出部の前記レーザビームの投光及び前記CCDカメラでの受光する投受光の光軸平面が、前記基準面に対して鉛直方向な同一平面上で、前記基準面に対して面対称となる様に設定し、前記傾斜角演算部は、一方の前記CCDカメラの前記検出信号と他方の前記CCDカメラの前記検出信号との比を光量相対比として求め、求めた当該光量相対比を前記厚さ演算部に送り、前記厚さ演算部は、前記光量相対比と前記被測定物の傾斜角度とを予め対応付けした傾斜角校正テーブルを備え、前記被測定物の第1の厚さを求めるとともに、求めた光量相対比に対応する傾斜角を、前記傾斜角校正テーブルを参照して求め、前記第1の厚さに対して当該傾斜角の余弦値を乗じて当該第1の厚さを補正するようにしたことを特徴とする。   In order to achieve the above object, the thickness measuring apparatus according to claim 1 using the optical distance detector of the present embodiment irradiates the surface and back surface of the object to be measured with a laser beam and positions of the reflected light. A pair of distance detectors, and a pair of distance detectors for obtaining a distance from the irradiation surface of the laser beam from a detection signal of the distance detector, a pair of distance detectors, A pair of the distance detectors opposite to each other on both sides of the object to be measured, and a fixed part that is set apart by a predetermined set distance, and a pair of the distance detectors. Obtaining the thickness of the object to be measured from the distance output of the pair of the distance computing units and the inclination angle computing unit that obtains the ratio of the detection signals of the distance detecting unit as the relative light quantity ratio, and obtaining based on the relative light quantity ratio Thickness calculator for correcting the thickness The distance detection unit receives a light source unit that projects a laser beam from a vertical axis direction with respect to the reference plane, and receives the reflected light of the laser beam from the object to be measured at a preset reception angle. And a CCD camera that generates the detection signal corresponding to the light receiving position of the reflected light of the laser beam, and the fixing unit is a projection of the laser beam of the pair of distance detection units and the CCD camera. The optical axis plane of the light receiving and projecting light received and received on the same plane perpendicular to the reference plane is set to be plane symmetric with respect to the reference plane. A ratio between the detection signal of the CCD camera and the detection signal of the other CCD camera is obtained as a light quantity relative ratio, and the obtained light quantity relative ratio is sent to the thickness calculation unit. Relative ratio and measured object An inclination angle calibration table in which an inclination angle is associated in advance is provided, the first thickness of the object to be measured is obtained, and an inclination angle corresponding to the obtained light quantity relative ratio is referred to the inclination angle calibration table. The first thickness is corrected by multiplying the first thickness by the cosine value of the inclination angle.

上記目的を達成するために、本実施形態の光学式距離検出器を用いた請求項2の厚さ測定装置は、被測定物の表面、及び裏面にレーザビームを照射してその反射光の位置を検出する一対の距離検出部と、前記距離検出部の検出信号から前記レーザビームの照射表面との距離を求める一対の距離演算部と、を備える一対の距離検出器と、前記被測定物との距離を測定する予め設定される基準面に対して、一対の前記距離検出部を前記被測定物の両面で対向して、予め定める設定距離で離間させて設定する固定部と、一対の前記距離検出部の夫々の前記検出信号の比を光量相対比として求める一対の傾斜角演算部と、一対の前記距離演算部の距離出力から前記被測定物の厚さを求めるとともに、前記光量相対比に基づいて求めた当該厚さを補正する厚さ演算部と、を備え、前記距離検出部は、前記基準面に対して鉛直軸方向からレーザビームを投光する光源部と、前記被測定物からの当該レーザビームの反射光を予め設定する受光角度で、当該鉛直軸に対して当該レーザビームの投受光光軸が同一の平面上となるように設定して受光し、当該レーザビームの反射光の受光位置に対応する信号を生成する一対のCCDカメラと、を備え、前記固定部は、一対の一方の前記距離検出部は、前記被測定物の表面側で、前記レーザビームの投光及び受光の光軸平面が、前記基準面に対して、前記被測定物の幅方向軸に平行な鉛直方向の同一平面上となるように設定し、他方の前記距離検出部は、前記被測定物の裏面側で、前記レーザビームの投光及び受光の光軸平面が、前記被測定物の移動方向軸に平行な鉛直方向の同一平面上となるように設定し、さらに一対の前記距離検出部のレーザビームの光軸は、前記被測定物の鉛直方向に平行な同一線上に位置する様に設定し、夫々の前記傾斜角演算部は、一方の前記CCDカメラの検出信号と、他方のCCDカメラの検出信号との相対比を求め、一方を前記被測定物の幅方向光量相対比とし、他方を前記被測定物の移動方向光量相対比として求め、夫々前記厚さ演算部に送り、前記厚さ演算部は、前記幅方向光量相対比と前記記被測定物の幅方向の傾斜角度とを予め対応付けした幅方向の傾斜角校正テーブルと、前記移動方向光量相対比と前記記被測定物の移動方向の傾斜角度とを予め対応付けした移動方向の傾斜角校正テーブルと、を備え、前記厚さ演算部は、一対の前記傾斜角演算部の前記相対比に対応する前記被測定物の幅方向、移動方向の傾斜角を、夫々の前記傾斜角校正テーブルを参照して求め、さらに、求めた移動方向及び幅方向の前記傾斜角から、前記被測定物の鉛直軸方向に対する傾斜角を演算により求め、一対の前記距離演算部の距離出力から第1の厚さを求めるとともに、求めた鉛直軸方向に対する傾斜角の余弦値と乗じて当該第1の厚さを補正するようにしたことを特徴とする。   In order to achieve the above object, the thickness measuring apparatus according to claim 2 using the optical distance detector of the present embodiment irradiates the surface and back surface of the object to be measured with a laser beam and positions of the reflected light. A pair of distance detectors, and a pair of distance detectors for obtaining a distance from the irradiation surface of the laser beam from a detection signal of the distance detector, a pair of distance detectors, A pair of the distance detectors opposed to both surfaces of the object to be measured and set to be separated by a predetermined set distance with respect to a preset reference plane for measuring the distance of A pair of tilt angle calculation units that determine the ratio of the detection signals of the distance detection units as a light amount relative ratio, and a thickness output of the object to be measured from a distance output of the pair of distance calculation units, and the light amount relative ratio Correct the thickness found based on A thickness calculation unit, and the distance detection unit presets a light source unit that projects a laser beam from a vertical axis direction with respect to the reference plane, and reflected light of the laser beam from the object to be measured The light receiving angle is set so that the light projecting / receiving optical axis of the laser beam is on the same plane with respect to the vertical axis, and a signal corresponding to the light receiving position of the reflected light of the laser beam is generated. A pair of CCD cameras, wherein the fixed portion is one of the pair of distance detectors on the surface side of the object to be measured, and the optical axis plane for projecting and receiving the laser beam is the reference plane In contrast, the distance detection unit is set to be on the same plane in the vertical direction parallel to the width-direction axis of the object to be measured, and the other distance detecting unit projects the laser beam on the back side of the object to be measured. The optical axis plane of light and light reception is the moving direction of the object to be measured. The optical axes of the laser beams of the pair of distance detectors are set to be on the same line parallel to the vertical direction of the object to be measured. Each of the tilt angle calculation units obtains a relative ratio between the detection signal of one CCD camera and the detection signal of the other CCD camera, and sets one as the relative light quantity ratio in the width direction of the object to be measured. It is calculated as a relative light amount ratio in the moving direction of the object to be measured, and is sent to the thickness calculation unit. The thickness calculation unit previously calculates the relative light amount relative ratio in the width direction and the inclination angle in the width direction of the object to be measured in advance. An inclination angle calibration table in the width direction, and an inclination angle calibration table in the movement direction in which the movement direction light amount relative ratio and the inclination angle in the movement direction of the measurement object are associated in advance. The calculation unit is a pair of the inclination angle calculation units. The width direction of the object to be measured corresponding to the relative ratio, the inclination angle in the movement direction is obtained by referring to the respective inclination angle calibration tables, and further, from the obtained inclination angle in the movement direction and the width direction, The inclination angle of the measured object with respect to the vertical axis direction is obtained by calculation, the first thickness is obtained from the distance output of the pair of distance calculation units, and the first thickness is multiplied by the cosine value of the inclination angle with respect to the obtained vertical axis direction. The thickness of 1 is corrected.

第1の実施形態の光学式距離検出器を用いた厚さ測定装置の構成図。The block diagram of the thickness measuring apparatus using the optical distance detector of 1st Embodiment. 第1の実施形態の動作原理を説明する図。The figure explaining the operation | movement principle of 1st Embodiment. 第2の実施形態の光学式距離検出器を用いた厚さ測定装置の構成図。The block diagram of the thickness measuring apparatus using the optical distance detector of 2nd Embodiment. 第2の実施形態の動作原理の説明図。Explanatory drawing of the operation principle of 2nd Embodiment. 従来の厚さ測定装置の測定誤差の説明図。Explanatory drawing of the measurement error of the conventional thickness measuring apparatus.

以下、本実施形態の光学式距離検出器を用いた厚さ測定装置について、図面を参照して説明する。   Hereinafter, a thickness measuring apparatus using the optical distance detector of the present embodiment will be described with reference to the drawings.

(第1の実施形態)
(動作原理)
先ず、図2を参照して、被測定物の傾斜角校正テーブルを作成して被測定物が傾斜した場合の測定誤差を補正する光学式距離検出装置を用いた厚さ測定装置の動作原理について説明する。
(First embodiment)
(Operating principle)
First, referring to FIG. 2, an operation principle of a thickness measuring apparatus using an optical distance detecting device that creates a tilt angle calibration table of a measured object and corrects a measurement error when the measured object is tilted. explain.

図2(a)は、レーザビーム3を照射する光源部2と、被測定物10の表面で反射したレーザビーム3の反射光を受光するCCDカメラ4とを備える距離検出器7Tが、紙面に対して時計方向に傾斜角θで傾斜した被測定物10からの反射光を受光している状態を示す。   In FIG. 2A, a distance detector 7T including a light source unit 2 that irradiates a laser beam 3 and a CCD camera 4 that receives the reflected light of the laser beam 3 reflected from the surface of the object to be measured 10 is placed on the paper surface. On the other hand, a state in which the reflected light from the DUT 10 tilted clockwise with the tilt angle θ is received is shown.

(ここでは、鉛直方向から照射したレーザビーム2に直交する被測定物2の表面をθ=0とし、時計方向に回転した傾斜角を−で、また、反時計方向に回転した傾斜角を+で記載している。)。 (Here, the surface of the DUT 2 perpendicular to the laser beam 2 irradiated from the vertical direction is θ = 0, the tilt angle rotated clockwise is −, and the tilt angle rotated counterclockwise is + It is described in.)

図2(b)は、被測定物10の傾斜角θと、被測定物10からの反射光分布特性を相対光量で示したものである。一般に、被測定物10の表面状態が鏡面及び完全拡散面を除く粗面の場合、CCDカメラ4で受光する粗面からの反射分布は、投光角と受光角が等しくなる、被測定物10の傾斜角θが−αの正反射位置をピーク位置として左右対称な分布特性を示す。   FIG. 2B shows the tilt angle θ of the device under test 10 and the reflected light distribution characteristics from the device under test 10 in terms of relative light quantity. In general, when the surface state of the object to be measured 10 is a rough surface excluding a mirror surface and a completely diffusing surface, the reflection distribution from the rough surface received by the CCD camera 4 has the same projection angle and light reception angle. The distribution characteristic is symmetrical with respect to the regular reflection position where the inclination angle θ is −α.

汎用されている薄鋼板や、厚板などの場合、この反射光量の分布特性は正規分布型に類似した分布特性を示すものが多い。   In the case of a widely used thin steel plate or thick plate, the distribution characteristic of the reflected light amount often shows a distribution characteristic similar to the normal distribution type.

そこで、図2(c)に示すように、距離検出器7T、距離検出器7Bを鋼板の表面と裏面とで対向させて設け、レーザビーム3の投光軸とCCDカメラ4の受光光軸とを含む紙面に平行な投受光面を、予め設定される厚さ測定の基準面(例えば、Rs)に対して面対称な位置となるように設け、図2(d)に示すように、被測定物10の傾斜角θに対して、傾斜角θ=0の軸を中心軸として対象な正規分布型の反射光分布特性が得られるように設定する。   Therefore, as shown in FIG. 2C, the distance detector 7T and the distance detector 7B are provided so as to face each other on the front and back surfaces of the steel plate, and the light projecting axis of the laser beam 3 and the light receiving optical axis of the CCD camera 4 2 is provided so as to be in a plane-symmetrical position with respect to a preset thickness measurement reference plane (for example, Rs), as shown in FIG. With respect to the inclination angle θ of the measured object 10, the target normal distribution type reflected light distribution characteristic is set with the axis of the inclination angle θ = 0 as the central axis.

即ち、距離検出器7T、距離検出器7Bの夫々のレーザビーム3の投受光光軸平面を被測定物10の同一の鉛直平面に設定し、上下のレーザビーム3が同じ鉛直軸上になる様に位置を合わせ、また、投受光角も等しくしておく。   That is, the light projecting / receiving optical axis planes of the laser beams 3 of the distance detector 7T and the distance detector 7B are set to the same vertical plane of the object 10 so that the upper and lower laser beams 3 are on the same vertical axis. And the projection and reception angles are also made equal.

このように設定された一対の距離検出器7T及び距離検出器7Bの、夫々のCCD4カメラの検出信号を互いに相手の検出信号で除して、時計方向(−θ)及び反時計方向(+θ)に被測定物10を傾斜させ、傾斜角度θに対する相対比を求めると、図2(e)に示すような、傾斜角θが0〜±αの範囲で大きく相対光量が変化する状態を設定でき、傾斜角の変化を高感度で捉えることができる。   By dividing the detection signals of the respective CCD4 cameras of the pair of distance detectors 7T and 7B thus set by the detection signals of the other party, the clockwise direction (−θ) and the counterclockwise direction (+ θ). When the object to be measured 10 is tilted and the relative ratio to the tilt angle θ is obtained, a state in which the relative light quantity changes greatly within the range of the tilt angle θ of 0 to ± α as shown in FIG. The change of the tilt angle can be captured with high sensitivity.

CCDカメラ4の受光角度2αの設定は、被測定物10の反射光の分布特性が被測定物10の粗度により変化するので、傾斜角の検出精度と測定範囲とは、予め分布特性を評価して設定する。   The setting of the light receiving angle 2α of the CCD camera 4 is such that the distribution characteristic of the reflected light of the object to be measured 10 changes depending on the roughness of the object to be measured 10, and therefore the inclination angle detection accuracy and the measurement range are evaluated in advance. And set.

このように本実施形態の特徴は、CCDカメラを傾斜する測定に対して面対称に設定し、反射光の分布特性が急激に変化する正反射近傍の特性を利用して、相互の出力の比(ここでは、傾斜相対比と呼ぶ)を求め、時計方向、反時計方向の傾斜角度の変化を強調して求める。   As described above, the feature of the present embodiment is that the CCD camera is set to be plane-symmetric with respect to the tilted measurement, and the ratio of mutual outputs is obtained by using the characteristic in the vicinity of regular reflection where the distribution characteristic of reflected light changes rapidly. (Referred to herein as a slope relative ratio) is obtained, and the change in the inclination angle in the clockwise direction and the counterclockwise direction is emphasized.

そして、この傾斜相対比と被測定物の傾斜角度とを対応付けした傾斜角校正テーブルを予め作成しておき、距離検出器の検出信号から距離を求めて被測定物の厚さを求めるとともに、被測定物の傾斜による厚さ誤差を補正する点にある。   Then, an inclination angle calibration table in which the inclination relative ratio and the inclination angle of the object to be measured are associated with each other in advance, the distance is obtained from the detection signal of the distance detector, and the thickness of the object to be measured is obtained. This is to correct the thickness error due to the inclination of the object to be measured.

(構成)
次に、このような原理の基づく厚さ測定装置100の構成について図1を参照して説明する。
(Constitution)
Next, the configuration of the thickness measuring apparatus 100 based on such a principle will be described with reference to FIG.

図1は、紙面と鉛直なx軸方向に移動する板幅wの被測定物10のz軸方向の厚さtを、被測定物10がy軸の幅方向、即ち、y−z平面で傾斜した場合の厚さの測定誤差を補正する厚さ測定装置100の構成を示す。   FIG. 1 shows the thickness t in the z-axis direction of the object to be measured 10 having a plate width w moving in the x-axis direction perpendicular to the paper surface, and the object to be measured 10 is in the width direction of the y-axis, that is, in the yz plane. The structure of the thickness measuring apparatus 100 which correct | amends the measurement error of the thickness at the time of inclining is shown.

図1において、厚さ測定装置100は、被測定物10の表面、及び裏面にレーザビーム3を照射してその反射光の位置を検出する一対の距離検出部1T、1Bと、距離検出部1T、1Bの検出信号からレーザビーム3の照射表面との距離を求める一対の距離演算部5T、5Bと、を備える一対の距離検出器7T、7Bと、被測定物10との距離を測定する予め設定される基準面Rfに対して、一対の距離検出部1T、1Bを被測定物10の両面で対向して、予め定める設定距離Ldで離間させて設定する固定部1cと、を備える。   In FIG. 1, a thickness measuring apparatus 100 includes a pair of distance detectors 1T and 1B that detect the position of reflected light by irradiating a laser beam 3 on the front and back surfaces of an object to be measured 10, and a distance detector 1T. The distance between the pair of distance detectors 7T and 7B including a pair of distance calculation units 5T and 5B for obtaining the distance from the irradiation surface of the laser beam 3 from the detection signal 1B and the DUT 10 is measured in advance. A pair of distance detection units 1T and 1B are opposed to both sides of the object to be measured 10 with respect to the set reference plane Rf, and a fixing unit 1c that is set to be separated by a predetermined set distance Ld is provided.

さらに、一対の距離検出部1T、1Bの夫々の検出信号s4t、s4bの比を相対光量比として求める一対の傾斜角演算部6と、一対の距離演算部5T、5Bの距離出力から被測定物10の厚さを求めるとともに、傾斜角演算部6で求めた相対光量比に基づいて求めた当該厚さを補正する厚さ演算部20と、を備える。   Furthermore, the object to be measured is obtained from the pair of inclination angle calculation units 6 for obtaining the ratio of the detection signals s4t and s4b of the pair of distance detection units 1T and 1B as the relative light quantity ratio, and the distance outputs of the pair of distance calculation units 5T and 5B. And a thickness calculator 20 that corrects the thickness obtained based on the relative light quantity ratio obtained by the tilt angle calculator 6.

次に、各部の詳細構成について説明する。図1に示した固定部1cは、腕部1c1と、腕部1c2とを備えるC型のフレームで、夫々の腕部に距離検出部1Tと距離検出部1Bとを一体で固定する構造であるが、固定部の構造は被測定物の測定環境により任意の構造とすることが可能である。   Next, the detailed configuration of each unit will be described. The fixing part 1c shown in FIG. 1 is a C-shaped frame including an arm part 1c1 and an arm part 1c2, and has a structure in which the distance detection part 1T and the distance detection part 1B are fixed integrally to each arm part. However, the structure of the fixed portion can be an arbitrary structure depending on the measurement environment of the object to be measured.

距離検出部1Tは、被測定物10の厚さを測定する基準面に対して鉛直軸方向からレーザビーム3を投光する光源部2と、被測定物10からの当該レーザビーム3の反射光を予め設定する受光角度で、当該鉛直軸に対して当該レーザビーム3の投受光光軸が同一の平面上で受光し、当該レーザビーム3の反射光の受光位置に対応する検出信号を生成する一対のCCDカメラと、を備える。   The distance detection unit 1T includes a light source unit 2 that projects a laser beam 3 from a vertical axis direction with respect to a reference plane for measuring the thickness of the object 10 to be measured, and reflected light of the laser beam 3 from the object 10 to be measured. Is received on the same plane with respect to the vertical axis, and a detection signal corresponding to the light receiving position of the reflected light of the laser beam 3 is generated. A pair of CCD cameras.

さらに詳細には、固定部1cは、一対の距離検出部1T、1Bの投受光の光軸平面が、被測定物10の基準面に対して鉛直方向に平行な同一平面上で、前記基準面に対して面対称となる様に設定する。   More specifically, the fixing unit 1c is configured so that the optical axis planes of light transmission and reception of the pair of distance detection units 1T and 1B are on the same plane parallel to the vertical direction with respect to the reference surface of the object 10 to be measured. Is set to be plane symmetric.

また、傾斜角演算部6は、一方のCCDカメラ4Tの検出信号と他方のCCDカメラ4Bの検出信号との比を光量相対比として求め、求めた当該光量相対比を厚さ演算部20に送る。   Further, the tilt angle calculation unit 6 obtains the ratio of the detection signal of one CCD camera 4T and the detection signal of the other CCD camera 4B as a light amount relative ratio, and sends the obtained light amount relative ratio to the thickness calculation unit 20. .

そして、厚さ演算部20は、光量相対比と被測定物10の傾斜角度θとを予め対応付けした傾斜角校正テーブル201を備え、被測定物10の第1の厚さを求めるとともに、求めた光量相対比に対応する傾斜角を、前記傾斜角校正テーブルを参照して求め、第1の厚さに対して当該傾斜角の余弦値を乗じて当該第1の厚さを補正する。   The thickness calculation unit 20 includes an inclination angle calibration table 201 in which the light quantity relative ratio and the inclination angle θ of the device to be measured 10 are associated in advance, and calculates and obtains the first thickness of the device to be measured 10. The inclination angle corresponding to the relative light quantity ratio is obtained with reference to the inclination angle calibration table, and the first thickness is corrected by multiplying the first thickness by the cosine value of the inclination angle.

以上の説明は、被測定物10の幅方向の傾斜角を検出して厚さ測定値を補正する場合について説明したが、被測定物10の移動方向の傾斜角を検出して厚さ測定値を補正する場合については、図1に示した投受光光軸平面を90度回転して移動方向に平行な鉛直平面と平行な位置に設定すれば、移動方向の傾斜角を検出できる。   In the above description, the thickness measurement value is corrected by detecting the tilt angle in the width direction of the DUT 10, but the thickness measurement value is detected by detecting the tilt angle in the moving direction of the DUT 10. In the case of correcting the angle, if the light projecting / receiving optical axis plane shown in FIG. 1 is rotated 90 degrees and set at a position parallel to the vertical plane parallel to the moving direction, the inclination angle in the moving direction can be detected.

このように構成された、第1の実施形態の光学式距離検出器を用いた厚さ測定装置に依れば、被測定物10の幅方向の傾斜に対して、予め設定された光学条件の範囲で、新たな傾斜角検出器を備えることなく、同じ距離検出器の検出信号から厚さと被測定物10の傾斜による測定誤差を高感度で補正する光学検出器を用いた厚さ測定装置を提供することが可能である。   According to the thickness measurement apparatus using the optical distance detector according to the first embodiment configured as described above, the optical condition set in advance with respect to the inclination in the width direction of the DUT 10 is measured. A thickness measuring device using an optical detector that corrects a measurement error due to a thickness and a tilt of the object to be measured 10 with high sensitivity from a detection signal of the same distance detector without providing a new tilt angle detector in the range. It is possible to provide.

(第2の実施形態)
第2の実施形態について、図3及び図4を参照して説明する。第2の実施形態の各部について、図1の実施形態の光学式距離検出器を用いた厚さ測定装置100の各部と同一部分は同一符号を付し、その詳細説明を省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. 3 and 4. About each part of 2nd Embodiment, the same part as each part of the thickness measuring apparatus 100 using the optical distance detector of embodiment of FIG. 1 attaches | subjects the same code | symbol, and abbreviate | omits the detailed description.

先ず、図4を参照して、被測定物の最大の傾斜角度を求めて、被測定物が傾斜した場合の測定誤差を補正する光学式距離検出装置を用いた厚さ測定装置200の動作原理について説明する。   First, with reference to FIG. 4, the operation principle of the thickness measuring apparatus 200 using the optical distance detecting device that obtains the maximum inclination angle of the object to be measured and corrects the measurement error when the object to be measured is inclined. Will be described.

図4(a)は、被測定物10の移動方向の傾斜角を求める動作原理を説明する図、また、図4(b)は、幅方向の傾斜角を求める動作原理を説明する図で、図3に示す、表面側の距離検出器8T、及び裏面側の距離検出器8Bを、抜粋記載したものである。   FIG. 4A is a diagram for explaining the operation principle for obtaining the inclination angle in the moving direction of the DUT 10, and FIG. 4B is a diagram for explaining the operation principle for obtaining the inclination angle in the width direction. The front surface side distance detector 8T and the back surface side distance detector 8B shown in FIG. 3 are extracted and described.

第2の実施形態が、第1の実施形態と異なる点は、第1の実施形態では、被測定物10の表面側、裏面側に備える一対の距離検出器5T、5Bで、被測定物10の幅方向の傾斜角度を求めるようにしたが、第2の実施形態では、一対の距離検出器31T、31Bの夫々に一対のCCDカメラ4T1、4T2、及び、CCDカメラ4B1、4B2を備え、表面側の距離検出器31Tで被測定物10の幅方向の傾斜角を、また、裏面側の距離検出器31Bで被測定物10の移動方向の傾斜角を検出する様にしたことにある。   The second embodiment is different from the first embodiment in that, in the first embodiment, a pair of distance detectors 5T and 5B provided on the front surface side and the back surface side of the device under test 10 are used. However, in the second embodiment, each of the pair of distance detectors 31T and 31B includes a pair of CCD cameras 4T1 and 4T2 and CCD cameras 4B1 and 4B2. The distance detector 31T on the side detects the inclination angle in the width direction of the object 10 to be measured, and the distance detector 31B on the back surface side detects the inclination angle in the direction of movement of the object 10 to be measured.

詳細には、距離検出器31Tは、被測定物10の表面に対して鉛直方向からにレーザビーム3を照射する光源部2と、表面からの反射光を一対のCCDカメラ4T1、4T2で受光する。   Specifically, the distance detector 31T receives the light source unit 2 that irradiates the laser beam 3 from the vertical direction with respect to the surface of the object 10 to be measured and the pair of CCD cameras 4T1 and 4T2 that receive the reflected light from the surface. .

即ち、第1の実施形態の裏面側のCCDカメラ4Bの機能は、第2の実施形態では、同じ距離検出器31T内のCCDカメラ4T2が同じ表面の測定表面での反射光を受光することになる。また、第2の実施形態では、同じ距離検出器31B内のCCDカメラ4B2が同じ裏面の測定表面の反射光を受光することになる。   That is, the function of the CCD camera 4B on the back surface side of the first embodiment is that the CCD camera 4T2 in the same distance detector 31T receives reflected light on the same measurement surface in the second embodiment. Become. In the second embodiment, CCD cameras 4B2 in the same distance detector 31B receive reflected light from the same measurement surface on the back surface.

そして、第2の実施形態では被測定物10の厚さは、表面側のCCDカメラ4T1の検出信号と裏面側のCCDカメラ4B1の検出信号から求めることになる。   In the second embodiment, the thickness of the DUT 10 is obtained from the detection signal of the CCD camera 4T1 on the front surface side and the detection signal of the CCD camera 4B1 on the back surface side.

また、CCDカメラ4T1、4T2の受光位置は、このレーザビーム3の光軸に対して対称な位置の設け、同じ受光角度2αで受光する。   The light receiving positions of the CCD cameras 4T1 and 4T2 are provided symmetrically with respect to the optical axis of the laser beam 3, and light is received at the same light receiving angle 2α.

そして、被測定物10の傾斜角を変えてCCDカメラ4T1とCCDカメラ4T2の検出信号の光量相対比を求めると、被測定物10の傾斜角度θが0を基準位置(相対比=1)として、図2(d)に示したように傾斜角度±αの位置をピークとする左右対称なエンベロープが得られる。   Then, when the relative light quantity ratio of the detection signals of the CCD camera 4T1 and the CCD camera 4T2 is obtained by changing the tilt angle of the device under test 10, the tilt angle θ of the device under test 10 is set to 0 as the reference position (relative ratio = 1). As shown in FIG. 2D, a symmetric envelope having a peak at the position of the inclination angle ± α is obtained.

そのため、求めた光量相対比から被測定物10の幅方向の傾斜角度を検出する傾斜角演算部6Tと、被測定物10の移動方向の傾斜角を検出する傾斜角演算部6Bと、を備え、厚さ演算部20では、夫々の傾斜角度から厚さ方向に対する詳細を後述する最大の傾斜角度を求めて、厚さの測定誤差を補正するようにしたことにある。   Therefore, an inclination angle calculation unit 6T that detects the inclination angle in the width direction of the DUT 10 from the obtained light quantity relative ratio and an inclination angle calculation unit 6B that detects the inclination angle in the movement direction of the DUT 10 are provided. The thickness calculator 20 obtains the maximum tilt angle, which will be described later in detail with respect to the thickness direction, from each tilt angle, and corrects the thickness measurement error.

(動作原理)
以下、図4(c)を参照して最大の傾斜角を求める動作原理について図4を参照して説明する。図4(c)は、被測定物10が傾斜した場合の厚さ測定軸(z軸)方向に対する最大の傾斜角を求める場合のモデル図である。
(Operating principle)
Hereinafter, the operation principle for obtaining the maximum tilt angle will be described with reference to FIG. 4 with reference to FIG. FIG. 4C is a model diagram for obtaining the maximum inclination angle with respect to the thickness measurement axis (z-axis) direction when the DUT 10 is inclined.

被測定物10の移動方向をx軸、被測定物10の幅方向をy軸、被測定物10の厚さ測定軸をz軸として示し、距離検出器8Tの光量相対比から、厚さ演算部20が、傾斜角校正テーブル20xを参照して、傾斜角θを求め、距離検出器8Bの光量相対比から、傾斜角校正テーブル20yを参照して、傾斜角φを求めたとする。   The moving direction of the device under test 10 is shown as the x axis, the width direction of the device under test 10 is shown as the y axis, the thickness measuring axis of the device under test 10 is shown as the z axis, and the thickness calculation is performed from the light quantity relative ratio of the distance detector 8T. Assume that the unit 20 obtains the inclination angle θ with reference to the inclination angle calibration table 20x and obtains the inclination angle φ with reference to the inclination angle calibration table 20y from the relative light quantity ratio of the distance detector 8B.

このモデル図から、原点Oを含む傾斜した平面OABの平面方程式の法線ベクトルnを求め、この法線ベクトルnがz軸(厚さ測定軸)とのなす角角度γを求める。原点を含む平面の一般方程式は、下記(1)式で示されるので、
a・x+b・y+z=0・・・・・(1)
から、同一平面OAB上のx軸上のA点、及びy軸上のB点のベクトル座標を代入すると、
a・cosθ−sinθ=0
b・cosφ−sinφ=0
となるので、
a=sinθ/cosθ、b=sinφ/cosφ・・・・・(2)
が求まる。したがって、(1)式に、(2)を代入すると、平面方程式は、
sinθ/cosθ・x+sinφ/cosφ・y+z=0
となる。
From this model diagram, the normal vector n of the plane equation of the inclined plane OAB including the origin O is obtained, and the angle angle γ formed by the normal vector n and the z axis (thickness measurement axis) is obtained. The general equation of the plane including the origin is expressed by the following equation (1).
a · x + b · y + z = 0 (1)
And substituting the vector coordinates of point A on the x-axis and point B on the y-axis on the same plane OAB,
a ・ cosθ−sinθ = 0
b ・ cosφ-sinφ = 0
So,
a = sinθ / cosθ, b = sinφ / cosφ (2)
Is obtained. Therefore, if (2) is substituted into (1), the plane equation is
sinθ / cosθ · x + sinφ / cosφ · y + z = 0
It becomes.

したがって、このOAB平面の法線ベクトルnは、
n=(sinθ/cosθ、sinφ/cosφ、1)
となる。
Therefore, the normal vector n of this OAB plane is
n = (sinθ / cosθ, sinφ / cosφ, 1)
It becomes.

ここで、法線ベクトルnと、z軸単位ベクトル(0、0、1)とのなす角度γは、
cosγ=1/((sinθ/cosθ)+(sinφ/cosφ)+1))1/2
厚さ測定装置20では、求めた厚さtに、このcosγを乗じて補正された被測定厚さとする。
Here, the angle γ between the normal vector n and the z-axis unit vector (0, 0, 1) is
cosγ = 1 / ((sinθ / cosθ) 2 + (sinφ / cosφ) 2 +1)) 1/2
In the thickness measuring apparatus 20, the measured thickness t is multiplied by this cos γ to obtain a measured thickness corrected.

(構成)
次に、このように構成された最大傾斜角を求める厚さ測定装置200の構成について、図3を参照して説明する。
(Constitution)
Next, the configuration of the thickness measuring apparatus 200 for determining the maximum inclination angle configured as described above will be described with reference to FIG.

被測定物10の表面、及び裏面にレーザビームを照射してその反射光の位置を検出する一対の距離検出部31T、31Bと、距離検出部31T、31Bの検出信号からレーザビームの照射表面との距離を求める一対の距離演算部6T、6Bと、を備える一対の距離検出器8T、8Bと、被測定物10との距離を測定する予め設定される基準面Rsに対して、一対の距離検出部31T、31Bを被測定物10の両面で対向して、予め定める設定距離Ldで離間させて設定する固定部1cと、一対の距離検出部31T、31Bの夫々の検出信号から光量相対比を求める一対の傾斜角演算部6T、6Bと、一対の距離演算部6T、6Bの距離出力から被測定物10の厚さを求めるとともに、傾斜角演算部6T、6Bの光量相対比に基づいて求めた当該厚さを補正する厚さ演算部20と、を備える。   A pair of distance detectors 31T and 31B that detect the position of the reflected light by irradiating the front and back surfaces of the DUT 10 and the irradiation surface of the laser beam from the detection signals of the distance detectors 31T and 31B A pair of distances with respect to a preset reference plane Rs for measuring the distance between the pair of distance detectors 8T and 8B and the object to be measured 10. The detection units 31T and 31B are opposed to each other on both sides of the object to be measured 10, and the relative amount of light is calculated from the detection signals of the fixed unit 1c and the pair of distance detection units 31T and 31B which are set apart by a predetermined set distance Ld. The thickness of the DUT 10 is obtained from the distance outputs of the pair of inclination angle calculation units 6T and 6B and the pair of distance calculation units 6T and 6B, and based on the light quantity relative ratio of the inclination angle calculation units 6T and 6B. I asked for It includes the thickness calculating section 20 for correcting the thickness, the.

次に、各簿の構成について説明する。距離検出部31T、31Bは、被測定物10の基準面Rsに対して鉛直軸方向からレーザビーム3を投光する光源部2と、被測定物10からの当該レーザビーム3の反射光を予め設定する受光角度で、当該鉛直軸に対して当該レーザビームの投受光光軸が同一の平面上となるように設定して受光し、当該レーザビーム3の反射光の受光位置に対応する検出信号を生成する一対のCCDカメラ4T1、4T2、及び一対のCCDカメラ4B1、4B2と、を備える。   Next, the configuration of each book will be described. The distance detection units 31T and 31B preliminarily reflect the light source unit 2 that projects the laser beam 3 from the vertical axis direction with respect to the reference plane Rs of the object to be measured 10 and the reflected light of the laser beam 3 from the object to be measured 10. A detection signal corresponding to the light receiving position of the reflected light of the laser beam 3 is set and received so that the light projecting / receiving optical axis of the laser beam is on the same plane with respect to the vertical axis. A pair of CCD cameras 4T1, 4T2 and a pair of CCD cameras 4B1, 4B2.

そして、固定部1cは、一対の一方の距離検出部31Tは、被測定物10の表面側で、レーザビームの投受光の光軸平面が、基準面Rsに対して、被測定物10の幅方向(y)軸に平行な鉛直方向の同一平面上となるように設定する。   The fixed portion 1c is a pair of one distance detecting portions 31T, and the optical axis plane for projecting and receiving the laser beam is the width of the measured object 10 with respect to the reference plane Rs. It is set to be on the same plane in the vertical direction parallel to the direction (y) axis.

また、他方の距離検出部31Bは、被測定物10の裏面側で、レーザビーム3の投受光の光軸平面が、被測定物10の移動方向(x)軸に平行な鉛直方向の同一平面上となるように設定し、さらに一対の距離検出部31T、31Bの夫々のレーザビーム2の光軸は、被測定物10の鉛直方向に平行な同一線上に位置する様に設定する。   The other distance detection unit 31B is configured such that the optical axis plane of light projection / reception of the laser beam 3 is the same plane in the vertical direction parallel to the moving direction (x) axis of the measurement object 10 on the back side of the measurement object 10. Further, the optical axes of the laser beams 2 of the pair of distance detectors 31T and 31B are set so as to be located on the same line parallel to the vertical direction of the DUT 10.

そして、夫々の傾斜角演算部6T、6Bは、一方のCCDカメラの検出信号と、他方のCCDカメラの検出信号との相対比を求め、一方を被測定物10の幅方向光量相対比とし、他方を被測定物10の移動方向光量相対比として求め、夫々厚さ演算部20に送る。   Then, each of the tilt angle calculation units 6T and 6B obtains a relative ratio between the detection signal of one CCD camera and the detection signal of the other CCD camera, and one of them is set as a relative light amount ratio in the width direction of the object 10 to be measured. The other is obtained as a relative light amount ratio in the moving direction of the DUT 10 and sent to the thickness calculator 20.

そして、厚さ演算部20は、幅方向光量相対比と被測定物10の幅方向の傾斜角度とを予め対応付けした幅方向の傾斜角校正テーブル20yと、移動方向光量相対比と被測定物10の移動方向の傾斜角度とを予め対応付けした移動方向の傾斜角校正テーブル20xと、を備え、当該移動方向光量相対比及び幅方向光陵相対比に対応する被測定物10の幅方向、移動方向の傾斜角を、夫々の傾斜角補正テーブル20y、20zを参照して求める。   The thickness calculator 20 includes a width direction inclination angle calibration table 20y in which the width direction light amount relative ratio and the width direction inclination angle of the object to be measured 10 are associated in advance, and the movement direction light amount relative ratio and the object to be measured. An inclination angle calibration table 20x in the movement direction in which the inclination angles in the ten movement directions are associated in advance, and the width direction of the DUT 10 corresponding to the movement direction light amount relative ratio and the width direction light intensity relative ratio, The inclination angle in the moving direction is obtained with reference to the respective inclination angle correction tables 20y and 20z.

さらに、求めた移動方向及び幅方向の傾斜角から、被測定物10の鉛直軸方向に対する傾斜角を演算により求め、一対の距離演算部5T、5Bの距離出力から第1の厚さを求めるとともに、求めた鉛直軸方向に対する傾斜角の余弦値と乗じて当該第1の厚さを補正する。   Furthermore, the inclination angle with respect to the vertical axis direction of the DUT 10 is obtained by calculation from the obtained movement direction and the inclination angle in the width direction, and the first thickness is obtained from the distance output of the pair of distance calculation units 5T and 5B. The first thickness is corrected by multiplying by the cosine value of the inclination angle with respect to the obtained vertical axis direction.

このように構成された第2の実施形態の光学距離検出器を用いた厚さ測定装置に依れば、被測定物が動揺しても厚さ測定軸方向の最大の傾斜角度を求めて厚さ測定誤差を補正することができるので、鋼板の製造ラインで動揺があっても、高精度な厚さ測定装置を提供することができる。   According to the thickness measuring apparatus using the optical distance detector of the second embodiment configured as described above, the maximum inclination angle in the thickness measuring axis direction is obtained even when the object to be measured is shaken. Since the measurement error can be corrected, it is possible to provide a highly accurate thickness measuring device even if there is fluctuation in the steel sheet production line.

また、厚さ演算部20は、予め設定された基準厚さを備える校正板を使用して、当該校正板を測定位置で、予め設定される被測定物の幅方向及び移動方向の双方に傾斜させ、第1の厚さを求め、さらに、傾斜角の余弦値で補正した第2の厚さを求め、第2の厚さと校正板の基準厚さとの差を、設定した傾斜角度に対する補正値として求めた傾斜角補正テーブル20zを備える。   In addition, the thickness calculator 20 uses a calibration plate having a preset reference thickness, and tilts the calibration plate at the measurement position in both the width direction and the movement direction of the object to be preset. The first thickness is obtained, the second thickness corrected by the cosine value of the inclination angle is obtained, and the difference between the second thickness and the reference thickness of the calibration plate is calculated as a correction value for the set inclination angle. The inclination angle correction table 20z obtained as follows is provided.

そして、傾斜角演算部で求めた傾斜角度に対応する第2の厚さ補正値を、傾斜角補正テーブル20zを参照して、求めた前記第2の厚さをさらに補正するようにすることも可能である。   Then, the second thickness correction value corresponding to the inclination angle obtained by the inclination angle calculation unit may be further corrected with reference to the inclination angle correction table 20z. Is possible.

このように構成された第2の実施形態の光学距離検出器を用いた厚さ測定装置に依れば、最大傾斜角度の補正機能を備えたので、測定位置で被測定物の表面祖度のバラツキがあっても厚さ校正精度を補正することが可能となるので、精度の良い厚さ測定装置を提供することができる。   According to the thickness measuring apparatus using the optical distance detector of the second embodiment configured as described above, since the correction function of the maximum inclination angle is provided, the surface strength of the object to be measured is measured at the measurement position. Even if there is a variation, it is possible to correct the thickness calibration accuracy, and therefore it is possible to provide a highly accurate thickness measuring device.

以上説明したように、本実施形態の光学式距離検出器を用いた厚さ測定装置に依れば、被測定物10の傾斜に対して、予め設定された光学条件の範囲で、同じ距離検出器の検出信号から厚さと被測定物10の傾斜による測定誤差を高感度で補正する光学検出器を用いた厚さ測定装置を提供することができる。   As described above, according to the thickness measuring apparatus using the optical distance detector of the present embodiment, the same distance detection can be performed within a preset optical condition range with respect to the inclination of the object to be measured 10. It is possible to provide a thickness measuring apparatus using an optical detector that corrects a measurement error due to the thickness and the inclination of the object to be measured 10 with high sensitivity from the detection signal of the detector.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1T、1B 距離検出部
1c C型フレーム
1c1、1c2 腕部
2 光源部
3 レーザビーム
4、4T、4B、4T1、4T2、4B1、4B2 CCDカメラ
5T、5B 距離演算部
6、6T、6B 傾斜角演算部
7T、7B 距離検出器
8T、8B 距離検出器
11T,11B 距離検出器
10 被測定物
20 厚さ測定演算部
201、20x、20y、傾斜角校正テーブル
20z 傾斜角補正テーブル
100、200 厚さ測定装置
1T, 1B Distance detector 1c C-type frame 1c1, 1c2 Arm 2 Light source 3 Laser beam 4, 4T, 4B, 4T1, 4T2, 4B1, 4B2 CCD camera 5T, 5B Distance calculator 6, 6T, 6B Inclination angle calculation Unit 7T, 7B Distance detector 8T, 8B Distance detector 11T, 11B Distance detector 10 Object 20 Thickness measurement calculation unit 201, 20x, 20y, Inclination angle calibration table 20z Inclination angle correction table 100, 200 Thickness measurement apparatus

Claims (3)

被測定物の表面、及び裏面にレーザビームを照射してその反射光の位置を検出する一対の距離検出部と、前記距離検出部の検出信号から前記レーザビームの照射表面との距離を求める一対の距離演算部と、を備える一対の距離検出器と、
前記被測定物との距離を測定する予め設定された基準面に対して、一対の前記距離検出部を前記被測定物の両面で対向して、予め定める設定距離で離間させて設定する固定部と、
一対の前記距離検出部の前記検出信号の比を相対光量比として求める傾斜角演算部と、
一対の前記距離演算部の距離出力から前記被測定物の厚さを求めるとともに、前記相対光量比に基づいて求めた当該厚さを補正する厚さ演算部と、
を備え、
前記距離検出部は、前記基準面に対して鉛直軸方向からレーザビームを投光する光源部と、前記被測定物からの当該レーザビームの反射光を予め設定する受光角度で受光し、当該レーザビームの反射光の受光位置に対応する前記検出信号を生成するCCDカメラと、を備え、
前記固定部は、一対の前記距離検出部の前記レーザビームの投光及び前記CCDカメラでの受光する投受光の光軸平面が、前記基準面に対して鉛直方向な同一平面上で、前記基準面に対して面対称となる様に設定し、
前記傾斜角演算部は、一方の前記CCDカメラの前記検出信号と他方の前記CCDカメラの前記検出信号との比を光量相対比として求め、求めた当該光量相対比を前記厚さ演算部に送り、
前記厚さ演算部は、前記光量相対比と前記被測定物の傾斜角度とを予め対応付けした傾斜角校正テーブルを備え、前記被測定物の第1の厚さを求めるとともに、求めた光量相対比に対応する傾斜角を、前記傾斜角校正テーブルを参照して求め、前記第1の厚さに対して当該傾斜角の余弦値を乗じて当該第1の厚さを補正するようにしたことを特徴とする光学式距離検出器を用いた厚さ測定装置。
A pair of distance detectors for irradiating a laser beam on the front and back surfaces of the object to be measured and detecting the position of the reflected light, and a pair for determining the distance from the laser beam irradiation surface from the detection signal of the distance detector A pair of distance detectors,
A fixed unit that sets a pair of the distance detection units opposite to each other on both sides of the object to be measured and sets the distance to the object to be measured to be separated by a predetermined set distance. When,
An inclination angle calculation unit for obtaining a ratio of the detection signals of the pair of distance detection units as a relative light quantity ratio;
A thickness calculator that calculates the thickness of the object to be measured from the distance outputs of the pair of distance calculators and corrects the thickness determined based on the relative light quantity ratio;
With
The distance detection unit receives a light source unit that projects a laser beam from a vertical axis direction with respect to the reference plane, and receives a reflected light of the laser beam from the object to be measured at a preset reception angle, and the laser A CCD camera that generates the detection signal corresponding to the light receiving position of the reflected light of the beam,
The fixing unit is configured such that the optical axis planes of the laser beam projection of the pair of the distance detection units and the light projection / reception received by the CCD camera are on the same plane perpendicular to the reference plane. Set to be plane symmetric with respect to the surface,
The tilt angle calculation unit obtains a ratio of the detection signal of one CCD camera and the detection signal of the other CCD camera as a light amount relative ratio, and sends the obtained light amount relative ratio to the thickness calculation unit. ,
The thickness calculation unit includes an inclination angle calibration table in which the light intensity relative ratio and the inclination angle of the object to be measured are associated in advance, and obtains the first thickness of the object to be measured and the obtained light intensity relative An inclination angle corresponding to the ratio is obtained by referring to the inclination angle calibration table, and the first thickness is corrected by multiplying the first thickness by a cosine value of the inclination angle. A thickness measuring device using an optical distance detector characterized by the above.
被測定物の表面、及び裏面にレーザビームを照射してその反射光の位置を検出する一対の距離検出部と、前記距離検出部の検出信号から前記レーザビームの照射表面との距離を求める一対の距離演算部と、を備える一対の距離検出器と、
前記被測定物との距離を測定する予め設定される基準面に対して、一対の前記距離検出部を前記被測定物の両面で対向して、予め定める設定距離で離間させて設定する固定部と、
一対の前記距離検出部の夫々の前記検出信号の比を光量相対比として求める一対の傾斜角演算部と、
一対の前記距離演算部の距離出力から前記被測定物の厚さを求めるとともに、前記光量相対比に基づいて求めた当該厚さを補正する厚さ演算部と、
を備え、
前記距離検出部は、前記基準面に対して鉛直軸方向からレーザビームを投光する光源部と、前記被測定物からの当該レーザビームの反射光を予め設定する受光角度で、当該鉛直軸に対して当該レーザビームの投受光光軸が同一の平面上となるように設定して受光し、当該レーザビームの反射光の受光位置に対応する信号を生成する一対のCCDカメラと、を備え、
前記固定部は、一対の一方の前記距離検出部は、前記被測定物の表面側で、前記レーザビームの投光及び受光の光軸平面が、前記基準面に対して、前記被測定物の幅方向軸に平行な鉛直方向の同一平面上となるように設定し、
他方の前記距離検出部は、前記被測定物の裏面側で、前記レーザビームの投光及び受光の光軸平面が、前記被測定物の移動方向軸に平行な鉛直方向の同一平面上となるように設定し、
さらに一対の前記距離検出部のレーザビームの光軸は、前記被測定物の鉛直方向に平行な同一線上に位置する様に設定し、
夫々の前記傾斜角演算部は、一方の前記CCDカメラの検出信号と、他方のCCDカメラの検出信号との相対比を求め、一方を前記被測定物の幅方向光量相対比とし、他方を前記被測定物の移動方向光量相対比として求め、夫々前記厚さ演算部に送り、
前記厚さ演算部は、前記幅方向光量相対比と前記記被測定物の幅方向の傾斜角度とを予め対応付けした幅方向の傾斜角校正テーブルと、前記移動方向光量相対比と前記記被測定物の移動方向の傾斜角度とを予め対応付けした移動方向の傾斜角校正テーブルと、を備え、
前記厚さ演算部は、一対の前記傾斜角演算部の前記相対比に対応する前記被測定物の幅方向、移動方向の傾斜角を、夫々の前記傾斜角校正テーブルを参照して求め、
さらに、求めた移動方向及び幅方向の前記傾斜角から、前記被測定物の鉛直軸方向に対する傾斜角を演算により求め、
一対の前記距離演算部の距離出力から第1の厚さを求めるとともに、求めた鉛直軸方向に対する傾斜角の余弦値と乗じて当該第1の厚さを補正するようにしたことを特徴とする光学式距離検出器を用いた厚さ測定装置。
A pair of distance detectors for irradiating a laser beam on the front and back surfaces of the object to be measured and detecting the position of the reflected light, and a pair for determining the distance from the laser beam irradiation surface from the detection signal of the distance detector A pair of distance detectors,
A fixed unit that sets a pair of the distance detection units opposite to each other on both sides of the object to be measured with respect to a predetermined reference surface that measures the distance to the object to be measured, and is separated by a predetermined set distance. When,
A pair of inclination angle calculation units for determining a ratio of the detection signals of the pair of distance detection units as a light quantity relative ratio;
A thickness calculator that calculates the thickness of the object to be measured from the distance outputs of the pair of distance calculators and corrects the thickness determined based on the light quantity relative ratio;
With
The distance detection unit includes a light source unit that projects a laser beam from a vertical axis direction with respect to the reference plane, and a light receiving angle that presets the reflected light of the laser beam from the object to be measured. And a pair of CCD cameras for receiving and receiving the laser beam projecting and receiving optical axes on the same plane, and generating a signal corresponding to the light receiving position of the reflected light of the laser beam,
The fixed part is a pair of one of the distance detectors on the surface side of the object to be measured, and the optical axis plane of light projection and light reception of the laser beam is relative to the reference surface of the object to be measured. Set to be on the same plane in the vertical direction parallel to the width direction axis,
In the other distance detection unit, on the back side of the object to be measured, the optical axis plane for projecting and receiving the laser beam is on the same vertical plane parallel to the moving direction axis of the object to be measured. Set as
Further, the optical axes of the laser beams of the pair of distance detection units are set so as to be located on the same line parallel to the vertical direction of the object to be measured,
Each of the tilt angle calculation units obtains a relative ratio between the detection signal of one CCD camera and the detection signal of the other CCD camera, and sets one as the relative light quantity ratio in the width direction of the object to be measured, and the other as the above. Obtained as the relative amount of light in the direction of movement of the object to be measured, and sent to the thickness calculator,
The thickness calculation unit includes a width direction inclination angle calibration table in which the width direction light amount relative ratio and the width direction inclination angle of the measurement object are associated in advance, the movement direction light amount relative ratio, and the cover. An inclination angle calibration table in the movement direction in which the inclination angle in the movement direction of the measurement object is associated in advance,
The thickness calculator calculates a tilt angle in the width direction and the moving direction of the object to be measured corresponding to the relative ratio of the pair of tilt angle calculators with reference to the respective tilt angle calibration tables,
Furthermore, from the obtained movement direction and the inclination angle in the width direction, an inclination angle with respect to the vertical axis direction of the object to be measured is obtained by calculation,
The first thickness is obtained from the distance output of the pair of distance calculation units, and the first thickness is corrected by multiplying by the cosine value of the inclination angle with respect to the obtained vertical axis direction. Thickness measuring device using optical distance detector.
前記厚さ演算部は、予め設定された基準厚さを備える校正板を使用して、当該校正板を測定位置で、予め設定される前記被測定物の幅方向及び移動方向の双方に傾斜させ、
前記第1の厚さを求め、さらに、前記傾斜角の余弦値で補正した第2の厚さを求め、
第2の厚さと前記校正板の基準厚さとの差を、設定した傾斜角度に対する補正値として求めた傾斜角補正テーブルを備え、
前記傾斜角演算部で求めた傾斜角度に対応する第2の厚さ補正値を、前記傾斜角補正テーブルを参照して、求めた前記補正値で前記第2の厚さをさらに補正するようにしたことを特徴とする請求項2に記載の厚さ測定装置。
The thickness calculator uses a calibration plate having a preset reference thickness, and tilts the calibration plate at the measurement position in both the width direction and the movement direction of the measurement object set in advance. ,
Determining the first thickness, and further determining a second thickness corrected by the cosine value of the tilt angle;
An inclination angle correction table for determining a difference between the second thickness and the reference thickness of the calibration plate as a correction value for the set inclination angle;
The second thickness correction value corresponding to the inclination angle obtained by the inclination angle calculation unit is referred to the inclination angle correction table so that the second thickness is further corrected with the obtained correction value. The thickness measuring apparatus according to claim 2, wherein
JP2015020029A 2015-02-04 2015-02-04 Thickness measuring apparatus using optical distance detectors Pending JP2016142672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020029A JP2016142672A (en) 2015-02-04 2015-02-04 Thickness measuring apparatus using optical distance detectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020029A JP2016142672A (en) 2015-02-04 2015-02-04 Thickness measuring apparatus using optical distance detectors

Publications (1)

Publication Number Publication Date
JP2016142672A true JP2016142672A (en) 2016-08-08

Family

ID=56570336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020029A Pending JP2016142672A (en) 2015-02-04 2015-02-04 Thickness measuring apparatus using optical distance detectors

Country Status (1)

Country Link
JP (1) JP2016142672A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131840A1 (en) * 2017-12-27 2019-07-04 中国塗料株式会社 Measurement device and measurement method
WO2022176679A1 (en) * 2021-02-17 2022-08-25 株式会社デンソー Distance measurement correction device, distance measurement correction method, distance measurement correction program, and distance measurement device
US11579076B2 (en) 2020-09-25 2023-02-14 Samsung Electronics Co., Ltd. Method and apparatus for correcting error of optical sensor, apparatus for estimating bio-information
JP7375838B2 (en) 2021-02-17 2023-11-08 株式会社デンソー Distance measurement correction device, distance measurement correction method, distance measurement correction program, and distance measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798836A (en) * 1996-11-15 1998-08-25 Kabushiki Kaisha Toshiba Optical distance measuring apparatus and method therefor
JP2000193429A (en) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd Shape measuring device
JP2004163343A (en) * 2002-11-15 2004-06-10 Toshiba Corp Distance detecting device, thickness measuring device, and method thereof
JP2006189389A (en) * 2005-01-07 2006-07-20 Jfe Steel Kk Optical thickness measuring method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798836A (en) * 1996-11-15 1998-08-25 Kabushiki Kaisha Toshiba Optical distance measuring apparatus and method therefor
JP2000193429A (en) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd Shape measuring device
JP2004163343A (en) * 2002-11-15 2004-06-10 Toshiba Corp Distance detecting device, thickness measuring device, and method thereof
JP2006189389A (en) * 2005-01-07 2006-07-20 Jfe Steel Kk Optical thickness measuring method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131840A1 (en) * 2017-12-27 2019-07-04 中国塗料株式会社 Measurement device and measurement method
CN111417834A (en) * 2017-12-27 2020-07-14 中国涂料株式会社 Measuring device and measuring method
JPWO2019131840A1 (en) * 2017-12-27 2020-11-19 中国塗料株式会社 Measuring device and measuring method
US11579076B2 (en) 2020-09-25 2023-02-14 Samsung Electronics Co., Ltd. Method and apparatus for correcting error of optical sensor, apparatus for estimating bio-information
WO2022176679A1 (en) * 2021-02-17 2022-08-25 株式会社デンソー Distance measurement correction device, distance measurement correction method, distance measurement correction program, and distance measurement device
JP7375838B2 (en) 2021-02-17 2023-11-08 株式会社デンソー Distance measurement correction device, distance measurement correction method, distance measurement correction program, and distance measurement device

Similar Documents

Publication Publication Date Title
TWI428558B (en) Distance measurement method and system, and processing software thereof
CN109307480B (en) Method for detecting multi-surface shape of transmission element
JP2016142672A (en) Thickness measuring apparatus using optical distance detectors
US10371511B2 (en) Device and method for geometrically measuring an object
JP7228690B2 (en) 3D sensor with oppositely arranged channels
CN108955537B (en) System and method capable of realizing accurate measurement of high and low point positions of off-axis reflector
JP2017020874A (en) Measurement device for measuring shape of measurement object
JP2006189389A (en) Optical thickness measuring method and device
US11192158B2 (en) Apparatus for detecting relative positioning information between rolls, and method for measurement roll alignment state by using same
JP2016024141A (en) Overhead line position measuring device, and method
US20170309035A1 (en) Measurement apparatus, measurement method, and article manufacturing method and system
CN110044280B (en) Laser triangulation thickness gauge adopting side focal line method and method
CN111735401A (en) High-precision thickness measurement method and device for large-size object
CN109544637B (en) Double-target fixed verification device
JP2009109355A (en) Apparatus and method for distance measurement, and apparatus for thickness measurement using distance measurement apparatus
KR101930878B1 (en) Apparatus and method for measuring alignment state of the roll
JP2014044060A (en) Shape measurement device and shape measurement method
JP3999063B2 (en) CMM, CMM calibration method, and computer-readable storage medium storing program for executing the method
JP4400985B2 (en) Shape measuring device
JP2009174974A (en) 3-d sensor
JP2005083820A (en) Plate thickness measuring device and chatter mark detection system
JP2019007743A (en) Plate thickness measurement device and plate thickness measurement method
JP5599335B2 (en) Thickness measuring device
CN110793468B (en) Optical element position detection device, control device and detection method
JP2014132252A (en) Measurement method, measurement device and article fabrication method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170922

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190517