JP2015091737A - Laminated tempered glass - Google Patents

Laminated tempered glass Download PDF

Info

Publication number
JP2015091737A
JP2015091737A JP2012041521A JP2012041521A JP2015091737A JP 2015091737 A JP2015091737 A JP 2015091737A JP 2012041521 A JP2012041521 A JP 2012041521A JP 2012041521 A JP2012041521 A JP 2012041521A JP 2015091737 A JP2015091737 A JP 2015091737A
Authority
JP
Japan
Prior art keywords
layer
expansion layer
chemical strengthening
tempered glass
low expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041521A
Other languages
Japanese (ja)
Inventor
則史 大森
Norifumi Omori
則史 大森
若月 博
Hiroshi Wakatsuki
若月  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012041521A priority Critical patent/JP2015091737A/en
Priority to PCT/JP2013/054967 priority patent/WO2013129400A1/en
Priority to TW102106950A priority patent/TW201343385A/en
Publication of JP2015091737A publication Critical patent/JP2015091737A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/012Tempering or quenching glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide laminated tempered glass excellent in end surface strength.SOLUTION: Laminated tempered glass is formed by laminating a high-expansion layer and a low-expansion layer smaller in plate thickness and thermal expansion coefficient than the high-expansion layer, with the low-expansion layer as the surface layer, so as to produce tensile stress in the high-expansion layer and compression stress in the low-expansion layer. The high-expansion layer has, in its end surface part, a chemically strengthened layer in which compression stress is generated by a chemically strengthening treatment.

Description

本発明は、積層強化ガラスに関する。   The present invention relates to laminated tempered glass.

従来、機械的強度を高めたガラス基板として、いわゆる積層強化ガラスが知られている(例えば、特許文献1を参照)。
積層強化ガラスにおいては、特許文献1の[0009]にも記載されているように、熱膨張係数が相対的に小さい表面層と、(熱膨張係数が相対的に大きい)内部層とが相互に融着した構成を有することにより、表面層には圧縮応力が発生し(圧縮応力層の形成)、内部層には引張応力が発生する(引張応力層の形成)。
Conventionally, a so-called laminated tempered glass has been known as a glass substrate with increased mechanical strength (see, for example, Patent Document 1).
In the laminated tempered glass, as described in [0009] of Patent Document 1, a surface layer having a relatively small thermal expansion coefficient and an inner layer (having a relatively large thermal expansion coefficient) are mutually connected. By having the fused structure, compressive stress is generated in the surface layer (formation of compressive stress layer), and tensile stress is generated in the inner layer (formation of tensile stress layer).

特開2011−93728号公報JP 2011-93728 A

上述した構成を有する積層強化ガラスは、引張応力層が端面部に露出してしまうため、端面強度が弱く、割れの原因となる場合がある。
なお、積層強化ガラスの端面強度を高める試みとしては、例えば、端面部を熱によって融解させて引張応力を消滅させる方法が提案されているが、元形状を維持するのが困難であり、寸法精度が低下するという別の問題が発生する。
In the laminated tempered glass having the above-described configuration, the tensile stress layer is exposed at the end face portion, so that the end face strength is weak and may cause cracking.
In addition, as an attempt to increase the end face strength of the laminated tempered glass, for example, a method has been proposed in which the end face is melted by heat to extinguish the tensile stress, but it is difficult to maintain the original shape, and dimensional accuracy Another problem occurs that is reduced.

本発明は、以上の点を鑑みてなされたものであり、優れた端面強度を有する積層強化ガラスを提供することを目的とする。   This invention is made | formed in view of the above point, and aims at providing the laminated tempered glass which has the outstanding end surface intensity | strength.

本発明者らが、上記目的を達成するために鋭意検討を行なった結果、積層強化ガラスにおいて、引張応力が発生した高膨張層の端面部に化学強化処理を施すことで、引張応力層の露出を抑制できることを見出し、本発明を完成させた。
すなわち、本発明は、以下の(1)〜(2)を提供する。
As a result of intensive studies by the present inventors to achieve the above object, in the laminated tempered glass, by exposing the end surface portion of the high expansion layer where the tensile stress is generated, the tensile stress layer is exposed. The present invention has been completed.
That is, the present invention provides the following (1) to (2).

(1)高膨張層と、上記高膨張層よりも板厚が薄く熱膨張係数が小さい低膨張層とを、上記低膨張層が表面層となるように積層することで、上記高膨張層に引張応力を発生させ、上記低膨張層に圧縮応力を発生させた積層強化ガラスであって、上記高膨張層が、その端面部に、化学強化処理によって圧縮応力を発生させた化学強化層を有することを特徴とする積層強化ガラス。   (1) By laminating a high expansion layer and a low expansion layer having a smaller plate thickness and a smaller thermal expansion coefficient than the high expansion layer so that the low expansion layer becomes a surface layer, A laminated tempered glass in which a tensile stress is generated and a compressive stress is generated in the low expansion layer, wherein the high expansion layer has a chemical strengthening layer in which a compressive stress is generated by a chemical strengthening process at an end surface portion thereof. A laminated tempered glass characterized by that.

(2)上記低膨張層が、その端面部および表面部に、化学強化処理によって圧縮応力を発生させた化学強化層を有する、上記(1)に記載の積層強化ガラス。   (2) The laminated tempered glass according to (1), wherein the low expansion layer has a chemically strengthened layer in which compressive stress is generated by a chemical strengthening treatment on the end surface portion and the surface portion.

本発明によれば、優れた端面強度を有する積層強化ガラスを提供することができる。   According to the present invention, it is possible to provide a laminated tempered glass having excellent end face strength.

積層強化ガラス1の一例を模式的に示す側断面図である。1 is a side sectional view schematically showing an example of a laminated tempered glass 1. 積層強化ガラス1の別の一例を模式的に示す側断面図である。It is a sectional side view showing typically another example of lamination strengthening glass 1.

[積層強化ガラス]
本発明の積層強化ガラスについて、図1および図2に基いて説明するが、本発明はこれに限定されるものではない。
[Laminated tempered glass]
The laminated tempered glass of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this.

図1は、積層強化ガラス1の一例を模式的に示す側断面図である。図1に示す3層構造の積層強化ガラス1は、一対の表面層である低膨張層3の間に、内部層である高膨張層2が配置されている。低膨張層3の熱膨張係数は高膨張層2よりも小さい。低膨張層3の板厚(T)は、高膨張層2の板厚(T)よりも薄い。 FIG. 1 is a side sectional view schematically showing an example of a laminated tempered glass 1. In the laminated tempered glass 1 having a three-layer structure shown in FIG. 1, a high expansion layer 2 that is an internal layer is disposed between a low expansion layer 3 that is a pair of surface layers. The thermal expansion coefficient of the low expansion layer 3 is smaller than that of the high expansion layer 2. The plate thickness (T L ) of the low expansion layer 3 is thinner than the plate thickness (T H ) of the high expansion layer 2.

高膨張層2と低膨張層3とは、融着や接着等によって互いに接合し、積層されている。このような積層構成のため、高膨張層2には図1中白抜き矢印で示すような引張応力が発生し、低膨張層3には図1中黒矢印で示すような圧縮応力(以下、「積層強化圧縮応力」ともいう)が発生している。
上記積層構成によって引張応力が発生した領域を「引張応力層」ともいい、積層強化圧縮応力が発生した領域を「積層強化層」ともいう。実質的に、高膨張層2と引張応力層とはほぼ同義であり、低膨張層3と積層強化層とはほぼ同義である。
The high expansion layer 2 and the low expansion layer 3 are bonded and laminated together by fusion, adhesion, or the like. Due to such a laminated structure, a tensile stress as indicated by an open arrow in FIG. 1 is generated in the high expansion layer 2, and a compressive stress (hereinafter referred to as a black arrow in FIG. 1) is generated in the low expansion layer 3. Also referred to as “laminate strengthening compressive stress”).
A region where a tensile stress is generated by the above-described laminated structure is also referred to as a “tensile stress layer”, and a region where a stacked reinforcing compressive stress is generated is also referred to as a “laminated reinforcing layer”. The high expansion layer 2 and the tensile stress layer are substantially synonymous, and the low expansion layer 3 and the lamination reinforcing layer are substantially synonymous.

高膨張層2の引張応力は、100MPa以下が好ましく、50MPa以下がより好ましい。引張応力が高すぎると傷が自走してしまい割れが発生しやすいが、この範囲内であれば、割れの発生を抑制しやすい。
なお、引張応力は、最大値の絶対値であり、例えば、株式会社東京インスツルメンツ社製の複屈折イメージングシステムAbrio−IMを用いて測定できる。
The tensile stress of the high expansion layer 2 is preferably 100 MPa or less, and more preferably 50 MPa or less. If the tensile stress is too high, the scratches are self-propelled and cracks are likely to occur. However, if the tensile stress is within this range, the occurrence of cracks is easily suppressed.
The tensile stress is an absolute value of the maximum value, and can be measured using, for example, a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Incorporated.

低膨張層3の積層強化圧縮応力は、500MPa以下が好ましく、400MPa以下がより好ましい。積層強化圧縮応力が高すぎると、バランスをとって引張応力も高くなり割れが発生しやすくなるおそれがあるが、この範囲内であれば引張応力も高くなりすぎない。
また、後述するように、低膨張層3にも化学強化処理を施す場合、積層強化圧縮応力が高すぎるとイオン交換が阻害される場合があるが、この範囲内であればイオン交換が適切に行われる。
一方、ガラス強度を高めることができるという理由から、低膨張層3の積層強化圧縮応力は、30MPa以上であるのが好ましく、100MPa以上であるのがより好ましい。
なお、積層強化圧縮応力は、最大値の絶対値であり、例えば、有限会社折原製作所社製の表面応力計FSM−6000LEを用いて測定できる。
The lamination strengthening compressive stress of the low expansion layer 3 is preferably 500 MPa or less, and more preferably 400 MPa or less. If the lamination strengthening compressive stress is too high, there is a risk that the tensile stress is increased and cracking is likely to occur. However, if it is within this range, the tensile stress will not be too high.
In addition, as will be described later, when the low expansion layer 3 is also subjected to chemical strengthening treatment, if the lamination strengthening compressive stress is too high, ion exchange may be hindered. Done.
On the other hand, the lamination strengthening compressive stress of the low expansion layer 3 is preferably 30 MPa or more, and more preferably 100 MPa or more, because the glass strength can be increased.
In addition, lamination | stacking reinforcement | strengthening compression stress is an absolute value of the maximum value, for example, can be measured using the surface stress meter FSM-6000LE by a limited company Orihara Seisakusho.

そして、積層強化ガラス1においては、高膨張層2の端面部に対して、後述する化学強化処理が施されており、この化学強化処理によって、高膨張層2の端面部には圧縮応力(以下、「化学強化圧縮応力」ともいう)が発生している。以下、化学強化圧縮応力が発生した領域を「化学強化層」ともいう。図1中の2aは、高膨張層2に形成された化学強化層を示す。   In the laminated tempered glass 1, the end face portion of the high expansion layer 2 is subjected to a chemical strengthening process described later. By this chemical strengthening process, the end face portion of the high expansion layer 2 is subjected to compressive stress (hereinafter referred to as a compressive stress). , Also referred to as “chemically reinforced compressive stress”). Hereinafter, the region where the chemically strengthened compressive stress is generated is also referred to as “chemically strengthened layer”. 1 a in FIG. 1 indicates a chemically strengthened layer formed in the high expansion layer 2.

このように、積層強化ガラス1においては、引張応力が発生した高膨張層2の端面部に化学強化層2aが形成されているため、高膨張層2に形成された引張応力層の外部への露出を抑制できる。このため、引張応力層が端面部に露出することによる端面強度の低下が抑制され、積層強化ガラス1は、優れた端面強度を有する。   As described above, in the laminated tempered glass 1, the chemical strengthening layer 2a is formed on the end surface portion of the high expansion layer 2 where the tensile stress is generated, so that the tensile stress layer formed on the high expansion layer 2 is exposed to the outside. Exposure can be suppressed. For this reason, the fall of the end surface strength by the tensile stress layer being exposed to the end surface portion is suppressed, and the laminated tempered glass 1 has excellent end surface strength.

なお、高膨張層2の「端面部」とは、低膨張層3と接触せずに外部に露出した露出面(図1においては、高膨張層2における左右の端面)を含む部位のことをいい、具体的には、露出面から深さ200μmまでの部位を意味するものとする。   The “end surface portion” of the high expansion layer 2 refers to a portion including exposed surfaces (the left and right end surfaces of the high expansion layer 2 in FIG. 1) that are exposed to the outside without being in contact with the low expansion layer 3. Specifically, it means a portion from the exposed surface to a depth of 200 μm.

ここで、積層強化ガラス1の別の一例について説明する。
図2は、積層強化ガラス1の別の一例を模式的に示す側断面図である。図2に示すように、本発明においては、低膨張層3の端面部および表面部にも、高膨張層2の端面部と同様に化学強化処理が施されて、化学強化層が形成されていてもよい。図2中の3aは、低膨張層3に形成された化学強化層を示す。この場合、低膨張層3の化学強化層3aは、積層強化層と一部重複する。
Here, another example of the laminated tempered glass 1 will be described.
FIG. 2 is a side sectional view schematically showing another example of the laminated tempered glass 1. As shown in FIG. 2, in the present invention, the chemical strengthening layer is formed on the end surface portion and the surface portion of the low expansion layer 3 in the same manner as the end surface portion of the high expansion layer 2. May be. 2a in FIG. 2 indicates a chemically strengthened layer formed in the low expansion layer 3. In this case, the chemical strengthening layer 3a of the low expansion layer 3 partially overlaps with the laminated reinforcing layer.

なお、低膨張層3の「端面部」とは、高膨張層2と接触せずに外部に露出した露出面(図2においては、低膨張層3における左右の端面)を含む部位のことをいう。
また、低膨張層3の「表面部」とは、同様に、高膨張層2と接触せずに外部に露出した露出面であって、「端面部」を規定する露出面以外の露出面(図2においては、低膨張層3における上側または下側の端面)を含む部位のことをいう。
具体的には、いずれも、露出面から深さ200μmまでの部位を意味するものとする。
The “end face portion” of the low expansion layer 3 refers to a portion including exposed surfaces (in FIG. 2, the left and right end faces of the low expansion layer 3) exposed to the outside without being in contact with the high expansion layer 2. Say.
Similarly, the “surface portion” of the low expansion layer 3 is an exposed surface exposed to the outside without being in contact with the high expansion layer 2, and is an exposed surface other than the exposed surface defining the “end surface portion” ( In FIG. 2, it refers to a part including the upper or lower end face of the low expansion layer 3.
Specifically, any means a part from the exposed surface to a depth of 200 μm.

積層強化ガラス1に施される化学強化処理は、概略的には、高膨張層2(または、高膨張層2および低膨張層3)に存在するアルカリ成分(例えば、Liイオン、Naイオン等のアルカリ金属イオンであり、以下「小径アルカリ成分」ともいう)を、イオン半径がより大きいアルカリ成分(例えば、Kイオン等のアルカリ金属イオンであり、以下「大径アルカリ成分」ともいう)で置換する、いわゆるイオン交換処理である。
そのため、高膨張層2において、化学強化層2aにおける大径アルカリ成分の濃度は、化学強化層2aを除く部位のそれよりも高い。すなわち、大径アルカリ成分の濃度の違いによって、化学強化層2aと、化学強化層2aを除く部位とを、明確に区別することができる(低膨張層3における化学強化層3aについても同様)。
The chemical tempering treatment applied to the laminated tempered glass 1 generally includes an alkali component (for example, Li ion, Na ion, etc.) present in the high expansion layer 2 (or the high expansion layer 2 and the low expansion layer 3). An alkali metal ion (hereinafter also referred to as “small-diameter alkali component”) is replaced with an alkali component having a larger ionic radius (for example, an alkali metal ion such as K ion, hereinafter also referred to as “large-diameter alkali component”). This is a so-called ion exchange treatment.
Therefore, in the high expansion layer 2, the concentration of the large-diameter alkaline component in the chemically strengthened layer 2a is higher than that in the portion excluding the chemically strengthened layer 2a. That is, the chemical strengthening layer 2a and the portion excluding the chemical strengthening layer 2a can be clearly distinguished by the difference in the concentration of the large-diameter alkaline component (the same applies to the chemical strengthening layer 3a in the low expansion layer 3).

より詳細には、化学強化処理が施される前の大径アルカリ成分量(例えば、K元素量(単位:cps))の平均値を「μ」とし、標準偏差を「σ」とした場合に、化学強化層2aおよび化学強化層3aを「大径アルカリ成分量が「μ+2σ」以上」と規定し、化学強化層2aおよび化学強化層3aを除く部位を「大径アルカリ成分量が「μ+2σ」未満」と規定する。アルカリ成分量は電子線マイクロアナライザ(EPMA)によって測定することができる。
なお、誤差が全くない理想状態であれば、化学強化層2aおよび化学強化層3aを、単純に「大径アルカリ成分量が「μ」以上の層」と規定することができる。しかし、実際は、化学強化処理前のガラス層の元素量や測定精度により誤差が生じる。そのため、化学強化処理後における大径アルカリ成分量の増分を、誤差領域を含まない程度の有意差以上の値として規定する必要がある。そこで、この有意差を「2σ」とし、化学強化層2aおよび化学強化層3aを上記のように「大径アルカリ成分量が「μ+2σ」以上の層」と規定するものである。
More specifically, when the average value of the large-diameter alkaline component amount (for example, the K element amount (unit: cps)) before chemical strengthening is “μ” and the standard deviation is “σ” The chemical strengthening layer 2a and the chemical strengthening layer 3a are defined as “the large diameter alkali component amount is“ μ + 2σ ”or more”, and the portion excluding the chemical strengthening layer 2a and the chemical strengthening layer 3a is defined as “the large diameter alkali component amount is“ μ + 2σ ”. Less than ". The amount of alkali components can be measured with an electron beam microanalyzer (EPMA).
In an ideal state with no error, the chemically strengthened layer 2a and the chemically strengthened layer 3a can be simply defined as “a layer having a large-diameter alkali component amount of“ μ ”or more”. However, in reality, an error occurs depending on the element amount and measurement accuracy of the glass layer before the chemical strengthening treatment. Therefore, it is necessary to define the increment of the large-diameter alkaline component amount after the chemical strengthening treatment as a value that is not less than a significant difference that does not include the error region. Therefore, this significant difference is defined as “2σ”, and the chemical strengthening layer 2a and the chemical strengthening layer 3a are defined as “a layer having a large-diameter alkali component amount of“ μ + 2σ ”or more” as described above.

高膨張層2の化学強化層2aの深さ(図1および図2中、Dで示す)は、端面強度を向上させつつ、引張応力の増加による割れの発生を抑えられるという理由から、10〜100μmであるのが好ましく、20〜80μmであるのがより好ましい。
化学強化層2aの深さは、例えば、株式会社東京インスツルメンツ社製の複屈折イメージングシステムAbrio−IMを用いて測定することができる。
The depth of the chemically strengthened layer 2a of the high expansion layer 2 (indicated by DH in FIGS. 1 and 2) is 10 for the reason that cracking due to an increase in tensile stress can be suppressed while improving the end face strength. It is preferably ˜100 μm, more preferably 20 to 80 μm.
The depth of the chemical strengthening layer 2a can be measured using, for example, a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Inc.

化学強化層2aの化学強化圧縮応力は、端面強度がより優れるという理由から、400MPa以上が好ましく、600MPa以上がより好ましい。
一方、化学強化層2aの化学強化圧縮応力は、高くなりすぎるとバランスをとって引張応力も高くなり割れが発生しやすくなるという理由から、2000MPa以下が好ましく、1500MPa以下がより好ましい。
化学強化層2aの化学強化圧縮応力の数値は、最大値の絶対値であり、例えば、株式会社東京インスツルメンツ社製の複屈折イメージングシステムAbrio−IMを用いて測定した複屈折率から算出できる。
The chemical strengthening compressive stress of the chemical strengthening layer 2a is preferably 400 MPa or more, and more preferably 600 MPa or more, because the end face strength is more excellent.
On the other hand, the chemical strengthening compressive stress of the chemical strengthening layer 2a is preferably 2000 MPa or less, and more preferably 1500 MPa or less, because if the stress is too high, the balance is increased and the tensile stress becomes high and cracking easily occurs.
The numerical value of the chemical strengthening compressive stress of the chemical strengthening layer 2a is an absolute value of the maximum value, and can be calculated from, for example, a birefringence measured using a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Inc.

低膨張層3に化学強化層3aを形成する場合、その深さ(図2中、Dで示す)は、加傷強度を向上させつつ、引張応力の増加による割れの発生を抑えられるという理由から、10〜100μmであるのが好ましく、20〜80μmであるのがより好ましい。 When forming a chemical strengthening layer 3a in the low expansion layer 3, because its depth (in FIG. 2, indicated by D L), while improving the scratching strength is suppressing the occurrence of cracks due to the increase in tensile stress Therefore, the thickness is preferably 10 to 100 μm, more preferably 20 to 80 μm.

化学強化層3aの化学強化圧縮応力は、曲げ強度および加傷強度に優れるという理由から、400MPa以上が好ましく、600MPa以上がより好ましい。
一方、化学強化層3aの化学強化圧縮応力は、高くなりすぎるとバランスをとって引張応力も高くなり割れが発生しやすくなるという理由から、2000MPa以下が好ましく、1500MPa以下がより好ましい。
The chemically strengthened compressive stress of the chemically strengthened layer 3a is preferably 400 MPa or more, and more preferably 600 MPa or more, because it is excellent in bending strength and scratch strength.
On the other hand, the chemical strengthening compressive stress of the chemical strengthening layer 3a is preferably 2000 MPa or less, and more preferably 1500 MPa or less, because the tensile stress is increased and cracks are easily generated when the chemical strengthening layer 3a becomes too high.

化学強化層3aの深さは、例えば、有限会社折原製作所社製の表面応力計FSM−6000LEを用いて測定することができる。
また、化学強化層3aの化学強化圧縮応力の数値は、最大値の絶対値であり、例えば、有限会社折原製作所社製の表面応力計FSM−6000LEを用いて測定できる。
The depth of the chemical strengthening layer 3a can be measured using, for example, a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho Co., Ltd.
Moreover, the numerical value of the chemical strengthening compressive stress of the chemical strengthening layer 3a is the absolute value of the maximum value, and can be measured using, for example, a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho Co., Ltd.

高膨張層2および低膨張層3の板厚としては、低膨張層3が高膨張層2よりも薄ければ特に限定されないが、低膨張層3の合計板厚(2T)と高膨張層2の板厚(T)との比(2T/T)が0.05〜1.5となるのが好ましく、0.1〜1.0となるのがより好ましい。
上記の板厚比(2T/T)がこの範囲内であれば、積層強化ガラス1における引張応力と積層強化圧縮応力とのバランスに優れる。
The plate thickness of the high expansion layer 2 and the low expansion layer 3 is not particularly limited as long as the low expansion layer 3 is thinner than the high expansion layer 2, but the total plate thickness (2T L ) of the low expansion layer 3 and the high expansion layer are not limited. The ratio (2T L / T H ) to the plate thickness (T H ) of 2 is preferably 0.05 to 1.5, and more preferably 0.1 to 1.0.
Within the above plate thickness ratio (2T L / T H) is within this range, excellent balance between tensile stress and the laminated reinforcing compressive stress in the laminated tempered glass 1.

なお、高膨張層2および低膨張層3の具体的な板厚としては、例えば、高膨張層2の板厚(T)は、0.05〜2mmが好ましく、0.1〜2mmがより好ましい。また、低膨張層3の板厚(T)は、0.05〜0.5mmが好ましく、0.05〜0.4mmがより好ましい。 As a specific thickness of the high expansion layer 2 and the low expansion layer 3, for example, the thickness of the high expansion layer 2 (T H) is, 0.05 to 2 mm is preferred, 0.1 to 2 mm Gayori preferable. In addition, the plate thickness (T L ) of the low expansion layer 3 is preferably 0.05 to 0.5 mm, and more preferably 0.05 to 0.4 mm.

高膨張層2および低膨張層3は、いずれもガラス層であるが、高膨張層2は、化学強化処理が施されることから、アルカリ成分を含有するガラス層であり、アルカリアルミノシリケートガラス層であるのが好ましい。
なお、低膨張層3は、アルカリ成分を含有するガラス層であっても、アルカリ成分を含有しないガラス層であってもよいが、図2に基いて説明した積層強化ガラス1にする場合には、化学強化処理が施されるものであるから、アルカリ成分を含有するガラス層であり、アルカリアルミノシリケートガラス層であるのが好ましい。
Although both the high expansion layer 2 and the low expansion layer 3 are glass layers, the high expansion layer 2 is a glass layer containing an alkali component because it is subjected to a chemical strengthening treatment, and an alkali aluminosilicate glass layer. Is preferred.
The low expansion layer 3 may be a glass layer containing an alkali component or a glass layer not containing an alkali component, but in the case of the laminated tempered glass 1 described with reference to FIG. Since it is subjected to chemical strengthening treatment, it is a glass layer containing an alkali component, and is preferably an alkali aluminosilicate glass layer.

高膨張層2と低膨張層3との熱膨張係数差(ΔCTE)は、積層強化圧縮応力および引張応力を上記範囲にする観点から、5×10−7〜70×10−7/Kが好ましく、5×10−7〜60×10−7/Kがより好ましい。
なお、本発明において「熱膨張係数」は、50〜350℃での線膨張係数であり、熱膨張計を用いて5℃/分の昇温速度で測定したものである。
The thermal expansion coefficient difference (ΔCTE) between the high expansion layer 2 and the low expansion layer 3 is preferably 5 × 10 −7 to 70 × 10 −7 / K from the viewpoint of bringing the lamination reinforcing compressive stress and the tensile stress within the above ranges. 5 × 10 −7 to 60 × 10 −7 / K is more preferable.
In the present invention, the “thermal expansion coefficient” is a linear expansion coefficient at 50 to 350 ° C., and is measured at a rate of temperature increase of 5 ° C./min using a thermal dilatometer.

高膨張層2および低膨張層3のガラス転移温度は、それぞれ、450℃以上が好ましく、500℃以上がより好ましい。   The glass transition temperatures of the high expansion layer 2 and the low expansion layer 3 are each preferably 450 ° C. or higher, and more preferably 500 ° C. or higher.

高膨張層2と低膨張層3との屈折率差(Δn)は、0.1以下が好ましく、0.05以下がより好ましい。Δnがこの範囲であれば、積層強化ガラス1は、透過性が優れ、例えば、携帯機器に搭載されるカバーガラス用途に好適となる。
なお、本発明において「屈折率」は、d線に対する屈折率であり、株式会社島津デバイス製造社製の精密屈折計KPR−2000により測定したものである。
The refractive index difference (Δn) between the high expansion layer 2 and the low expansion layer 3 is preferably 0.1 or less, and more preferably 0.05 or less. When Δn is within this range, the laminated tempered glass 1 has excellent permeability, and is suitable for, for example, a cover glass application mounted on a portable device.
In the present invention, the “refractive index” is a refractive index with respect to the d-line and is measured by a precision refractometer KPR-2000 manufactured by Shimadzu Device Manufacturing Co., Ltd.

なお、本発明の積層強化ガラスは、図1および図2に基いて説明した積層強化ガラス1に限定されるものではなく、例えば、「低膨張層/高膨張層/低膨張層/高膨張層/低膨張層」という5層以上の積層強化ガラスであってもよい。
この場合、複数の高膨張層の熱膨張係数は、低膨張層の熱膨張係数よりも大きければよく、例えば、複数の高膨張層が異なる熱膨張係数を有していてもよい。
The laminated tempered glass of the present invention is not limited to the laminated tempered glass 1 described with reference to FIG. 1 and FIG. 2. For example, “low expansion layer / high expansion layer / low expansion layer / high expansion layer” It may be a laminated tempered glass of five or more layers called “/ low expansion layer”.
In this case, the thermal expansion coefficients of the plurality of high expansion layers may be larger than the thermal expansion coefficient of the low expansion layer. For example, the plurality of high expansion layers may have different thermal expansion coefficients.

以上説明したように、本発明の積層強化ガラスは、端面強度に優れることから、例えば、携帯使用されるため端面に衝撃を受けやすい携帯機器(例えば、スマートフォンやタブレットPC等)に搭載されるカバーガラスとして好適に用いられる。   As described above, since the laminated tempered glass of the present invention is excellent in end face strength, for example, a cover mounted on a portable device (for example, a smartphone or a tablet PC) that is easily impacted on the end face because it is portable. It is suitably used as glass.

[製造方法]
次に、積層強化ガラス1を得るための積層強化ガラスの製造方法について説明する。当該方法は、概略的には、高膨張層2と低膨張層3とを積層させる積層工程と、低膨張層3(または、高膨張層2および低膨張層3)に対して化学強化処理を行う化学強化工程と、を備える。
[Production method]
Next, the manufacturing method of the laminated tempered glass for obtaining the laminated tempered glass 1 will be described. The method generally includes a stacking step in which the high expansion layer 2 and the low expansion layer 3 are stacked, and a chemical strengthening treatment for the low expansion layer 3 (or the high expansion layer 2 and the low expansion layer 3). A chemical strengthening step to be performed.

〔積層工程〕
積層工程としては、高膨張層2と低膨張層3とを、融着や接着等によって互いに接合させて積層させ、高膨張層2と低膨張層3との積層体(以下、単に「積層体」ともいう)を得る工程であれば特に限定されない。
上記積層体を得る方法としては、従来公知の方法を用いることができ、例えば、高膨張層2の溶融ガラスと低膨張層3の溶融ガラスとをそれぞれ耐熱性の桶状構造物の両側から溢れさせ、溢れさせた溶融ガラスを桶状構造物の下端で合流させながら下方に延伸成形する方法;高膨張層2を一対の低膨張層3の間に配置し、両者の軟化点以上の温度に加熱して、高膨張層2と低膨張層3とを融着させる方法;等が挙げられる。
[Lamination process]
In the laminating step, the high expansion layer 2 and the low expansion layer 3 are laminated by being bonded to each other by fusion, adhesion, or the like, and a laminated body of the high expansion layer 2 and the low expansion layer 3 (hereinafter simply referred to as “laminated body”). The process is not particularly limited as long as it is a process for obtaining "."
As a method for obtaining the laminate, a conventionally known method can be used. For example, the molten glass of the high expansion layer 2 and the molten glass of the low expansion layer 3 overflow from both sides of the heat-resistant cage structure, respectively. A method in which the molten glass overflowed and joined at the lower end of the bowl-shaped structure is drawn downward; A method of fusing the high expansion layer 2 and the low expansion layer 3 by heating; and the like.

このような積層工程の後、得られた上記積層体は、必要に応じて、徐冷され(徐々に冷却され)、適当な大きさ形状に加工された後、化学強化工程に移行される。   After such a laminating step, the obtained laminated body is gradually cooled (gradually cooled) as necessary, processed into an appropriate size, and then transferred to a chemical strengthening step.

〔化学強化工程〕
化学強化工程は、低膨張層3(または、高膨張層2および低膨張層3)に対して化学強化処理を行う工程である。
化学強化処理としては、低膨張層3(または、高膨張層2および低膨張層3)に存在するアルカリ成分(例えば、Liイオン、Naイオン等のアルカリ金属イオン)をイオン半径がより大きいアルカリ成分(例えば、Kイオン等のアルカリ金属イオン)で置換する処理であれば特に限定されないが、例えば、上記積層体を硝酸カリウム(KNO)溶融塩に浸漬させる方法が挙げられる。浸漬の条件は、高膨張層2および低膨張層3のサイズ等によっても異なるが、例えば、浸漬時間としては0.25〜5時間が挙げられる。
[Chemical strengthening process]
The chemical strengthening step is a step of performing a chemical strengthening process on the low expansion layer 3 (or the high expansion layer 2 and the low expansion layer 3).
As the chemical strengthening treatment, alkali components (for example, alkali metal ions such as Li ions and Na ions) existing in the low expansion layer 3 (or the high expansion layer 2 and the low expansion layer 3) are alkali components having a larger ionic radius. (e.g., alkali metal ions such as K ion), but it if not particularly limited processing be substituted with, for example, a method of immersing the laminate potassium nitrate (KNO 3) in molten salts. Although the conditions for immersion differ depending on the size of the high expansion layer 2 and the low expansion layer 3, etc., examples of the immersion time include 0.25 to 5 hours.

また、化学強化処理は、上記浸漬等の前処理として、上記積層体を予熱する予熱処理を含んでいてもよい。予熱処理の方法としては特に限定されず、例えば、ヒータを用いて上記積層体を加熱する方法等が挙げられる。   Further, the chemical strengthening treatment may include a preheat treatment for preheating the laminate as a pretreatment such as immersion. The method for the preheat treatment is not particularly limited, and examples thereof include a method for heating the laminate using a heater.

化学強化処理(予熱処理を含む)の温度は、高膨張層2および低膨張層3が有するガラス転移温度のうち高い方の温度未満であるのが好ましく、高膨張層2および低膨張層3が有するガラス転移温度のうち低い方の温度未満であるのがより好ましい。
なお、ここでいう、化学強化処理の温度とは、例えば、予熱処理におけるヒータによる加熱温度、KNO溶融塩の温度等である。
The temperature of the chemical strengthening treatment (including the preheat treatment) is preferably less than the higher one of the glass transition temperatures of the high expansion layer 2 and the low expansion layer 3, and the high expansion layer 2 and the low expansion layer 3 It is more preferable that the glass transition temperature is lower than the lower one.
Note that the temperature of the chemical strengthening treatment referred to here is, for example, the heating temperature by the heater in the preheat treatment, the temperature of the KNO 3 molten salt, or the like.

このように高膨張層2および低膨張層3のガラス転移温度にもよるが、化学強化処理(予熱処理を含む)の温度としては、具体的には、例えば、550℃以下が好ましく、500℃以下がより好ましい。   As described above, although depending on the glass transition temperatures of the high expansion layer 2 and the low expansion layer 3, the temperature of the chemical strengthening treatment (including preheat treatment) is specifically preferably 550 ° C. or less, for example, 500 ° C. The following is more preferable.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

<ガラス組成>
下記実施例等において使用されたガラス層の詳細は下記のとおりである。
<Glass composition>
Details of the glass layer used in the following examples and the like are as follows.

(ガラスA)
・組成:SiO 73モル%、Al 7モル%、MgO 6モル%、NaO 14モル%
・熱膨張係数:79×10−7/K
・ガラス転移温度:617℃
・軟化点:850℃
・屈折率:1.5
・ヤング率:71GPa
・ポアソン比:0.2
(Glass A)
Composition: SiO 2 73 mol%, Al 2 O 3 7 mol%, MgO 6 mol%, Na 2 O 14 mol%
Thermal expansion coefficient: 79 × 10 −7 / K
Glass transition temperature: 617 ° C
・ Softening point: 850 ° C
-Refractive index: 1.5
-Young's modulus: 71 GPa
・ Poisson's ratio: 0.2

(ガラスB)
・組成:SiO 66.2モル%、Al 11.3モル%、B 7.6モル%、MgO 5.3モル%、CaO 4.7モル%、SrO 4.9モル%
・熱膨張係数:38×10−7/K
・ガラス転移温度:720℃
・軟化点:950℃
・屈折率:1.52
・ヤング率:75Pa
・ポアソン比:0.21
(Glass B)
- Composition: SiO 2 66.2 mole%, Al 2 O 3 11.3 mol%, B 2 O 3 7.6 mol%, MgO 5.3 mol%, CaO 4.7 mol%, SrO 4.9 mol %
-Thermal expansion coefficient: 38 × 10 −7 / K
Glass transition temperature: 720 ° C
Softening point: 950 ° C
-Refractive index: 1.52
・ Young's modulus: 75Pa
-Poisson's ratio: 0.21

<実施例1>
まず、板厚以外が同じサイズ(65mm×65mm)であるガラスAおよびガラスBを準備した。次に、低膨張層(表面層)である2枚のガラスBの間に、高膨張層(内部層)である1枚のガラスAを配置し、ガラスAおよびガラスBがともに軟化点以上となる温度まで加熱した後、徐冷することにより、各ガラスが融着した3層構造の積層体を得た。なお、高膨張層および低膨張層に用いたガラス組成および板厚(T、T)は、下記第1表に示す。
次に、得られた積層体の端面部分に対して研磨加工を行い63mm×63mmのサイズとし、全周にわたって0.15mmの寸法でC面取りを行った。さらに、化学強化処理を施し、積層強化ガラスを得た。具体的には、得られた積層体を、ヒータを用いて予熱処理した後、KNO溶融塩に浸漬(浸漬時間:1時間、浸漬温度:435℃)し、純水洗浄後に乾燥して、積層強化ガラスを得た。なお、予熱処理の温度は、浸漬温度と同温度とした。
<Example 1>
First, glass A and glass B having the same size (65 mm × 65 mm) except for the plate thickness were prepared. Next, one glass A which is a high expansion layer (inner layer) is disposed between two glasses B which are low expansion layers (surface layers), and both the glass A and the glass B are above the softening point. After being heated to a certain temperature, it was gradually cooled to obtain a laminate having a three-layer structure in which each glass was fused. The glass composition and the plate thickness (T H , T L ) used for the high expansion layer and the low expansion layer are shown in Table 1 below.
Next, it grind | polished with respect to the end surface part of the obtained laminated body, it was set as the size of 63 mm x 63 mm, and C chamfering was performed by the dimension of 0.15 mm over the perimeter. Furthermore, chemical strengthening treatment was performed to obtain laminated tempered glass. Specifically, the obtained laminate was preheated using a heater, then immersed in KNO 3 molten salt (immersion time: 1 hour, immersion temperature: 435 ° C.), dried after washing with pure water, A laminated tempered glass was obtained. The preheating temperature was the same as the immersion temperature.

<比較例1>
化学強化処理を施さなかった以外は、実施例1と同様にして、積層強化ガラスを得た。化学強化処理を施さなかったため、下記第1表中、化学強化層の化学強化圧縮応力および深さについては、「−」を記載した。
<Comparative Example 1>
A laminated tempered glass was obtained in the same manner as in Example 1 except that the chemical strengthening treatment was not performed. Since chemical strengthening treatment was not performed, “−” was described in Table 1 below for the chemically strengthened compressive stress and depth of the chemically strengthened layer.

<評価>
(端面強度)
得られた積層強化ガラスの端面強度を、「JIS R 1601 ファインセラミックスの曲げ強さ試験方法」に準じた4点曲げ試験によって評価した。同試験を20回繰り返し、割れが発生した際の平均荷重値を測定した。
比較例1の平均荷重値を基準とし、平均荷重値が比較例1の値以下であった場合には「B」と評価し、平均荷重値が比較例1値よりも大きかった場合には「A」と評価した。「A」であれば、端面強度に優れるものとして評価できる。結果を下記第1表に示す。
<Evaluation>
(End face strength)
The end face strength of the obtained laminated tempered glass was evaluated by a four-point bending test according to “JIS R 1601 Bending strength test method of fine ceramics”. The test was repeated 20 times, and the average load value when cracking occurred was measured.
Based on the average load value of Comparative Example 1, when the average load value is less than or equal to the value of Comparative Example 1, it is evaluated as “B”, and when the average load value is larger than the Comparative Example 1 value, A ”. If it is "A", it can be evaluated as having excellent end face strength. The results are shown in Table 1 below.

上記第1表に示す結果から明らかなように、実施例1の積層強化ガラスは、端面強度に優れるのに対して、化学強化処理を施さなかった比較例1の積層強化ガラスは、端面強度に劣ることが分かった。   As is clear from the results shown in Table 1 above, the laminated tempered glass of Example 1 is superior in end face strength, whereas the laminated tempered glass in Comparative Example 1 that has not been subjected to chemical strengthening treatment has improved end face strength. I found it inferior.

1 積層強化ガラス
2 高膨張層
2a 化学強化層
3 低膨張層
3a 化学強化層
高膨張層の化学強化層の深さ
低膨張層の化学強化層の深さ
高膨張層の板厚
低膨張層の板厚
DESCRIPTION OF SYMBOLS 1 Laminated tempered glass 2 High expansion layer 2a Chemical strengthening layer 3 Low expansion layer 3a Chemical strengthening layer DH Depth of chemical strengthening layer of high expansion layer D L Depth of chemical strengthening layer of low expansion layer TH High expansion layer Thickness TL Thickness of low expansion layer

Claims (2)

高膨張層と、当該高膨張層よりも板厚が薄く熱膨張係数が小さい低膨張層とを、前記低膨張層が表面層となるように積層することで、前記高膨張層に引張応力を発生させ、前記低膨張層に圧縮応力を発生させた積層強化ガラスであって、
前記高膨張層が、その端面部に、化学強化処理によって圧縮応力を発生させた化学強化層を有することを特徴とする積層強化ガラス。
By laminating a high expansion layer and a low expansion layer having a smaller plate thickness and a smaller thermal expansion coefficient than the high expansion layer so that the low expansion layer becomes a surface layer, tensile stress is applied to the high expansion layer. A laminated tempered glass that generates and generates compressive stress in the low expansion layer,
Laminated tempered glass, wherein the high expansion layer has a chemically strengthened layer in which compressive stress is generated by chemical strengthening treatment at an end surface portion thereof.
前記低膨張層が、その端面部および表面部に、化学強化処理によって圧縮応力を発生させた化学強化層を有する、請求項1に記載の積層強化ガラス。   The laminated tempered glass according to claim 1, wherein the low expansion layer has a chemically strengthened layer in which a compressive stress is generated by a chemical strengthening treatment on an end surface portion and a surface portion thereof.
JP2012041521A 2012-02-28 2012-02-28 Laminated tempered glass Pending JP2015091737A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012041521A JP2015091737A (en) 2012-02-28 2012-02-28 Laminated tempered glass
PCT/JP2013/054967 WO2013129400A1 (en) 2012-02-28 2013-02-26 Laminated strengthened glass
TW102106950A TW201343385A (en) 2012-02-28 2013-02-27 Laminated strengthened glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041521A JP2015091737A (en) 2012-02-28 2012-02-28 Laminated tempered glass

Publications (1)

Publication Number Publication Date
JP2015091737A true JP2015091737A (en) 2015-05-14

Family

ID=49082597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041521A Pending JP2015091737A (en) 2012-02-28 2012-02-28 Laminated tempered glass

Country Status (3)

Country Link
JP (1) JP2015091737A (en)
TW (1) TW201343385A (en)
WO (1) WO2013129400A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202300B2 (en) 2013-08-23 2019-02-12 Corning Incorporated Strengthened glass articles, edge-strengthened laminated glass articles, and methods for making the same
JP6075719B2 (en) * 2013-11-19 2017-02-08 日本電気硝子株式会社 Tempered glass plate and method for producing tempered glass plate
US9321677B2 (en) 2014-01-29 2016-04-26 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
KR102421511B1 (en) 2014-03-27 2022-07-15 코닝 인코포레이티드 Glass Article
JP2019528548A (en) * 2016-07-15 2019-10-10 コーニング インコーポレイテッド Lighting unit having a laminated structure
WO2018013505A1 (en) 2016-07-15 2018-01-18 Corning Incorporated Optical waveguide article with laminate structure and method for forming the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726981A (en) * 1985-06-10 1988-02-23 Corning Glass Works Strengthened glass articles and method for making
US7201965B2 (en) * 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
CN101508524B (en) * 2009-03-31 2010-06-30 成都光明光电股份有限公司 Glass suitable for chemically tempering and chemical tempered glass
TW201111167A (en) * 2009-05-08 2011-04-01 Corning Inc Glass articles with polymer overmolds and methods for forming the same
JP5448064B2 (en) * 2009-10-28 2014-03-19 日本電気硝子株式会社 Tempered plate glass and manufacturing method thereof

Also Published As

Publication number Publication date
WO2013129400A1 (en) 2013-09-06
TW201343385A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
WO2013065648A1 (en) Glass substrate, method for producing glass substrate, and cover glass
KR102597033B1 (en) Glass with high surface strength
TWI696592B (en) Glass-based articles, method of manufacturing the same, and products comprising the same
JP6973959B2 (en) Chemically strengthenable glass plate
TWI660930B (en) Damage resistant glass with high coefficient of thermal expansion
TWI767206B (en) Ion exchange processes and chemically strengthened glass substrates resulting therefrom
KR102564323B1 (en) glass for chemical strengthening
KR101493764B1 (en) Tempered glass plate
TWI750516B (en) Tempered glass and manufacturing method of strengthened glass
JP7431872B2 (en) Thin glass with improved bendability and chemical strengthening
KR20190124278A (en) Asymmetrical stress profiles for low warpage and high damage resistant glass articles
JP2015091737A (en) Laminated tempered glass
TW201726392A (en) Laminated glass article with determined stress profile and method for forming the same
KR20160014581A (en) Method for producing toughened glass plate
TW201920032A (en) Scratch-resistant boroaluminosilicate glass
JP6607378B2 (en) Method for producing tempered glass sheet
TWI734159B (en) Glass compositions that enable high compressive stress
TW201536699A (en) Method for producing tempered glass and tempered glass
TWI791431B (en) chemically strengthened glass
US20220002183A1 (en) Glass substrate, laminated substrate, and laminate
TW201833054A (en) Glass-based articles with engineered stress profiles and methods of manufacture
TW201927710A (en) Method of increasing IOX processability on glass articles with multiple thicknesses
CN113811447A (en) Damage resistant glass laminate and method of making same
JP2023078387A (en) Method of manufacturing glass-based articles with sections of different thicknesses
WO2013061905A1 (en) Optical element for light-concentrating solar power generation device, method for producing same, and light-concentrating solar power generation device