WO2013065648A1 - Glass substrate, method for producing glass substrate, and cover glass - Google Patents

Glass substrate, method for producing glass substrate, and cover glass Download PDF

Info

Publication number
WO2013065648A1
WO2013065648A1 PCT/JP2012/077918 JP2012077918W WO2013065648A1 WO 2013065648 A1 WO2013065648 A1 WO 2013065648A1 JP 2012077918 W JP2012077918 W JP 2012077918W WO 2013065648 A1 WO2013065648 A1 WO 2013065648A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass substrate
glass
chemical strengthening
low expansion
Prior art date
Application number
PCT/JP2012/077918
Other languages
French (fr)
Japanese (ja)
Inventor
則史 大森
若月 博
増田 賢一
浩司 中川
拓海 矢倉
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013065648A1 publication Critical patent/WO2013065648A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a glass substrate, a glass substrate manufacturing method, and a cover glass.
  • the inner layer having a thickness of 20 to 2000 ⁇ m and the thicknesses provided on both surface sides of the inner layer”.
  • the surface layer has a thickness smaller than that of the inner layer, the thermal expansion coefficient of the surface layer is smaller than that of the inner layer, and at least the surface layer is substantially Without containing an alkali metal oxide, the surface layer and the inner layer are fused together to form a compressive stress of 50 MPa to 500 MPa on the surface layer, and a tensile stress of 30 to 200 MPa on the inner layer.
  • the tempered glass sheet is characterized in that is formed.
  • Such a tempered glass in which a surface layer and an inner layer are laminated (hereinafter, this type of glass is referred to as a laminated type tempered glass) is also described in [0009] of Patent Document 1.
  • the surface layer that is, the surface layer made of glass having a relatively small thermal expansion coefficient
  • the inner layer that is, the inner layer made of glass having a relatively large thermal expansion coefficient
  • Portable devices such as smartphones may be carried in clothes pockets such as pants.
  • Such a cover glass mounted on a portable device is required to have resistance to bending (that is, high bending strength) in addition to resistance to scratches caused by impacts and the like (that is, high scratch strength).
  • the compressive stress layer formed on the surface layer is generally thick. That is, the depth of the compressive stress layer from the glass surface is large. Therefore, it is said that this laminated type tempered glass is excellent in scratch strength. For example, even if a scratch of depth X 1 ⁇ m is attached to the surface of the laminated type tempered glass, if the thickness X 2 ⁇ m of the compressive stress layer is thicker than the scratch (X 2 > X 1 ), the scratch is tensile. Does not reach the stress layer. In this way, it is possible to prevent the laminate type tempered glass from cracking due to the scratches being extended by the tensile stress of the tensile stress layer.
  • the compression stress layer of laminated type tempered glass shows a constant stress value in the thickness direction, but its absolute value is relatively low, and the value is not high even in the vicinity of the outermost layer. Therefore, this laminated type tempered glass is said to have insufficient bending strength.
  • a tensile stress is applied to the compressive stress layer on one side.
  • the tensile stress value (Y 1 MPa) is the stress value of the compressive stress layer (Y 2 MPa). If larger than (Y 1 > Y 2 ), the laminated type tempered glass will break.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a glass substrate excellent in both scratching strength and bending strength.
  • the present inventors have intensively studied to achieve the above object. As a result, the present inventors have found that the bending strength is excellent by forming another compressive stress layer having a high maximum stress value near the outermost surface of the laminated type tempered glass, thereby completing the present invention.
  • the present invention provides a glass substrate having the following constitutions (1) to (16), a method for producing the glass substrate, and a cover glass.
  • a high expansion layer that is, a high expansion layer made of high expansion glass
  • a low expansion layer that is thinner than the high expansion layer and has a smaller thermal expansion coefficient (that is, a low expansion layer made of low expansion glass).
  • a glass substrate having a laminated structure in which the low expansion layer is a surface layer, the tensile stress layer formed by generating tensile stress in the high expansion layer by the laminated structure, and the laminated structure A laminated reinforcing layer formed by generating a compressive stress in the low expansion layer, and a chemical strengthening layer formed by generating a compressive stress by a chemical strengthening treatment in the vicinity of the outermost surface of the low expansion layer, which is a surface layer.
  • the thickness of the chemical strengthening layer is equal to or less than the thickness of the laminated reinforcing layer.
  • the rate of change of the stress value with respect to the thickness direction of the chemical strengthening layer is greater than the rate of change of the stress value with respect to the thickness direction of the laminated reinforcing layer excluding the chemical strengthening layer.
  • the maximum value of the compressive stress in the laminated reinforcing layer excluding the chemical reinforcing layer is 400 MPa or less, according to any one of (1) to (6) above Glass substrate.
  • a method for producing a glass substrate wherein the glass substrate according to any one of (1) to (11) above is obtained, A laminating step of laminating the high expansion layer and the low expansion layer (that is, a laminating step of laminating the glass to be the high expansion layer and the glass to be the low expansion layer); A chemical strengthening step for performing the chemical strengthening treatment on the low expansion layer which is a surface layer;
  • a method for producing a glass substrate comprising:
  • the manufacturing method of the glass substrate as described in said (12) including the process of laminating
  • the chemical strengthening treatment includes pre-heat treatment, and the temperature of the chemical strengthening treatment is lower than the higher one of the glass transition temperatures of the high expansion layer and the low expansion layer, (12) or The manufacturing method of the glass substrate as described in (13).
  • FIG. 3 is a graph schematically showing a stress profile of the glass substrate 1. It is a graph which shows roughly the stress profile of the glass substrate of the comparative examples 1 and 2. FIG. It is a graph which shows roughly the stress profile of the glass substrate of the comparative examples 3 and 4.
  • FIG. 3 is a graph schematically showing a stress profile of the glass substrate 1. It is a graph which shows roughly the stress profile of the glass substrate of the comparative examples 1 and 2.
  • FIG. It is a graph which shows roughly the stress profile of the glass substrate of the comparative examples 3 and 4.
  • Glass substrate First, an aspect of the glass substrate of the present invention will be described. However, it goes without saying that the glass substrate of the present invention is not limited to the glass substrate 1 described below.
  • FIG. 1 is a conceptual diagram showing a stress distribution state in the plate thickness direction of the glass substrate 1.
  • the glass substrate 1 has a three-layer structure, and an inner layer 2 is disposed between a pair of surface layers 3.
  • the thermal expansion coefficient of the glass layer of the surface layer 3 is smaller than the thermal expansion coefficient of the inner layer 2. That is, the surface layer 3 is a low expansion layer made of glass having a relatively low thermal expansion coefficient, and the inner layer 2 is a high expansion layer made of glass having a relatively high thermal expansion coefficient.
  • each thickness ( Tl ) of the surface layer 3 which is a low expansion layer is thinner than the thickness ( Th ) of the inner layer 2 which is a high expansion layer.
  • the glass of the inner layer 2 and the glass of the surface layer 3 are bonded and laminated together by fusion or adhesion. Due to this laminated structure, a tensile stress as indicated by a white arrow in FIG. 1 is generated in the inner layer 2, and a compressive stress (hereinafter referred to as “laminate” as indicated by a black arrow in FIG. 1 is generated on the surface layer 3. Also referred to as “enhanced compressive stress”.
  • a region where a tensile stress is generated by the above-described stacked configuration is referred to as a “tensile stress layer”, and a region where a compressive stress (stacked reinforcing compressive stress) is generated is also referred to as a “stacked reinforcing layer”.
  • the inner layer 2 and the tensile stress layer are substantially synonymous, and the surface layer 3 and the laminated reinforcing layer are substantially synonymous.
  • each of the surface layers 3 is subjected to a chemical strengthening treatment.
  • a compressive stress hereinafter referred to as “chemical strengthening” is applied to the vicinity of the outermost surface of the surface layer 3.
  • compressive stress also referred to as “compressive stress”.
  • the surface layer 3 a region where the chemically strengthened compressive stress is generated is also referred to as “chemically strengthened layer”.
  • the chemical strengthening layer partially overlaps the laminated reinforcing layer, but at least the thickness of the chemical reinforcing layer is equal to or less than the thickness of the laminated reinforcing layer.
  • the chemical strengthening treatment applied to the surface layer 3 is roughly an alkali component (for example, an alkali metal ion such as Li ion or Na ion) present in the glass layer of the surface layer 3, hereinafter referred to as “small-diameter alkali”.
  • This is a so-called ion exchange strengthening treatment in which the component (also referred to as “component”) is replaced with an alkali component having a larger ionic radius (for example, an alkali metal ion such as K ion, hereinafter also referred to as “large-diameter alkali component”).
  • the concentration of the large-diameter alkaline component in the chemically strengthened layer is higher than that of the laminated strengthened layer excluding this chemically strengthened layer. That is, the chemical strengthening layer and the laminated reinforcing layer excluding the chemical strengthening layer can be clearly distinguished by the difference in the concentration of the large-diameter alkaline component.
  • the average value of the large-diameter alkali component amount (for example, the K element amount (unit: cps)) in the laminated reinforcing layer (that is, the surface layer 3) before the chemical strengthening treatment is set to “ ⁇ ”.
  • the chemical strengthening layer is defined as “a layer having a large-diameter alkali component amount of“ ⁇ + 2 ⁇ ”or more”
  • the laminated reinforcing layer excluding the chemical strengthening layer is defined as “the large-diameter alkali component amount is It is defined as “a layer less than“ ⁇ + 2 ⁇ ””.
  • the amount of alkali components can be measured with an electron beam microanalyzer (EPMA).
  • the chemically strengthened layer can be simply defined as “a layer having a large-diameter alkaline component amount of“ ⁇ ”or more”.
  • the increment of the large-diameter alkaline component amount after the chemical strengthening treatment is defined as a value that is not less than a significant difference that does not include the error region. Therefore, in the present invention, this significant difference is defined as “2 ⁇ ”, and the chemically strengthened layer is defined as “a layer having a large alkali component amount of“ ⁇ + 2 ⁇ ”or more” as described above.
  • the thickness of the chemically strengthened layer can be measured using a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho Co., Ltd.
  • FIG. 2 is a graph schematically showing a stress profile of the glass substrate 1.
  • the horizontal axis represents the thickness (unit: ⁇ m)
  • the vertical axis represents the stress value (unit: MPa).
  • the upper side of the vertical axis is a tensile stress profile
  • the lower side is a compressive stress profile.
  • the stress profile is calculated by measuring the birefringence of the cross section of the glass substrate 1.
  • a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Inc. is used.
  • a tensile stress layer is formed as described above.
  • the stress profile of the tensile stress layer is substantially constant in the thickness direction.
  • the maximum value of the tensile stress in the tensile stress layer (indicated by “CT” in FIG. 2) is preferably 200 MPa or less, more preferably 100 MPa or less, because the scratches are self-propelled if they are too high and cracks are likely to occur. preferable.
  • the laminated reinforcing layer and the chemical reinforcing layer are formed.
  • the thickness of the chemical strengthening layer (indicated by “DOL2” in FIG. 2) is equal to or less than the thickness of the laminated reinforcing layer (indicated by “DOL1” in FIG. 2).
  • the stress profile of the chemically strengthened layer has a larger inclination with respect to the thickness direction than the stress profile of the laminated strengthened layer excluding the chemically strengthened layer. That is, the rate of change of the stress value with respect to the thickness direction of the chemically strengthened layer is larger than the rate of change of the stress value with respect to the thickness direction of the laminated strengthened layer excluding the chemically strengthened layer.
  • the stress profile is substantially constant in the thickness direction in the laminated reinforcing layer excluding the chemically strengthened layer, but in the chemically strengthened layer, the stress profile is inclined with respect to the thickness direction, and the stress value toward the outermost surface. Is rising.
  • the compressive stress value is not high, but is a thick compressive stress layer (that is, a laminated reinforcing layer excluding the chemical strengthening layer.
  • a compressive stress layer that is, a chemically strengthened layer having a high stress value is formed near the outermost surface. Therefore, the glass substrate 1 is less likely to crack even if it is deeply scratched by impact or the like (that is, the scratching strength is high), and it is difficult to crack even if a high tensile stress is applied to one surface by bending. (That is, the bending strength is high).
  • the maximum value (indicated by “CS1” in FIG. 2) of the compressive stress (that is, the laminate reinforcing compressive stress) in the laminated reinforcing layer excluding the chemically strengthened layer is preferably 400 MPa or less, and more preferably 350 MPa or less. If the lamination strengthening compressive stress is too high, ion exchange may be hindered in the chemical strengthening treatment (details will be described later), but within this range, ion exchange is appropriately performed and the chemically strengthened compression of the chemically strengthened layer is performed. Excellent stress. Further, if the lamination strengthening compressive stress is too high, there is a risk that the tensile stress (CT) is increased and cracking is likely to occur, but the tensile stress does not become too high within this range.
  • CT tensile stress
  • CS1 is preferably 5 MPa or more, and more preferably 20 MPa or more.
  • the maximum value of the chemical strengthening compressive stress in the chemically strengthened layer is preferably 600 MPa or more, and more preferably 700 MPa or more, because the bending strength is more excellent. .
  • 1200 MPa or less is preferable and 1000 MPa or less is more preferable because the tensile stress (CT) is also increased when CS2 becomes excessively high and cracks are easily generated.
  • the thicknesses of the inner layer 2 and the surface layer 3 are not particularly limited as long as the surface layer 3 is thinner than the inner layer 2 as described above.
  • the total thickness (2T l ) of the surface layer 3 and the inner layer 2 are not limited.
  • the ratio (2T 1 / T h ) to the thickness (T h ) is preferably 0.05 to 1.5, more preferably 0.1 to 1.0.
  • Within thickness ratio (2T l / T h) is the range described above, excellent balance between tensile stress and the laminated reinforcing compressive stress in the glass substrate 1.
  • the thickness (T h ) of the inner layer 2 is 0.07 to 2 mm is preferable, and 0.1 to 2 mm is more preferable.
  • the thickness (T l ) of the surface layer 3 is preferably 0.05 to 0.5 mm, more preferably 0.05 to 0.4 mm.
  • the inner layer 2 and the surface layer 3 are both glass layers, but the surface layer 3 is a glass layer containing an alkali component because it is subjected to a chemical strengthening treatment, and is an alkali aluminosilicate glass layer. Is preferred.
  • the inner layer 2 is not subjected to chemical strengthening treatment, it may be a glass layer containing an alkali component or a glass layer not containing an alkali component.
  • the difference in thermal expansion coefficient ( ⁇ CTE) between the inner layer 2 and the surface layer 3 is preferably 5 ⁇ 10 ⁇ 7 to 70 ⁇ 10 ⁇ 7 / K from the viewpoint of bringing CS1 and CT within the above ranges, and 5 ⁇ 10 ⁇ 7. More preferably, it is ⁇ 60 ⁇ 10 ⁇ 7 / K.
  • the “thermal expansion coefficient” of glass is a linear expansion coefficient at 50 to 350 ° C., and is measured at a rate of temperature increase of 5 ° C./min using a thermal dilatometer.
  • the glass transition temperatures of the inner layer 2 and the surface layer 3 are related to the temperature of the chemical strengthening process, but specifically, the inner layer 2 which is a high expansion layer and the surface which is a low expansion layer.
  • the glass transition temperature of the layer 3 is preferably 450 ° C. or higher, and more preferably 500 ° C. or higher.
  • the difference in refractive index ( ⁇ n) between the inner layer 2 and the surface layer 3 is preferably 0.1 or less, and more preferably 0.05 or less. If (DELTA) n is this range, the glass substrate 1 is excellent in permeability
  • “refractive index” is a refractive index with respect to the d-line, and is measured by a precision refractometer KPR-2000 manufactured by Shimadzu Device Manufacturing Co., Ltd.
  • the production method of the present invention for obtaining a glass substrate 1 is generally a lamination in which glass forming an inner layer 2 (high expansion layer) and glass forming a pair of surface layers 3 (low expansion layer) are stacked. A process and a chemical strengthening process for performing a chemical strengthening process on the surface layer 3 that is a surface layer of the laminated glass.
  • the glass for forming the inner layer 2 and the glass for forming the surface layer 3 are bonded to each other by fusing, bonding, or the like, and the inner layer 2 and the surface layer 3 are laminated.
  • a step of obtaining a laminated body hereinafter also simply referred to as “laminated body”.
  • laminated body a laminated body
  • a conventionally known method can be used as a method for obtaining the laminate.
  • the molten glass to be the inner layer 2 and the molten glass to be the surface layer 3 are overflowed from both sides of the heat-resistant bowl-like structure, and the overflowed molten glass is joined together at the lower end of the bowl-like structure.
  • the inner layer 2 is disposed between the pair of surface layers 3 and heated to a temperature equal to or higher than the softening point of the inner layer 2 and the surface layer 3. And the like.
  • the obtained laminate is gradually cooled as necessary, processed into an appropriate size, and then transferred to a chemical strengthening step.
  • the chemical strengthening step is a step of performing a chemical strengthening process on the surface layer 3.
  • an alkali component for example, alkali metal ions such as Li ions and Na ions
  • an alkali component having a larger ionic radius for example, alkali metal ions such as K ions.
  • KNO 3 laminate potassium nitrate
  • the immersion conditions vary depending on the thickness of the surface layer 3, the stress value, and the like, but examples of the immersion time include 0.25 to 5 hours.
  • a chemical strengthening treatment represented by such immersion is performed for a long time (for example, 2 days) on a single-layer glass substrate that is not a laminated type, it is considered that the chemical strengthened layer can be formed thick.
  • the chemical strengthening treatment is not practical because the manufacturing cost becomes extremely high by performing for a long time, and the chemical strengthening layer having a high compressive stress value is formed thick to balance the compressive stress. The resulting tensile stress is also increased, and there is a risk that cracks are likely to occur.
  • the glass substrate (glass substrate 1) of the present invention since the thick laminated reinforcing layer has already been formed, it is not necessary to form the chemical reinforcing layer thickly, and the immersion time in the chemical strengthening treatment can be shortened, Manufacturing cost can be reduced. And in the glass substrate (glass substrate 1) of this invention, since a chemically strengthened layer with a high stress value does not become thicker than necessary, it is suppressed that tensile stress becomes high and generation
  • the chemical strengthening treatment may include a preheat treatment for preheating the laminate as a pretreatment such as the immersion.
  • the method for the preheat treatment is not particularly limited, and examples thereof include a method for heating the laminate using a heater.
  • the temperature of the chemical strengthening treatment is preferably lower than the higher one of the glass transition temperatures of the inner layer 2 and the surface layer 3, and is lower than the glass transition temperature of the inner layer 2 and the surface layer 3. It is more preferable that the temperature is lower than that.
  • the temperature of the pre-heat treatment of the laminate prior to the chemical strengthening treatment is appropriately selected within a temperature range in which the laminate is not damaged or deformed when immersed in a molten salt such as KNO 3. Good.
  • the temperature of the chemical strengthening treatment specifically, for example, a temperature of KNO 3 molten salt.
  • the temperature of the chemical strengthening treatment it is generally considered that the higher one is more efficient, but when the present inventors have studied, the temperature of the chemical strengthening treatment is high in the present invention. It was found that the alkali component after substitution with alkali ions diffuses, and as a result, the chemically strengthened compressive stress of the chemically strengthened layer may be weakened. That is, when the temperature of the chemical strengthening treatment satisfies the above conditions, the maximum value of the chemical strengthening compressive stress of the chemical strengthening layer is in the above-described range.
  • the temperature of the chemical strengthening treatment is specifically preferably 550 ° C. or less, and more preferably 500 ° C. or less.
  • the lower limit temperature of the chemical strengthening treatment is preferably, for example, 350 ° C. or higher, and more preferably 400 ° C. or higher.
  • the glass substrate of the present invention obtained by such a production method of the present invention is excellent in both scratching strength and bending strength, for example, it is suitably used as a cover glass mounted on a mobile device such as a smartphone or a tablet PC. It is done.
  • the glass substrate of the present invention is not limited to the three-layer glass substrate 1 of “low expansion layer / high expansion layer / low expansion layer”.
  • “low expansion layer / high expansion layer” A glass substrate having a five-layer structure of “/ low expansion layer / high expansion layer / low expansion layer” may be used.
  • Glass 1 Glass forming a high expansion layer on a glass substrate
  • Composition SiO 2 64.5 mole%, Al 2 O 3 6 mol%, MgO 11 mol%, CaO 0.1 mol%, SrO 0.1 mol%, Na 2 O 12 mol%, K 2 O 4 moles %, ZrO 2 2.5 mol%
  • Thermal expansion coefficient 91 ⁇ 10 ⁇ 7 / K Glass transition temperature: 620 ° C
  • Softening point 842 ° C -Refractive index: 1.52 ⁇
  • Young's modulus 78GPa -Poisson's ratio: 0.22
  • Glass 2 Glass that forms a low expansion layer on a glass substrate
  • Composition SiO 2 73 mol%, Al 2 O 3 7 mol%, MgO 6 mol%, Na 2 O 14 mol%
  • Thermal expansion coefficient 79 ⁇ 10 ⁇ 7 / K Glass transition temperature: 617 ° C ⁇
  • one glass 1 high-expansion glass substrate for forming an inner layer (high expansion layer)
  • glass 2 low-expansion glass for forming a surface layer (low expansion layer) having the same size except the thickness
  • Prepare two sheets place one glass 1 between the two glasses 2, and after heating to a temperature at which both the glass 1 and the glass 2 are above the softening point, by slowly cooling, A laminate having a three-layer structure in which each glass was fused was obtained.
  • the difference in thermal expansion coefficient between the high expansion layer and the low expansion layer is 12 ⁇ 10 ⁇ 7 / K.
  • the glass types and thicknesses (T h , T l ) used for the inner layer and the surface layer are shown in Table 1 below.
  • the obtained laminate was subjected to a chemical strengthening treatment to obtain a glass substrate.
  • the obtained laminate was preheated using a heater, and then immersed in KNO 3 molten salt (immersion time and immersion temperature are shown in Table 1 below), and in KNO 3 molten salt A chemical strengthening treatment by ion exchange was performed, and then the laminate subjected to the chemical strengthening treatment was dried after washing with pure water to obtain a glass substrate.
  • the temperature of the preheat treatment of the laminated body was set to the same temperature as the temperature of the molten salt to be immersed (immersion temperature).
  • Each of the glass substrates of Examples 1 to 3 exhibited a stress profile similar to that of the graph of FIG. Based on the stress profile, CT (maximum value of tensile stress in the tensile stress layer, unit: MPa), DOL1 (thickness of the laminated reinforcing layer, unit: ⁇ m), DOL2 (thickness of the chemical reinforcing layer, unit: ⁇ m), CS1 (maximum value of compressive stress in the laminated reinforcing layer excluding the chemically strengthened layer (ie, laminated strengthened compressive stress). Unit: MPa) and CS2 (maximum value of chemically strengthened compressive stress in the chemically strengthened layer. Unit: MPa) Is shown in Table 1 below.
  • CT is measured using a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Inc.
  • DOL1 is measured by the above-mentioned EPMA
  • DOL2, CS1, and CS2 are surface stress meters manufactured by Orihara Seisakusho Co., Ltd. Measurement was performed using FSM-6000LE (hereinafter the same).
  • the thickness ratio (2T 1 / T h ) between the surface layer and the inner layer, the thermal expansion coefficient difference ( ⁇ CTE), and the refractive index difference ( ⁇ n) are also shown in Table 1 below.
  • the amount of K element in the surface layer before chemical strengthening treatment was measured using the above-mentioned EPMA.
  • the average value ( ⁇ ) was 1437 cps.
  • the standard deviation ( ⁇ ) was 38.
  • the amount of K element in the chemically strengthened layer in the surface layer was measured.
  • FIG. 3 is a graph schematically showing the stress profile of the glass substrates of Comparative Examples 1 and 2. As shown in FIG. 3, in Comparative Examples 1 and 2, the chemical strengthening layer is not formed on the surface layer, and only the laminated reinforcing layer showing a certain stress value is formed.
  • Comparative Examples 3 and 4 a glass substrate was obtained by subjecting a single layer glass (that is, a 1 mm thick single glass substrate made of glass 2) to a chemical strengthening treatment. Specifically, Comparative Example 3 was subjected to the same treatment as in Example 1, and Comparative Example 4 was subjected to the same treatment as in Example 2 or 3.
  • FIG. 4 is a graph schematically showing the stress profile of the glass substrates of Comparative Examples 3 and 4. As shown in FIG. 4, in Comparative Examples 3 and 4, the lamination reinforcing layer is not formed on the surface layer, and only the chemical strengthening layer is formed near the outermost surface of the surface layer.
  • the tempered glass plate of the present invention is remarkably widespread in portable devices such as smartphones and tablet PCs, and is useful as a cover glass mounted on such portable devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is a glass substrate which has both excellent scratch strength and excellent bending strength. A glass substrate having a laminate configuration wherein a high expansion layer and a low expansion layer, which is thinner than the high expansion layer and has a lower thermal expansion coefficient than the high expansion layer, are laminated and the low expansion layer serves as a surface layer. This glass substrate comprises: a tensile stress layer that is formed of the high expansion layer in which a tensile stress is generated due to the laminate configuration; a laminate reinforcing layer that is formed of the low expansion layer in which a compressive stress is generated due to the laminate configuration; and a chemical reinforcing layer that is the outermost part of the low expansion layer serving as the surface layer, in said outermost part a compressive stress being generated by a chemical reinforcing treatment. The thickness of the chemical reinforcing layer is not more than the thickness of the laminate reinforcing layer.

Description

ガラス基板、ガラス基板の製造方法、およびカバーガラスGlass substrate, method for producing glass substrate, and cover glass
 本発明は、ガラス基板、ガラス基板の製造方法、およびカバーガラスに関する。 The present invention relates to a glass substrate, a glass substrate manufacturing method, and a cover glass.
 従来、機械的強度を高めた強化ガラスとして、例えば、特許文献1の[請求項1]には、「厚さが20~2000μmの内部層と、該内部層の両表面側に設けられた厚さが10~500μmの表面層とで構成され、前記表面層の厚さは前記内部層よりも小さく、前記表面層の熱膨張係数は前記内部層よりも小さく、少なくとも前記表面層は実質的にアルカリ金属酸化物を含有せず、前記表面層と前記内部層とが相互に融着することにより、前記表面層に50MPa~500MPaの圧縮応力が形成され、前記内部層に30~200MPaの引張応力が形成されていることを特徴とする強化板ガラス。」が開示されている。 Conventionally, as tempered glass with increased mechanical strength, for example, [Claim 1] of Patent Document 1 states that “the inner layer having a thickness of 20 to 2000 μm and the thicknesses provided on both surface sides of the inner layer”. The surface layer has a thickness smaller than that of the inner layer, the thermal expansion coefficient of the surface layer is smaller than that of the inner layer, and at least the surface layer is substantially Without containing an alkali metal oxide, the surface layer and the inner layer are fused together to form a compressive stress of 50 MPa to 500 MPa on the surface layer, and a tensile stress of 30 to 200 MPa on the inner layer. The tempered glass sheet is characterized in that is formed.
 このような表面層と内部層とが積層されたタイプの強化ガラス(以下、このタイプのガラスを積層タイプの強化ガラスという。)においては、特許文献1の[0009]にも記載されているように、表面層(すなわち、熱膨張係数が相対的に小さいガラスからなる表面層)と内部層(すなわち、熱膨張係数が相対的に大きいガラスからなる内部層)とが相互に融着した構成を有することにより、表面層には圧縮応力が発生し、内部層には引張応力が発生する。 Such a tempered glass in which a surface layer and an inner layer are laminated (hereinafter, this type of glass is referred to as a laminated type tempered glass) is also described in [0009] of Patent Document 1. The surface layer (that is, the surface layer made of glass having a relatively small thermal expansion coefficient) and the inner layer (that is, the inner layer made of glass having a relatively large thermal expansion coefficient) are fused to each other. As a result, compressive stress is generated in the surface layer and tensile stress is generated in the inner layer.
日本特開2011-93728号公報Japanese Unexamined Patent Publication No. 2011-93728
 近年、スマートフォンやタブレット型PC等の携帯機器の普及がめざましく、このような携帯機器に搭載されるカバーガラスとしても、機械的強度を高めた強化ガラスの使用が期待されている。 In recent years, mobile devices such as smartphones and tablet PCs have been widely used, and tempered glass with increased mechanical strength is expected to be used as a cover glass mounted on such mobile devices.
 スマートフォン等の携帯機器は、ズボン等の衣服のポケットに入れて携帯される場合がある。このような携帯機器に搭載されるカバーガラスには、衝撃等により付く傷に対する耐性(即ち、高い加傷強度)のほか、曲げに対する耐性(即ち、高い曲げ強度)も要求される。 携 帯 Portable devices such as smartphones may be carried in clothes pockets such as pants. Such a cover glass mounted on a portable device is required to have resistance to bending (that is, high bending strength) in addition to resistance to scratches caused by impacts and the like (that is, high scratch strength).
 ところで、特許文献1に開示されたような積層タイプの強化ガラスにおいて、その表面層に形成される圧縮応力層は、一般的に厚い。すなわち、この圧縮応力層のガラス表面からの深さが大きい。
 そのため、この積層タイプの強化ガラスは、加傷強度に優れるとされる。例えば、積層タイプの強化ガラスの表面に深さXμmの傷が付いた場合でも、圧縮応力層の厚さXμmが傷よりも厚ければ(X>X)、傷は引張応力層に到達しない。こうして、傷が引張応力層の引張応力によって伸展して積層タイプの強化ガラスが割れてしまうことが抑制される。
By the way, in the laminated type tempered glass as disclosed in Patent Document 1, the compressive stress layer formed on the surface layer is generally thick. That is, the depth of the compressive stress layer from the glass surface is large.
Therefore, it is said that this laminated type tempered glass is excellent in scratch strength. For example, even if a scratch of depth X 1 μm is attached to the surface of the laminated type tempered glass, if the thickness X 2 μm of the compressive stress layer is thicker than the scratch (X 2 > X 1 ), the scratch is tensile. Does not reach the stress layer. In this way, it is possible to prevent the laminate type tempered glass from cracking due to the scratches being extended by the tensile stress of the tensile stress layer.
 しかし、積層タイプの強化ガラスの圧縮応力層は、厚さ方向に一定の応力値を示すが、その絶対値は比較的低く、最表層付近においてもその値は高くない。
 そのため、この積層タイプの強化ガラスは、曲げ強度が不十分であるとされる。例えば、この積層タイプの強化ガラスが曲げられると、一面側の圧縮応力層には引張応力が加わるが、この引張応力の値(YMPa)が、圧縮応力層の応力値(YMPa)よりも大きい場合には(Y>Y)、積層タイプの強化ガラスは割れてしまう。
However, the compression stress layer of laminated type tempered glass shows a constant stress value in the thickness direction, but its absolute value is relatively low, and the value is not high even in the vicinity of the outermost layer.
Therefore, this laminated type tempered glass is said to have insufficient bending strength. For example, when this type of tempered glass is bent, a tensile stress is applied to the compressive stress layer on one side. The tensile stress value (Y 1 MPa) is the stress value of the compressive stress layer (Y 2 MPa). If larger than (Y 1 > Y 2 ), the laminated type tempered glass will break.
 本発明は、以上の点を鑑みてなされたものであり、加傷強度と曲げ強度とがともに優れたガラス基板を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a glass substrate excellent in both scratching strength and bending strength.
 本発明者らは、上記目的を達成するために鋭意検討を行なった。その結果、積層タイプの強化ガラスの最表面付近に、応力値の最大値が高い別の圧縮応力層を形成することにより、曲げ強度が優れることを見出し、本発明を完成させた。 The present inventors have intensively studied to achieve the above object. As a result, the present inventors have found that the bending strength is excellent by forming another compressive stress layer having a high maximum stress value near the outermost surface of the laminated type tempered glass, thereby completing the present invention.
 すなわち、本発明は、以下の(1)~(16)の構成を有するガラス基板、ガラス基板の製造方法、およびカバーガラスを提供する。
 (1)高膨張層(すなわち、高膨張性ガラスからなる高膨張層)と当該高膨張層よりも薄く熱膨張係数が小さい低膨張層(すなわち、低膨張性ガラスからなる低膨張層)とが積層された積層構成を有し、上記低膨張層が表面層であるガラス基板であって、上記積層構成によって上記高膨張層に引張応力が発生して形成された引張応力層と、上記積層構成によって上記低膨張層に圧縮応力が発生して形成された積層強化層と、表面層である上記低膨張層の最表面付近に化学強化処理によって圧縮応力が発生して形成された化学強化層と、を備え、上記化学強化層の厚さが、上記積層強化層の厚さ以下である、ガラス基板。
That is, the present invention provides a glass substrate having the following constitutions (1) to (16), a method for producing the glass substrate, and a cover glass.
(1) A high expansion layer (that is, a high expansion layer made of high expansion glass) and a low expansion layer that is thinner than the high expansion layer and has a smaller thermal expansion coefficient (that is, a low expansion layer made of low expansion glass). A glass substrate having a laminated structure in which the low expansion layer is a surface layer, the tensile stress layer formed by generating tensile stress in the high expansion layer by the laminated structure, and the laminated structure A laminated reinforcing layer formed by generating a compressive stress in the low expansion layer, and a chemical strengthening layer formed by generating a compressive stress by a chemical strengthening treatment in the vicinity of the outermost surface of the low expansion layer, which is a surface layer. , And the thickness of the chemical strengthening layer is equal to or less than the thickness of the laminated reinforcing layer.
 (2)上記高膨張層と上記低膨張層との熱膨張係数差が、5×10-7~70×10-7/Kである、上記(1)に記載のガラス基板。 (2) The glass substrate according to (1), wherein a difference in thermal expansion coefficient between the high expansion layer and the low expansion layer is 5 × 10 −7 to 70 × 10 −7 / K.
 (3)表面層である2層の上記低膨張層と内部層である1層の上記高膨張層とで構成され、上記低膨張層の厚さ(T)の合計(2T)と上記高膨張層の厚さ(T)との比(2T/T)が、0.05~1.5である、上記(1)または(2)に記載のガラス基板。 (3) It is composed of two low-expansion layers that are surface layers and one high-expansion layer that is an internal layer, and the total thickness (T l ) of the low-expansion layers (2T l ) and the above The glass substrate according to the above (1) or (2), wherein the ratio (2T 1 / T h ) to the thickness (T h ) of the highly expanded layer is 0.05 to 1.5.
 (4)上記化学強化層の厚さ方向に対する応力値の変化率は、上記化学強化層を除く上記積層強化層の厚さ方向に対する応力値の変化率よりも大きい、上記(1)~(3)のいずれか1つに記載のガラス基板。 (4) The rate of change of the stress value with respect to the thickness direction of the chemical strengthening layer is greater than the rate of change of the stress value with respect to the thickness direction of the laminated reinforcing layer excluding the chemical strengthening layer. The glass substrate as described in any one of).
 (5)表面層である上記低膨張層において、上記化学強化層における圧縮応力の最大値が600MPa以上である、上記(1)~(4)のいずれか1つに記載のガラス基板。
 (6)表面層である前記低膨張層において、前記化学強化層における圧縮応力の最大値が1200MPa以下である、上記(1)~(5)のいずれか1つに記載のガラス基板。
(5) The glass substrate according to any one of (1) to (4), wherein the maximum value of compressive stress in the chemical strengthening layer is 600 MPa or more in the low expansion layer which is a surface layer.
(6) The glass substrate according to any one of (1) to (5), wherein in the low expansion layer which is a surface layer, the maximum value of compressive stress in the chemical strengthening layer is 1200 MPa or less.
 (7)表面層である上記低膨張層において、上記化学強化層を除く上記積層強化層における圧縮応力の最大値が400MPa以下である、上記(1)~(6)のいずれか1つに記載のガラス基板。
 (8)表面層である上記低膨張層において、上記化学強化層を除く上記積層強化層における圧縮応力の最大値が5MPa以上である、上記(1)~(7)のいずれか1つに記載のガラス基板。
(7) In the low expansion layer which is a surface layer, the maximum value of the compressive stress in the laminated reinforcing layer excluding the chemical reinforcing layer is 400 MPa or less, according to any one of (1) to (6) above Glass substrate.
(8) The low expansion layer which is a surface layer, according to any one of (1) to (7), wherein the maximum value of compressive stress in the laminated reinforcing layer excluding the chemical strengthening layer is 5 MPa or more. Glass substrate.
 (9)上記引張応力層における引張応力の最大値が200MPa以下である、上記(1)~(8)のいずれか1つに記載のガラス基板。 (9) The glass substrate according to any one of (1) to (8), wherein the maximum value of tensile stress in the tensile stress layer is 200 MPa or less.
 (10)上記低膨張層がアルカリアルミノシリケートガラス層である、上記(1)~(9)のいずれか1つに記載のガラス基板。 (10) The glass substrate according to any one of (1) to (9), wherein the low expansion layer is an alkali aluminosilicate glass layer.
 (11)上記高膨張層と上記低膨張層との屈折率差が0.1以下である、上記(1)~(10)のいずれか1つに記載のガラス基板。 (11) The glass substrate according to any one of (1) to (10), wherein a difference in refractive index between the high expansion layer and the low expansion layer is 0.1 or less.
 (12)上記(1)~(11)のいずれか1つに記載のガラス基板を得る、ガラス基板の製造方法であって、
 上記高膨張層と上記低膨張層とを積層させる積層工程(すなわち、前記高膨張層となるガラスと前記低膨張層となるガラスとを積層させる積層工程。)と、
 表面層である上記低膨張層に対して上記化学強化処理を行う化学強化工程と、
を備えるガラス基板の製造方法。
(12) A method for producing a glass substrate, wherein the glass substrate according to any one of (1) to (11) above is obtained,
A laminating step of laminating the high expansion layer and the low expansion layer (that is, a laminating step of laminating the glass to be the high expansion layer and the glass to be the low expansion layer);
A chemical strengthening step for performing the chemical strengthening treatment on the low expansion layer which is a surface layer;
A method for producing a glass substrate comprising:
 (13)内部層が1層の高膨張層であり、当該高膨張層の両面側に形成された表面層が低膨張層である積層体を製造する積層工程を有し、当該積層工程は前記高膨張層となるガラスの両面側に前記低膨張層となるガラスを積層させる工程を含む、上記(12)に記載のガラス基板の製造方法。
 (14)上記化学強化処理が予熱処理を含み、当該化学強化処理の温度が、上記高膨張層および上記低膨張層が有するガラス転移温度のうち高い方の温度未満である、上記(12)または(13)に記載のガラス基板の製造方法。
(13) It has a lamination process which manufactures a layered product whose inner layer is one high expansion layer, and the surface layer formed on both sides of the high expansion layer is a low expansion layer, The manufacturing method of the glass substrate as described in said (12) including the process of laminating | stacking the glass used as the said low expansion layer on the both surfaces side of the glass used as a high expansion layer.
(14) The chemical strengthening treatment includes pre-heat treatment, and the temperature of the chemical strengthening treatment is lower than the higher one of the glass transition temperatures of the high expansion layer and the low expansion layer, (12) or The manufacturing method of the glass substrate as described in (13).
 (15)上記化学強化処理の温度が、上記高膨張層および上記低膨張層が有するガラス転移温度のうち低い方の温度未満である、上記(14)に記載のガラス基板の製造方法。 (15) The method for producing a glass substrate according to (14), wherein the temperature of the chemical strengthening treatment is less than the lower one of the glass transition temperatures of the high expansion layer and the low expansion layer.
 (16)上記(1)~(11)のいずれか1つに記載のガラス基板を用いたカバーガラス。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
(16) A cover glass using the glass substrate according to any one of (1) to (11) above.
The term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value. Unless otherwise specified, “to” is the same in the following specification. Used with meaning.
 本発明によれば、加傷強度と曲げ強度とがともに優れたガラス基板を提供することができる。 According to the present invention, it is possible to provide a glass substrate having excellent scratch strength and bending strength.
ガラス基板1の板厚方向において側面側から見た応力分布状態を示す概念図である。It is a conceptual diagram which shows the stress distribution state seen from the side surface side in the plate | board thickness direction of the glass substrate 1. FIG. ガラス基板1の応力プロファイルを概略的に示すグラフである。3 is a graph schematically showing a stress profile of the glass substrate 1. 比較例1および2のガラス基板の応力プロファイルを概略的に示すグラフである。It is a graph which shows roughly the stress profile of the glass substrate of the comparative examples 1 and 2. FIG. 比較例3および4のガラス基板の応力プロファイルを概略的に示すグラフである。It is a graph which shows roughly the stress profile of the glass substrate of the comparative examples 3 and 4. FIG.
[ガラス基板]
 まず、本発明のガラス基板の一態様について説明する。もっとも、本発明のガラス基板は、以下に説明するガラス基板1に限定されないことは言うまでもない。
[Glass substrate]
First, an aspect of the glass substrate of the present invention will be described. However, it goes without saying that the glass substrate of the present invention is not limited to the glass substrate 1 described below.
 図1は、ガラス基板1の板厚方向の応力分布状態を示す概念図である。図1に示すように、ガラス基板1は、3層構造であり、一対の表面層3の間に内部層2が配置されている。表面層3のガラス層の熱膨張係数は、内部層2の熱膨張係数よりも小さい。すなわち、表面層3は、熱膨張係数が相対的に低いガラスからなる低膨張層であり、内部層2は、熱膨張係数が相対的に高いガラスからなる高膨張層である。以下、本明細書において、ガラス基板の表面側のガラス層である低膨張層を単に表面層とも称し、表面層により挟まれた内側のガラス層である高膨張層を単に内部層とも称する。また、低膨張層である表面層3のそれぞれの厚さ(T)は、高膨張層である内部層2の厚さ(T)よりも薄い。 FIG. 1 is a conceptual diagram showing a stress distribution state in the plate thickness direction of the glass substrate 1. As shown in FIG. 1, the glass substrate 1 has a three-layer structure, and an inner layer 2 is disposed between a pair of surface layers 3. The thermal expansion coefficient of the glass layer of the surface layer 3 is smaller than the thermal expansion coefficient of the inner layer 2. That is, the surface layer 3 is a low expansion layer made of glass having a relatively low thermal expansion coefficient, and the inner layer 2 is a high expansion layer made of glass having a relatively high thermal expansion coefficient. Hereinafter, in this specification, the low expansion layer which is a glass layer on the surface side of the glass substrate is also simply referred to as a surface layer, and the high expansion layer which is an inner glass layer sandwiched between the surface layers is also simply referred to as an inner layer. Moreover, each thickness ( Tl ) of the surface layer 3 which is a low expansion layer is thinner than the thickness ( Th ) of the inner layer 2 which is a high expansion layer.
 内部層2のガラスと表面層3のガラスとは、融着や接着等によって互いに接合し、積層されている。この積層構成のため、内部層2には図1中、白抜き矢印で示すような引張応力が発生し、表面層3には図1中、黒矢印で示すような圧縮応力(以下、「積層強化圧縮応力」ともいう)が発生している。
 このように、上記積層構成によって引張応力が発生した領域を「引張応力層」と呼び、圧縮応力(積層強化圧縮応力)が発生した領域を「積層強化層」とも呼ぶ。本発明において、実質的に、内部層2と引張応力層とはほぼ同義であり、また表面層3と積層強化層ともほぼ同義である。
The glass of the inner layer 2 and the glass of the surface layer 3 are bonded and laminated together by fusion or adhesion. Due to this laminated structure, a tensile stress as indicated by a white arrow in FIG. 1 is generated in the inner layer 2, and a compressive stress (hereinafter referred to as “laminate” as indicated by a black arrow in FIG. 1 is generated on the surface layer 3. Also referred to as “enhanced compressive stress”.
As described above, a region where a tensile stress is generated by the above-described stacked configuration is referred to as a “tensile stress layer”, and a region where a compressive stress (stacked reinforcing compressive stress) is generated is also referred to as a “stacked reinforcing layer”. In the present invention, the inner layer 2 and the tensile stress layer are substantially synonymous, and the surface layer 3 and the laminated reinforcing layer are substantially synonymous.
 また、本発明のガラス基板においては、表面層3のそれぞれに対して化学強化処理が施されており、この化学強化処理によっても表面層3の最表面付近には圧縮応力(以下、「化学強化圧縮応力」ともいう)が発生している。
 以下、表面層3において、化学強化圧縮応力が発生した領域を「化学強化層」とも呼ぶ。化学強化層は、積層強化層と一部重複しているが、少なくとも、化学強化層の厚さは、積層強化層の厚さ以下である。
In addition, in the glass substrate of the present invention, each of the surface layers 3 is subjected to a chemical strengthening treatment. Even by this chemical strengthening treatment, a compressive stress (hereinafter referred to as “chemical strengthening” is applied to the vicinity of the outermost surface of the surface layer 3. Also referred to as “compressive stress”).
Hereinafter, in the surface layer 3, a region where the chemically strengthened compressive stress is generated is also referred to as “chemically strengthened layer”. The chemical strengthening layer partially overlaps the laminated reinforcing layer, but at least the thickness of the chemical reinforcing layer is equal to or less than the thickness of the laminated reinforcing layer.
 表面層3に対して施される化学強化処理は、概略的には、表面層3のガラス層に存在するアルカリ成分(例えば、Liイオン、Naイオン等のアルカリ金属イオンであり、以下「小径アルカリ成分」ともいう)を、イオン半径がより大きいアルカリ成分(例えば、Kイオン等のアルカリ金属イオンであり、以下「大径アルカリ成分」ともいう)で置換する、いわゆるイオン交換強化処理である。
 そのため、表面層3のガラス層において、化学強化層における大径アルカリ成分の濃度は、この化学強化層を除く積層強化層のそれよりも高い。すなわち、大径アルカリ成分の濃度の違いによって、化学強化層と、化学強化層を除く積層強化層とを、明確に区別することができる。
The chemical strengthening treatment applied to the surface layer 3 is roughly an alkali component (for example, an alkali metal ion such as Li ion or Na ion) present in the glass layer of the surface layer 3, hereinafter referred to as “small-diameter alkali”. This is a so-called ion exchange strengthening treatment in which the component (also referred to as “component”) is replaced with an alkali component having a larger ionic radius (for example, an alkali metal ion such as K ion, hereinafter also referred to as “large-diameter alkali component”).
Therefore, in the glass layer of the surface layer 3, the concentration of the large-diameter alkaline component in the chemically strengthened layer is higher than that of the laminated strengthened layer excluding this chemically strengthened layer. That is, the chemical strengthening layer and the laminated reinforcing layer excluding the chemical strengthening layer can be clearly distinguished by the difference in the concentration of the large-diameter alkaline component.
 より詳細には、化学強化処理が施される前の積層強化層(すなわち、表面層3)における大径アルカリ成分量(例えば、K元素量(単位:cps))の平均値を「μ」とし、標準偏差を「σ」とした場合に、化学強化層を「大径アルカリ成分量が「μ+2σ」以上の層」と規定し、化学強化層を除く積層強化層を「大径アルカリ成分量が「μ+2σ」未満の層」と規定する。アルカリ成分量は電子線マイクロアナライザ(EPMA)によって測定することができる。
 なお、誤差が全くない理想状態であれば、化学強化層を、単純に「大径アルカリ成分量が「μ」以上の層」と規定することができる。しかし、実際は、化学強化処理前のガラス層の元素量や測定精度により誤差が生じる。そのため、化学強化処理後における大径アルカリ成分量の増分を、誤差領域を含まない程度の有意差以上の値として規定する必要がある。そこで、本発明においては、この有意差を「2σ」とし、化学強化層を上記のように「大径アルカリ成分量が「μ+2σ」以上の層」と規定するものである。
More specifically, the average value of the large-diameter alkali component amount (for example, the K element amount (unit: cps)) in the laminated reinforcing layer (that is, the surface layer 3) before the chemical strengthening treatment is set to “μ”. When the standard deviation is “σ”, the chemical strengthening layer is defined as “a layer having a large-diameter alkali component amount of“ μ + 2σ ”or more”, and the laminated reinforcing layer excluding the chemical strengthening layer is defined as “the large-diameter alkali component amount is It is defined as “a layer less than“ μ + 2σ ””. The amount of alkali components can be measured with an electron beam microanalyzer (EPMA).
In an ideal state with no error, the chemically strengthened layer can be simply defined as “a layer having a large-diameter alkaline component amount of“ μ ”or more”. However, in reality, an error occurs depending on the element amount and measurement accuracy of the glass layer before the chemical strengthening treatment. Therefore, it is necessary to define the increment of the large-diameter alkaline component amount after the chemical strengthening treatment as a value that is not less than a significant difference that does not include the error region. Therefore, in the present invention, this significant difference is defined as “2σ”, and the chemically strengthened layer is defined as “a layer having a large alkali component amount of“ μ + 2σ ”or more” as described above.
 また、より簡便な手法として、例えば、有限会社折原製作所社製の表面応力計FSM-6000LEを用いて化学強化層の厚さを測定することができる。 Further, as a simpler method, for example, the thickness of the chemically strengthened layer can be measured using a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho Co., Ltd.
 図2は、ガラス基板1の応力プロファイルを概略的に示すグラフである。図2のグラフにおいて、横軸は厚さ(単位:μm)を表し、縦軸は応力値(単位:MPa)を表す。縦軸がゼロの直線よりも上側が引張応力のプロファイルであり、下側が圧縮応力のプロファイルである。
 なお、応力プロファイルは、ガラス基板1の断面の複屈折を測定することにより算出したものである。複屈折の測定には、例えば、株式会社東京インスツルメンツ社製の複屈折イメージングシステムAbrio-IMが用いられる。
FIG. 2 is a graph schematically showing a stress profile of the glass substrate 1. In the graph of FIG. 2, the horizontal axis represents the thickness (unit: μm), and the vertical axis represents the stress value (unit: MPa). The upper side of the vertical axis is a tensile stress profile, and the lower side is a compressive stress profile.
The stress profile is calculated by measuring the birefringence of the cross section of the glass substrate 1. For the measurement of birefringence, for example, a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Inc. is used.
 内部層2においては、上述したように引張応力層が形成されている。引張応力層の応力プロファイルは、厚さ方向にほぼ一定である。引張応力層における引張応力の最大値(図2中「CT」で示す)は、高すぎると傷が自走してしまい、割れが発生しやすいという理由から、200MPa以下が好ましく、100MPa以下がより好ましい。 In the inner layer 2, a tensile stress layer is formed as described above. The stress profile of the tensile stress layer is substantially constant in the thickness direction. The maximum value of the tensile stress in the tensile stress layer (indicated by “CT” in FIG. 2) is preferably 200 MPa or less, more preferably 100 MPa or less, because the scratches are self-propelled if they are too high and cracks are likely to occur. preferable.
 一方、表面層3においては、上述したように、積層強化層と化学強化層とが形成されている。化学強化層の厚さ(図2中「DOL2」で示す)は、積層強化層の厚さ(図2中「DOL1」で示す)以下である。
 化学強化層の応力プロファイルは、化学強化層を除く積層強化層の応力プロファイルよりも、厚さ方向に対する傾きが大きくなっている。つまり、化学強化層の厚さ方向に対する応力値の変化率は、化学強化層を除く積層強化層の厚さ方向に対する応力値の変化率よりも大きい。より詳細には、応力プロファイルは、化学強化層を除く積層強化層では厚さ方向にほぼ一定であるが、化学強化層では厚さ方向に対して傾斜しており、最表面に向けて応力値が上昇している。
On the other hand, in the surface layer 3, as described above, the laminated reinforcing layer and the chemical reinforcing layer are formed. The thickness of the chemical strengthening layer (indicated by “DOL2” in FIG. 2) is equal to or less than the thickness of the laminated reinforcing layer (indicated by “DOL1” in FIG. 2).
The stress profile of the chemically strengthened layer has a larger inclination with respect to the thickness direction than the stress profile of the laminated strengthened layer excluding the chemically strengthened layer. That is, the rate of change of the stress value with respect to the thickness direction of the chemically strengthened layer is larger than the rate of change of the stress value with respect to the thickness direction of the laminated strengthened layer excluding the chemically strengthened layer. More specifically, the stress profile is substantially constant in the thickness direction in the laminated reinforcing layer excluding the chemically strengthened layer, but in the chemically strengthened layer, the stress profile is inclined with respect to the thickness direction, and the stress value toward the outermost surface. Is rising.
 このように、ガラス基板1のそれぞれの表面層3においては、圧縮応力値は高くはないが厚い圧縮応力層(すなわち、化学強化層を除く積層強化層。言い換えれば、化学強化処理を施す前の表面層の圧縮応力層を指す)が形成され、さらに、その最表面付近には、厚さは厚くないが応力値の高い圧縮応力層(すなわち、化学強化層)が形成されている。そのため、ガラス基板1は、衝撃等により深い傷が付いても割れが発生しにくく(すなわち、加傷強度が高く)、また、曲げによって一方の表面に高い引張応力が加わっても割れが生じにくい(すなわち、曲げ強度が高い)。 Thus, in each surface layer 3 of the glass substrate 1, the compressive stress value is not high, but is a thick compressive stress layer (that is, a laminated reinforcing layer excluding the chemical strengthening layer. In other words, before applying the chemical strengthening treatment. A compressive stress layer (that is, a chemically strengthened layer) having a high stress value is formed near the outermost surface. Therefore, the glass substrate 1 is less likely to crack even if it is deeply scratched by impact or the like (that is, the scratching strength is high), and it is difficult to crack even if a high tensile stress is applied to one surface by bending. (That is, the bending strength is high).
 化学強化層を除く積層強化層における圧縮応力(すなわち、積層強化圧縮応力)の最大値(図2中「CS1」で示す)は、400MPa以下が好ましく、350MPa以下がより好ましい。積層強化圧縮応力が高すぎると化学強化処理(詳細は後述する)においてイオン交換が阻害される場合があるが、この範囲内であればイオン交換が適切に行われ、化学強化層の化学強化圧縮応力も優れる。
 また、積層強化圧縮応力が高すぎると、バランスをとって引張応力(CT)も高くなり割れが発生しやすくなるおそれがあるが、この範囲内であれば引張応力も高くなりすぎない。
The maximum value (indicated by “CS1” in FIG. 2) of the compressive stress (that is, the laminate reinforcing compressive stress) in the laminated reinforcing layer excluding the chemically strengthened layer is preferably 400 MPa or less, and more preferably 350 MPa or less. If the lamination strengthening compressive stress is too high, ion exchange may be hindered in the chemical strengthening treatment (details will be described later), but within this range, ion exchange is appropriately performed and the chemically strengthened compression of the chemically strengthened layer is performed. Excellent stress.
Further, if the lamination strengthening compressive stress is too high, there is a risk that the tensile stress (CT) is increased and cracking is likely to occur, but the tensile stress does not become too high within this range.
 なお、CS1は、5MPa以上であるのが好ましく、20MPa以上であるのがより好ましい。 In addition, CS1 is preferably 5 MPa or more, and more preferably 20 MPa or more.
 また、表面層3においては、曲げ強度がより優れるという理由から、化学強化層における化学強化圧縮応力の最大値(図2中「CS2」で示す)は、600MPa以上が好ましく、700MPa以上がより好ましい。
 なお、CS2が高くなりすぎるとバランスをとって引張応力(CT)も高くなり割れが発生しやすくなるという理由から、1200MPa以下が好ましく、1000MPa以下がより好ましい。
In the surface layer 3, the maximum value of the chemical strengthening compressive stress in the chemically strengthened layer (indicated by “CS2” in FIG. 2) is preferably 600 MPa or more, and more preferably 700 MPa or more, because the bending strength is more excellent. .
In addition, 1200 MPa or less is preferable and 1000 MPa or less is more preferable because the tensile stress (CT) is also increased when CS2 becomes excessively high and cracks are easily generated.
 本明細書において、上述したCT、CS1、および、CS2の数値は、いずれも絶対値を示す。 In this specification, the numerical values of CT, CS1, and CS2 described above all indicate absolute values.
 内部層2および表面層3の厚さとしては、上述したように、表面層3が内部層2よりも薄ければ特に限定されないが、表面層3の合計厚さ(2T)と内部層2の厚さ(T)との比(2T/T)が0.05~1.5となるのが好ましく、0.1~1.0となるのがより好ましい。
 上記の厚さ比(2T/T)がこの範囲内であれば、ガラス基板1における引張応力と積層強化圧縮応力とのバランスに優れる。
The thicknesses of the inner layer 2 and the surface layer 3 are not particularly limited as long as the surface layer 3 is thinner than the inner layer 2 as described above. However, the total thickness (2T l ) of the surface layer 3 and the inner layer 2 are not limited. The ratio (2T 1 / T h ) to the thickness (T h ) is preferably 0.05 to 1.5, more preferably 0.1 to 1.0.
Within thickness ratio (2T l / T h) is the range described above, excellent balance between tensile stress and the laminated reinforcing compressive stress in the glass substrate 1.
 なお、内部層2および表面層3の具体的な厚さとしては、例えば、ガラス基板の板厚が0.1~4mmの場合、内部層2の厚さ(T)は、0.07~2mmが好ましく、0.1~2mmがより好ましい。また、表面層3の厚さ(T)は、0.05~0.5mmが好ましく、0.05~0.4mmがより好ましい。 As specific thicknesses of the inner layer 2 and the surface layer 3, for example, when the plate thickness of the glass substrate is 0.1 to 4 mm, the thickness (T h ) of the inner layer 2 is 0.07 to 2 mm is preferable, and 0.1 to 2 mm is more preferable. Further, the thickness (T l ) of the surface layer 3 is preferably 0.05 to 0.5 mm, more preferably 0.05 to 0.4 mm.
 内部層2および表面層3は、いずれもガラス層であるが、表面層3は、化学強化処理が施されることから、アルカリ成分を含有するガラス層であり、アルカリアルミノシリケートガラス層であるのが好ましい。 The inner layer 2 and the surface layer 3 are both glass layers, but the surface layer 3 is a glass layer containing an alkali component because it is subjected to a chemical strengthening treatment, and is an alkali aluminosilicate glass layer. Is preferred.
 なお、内部層2は、化学強化処理が施されるものではないため、アルカリ成分を含有するガラス層であっても、アルカリ成分を含有しないガラス層であってもよい。 Since the inner layer 2 is not subjected to chemical strengthening treatment, it may be a glass layer containing an alkali component or a glass layer not containing an alkali component.
 内部層2と表面層3との熱膨張係数差(ΔCTE)は、CS1およびCTを上記範囲にする観点から、5×10-7~70×10-7/Kが好ましく、5×10-7~60×10-7/Kがより好ましい。 The difference in thermal expansion coefficient (ΔCTE) between the inner layer 2 and the surface layer 3 is preferably 5 × 10 −7 to 70 × 10 −7 / K from the viewpoint of bringing CS1 and CT within the above ranges, and 5 × 10 −7. More preferably, it is ˜60 × 10 −7 / K.
 なお、本発明においてガラスの「熱膨張係数」は、50~350℃での線膨張係数であり、熱膨張計を用いて5℃/分の昇温速度で測定したものである。 In the present invention, the “thermal expansion coefficient” of glass is a linear expansion coefficient at 50 to 350 ° C., and is measured at a rate of temperature increase of 5 ° C./min using a thermal dilatometer.
 内部層2および表面層3のガラス転移温度は、後述するように、化学強化工程の温度と関係性を持つが、具体的には、高膨張層である内部層2および低膨張層である表面層3のガラス転移温度は、それぞれ450℃以上が好ましく、500℃以上がより好ましい。 As will be described later, the glass transition temperatures of the inner layer 2 and the surface layer 3 are related to the temperature of the chemical strengthening process, but specifically, the inner layer 2 which is a high expansion layer and the surface which is a low expansion layer. The glass transition temperature of the layer 3 is preferably 450 ° C. or higher, and more preferably 500 ° C. or higher.
 内部層2と表面層3との屈折率差(Δn)は、0.1以下が好ましく、0.05以下がより好ましい。Δnがこの範囲であれば、ガラス基板1は、透過性が優れ、カバーガラス用途に好適となる。 The difference in refractive index (Δn) between the inner layer 2 and the surface layer 3 is preferably 0.1 or less, and more preferably 0.05 or less. If (DELTA) n is this range, the glass substrate 1 is excellent in permeability | transmittance and becomes suitable for a cover glass use.
 なお、本発明において「屈折率」は、d線に対する屈折率であり、株式会社島津デバイス製造社製の精密屈折計KPR-2000により測定したものである。 In the present invention, “refractive index” is a refractive index with respect to the d-line, and is measured by a precision refractometer KPR-2000 manufactured by Shimadzu Device Manufacturing Co., Ltd.
[ガラス基板の製造方法]
 次に、ガラス基板1を例に挙げて、本発明のガラス基板を得るためのガラス基板の製造方法(以下、「本発明の製造方法」ともいう)について説明する。
 ガラス基板1を得る本発明の製造方法は、概略的には、内部層2(高膨張層)を形成するガラスと、一対の表面層3(低膨張層)を形成するガラスとを積層させる積層工程と、積層されたガラスの表面層である表面層3に対して化学強化処理を行う化学強化工程と、を備える。
[Glass substrate manufacturing method]
Next, taking the glass substrate 1 as an example, a method for producing a glass substrate for obtaining the glass substrate of the present invention (hereinafter also referred to as “the production method of the present invention”) will be described.
The production method of the present invention for obtaining a glass substrate 1 is generally a lamination in which glass forming an inner layer 2 (high expansion layer) and glass forming a pair of surface layers 3 (low expansion layer) are stacked. A process and a chemical strengthening process for performing a chemical strengthening process on the surface layer 3 that is a surface layer of the laminated glass.
 〔積層工程〕
 積層工程としては、前記したように、内部層2を形成するガラスと表面層3を形成するガラスとを、融着や接着等によって互いに接合させて積層させ、内部層2と表面層3との積層体(以下、単に「積層体」ともいう)を得る工程であれば特に限定されない。
 上記積層体を得る方法としては、従来公知の方法を用いることができる。例えば、内部層2となる溶融ガラスと表面層3となる溶融ガラスとをそれぞれ耐熱性の桶状構造物の両側から溢れさせ、溢れさせた溶融ガラスを桶状構造物の下端で合流させながら下方に延伸成形する方法(いわゆる、オーバーフローダウンドロー法)、あるいは内部層2を一対の表面層3の間に配置し、両者の軟化点以上の温度に加熱して、内部層2と表面層3とを融着させる方法等が挙げられる。
[Lamination process]
As described above, as described above, the glass for forming the inner layer 2 and the glass for forming the surface layer 3 are bonded to each other by fusing, bonding, or the like, and the inner layer 2 and the surface layer 3 are laminated. There is no particular limitation as long as it is a step of obtaining a laminated body (hereinafter also simply referred to as “laminated body”).
As a method for obtaining the laminate, a conventionally known method can be used. For example, the molten glass to be the inner layer 2 and the molten glass to be the surface layer 3 are overflowed from both sides of the heat-resistant bowl-like structure, and the overflowed molten glass is joined together at the lower end of the bowl-like structure. The inner layer 2 is disposed between the pair of surface layers 3 and heated to a temperature equal to or higher than the softening point of the inner layer 2 and the surface layer 3. And the like.
 このような積層工程の後、得られた上記積層体は、必要に応じて、徐冷され、適当な大きさ形状に加工された後、化学強化工程に移行される。 After such a laminating step, the obtained laminate is gradually cooled as necessary, processed into an appropriate size, and then transferred to a chemical strengthening step.
 〔化学強化工程〕
 化学強化工程は、表面層3に対して化学強化処理を行う工程である。
 化学強化処理としては、表面層3に存在するアルカリ成分(例えば、Liイオン、Naイオン等のアルカリ金属イオン)を、イオン半径がより大きいアルカリ成分(例えば、Kイオン等のアルカリ金属イオン)で置換する処理であれば特に限定されないが、例えば、上記積層体を硝酸カリウム(KNO)溶融塩に浸漬させる方法が挙げられる。浸漬の条件は、表面層3の厚さ、応力値等によっても異なるが、例えば、浸漬時間としては0.25~5時間が挙げられる。
[Chemical strengthening process]
The chemical strengthening step is a step of performing a chemical strengthening process on the surface layer 3.
As the chemical strengthening treatment, an alkali component (for example, alkali metal ions such as Li ions and Na ions) existing in the surface layer 3 is replaced with an alkali component having a larger ionic radius (for example, alkali metal ions such as K ions). is not particularly limited as long as the process of, for example, a method of immersing the laminate potassium nitrate (KNO 3) in molten salts. The immersion conditions vary depending on the thickness of the surface layer 3, the stress value, and the like, but examples of the immersion time include 0.25 to 5 hours.
 ところで、積層タイプではない単層のガラス基板に対して、このような浸漬に代表される化学強化処理を長時間(例えば2日間)行えば、化学強化層を厚く形成することができるとも考えられる。
 しかし、化学強化処理を長時間行うことで製造コストが極めて高くなってしまい実用的ではないし、また、圧縮応力値の高い化学強化層を厚く形成されることで、当該圧縮応力にバランスをとって生じる引張応力も高くなってしまい、割れが発生しやすくなるおそれがある。
 その点、本発明のガラス基板(ガラス基板1)においては、厚い積層強化層がすでに形成されているため、化学強化層を厚く形成する必要がなく、化学強化処理における浸漬時間等を短くでき、製造コストを低減できる。
 そして、本発明のガラス基板(ガラス基板1)においては、応力値の高い化学強化層が必要以上に厚くならないため、引張応力が高くなることも抑制され、割れの発生も抑制できる。
By the way, if a chemical strengthening treatment represented by such immersion is performed for a long time (for example, 2 days) on a single-layer glass substrate that is not a laminated type, it is considered that the chemical strengthened layer can be formed thick. .
However, the chemical strengthening treatment is not practical because the manufacturing cost becomes extremely high by performing for a long time, and the chemical strengthening layer having a high compressive stress value is formed thick to balance the compressive stress. The resulting tensile stress is also increased, and there is a risk that cracks are likely to occur.
In that regard, in the glass substrate (glass substrate 1) of the present invention, since the thick laminated reinforcing layer has already been formed, it is not necessary to form the chemical reinforcing layer thickly, and the immersion time in the chemical strengthening treatment can be shortened, Manufacturing cost can be reduced.
And in the glass substrate (glass substrate 1) of this invention, since a chemically strengthened layer with a high stress value does not become thicker than necessary, it is suppressed that tensile stress becomes high and generation | occurrence | production of a crack can also be suppressed.
 また、化学強化処理は、上記浸漬等の前処理として、上記積層体を予熱する予熱処理を含んでいてもよい。予熱処理の方法としては特に限定されず、例えば、ヒータを用いて上記積層体を加熱する方法等が挙げられる。 Further, the chemical strengthening treatment may include a preheat treatment for preheating the laminate as a pretreatment such as the immersion. The method for the preheat treatment is not particularly limited, and examples thereof include a method for heating the laminate using a heater.
 このとき、化学強化処理の温度は、内部層2および表面層3が有するガラス転移温度のうち高い方の温度未満であるのが好ましく、内部層2および表面層3が有するガラス転移温度のうち低い方の温度未満であるのがより好ましい。なお、化学強化処理に先立つ積層体の予熱処理の温度は、KNO等の溶融塩の中に浸漬する際に、積層体が破損したり、変形しない程度の温度範囲において、適宜の温度が選ばれるよい。
 なお、ここでいう、化学強化処理の温度とは、具体的には、例えば、KNO溶融塩の温度である。
At this time, the temperature of the chemical strengthening treatment is preferably lower than the higher one of the glass transition temperatures of the inner layer 2 and the surface layer 3, and is lower than the glass transition temperature of the inner layer 2 and the surface layer 3. It is more preferable that the temperature is lower than that. In addition, the temperature of the pre-heat treatment of the laminate prior to the chemical strengthening treatment is appropriately selected within a temperature range in which the laminate is not damaged or deformed when immersed in a molten salt such as KNO 3. Good.
Incidentally, here, the temperature of the chemical strengthening treatment, specifically, for example, a temperature of KNO 3 molten salt.
 ところで、化学強化処理の温度としては、一般的には高い方がより効率的であるとも考えられるが、本発明者らが検討を行なったところ、本発明においては、化学強化処理の温度が高いと、アルカリイオンの置換後のアルカリ成分が拡散し、その結果、化学強化層の化学強化圧縮応力が弱くなる場合があることを見出した。
 すなわち、化学強化処理の温度が上記条件を満たす場合には、化学強化層の化学強化圧縮応力の最大値が上述した範囲となる。
By the way, as the temperature of the chemical strengthening treatment, it is generally considered that the higher one is more efficient, but when the present inventors have studied, the temperature of the chemical strengthening treatment is high in the present invention. It was found that the alkali component after substitution with alkali ions diffuses, and as a result, the chemically strengthened compressive stress of the chemically strengthened layer may be weakened.
That is, when the temperature of the chemical strengthening treatment satisfies the above conditions, the maximum value of the chemical strengthening compressive stress of the chemical strengthening layer is in the above-described range.
 なお、上述したように内部層2および表面層3のガラス転移温度にもよるが、化学強化処理の温度としては、具体的には、例えば、550℃以下が好ましく、500℃以下がより好ましい。また、化学強化処理の下限の温度としては、具体的には、例えば、350℃以上が好ましく、400℃以上がより好ましい。 In addition, although it depends on the glass transition temperature of the inner layer 2 and the surface layer 3 as described above, the temperature of the chemical strengthening treatment is specifically preferably 550 ° C. or less, and more preferably 500 ° C. or less. Further, specifically, the lower limit temperature of the chemical strengthening treatment is preferably, for example, 350 ° C. or higher, and more preferably 400 ° C. or higher.
 このような本発明の製造方法によって得られる本発明のガラス基板は、加傷強度および曲げ強度がともに優れるから、例えば、スマートフォンやタブレット型PC等の携帯機器に搭載されるカバーガラスとして好適に用いられる。 Since the glass substrate of the present invention obtained by such a production method of the present invention is excellent in both scratching strength and bending strength, for example, it is suitably used as a cover glass mounted on a mobile device such as a smartphone or a tablet PC. It is done.
 なお、本発明のガラス基板は、上述したように、「低膨張層/高膨張層/低膨張層」の3層構成のガラス基板1に限定されず、例えば、「低膨張層/高膨張層/低膨張層/高膨張層/低膨張層」という5層構造のガラス基板であってもよい。 As described above, the glass substrate of the present invention is not limited to the three-layer glass substrate 1 of “low expansion layer / high expansion layer / low expansion layer”. For example, “low expansion layer / high expansion layer” A glass substrate having a five-layer structure of “/ low expansion layer / high expansion layer / low expansion layer” may be used.
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 <ガラス種類>
 下記実施例等において使用されたガラス層の詳細は下記のとおりである。
<Glass type>
The details of the glass layer used in the following examples and the like are as follows.
 (ガラス1:ガラス基板において高膨張層を形成するガラス)
  ・組成:SiO 64.5モル%、Al 6モル%、MgO 11モル%、CaO 0.1モル%、SrO 0.1モル%、NaO 12モル%、KO 4モル%、ZrO 2.5モル%
  ・熱膨張係数:91×10-7/K
  ・ガラス転移温度:620℃
  ・軟化点:842℃
  ・屈折率:1.52
  ・ヤング率:78GPa
  ・ポアソン比:0.22
(Glass 1: Glass forming a high expansion layer on a glass substrate)
- Composition: SiO 2 64.5 mole%, Al 2 O 3 6 mol%, MgO 11 mol%, CaO 0.1 mol%, SrO 0.1 mol%, Na 2 O 12 mol%, K 2 O 4 moles %, ZrO 2 2.5 mol%
Thermal expansion coefficient: 91 × 10 −7 / K
Glass transition temperature: 620 ° C
Softening point: 842 ° C
-Refractive index: 1.52
・ Young's modulus: 78GPa
-Poisson's ratio: 0.22
 (ガラス2:ガラス基板において低膨張層を形成するガラス)
  ・組成:SiO 73モル%、Al 7モル%、MgO 6モル%、NaO 14モル%
  ・熱膨張係数:79×10-7/K
  ・ガラス転移温度:617℃
  ・軟化点:850℃
  ・屈折率:1.5
  ・ヤング率:71GPa
  ・ポアソン比:0.2
(Glass 2: Glass that forms a low expansion layer on a glass substrate)
Composition: SiO 2 73 mol%, Al 2 O 3 7 mol%, MgO 6 mol%, Na 2 O 14 mol%
-Thermal expansion coefficient: 79 × 10 −7 / K
Glass transition temperature: 617 ° C
・ Softening point: 850 ° C
-Refractive index: 1.5
-Young's modulus: 71 GPa
・ Poisson's ratio: 0.2
 <実施例1~3>
 まず、厚さ以外が同じサイズのガラス1(内部層(高膨張層)形成用の高膨張性のガラス基板)1枚とガラス2(表面層(低膨張層)形成用の低膨張性のガラス基板)2枚とを準備し、2枚のガラス2の間に1枚のガラス1を配置し、ガラス1およびガラス2がともに軟化点以上となる温度まで加熱した後、徐冷することにより、各ガラスが融着した3層構造の積層体を得た。この積層体において、高膨張層と前記低膨張層との熱膨張係数差は12×10-7/Kである。なお、内部層および表面層に用いたガラス種類および厚さ(T、T)は、下記表1に示す。なお、表1に示した表面層の厚さTは、内部層の両側に形成されている表面層のうち、一方側の表面層の厚さで、他方側の表面層の厚さも当該一方側の表面層の厚さと同じ値である。
<Examples 1 to 3>
First, one glass 1 (high-expansion glass substrate for forming an inner layer (high expansion layer)) and glass 2 (low-expansion glass for forming a surface layer (low expansion layer) having the same size except the thickness Substrate) Prepare two sheets, place one glass 1 between the two glasses 2, and after heating to a temperature at which both the glass 1 and the glass 2 are above the softening point, by slowly cooling, A laminate having a three-layer structure in which each glass was fused was obtained. In this laminate, the difference in thermal expansion coefficient between the high expansion layer and the low expansion layer is 12 × 10 −7 / K. The glass types and thicknesses (T h , T l ) used for the inner layer and the surface layer are shown in Table 1 below. The thickness T 1 of the surface layer shown in Table 1, of the surface layer formed on both sides of the inner layer, while the thickness of the side of the surface layer, also the one thickness of the other side of the surface layer It is the same value as the thickness of the surface layer on the side.
 次に、得られた積層体に対して化学強化処理を施し、ガラス基板を得た。具体的には、得られた積層体を、ヒータを用いて予熱処理した後、KNO溶融塩に浸漬(浸漬時間および浸漬温度は下記表1に示す。)させ、KNO溶融塩中にてイオン交換による化学強化処理を行ない、その後、化学強化処理が施された積層体を純水洗浄後に乾燥させ、ガラス基板を得た。なお、積層体の予熱処理の温度は、浸漬する溶融塩の温度(浸漬温度)と同温度とした。 Next, the obtained laminate was subjected to a chemical strengthening treatment to obtain a glass substrate. Specifically, the obtained laminate was preheated using a heater, and then immersed in KNO 3 molten salt (immersion time and immersion temperature are shown in Table 1 below), and in KNO 3 molten salt A chemical strengthening treatment by ion exchange was performed, and then the laminate subjected to the chemical strengthening treatment was dried after washing with pure water to obtain a glass substrate. In addition, the temperature of the preheat treatment of the laminated body was set to the same temperature as the temperature of the molten salt to be immersed (immersion temperature).
 実施例1~3のガラス基板は、いずれも、図1のグラフと同様の応力プロファイルを示した。応力プロファイルに基づく、CT(引張応力層における引張応力の最大値。単位:MPa)、DOL1(積層強化層の厚さ。単位:μm)、DOL2(化学強化層の厚さ。単位:μm)、CS1(化学強化層を除く積層強化層における圧縮応力(すなわち、積層強化圧縮応力)の最大値。単位:MPa)、および、CS2(化学強化層における化学強化圧縮応力の最大値。単位:MPa)を下記表1に示す。なお、CT、CS1、および、CS2の数値は、いずれも絶対値である。
 CTは、株式会社東京インスツルメンツ社製の複屈折イメージングシステムAbrio-IMを用いて測定し、DOL1は、前記したEPMAにより測定し、DOL2、CS1およびCS2は、有限会社折原製作所社製の表面応力計FSM-6000LEを用いて測定した(以下、同様)。
 また、表面層と内部層との厚さ比(2T/T)、熱膨張係数差(ΔCTE)、および、屈折率差(Δn)についても、下記表1に示す。
Each of the glass substrates of Examples 1 to 3 exhibited a stress profile similar to that of the graph of FIG. Based on the stress profile, CT (maximum value of tensile stress in the tensile stress layer, unit: MPa), DOL1 (thickness of the laminated reinforcing layer, unit: μm), DOL2 (thickness of the chemical reinforcing layer, unit: μm), CS1 (maximum value of compressive stress in the laminated reinforcing layer excluding the chemically strengthened layer (ie, laminated strengthened compressive stress). Unit: MPa) and CS2 (maximum value of chemically strengthened compressive stress in the chemically strengthened layer. Unit: MPa) Is shown in Table 1 below. Note that the numerical values of CT, CS1, and CS2 are all absolute values.
CT is measured using a birefringence imaging system Abrio-IM manufactured by Tokyo Instruments Inc., DOL1 is measured by the above-mentioned EPMA, and DOL2, CS1, and CS2 are surface stress meters manufactured by Orihara Seisakusho Co., Ltd. Measurement was performed using FSM-6000LE (hereinafter the same).
The thickness ratio (2T 1 / T h ) between the surface layer and the inner layer, the thermal expansion coefficient difference (ΔCTE), and the refractive index difference (Δn) are also shown in Table 1 below.
 なお、実施例1~3のガラス基板において、前記したEPMAを用いて、化学強化処理を施す前の表面層のK元素量を測定したところ、実施例1~3では平均値(μ)が1437cpsであり、標準偏差(σ)が38であった。化学強化処理を施した後、表面層における化学強化層のK元素量を測定したところ、実施例1では最大で4955cps、実施例2および3では最大で6352cpsであり、いずれも「μ+2σ」以上、つまり、「1437+2×38=1513」以上であった。 In the glass substrates of Examples 1 to 3, the amount of K element in the surface layer before chemical strengthening treatment was measured using the above-mentioned EPMA. In Examples 1 to 3, the average value (μ) was 1437 cps. And the standard deviation (σ) was 38. After the chemical strengthening treatment, the amount of K element in the chemically strengthened layer in the surface layer was measured. As a result, the maximum in Example 1 was 4955 cps, and in Examples 2 and 3, the maximum was 6352 cps, both of which were “μ + 2σ” or more. That is, it was “1437 + 2 × 38 = 1513” or more.
 <比較例1および2>
 化学強化処理を施さなかった以外は、比較例1は実施例1と同様にして、比較例2は実施例3と同様にして、ガラス基板を得た。図3は、比較例1および2のガラス基板の応力プロファイルを概略的に示すグラフである。図3に示すように、比較例1および2においては、表面層に化学強化層は形成されず、一定の応力値を示す積層強化層のみが形成されている。
<Comparative Examples 1 and 2>
Except that the chemical strengthening treatment was not performed, Comparative Example 1 was the same as Example 1, and Comparative Example 2 was the same as Example 3, to obtain a glass substrate. FIG. 3 is a graph schematically showing the stress profile of the glass substrates of Comparative Examples 1 and 2. As shown in FIG. 3, in Comparative Examples 1 and 2, the chemical strengthening layer is not formed on the surface layer, and only the laminated reinforcing layer showing a certain stress value is formed.
 <比較例3および4>
 比較例3および4においては、単層ガラス(すなわち、ガラス2からなる厚さ1mmの単板のガラス基板)に対して化学強化処理を施してガラス基板を得た。具体的には、比較例3は実施例1と同様の処理を施し、比較例4は実施例2または3と同様の処理を施した。図4は、比較例3および4のガラス基板の応力プロファイルを概略的に示すグラフである。図4に示すように、比較例3および4においては、表面層に積層強化層は形成されず、表面層の最表面付近に化学強化層のみが形成されている。
<Comparative Examples 3 and 4>
In Comparative Examples 3 and 4, a glass substrate was obtained by subjecting a single layer glass (that is, a 1 mm thick single glass substrate made of glass 2) to a chemical strengthening treatment. Specifically, Comparative Example 3 was subjected to the same treatment as in Example 1, and Comparative Example 4 was subjected to the same treatment as in Example 2 or 3. FIG. 4 is a graph schematically showing the stress profile of the glass substrates of Comparative Examples 3 and 4. As shown in FIG. 4, in Comparative Examples 3 and 4, the lamination reinforcing layer is not formed on the surface layer, and only the chemical strengthening layer is formed near the outermost surface of the surface layer.
 <評価>
 (加傷強度)
 得られたガラス基板の表面に、対面角136°のダイヤモンド正四角錐圧子(ビッカース圧子)を打ち込み15秒間保持した後、荷重を除荷し破砕の有無を確認した。圧子に加える荷重を段階的に増加させ、ガラス基板が破砕した際の荷重値を測定した。ガラス基板が破砕した際の荷重値が10kgf超であった場合には加傷強度が優れるものとして「A」と評価し、10kgf以下であった場合には加傷強度が劣るものとして「B」と評価した。
<Evaluation>
(Injury strength)
A diamond square pyramid indenter (Vickers indenter) having a facing angle of 136 ° was driven into the surface of the obtained glass substrate and held for 15 seconds, and then the load was removed to confirm the presence or absence of crushing. The load applied to the indenter was increased stepwise, and the load value when the glass substrate was crushed was measured. When the load value when the glass substrate is crushed is more than 10 kgf, it is evaluated as “A” as having excellent scratch strength, and when it is 10 kgf or less, “B” is determined as having poor scratch strength. It was evaluated.
 (曲げ強度)
 直径30mmおよび直径10mmの2つのリングでガラス基板を挟み、直径10mmのリングに荷重を加え、ガラス基板に割れが発生した際の荷重値を測定し、同試験を15回繰り返した。ガラス基板に割れが発生した際の平均荷重値が150kgf以上であった場合には曲げ強度が優れるものとして「A」と評価し、150kgf未満であった場合には曲げ強度が劣るものとして「B」と評価した。
(Bending strength)
A glass substrate was sandwiched between two rings with a diameter of 30 mm and a diameter of 10 mm, a load was applied to the ring with a diameter of 10 mm, the load value when a crack occurred in the glass substrate was measured, and the test was repeated 15 times. When the average load value when the glass substrate is cracked is 150 kgf or more, the bending strength is evaluated as “A”, and when it is less than 150 kgf, the bending strength is inferior. ".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示す結果から明らかなように、実施例1~3のガラス基板は、いずれも、加傷強度および曲げ強度がともに優れることが分かった。
 これに対して、化学強化を行わなかった比較例1および2のガラス基板は曲げ強度に劣り、また、積層構成を有さない比較例3および4のガラス基板は加傷強度に劣ることが分かった。
As is clear from the results shown in Table 1, it was found that all of the glass substrates of Examples 1 to 3 were excellent in scratch strength and bending strength.
In contrast, the glass substrates of Comparative Examples 1 and 2 that were not chemically strengthened were inferior in bending strength, and the glass substrates of Comparative Examples 3 and 4 that did not have a laminated structure were inferior in scratch strength. It was.
 本発明によれば、加傷強度と曲げ強度とがともに優れたガラス基板を提供することができる。本発明の強化ガラス板は、スマートフォンやタブレット型PC等の携帯機器の普及がめざましく、このような携帯機器に搭載されるカバーガラスとして有用である。
 なお、2011年10月31日に出願された日本特許出願2011-239034号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the present invention, it is possible to provide a glass substrate that is excellent in both scratching strength and bending strength. The tempered glass plate of the present invention is remarkably widespread in portable devices such as smartphones and tablet PCs, and is useful as a cover glass mounted on such portable devices.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-239034 filed on October 31, 2011 are incorporated herein by reference. .
 1:ガラス基板
 2:内部層(高膨張層)
 3:表面層(低膨張層)
 CS1:化学強化層を除く積層強化層における圧縮応力の最大値
 CS2:化学強化層における圧縮応力の最大値
 CT:引張応力の最大値
 DOL1:積層強化層の厚さ
 DOL2:化学強化層の厚さ
 T:内部層(高膨張層)の厚さ
 T:表面層(低膨張層)の厚さ
1: Glass substrate 2: Inner layer (high expansion layer)
3: Surface layer (low expansion layer)
CS1: Maximum value of compressive stress in the laminated reinforcing layer excluding the chemically strengthened layer CS2: Maximum value of compressive stress in the chemically strengthened layer CT: Maximum value of tensile stress DOL1: Thickness of the laminated reinforcing layer DOL2: Thickness of the chemically strengthened layer T h : thickness of the inner layer (high expansion layer) T l : thickness of the surface layer (low expansion layer)

Claims (16)

  1.  高膨張層と当該高膨張層よりも薄く熱膨張係数が小さい低膨張層とが積層された積層構成を有し、前記低膨張層が表面層であるガラス基板であって、
     前記積層構成によって前記高膨張層に引張応力が発生して形成された引張応力層と、
     前記積層構成によって前記低膨張層に圧縮応力が発生して形成された積層強化層と、
     表面層である前記低膨張層の最表面付近に化学強化処理によって圧縮応力が発生して形成された化学強化層と、を備え、
     前記化学強化層の厚さが、前記積層強化層の厚さ以下である、ガラス基板。
    It has a laminated structure in which a high expansion layer and a low expansion layer having a smaller thermal expansion coefficient than the high expansion layer are laminated, and the low expansion layer is a glass substrate,
    A tensile stress layer formed by generating a tensile stress in the high expansion layer by the laminated configuration;
    A laminated reinforcing layer formed by generating a compressive stress in the low expansion layer by the laminated configuration;
    A chemical strengthening layer formed by compressive stress generated by a chemical strengthening treatment near the outermost surface of the low expansion layer which is a surface layer, and
    The glass substrate whose thickness of the said chemical strengthening layer is below the thickness of the said laminated strengthening layer.
  2.  前記高膨張層と前記低膨張層との熱膨張係数差が、5×10-7~70×10-7/Kである、請求項1に記載のガラス基板。 The glass substrate according to claim 1, wherein a difference in thermal expansion coefficient between the high expansion layer and the low expansion layer is 5 × 10 −7 to 70 × 10 −7 / K.
  3.  表面層である2層の前記低膨張層と、内部層である1層の前記高膨張層とで構成され、
     前記低膨張層の厚さ(T)の合計(2T)と前記高膨張層の厚さ(T)との比(2T/T)が、0.05~1.5である、請求項1または2に記載のガラス基板。
    It is composed of two low expansion layers that are surface layers and one high expansion layer that is an internal layer,
    The ratio (2T l / T h ) of the sum (2T l ) of the thickness (T l ) of the low expansion layer to the thickness (T h ) of the high expansion layer is 0.05 to 1.5 The glass substrate according to claim 1 or 2.
  4.  前記化学強化層の厚さ方向に対する応力値の変化率は、前記化学強化層を除く前記積層強化層の厚さ方向に対する応力値の変化率よりも大きい、請求項1~3のいずれか1項に記載のガラス基板。 The rate of change of the stress value with respect to the thickness direction of the chemical strengthening layer is larger than the rate of change of the stress value with respect to the thickness direction of the laminated reinforcing layer excluding the chemical strengthening layer. A glass substrate as described in 1.
  5.  表面層である前記低膨張層において、前記化学強化層における圧縮応力の最大値が600MPa以上である、請求項1~4のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 4, wherein in the low expansion layer which is a surface layer, the maximum value of compressive stress in the chemical strengthening layer is 600 MPa or more.
  6.  表面層である前記低膨張層において、前記化学強化層における圧縮応力の最大値が1200MPa以下である、請求項1~5のいずれか1項に記載のガラス基板。 6. The glass substrate according to claim 1, wherein in the low expansion layer which is a surface layer, the maximum value of compressive stress in the chemical strengthening layer is 1200 MPa or less.
  7.  表面層である前記低膨張層において、前記化学強化層を除く前記積層強化層における圧縮応力の最大値が400MPa以下である、請求項1~6のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 6, wherein in the low expansion layer which is a surface layer, a maximum value of compressive stress in the laminated reinforcing layer excluding the chemical strengthening layer is 400 MPa or less.
  8.  表面層である前記低膨張層において、前記化学強化層を除く前記積層強化層における圧縮応力の最大値が5MPa以上である、請求項1~7のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 7, wherein in the low expansion layer which is a surface layer, a maximum value of compressive stress in the laminated reinforcing layer excluding the chemical reinforcing layer is 5 MPa or more.
  9.  前記引張応力層における引張応力の最大値が200MPa以下である、請求項1~8のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 8, wherein a maximum value of tensile stress in the tensile stress layer is 200 MPa or less.
  10.  前記低膨張層がアルカリアルミノシリケートガラス層である、請求項1~9のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 9, wherein the low expansion layer is an alkali aluminosilicate glass layer.
  11.  前記高膨張層と前記低膨張層との屈折率差が0.1以下である、請求項1~10のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 10, wherein a difference in refractive index between the high expansion layer and the low expansion layer is 0.1 or less.
  12.  請求項1~11のいずれか1項に記載のガラス基板を得る、ガラス基板の製造方法であって、
     前記高膨張層と前記低膨張層とを積層させる積層工程と、
     表面層である前記低膨張層に対して前記化学強化処理を行う化学強化工程と、
    を備えるガラス基板の製造方法。
    A method for producing a glass substrate, wherein the glass substrate according to any one of claims 1 to 11 is obtained,
    A laminating step of laminating the high expansion layer and the low expansion layer;
    A chemical strengthening step for performing the chemical strengthening treatment on the low expansion layer which is a surface layer;
    A method for producing a glass substrate comprising:
  13.  内部層が1層の高膨張層であり、当該高膨張層の両面側に形成された表面層が低膨張層である積層体を製造する積層工程を有し、当該積層工程は前記高膨張層となるガラスの両面側に前記低膨張層となるガラスを積層させる工程を含む、請求項12に記載のガラス基板の製造方法。 An inner layer is a single layer of high expansion, and a layering step of manufacturing a laminate in which the surface layers formed on both sides of the layer of high expansion are low expansion layers, the layering step includes the layer of high expansion The manufacturing method of the glass substrate of Claim 12 including the process of laminating | stacking the glass used as the said low expansion layer on the both surfaces side of glass used as this.
  14.  前記化学強化処理が予熱処理を含み、当該化学強化処理の温度が、前記高膨張層および前記低膨張層が有するガラス転移温度のうち高い方の温度未満である、請求項12または13に記載のガラス基板の製造方法。 The chemical strengthening treatment includes pre-heat treatment, and the temperature of the chemical strengthening treatment is lower than the higher one of the glass transition temperatures of the high expansion layer and the low expansion layer. A method for producing a glass substrate.
  15.  前記化学強化処理の温度が、前記高膨張層および前記低膨張層が有するガラス転移温度のうち低い方の温度未満である、請求項14に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 14, wherein the temperature of the chemical strengthening treatment is lower than the lower one of the glass transition temperatures of the high expansion layer and the low expansion layer.
  16.  請求項1~11のいずれか1項に記載のガラス基板を用いたカバーガラス。 A cover glass using the glass substrate according to any one of claims 1 to 11.
PCT/JP2012/077918 2011-10-31 2012-10-29 Glass substrate, method for producing glass substrate, and cover glass WO2013065648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-239034 2011-10-31
JP2011239034A JP2015006959A (en) 2011-10-31 2011-10-31 Glass substrate, method for manufacturing glass substrate, and cover glass

Publications (1)

Publication Number Publication Date
WO2013065648A1 true WO2013065648A1 (en) 2013-05-10

Family

ID=48191995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077918 WO2013065648A1 (en) 2011-10-31 2012-10-29 Glass substrate, method for producing glass substrate, and cover glass

Country Status (3)

Country Link
JP (1) JP2015006959A (en)
TW (1) TW201326060A (en)
WO (1) WO2013065648A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104050A1 (en) * 2012-12-25 2014-07-03 日本電気硝子株式会社 Reinforced plate glass and method for manufacturing same
WO2014185383A1 (en) * 2013-05-16 2014-11-20 日本電気硝子株式会社 Method for producing tempered glass and tempered glass
US9302937B2 (en) 2010-05-14 2016-04-05 Corning Incorporated Damage-resistant glass articles and method
WO2016105011A1 (en) * 2014-12-22 2016-06-30 코닝정밀소재 주식회사 Display device cover substrate
JP2016528153A (en) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド Glass with medium to high CTE and glass article provided with the same
JP2016528152A (en) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド Alkali-doped and alkali-free boroaluminosilicate glass
WO2016185934A1 (en) * 2015-05-15 2016-11-24 旭硝子株式会社 Chemically strengthened glass
US9522836B2 (en) 2011-07-25 2016-12-20 Corning Incorporated Laminated and ion-exchanged strengthened glass laminates
US20170297308A1 (en) * 2014-10-07 2017-10-19 Corning Incorporated Glass article with determined stress profile and method of producing the same
US9868664B2 (en) 2012-02-29 2018-01-16 Corning Incorporated Low CTE, ion-exchangeable glass compositions and glass articles comprising the same
US10202300B2 (en) 2013-08-23 2019-02-12 Corning Incorporated Strengthened glass articles, edge-strengthened laminated glass articles, and methods for making the same
US10669194B2 (en) 2014-10-22 2020-06-02 Corning Incorporated Glass strengthening by ion exchange and lamination
US11167528B2 (en) 2015-10-14 2021-11-09 Corning Incorporated Laminated glass article with determined stress profile and method for forming the same
US11413848B2 (en) 2014-03-27 2022-08-16 Corning Incorporated Glass article
US11560332B2 (en) * 2016-09-27 2023-01-24 Corning Incorporated Glass-based articles with engineered stress profiles and methods of manufacture
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655160B (en) * 2016-05-19 2019-04-01 美商蘋果公司 Asymmetric chemical strengthening
US10899660B2 (en) 2016-05-19 2021-01-26 Apple Inc. Asymmetric chemical strengthening
EP3571044B1 (en) * 2017-01-18 2023-08-16 Corning Incorporated Glass-based articles with engineered stress profiles and methods of manufacture
US11639307B2 (en) 2018-07-13 2023-05-02 Apple Inc. Patterned asymmetric chemical strengthening
JP7139886B2 (en) * 2018-10-30 2022-09-21 Agc株式会社 Method for manufacturing glass substrate having holes, and glass laminate for annealing
US11447416B2 (en) 2018-12-20 2022-09-20 Apple Inc. Strengthened covers for electronic devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522950A (en) * 2004-12-13 2008-07-03 コーニング インコーポレイテッド Glass laminated substrate with increased impact / static load strength
JP2011093728A (en) * 2009-10-28 2011-05-12 Nippon Electric Glass Co Ltd Strengthened glass plate and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522950A (en) * 2004-12-13 2008-07-03 コーニング インコーポレイテッド Glass laminated substrate with increased impact / static load strength
JP2011093728A (en) * 2009-10-28 2011-05-12 Nippon Electric Glass Co Ltd Strengthened glass plate and method for producing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9302937B2 (en) 2010-05-14 2016-04-05 Corning Incorporated Damage-resistant glass articles and method
US10843439B2 (en) 2010-05-14 2020-11-24 Corning Incorporated Damage-resistant glass articles and method
US11780758B2 (en) 2011-07-25 2023-10-10 Corning Incorporated Laminated and ion-exchanged strengthened glass laminates
US11059736B2 (en) 2011-07-25 2021-07-13 Corning Incorporated Laminated and ion-exchanged strengthened glass laminates
US9522836B2 (en) 2011-07-25 2016-12-20 Corning Incorporated Laminated and ion-exchanged strengthened glass laminates
US10196295B2 (en) 2011-07-25 2019-02-05 Corning Incorporated Laminated and ion-exchanged strengthened glass laminates
US9868664B2 (en) 2012-02-29 2018-01-16 Corning Incorporated Low CTE, ion-exchangeable glass compositions and glass articles comprising the same
WO2014104050A1 (en) * 2012-12-25 2014-07-03 日本電気硝子株式会社 Reinforced plate glass and method for manufacturing same
WO2014185383A1 (en) * 2013-05-16 2014-11-20 日本電気硝子株式会社 Method for producing tempered glass and tempered glass
US11168018B2 (en) 2013-08-15 2021-11-09 Corning Incorporated Aluminoborosilicate glass substantially free of alkali oxides
US10988405B2 (en) 2013-08-15 2021-04-27 Corning Incorporated Intermediate to high CTE glasses and glass articles comprising the same
US10112865B2 (en) 2013-08-15 2018-10-30 Corning Incorporated Intermediate to high CTE glasses and glass articles comprising the same
USRE49307E1 (en) 2013-08-15 2022-11-22 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass
JP2016528153A (en) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド Glass with medium to high CTE and glass article provided with the same
JP2016528152A (en) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド Alkali-doped and alkali-free boroaluminosilicate glass
US10202300B2 (en) 2013-08-23 2019-02-12 Corning Incorporated Strengthened glass articles, edge-strengthened laminated glass articles, and methods for making the same
US11413848B2 (en) 2014-03-27 2022-08-16 Corning Incorporated Glass article
US11123959B2 (en) 2014-10-07 2021-09-21 Corning Incorporated Glass article with determined stress profile and method of producing the same
US20170297308A1 (en) * 2014-10-07 2017-10-19 Corning Incorporated Glass article with determined stress profile and method of producing the same
US10669194B2 (en) 2014-10-22 2020-06-02 Corning Incorporated Glass strengthening by ion exchange and lamination
WO2016105011A1 (en) * 2014-12-22 2016-06-30 코닝정밀소재 주식회사 Display device cover substrate
WO2016185934A1 (en) * 2015-05-15 2016-11-24 旭硝子株式会社 Chemically strengthened glass
US10457594B2 (en) 2015-05-15 2019-10-29 AGC Inc. Chemically strengthened glass
JPWO2016185934A1 (en) * 2015-05-15 2018-03-01 旭硝子株式会社 Chemically tempered glass
US10144670B2 (en) 2015-05-15 2018-12-04 AGC Inc. Chemically strengthened glass
US11167528B2 (en) 2015-10-14 2021-11-09 Corning Incorporated Laminated glass article with determined stress profile and method for forming the same
US11560332B2 (en) * 2016-09-27 2023-01-24 Corning Incorporated Glass-based articles with engineered stress profiles and methods of manufacture
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same

Also Published As

Publication number Publication date
JP2015006959A (en) 2015-01-15
TW201326060A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
WO2013065648A1 (en) Glass substrate, method for producing glass substrate, and cover glass
US11214515B2 (en) Glass-based articles having stress profiles with high stored energy and methods of manufacture
TWI660930B (en) Damage resistant glass with high coefficient of thermal expansion
TWI647201B (en) Scratch-resistant borosilicate glass
JP5898203B2 (en) Glass plate
JP5897595B2 (en) Glass with surface and central region under compression
US11028014B2 (en) Coated glass-based articles with engineered stress profiles
JP6791757B2 (en) Ion-exchangeable glass articles for 3D molding
KR102501762B1 (en) Coated Glass-Based Articles with Engineered Stress Profiles and Methods of Manufacturing the Same
TWI750298B (en) Glass-based articles with engineered stress profiles and methods of manufacture
EP4190756B1 (en) Hydrogen-containing glass-based articles with high indentation cracking threshold
TW202003406A (en) Fast ion exchangeable glasses with high indentation threshold
WO2013129400A1 (en) Laminated strengthened glass
TW201536699A (en) Method for producing tempered glass and tempered glass
CN113039164B (en) Glass substrate with improved composition
WO2013129402A1 (en) Glass for use in electronic device and protective glass for use in handheld device
EP3519368B1 (en) Glass-based articles with engineered stress profiles and methods of manufacture
TWI765106B (en) Glass-based articles with sections of different thicknesses
US20230167020A1 (en) Glass-based articles with reduced risk of delayed failure and high stored strain energy
US20220168999A1 (en) Glass-based materials with adhesive and complex geometry
JP2020203801A (en) Method for producing filmed glass substrate, filmed glass substrate, and film removing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP