JP2015042720A - Aromatic polyester - Google Patents

Aromatic polyester Download PDF

Info

Publication number
JP2015042720A
JP2015042720A JP2013175067A JP2013175067A JP2015042720A JP 2015042720 A JP2015042720 A JP 2015042720A JP 2013175067 A JP2013175067 A JP 2013175067A JP 2013175067 A JP2013175067 A JP 2013175067A JP 2015042720 A JP2015042720 A JP 2015042720A
Authority
JP
Japan
Prior art keywords
acid
aromatic polyester
gallic acid
gallic
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013175067A
Other languages
Japanese (ja)
Inventor
塩野 毅
Takeshi Shiono
毅 塩野
祐正 中山
Sukemasa Nakayama
祐正 中山
亮 田中
Akira Tanaka
亮 田中
豊 磯部
Yutaka Isobe
豊 磯部
真吾 跡部
Shingo Atobe
真吾 跡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2013175067A priority Critical patent/JP2015042720A/en
Publication of JP2015042720A publication Critical patent/JP2015042720A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel aromatic polyester having a reactive functional group within the molecule, and a method for producing the same.SOLUTION: The aromatic polyester is a polymer obtained by condensation-polymerizing gallic acid. The aromatic polyester can be produced by condensation-polymerizing gallic acid under the presence of an acid such as phosphoric acid. In the production method, the gallic acid may be condensation-polymerized under the presence of an acid as well as carboxylic acid anhydride. The reaction temperature is, for example, -10°C to 100°C. The use amount of the acid is, for example, 0.1 to 5 mole per 1 mole of gallic acid. The use amount of the carboxylic acid anhydride is, for example, 0.5 to 10 mole per 1 mole of gallic acid.

Description

本発明は、没食子酸を原料とする新規な芳香族ポリエステル及びその製造方法に関する。この芳香族ポリエステルは機能性ポリマー又はその原料として利用できる。   The present invention relates to a novel aromatic polyester using gallic acid as a raw material and a method for producing the same. This aromatic polyester can be used as a functional polymer or a raw material thereof.

極めて高い耐熱性を有するポリマーとしてパラヒドロキシ安息香酸ポリエステルが知られている。このポリエステルは分子鎖が剛直であり、耐熱性だけでなく、強度及び耐薬品性にも優れている。また、パラヒドロキシ安息香酸を基本とし、これに種々のジカルボン酸、ジヒドロキシ化合物、ヒドロキシカルボン酸等をエステル結合させた芳香族ポリエステルは液晶性ポリマーとして利用されている(特許文献1)。   A parahydroxybenzoic acid polyester is known as a polymer having extremely high heat resistance. This polyester has a rigid molecular chain and is excellent not only in heat resistance but also in strength and chemical resistance. In addition, aromatic polyesters based on parahydroxybenzoic acid and ester-bonded with various dicarboxylic acids, dihydroxy compounds, hydroxycarboxylic acids and the like are used as liquid crystalline polymers (Patent Document 1).

特開2004−256656号公報JP 2004-256656 A

本発明の目的は、分子内に反応性官能基を有する新規な芳香族ポリエステルとその製造方法を提供することにある。   The objective of this invention is providing the novel aromatic polyester which has a reactive functional group in a molecule | numerator, and its manufacturing method.

本発明者らは、上記目的を達成するため鋭意検討した結果、没食子酸を酸の存在下で重合させると、芳香環に水酸基を有する新規な芳香族ポリエステルが得られることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors have found that when gallic acid is polymerized in the presence of an acid, a novel aromatic polyester having a hydroxyl group in the aromatic ring can be obtained. completed.

すなわち、本発明は、没食子酸を重縮合して得られる芳香族ポリエステルを提供する。   That is, the present invention provides an aromatic polyester obtained by polycondensation of gallic acid.

また、本発明は、没食子酸を酸の存在下で重縮合させて芳香族ポリエステルを得ることを特徴とする芳香族ポリエステルの製造方法を提供する。この製造方法において、没食子酸を酸とともにカルボン酸無水物の存在下で重縮合させてもよい。   The present invention also provides a method for producing an aromatic polyester, characterized in that an aromatic polyester is obtained by polycondensation of gallic acid in the presence of an acid. In this production method, gallic acid may be polycondensed with an acid in the presence of a carboxylic acid anhydride.

本発明によれば、新規な芳香族ポリエステルが提供される。この芳香族ポリエステルは、耐熱性及び強度に優れる。また、分子内に反応性官能基である水酸基を有するため、修飾等により目的、用途に応じた新しい機能を付与することができる。従って、本発明の芳香族ポリエステルは機能性ポリマー又はその原料として利用できる。   According to the present invention, a novel aromatic polyester is provided. This aromatic polyester is excellent in heat resistance and strength. Moreover, since it has a hydroxyl group which is a reactive functional group in the molecule, a new function according to the purpose and application can be imparted by modification or the like. Therefore, the aromatic polyester of the present invention can be used as a functional polymer or a raw material thereof.

没食子酸水和物の赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of a gallic acid hydrate. 実施例1で得られたポリマーの赤外線吸収スペクトルを示す図である。1 is an infrared absorption spectrum of the polymer obtained in Example 1. FIG. 没食子酸水和物のDSC測定結果(1st run、2nd run)を示す図である。It is a figure which shows the DSC measurement result (1st run, 2nd run) of a gallic acid hydrate. 実施例1で得られたポリマーのDSC測定結果(1st run、2nd run、3rd run)を示す図である。FIG. 3 is a diagram showing DSC measurement results (1st run, 2nd run, 3rd run) of the polymer obtained in Example 1. 没食子酸水和物のTG−DTA測定結果を示す図である。It is a figure which shows the TG-DTA measurement result of a gallic acid hydrate. 実施例1で得られたポリマーのTG−DTA測定結果を示す図である。FIG. 3 is a view showing a TG-DTA measurement result of the polymer obtained in Example 1. 没食子酸水和物(破線)と実施例1で得られたポリマー(実線)のTG−DTA測定結果を示す図(比較図)である。It is a figure (comparison figure) which shows the TG-DTA measurement result of the gallic acid hydrate (dashed line) and the polymer (solid line) obtained in Example 1.

本発明の芳香族ポリエステルは、下記式(1)で表される没食子酸を重縮合して得られるポリマーであり、下記式(2)及び/又は(3)で表される繰り返し構造単位を有する。   The aromatic polyester of the present invention is a polymer obtained by polycondensation of gallic acid represented by the following formula (1), and has a repeating structural unit represented by the following formula (2) and / or (3). .

Figure 2015042720
Figure 2015042720

Figure 2015042720
Figure 2015042720

本発明の芳香族ポリエステルは、没食子酸を酸の存在下で重縮合させることにより製造できる。   The aromatic polyester of the present invention can be produced by polycondensation of gallic acid in the presence of an acid.

前記酸としては、例えば、リン酸、ホウ酸、塩酸、臭化水素酸、フッ化水素酸、硫酸などの無機酸;トリフルオロ酢酸等のカルボン酸、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、ナフタレンスルホン酸等のスルホン酸が挙げられる。これらの中でも、反応速度、副反応の抑制の観点から、無機酸が好ましく、特にリン酸が好ましい。   Examples of the acid include inorganic acids such as phosphoric acid, boric acid, hydrochloric acid, hydrobromic acid, hydrofluoric acid, and sulfuric acid; carboxylic acids such as trifluoroacetic acid, methanesulfonic acid, ethanesulfonic acid, and trifluoromethanesulfone. Examples thereof include sulfonic acids such as acid, benzenesulfonic acid, p-toluenesulfonic acid, and naphthalenesulfonic acid. Among these, inorganic acids are preferable and phosphoric acid is particularly preferable from the viewpoint of reaction rate and suppression of side reactions.

前記酸の使用量は、反応速度、製造コスト、副反応抑制の点を考慮して適宜選択できるが、通常、原料として用いる没食子酸1モルに対して、例えば、0.1〜5モル、好ましくは0.2〜3モル、さらに好ましくは0.5〜2モルである。   The amount of the acid used can be appropriately selected in consideration of the reaction rate, production cost, and side reaction suppression, and is usually 0.1 to 5 mol, preferably 0.1 mol to 1 mol of gallic acid used as a raw material. Is 0.2-3 mol, more preferably 0.5-2 mol.

上記製造方法において、没食子酸を酸とともにカルボン酸無水物の存在下で重縮合させてもよい。カルボン酸無水物を用いることにより反応速度を向上させることができる。   In the above production method, gallic acid may be polycondensed with an acid in the presence of a carboxylic acid anhydride. The reaction rate can be improved by using a carboxylic acid anhydride.

前記カルボン酸無水物としては、トリフルオロ酢酸無水物(TFAA)などの炭素数2〜10のフッ素原子含有脂肪族カルボン酸無水物;無水酢酸、無水プロピオン酸などの炭素数2〜10の脂肪族カルボン酸無水物などが挙げられる。これらの中でも、反応速度の点で、トリフルオロ酢酸無水物(TFAA)などの炭素数2〜10のフッ素原子含有脂肪族カルボン酸無水物が好ましい。   Examples of the carboxylic acid anhydride include C2-C10 fluorine-containing aliphatic carboxylic acid anhydrides such as trifluoroacetic anhydride (TFAA); C2-C10 aliphatics such as acetic anhydride and propionic anhydride. Examples thereof include carboxylic acid anhydrides. Among these, a fluorine atom-containing aliphatic carboxylic acid anhydride having 2 to 10 carbon atoms such as trifluoroacetic anhydride (TFAA) is preferable from the viewpoint of reaction rate.

前記カルボン酸無水物の使用量は、反応速度、製造コスト、副反応抑制の点を考慮して適宜選択できるが、通常、原料として用いる没食子酸1モルに対して、例えば、0.5〜10モル、好ましくは1〜8モル、さらに好ましくは2〜6モルである。   The amount of the carboxylic acid anhydride to be used can be appropriately selected in consideration of reaction rate, production cost, and side reaction suppression. Mol, preferably 1 to 8 mol, more preferably 2 to 6 mol.

重合反応は溶媒の存在下又は非存在下で行われる。溶媒としては、反応に不活性な溶媒であればよく、例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ペンタン、ヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン等の脂環式炭化水素;これらの混合溶媒などが挙げられる。   The polymerization reaction is performed in the presence or absence of a solvent. The solvent may be any solvent inert to the reaction, for example, water; aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as pentane, hexane, heptane, octane and decane; cyclopentane, And alicyclic hydrocarbons such as cyclohexane; and mixed solvents thereof.

反応温度(重合温度)は、例えば、−10℃〜100℃、好ましくは0〜50℃である。反応時間は、例えば0.5時間〜48時間、好ましくは1時間〜24時間、さらに好ましくは3時間〜24時間である。   The reaction temperature (polymerization temperature) is, for example, -10 ° C to 100 ° C, preferably 0 to 50 ° C. The reaction time is, for example, 0.5 hour to 48 hours, preferably 1 hour to 24 hours, more preferably 3 hours to 24 hours.

反応後、慣用の分離精製手段を用いることにより本発明の芳香族ポリエステルを単離してもよい。   After the reaction, the aromatic polyester of the present invention may be isolated by using a conventional separation and purification means.

こうして得られる芳香族ポリエステルは、繰り返し単位が芳香環を有しているので、耐熱性及び機械的強度に優れる。また、分子内に反応性官能基である水酸基を有するので、種々の修飾、誘導体化が可能であり、該修飾等により目的、用途に応じた新しい機能を付与することができる。よって、本発明の芳香族ポリエステルは機能性ポリマー又はその原料として利用できる。   The aromatic polyester thus obtained is excellent in heat resistance and mechanical strength because the repeating unit has an aromatic ring. Moreover, since it has a hydroxyl group which is a reactive functional group in the molecule, various modifications and derivatizations are possible, and new functions according to the purpose and application can be imparted by the modification. Therefore, the aromatic polyester of the present invention can be used as a functional polymer or a raw material thereof.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
窒素雰囲気下、ガラス製のフラスコに没食子酸水和物(東京化成工業株式会社)1g、85重量%リン酸水溶液(関東化学株式会社)0.68g、無水トリフルオロ酢酸(和光純薬工業株式会社)4.94gを仕込んだ。窒素を導入しながら、室温で7時間撹拌を続けた。次に、10mLの冷水をフラスコ中に加えた。遠心分離により、不溶分を回収し、80℃、真空下で6時間乾燥し、生成物0.047gを得た。
Example 1
In a nitrogen atmosphere, 1 g of gallic acid hydrate (Tokyo Chemical Industry Co., Ltd.), 0.68 g of 85% by weight aqueous phosphoric acid solution (Kanto Chemical Co., Ltd.), trifluoroacetic anhydride (Wako Pure Chemical Industries, Ltd.) ) 4.94g was charged. Stirring was continued at room temperature for 7 hours while introducing nitrogen. Next, 10 mL of cold water was added into the flask. Insoluble matter was recovered by centrifugation and dried at 80 ° C. under vacuum for 6 hours to obtain 0.047 g of a product.

[FT−IR]
生成物及び原料をそれぞれ、臭化カリウムと粉砕混合し、フーリエ変換赤外分光光度計(アジレント・テクノロジー社製、機種:FTS3100)にて赤外線吸収スペクトルを測定した。原料(没食子酸水和物)の赤外線吸収スペクトルを図1に示す。生成物の赤外線吸収スペクトルを図2に示す。原料モノマーで見られる1703cm-1のカルボン酸のカルボニルの吸収ピークが、生成物では1721cm-1にシフトしていることから、生成物にエステル結合が形成されていることが分かる。
[FT-IR]
The product and raw material were each pulverized and mixed with potassium bromide, and the infrared absorption spectrum was measured with a Fourier transform infrared spectrophotometer (manufactured by Agilent Technologies, model: FTS3100). The infrared absorption spectrum of the raw material (gallic acid hydrate) is shown in FIG. The infrared absorption spectrum of the product is shown in FIG. Since the carbonyl absorption peak of carboxylic acid at 1703 cm −1 seen in the raw material monomer is shifted to 1721 cm −1 in the product, it can be seen that an ester bond is formed in the product.

[DSC]
示差走査熱量計により生成物と原料(没食子酸水和物)の熱分析を実施した。DSCの測定条件を下記に示す。
<測定条件>
測定装置:示差走査熱量計(商品名「DSC−Q2000」、ティー・エイ・インスツルメント社製)
雰囲気:窒素
温度範囲:30℃〜200℃ 2nd runまで(没食子酸水和物)/30℃〜300℃ 3rd run(生成物)まで
昇温速度:昇温時10℃/min、冷却時−20℃/min
図3に没食子酸水和物のDSC測定結果(1st run、2nd run)を、図4に実施例1で得られた生成物のDSC測定結果(1st run、2nd run、3rd run)を示す。
没食子酸水和物は1st runにおける結晶水の脱離しか見られず、融解などの変化は見られない。2nd runでは熱収支が測定されないため、30〜200℃の範囲では分解や状態変化は起こしていないと考えられる。
一方、生成物は90℃付近と220℃付近で揮発(または分解)する成分を有している。生成物は2nd run、及び3rd runの220〜240℃付近にTgと思われる変曲点が観測された。このことから、生成物がポリマーであることが分かる。
[DSC]
The product and the raw material (gallic acid hydrate) were subjected to thermal analysis using a differential scanning calorimeter. DSC measurement conditions are shown below.
<Measurement conditions>
Measuring device: differential scanning calorimeter (trade name “DSC-Q2000”, manufactured by T.A. Instruments)
Atmosphere: Nitrogen Temperature range: 30 ° C. to 200 ° C. Up to 2nd run (gallic acid hydrate) / 30 ° C. to 300 ° C. Up to 3rd run (product) Temperature rising rate: 10 ° C./min during temperature rising, −20 during cooling ° C / min
FIG. 3 shows DSC measurement results (1st run, 2nd run) of gallic acid hydrate, and FIG. 4 shows DSC measurement results (1st run, 2nd run, 3rd run) of the product obtained in Example 1.
As for gallic acid hydrate, only desorption of crystal water is observed in 1 st run, and no change such as melting is observed. Since heat balance is not measured with 2nd run, it is considered that decomposition and state change have not occurred in the range of 30 to 200 ° C.
On the other hand, the product has a component that volatilizes (or decomposes) at around 90 ° C and around 220 ° C. The product was observed to have inflection points of 2nd run and 3rd run in the vicinity of 220 to 240 ° C., presumably Tg. This shows that the product is a polymer.

[TG−DTA]
示差熱熱重量同時測定装置により生成物と原料(没食子酸水和物)の熱分析を実施した。TG−DTAの測定条件を下記に示す。
<測定条件>
測定装置:示差熱熱重量同時測定装置(商品名「TG−DTA 6200」、エス・アイアイ・ナノテクノロジー社製)
雰囲気:窒素
試料容器:アルミ
温度範囲:30℃〜570℃
昇温速度:20℃/min
図5に没食子酸水和物のTG−DTA測定結果を、図6に実施例1で得られた生成物のTG−DTA測定結果を、図7に没食子酸水和物と実施例1で得られた生成物のTG−DTA測定結果を示す図(比較図)を示す。図7において、破線は没食子酸水和物のデータ、実線は実施例1で得られた生成物のデータである。
上記結果より、生成物は原料(没食子酸水和物)より分解温度が高いことが分かる。没食子酸水和物は、100℃で結晶水の脱離が起こり、250℃において熱分解を起こし、大きく重量を低下させる。また、330℃においても重量は減少するが、発熱ピークとともに見られるので単純な熱分解ではないと考えられる。
一方、生成物は、30〜200℃までじわじわと重量が減少しているが、これは水分または溶剤などの揮発が原因と思われる。また、200℃で若干の重量減少が見られるのも揮発性成分の揮発によるものと推測される。また、330℃において没食子酸と同じような重量減少が見られる。なお、加熱後のサンプルは黒色に変色していた。
[TG-DTA]
The product and the raw material (gallic acid hydrate) were subjected to thermal analysis using a differential thermothermal gravimetric simultaneous measurement apparatus. The measurement conditions for TG-DTA are shown below.
<Measurement conditions>
Measuring device: Differential thermothermal weight simultaneous measuring device (trade name “TG-DTA 6200”, manufactured by SII Nanotechnology)
Atmosphere: Nitrogen Sample container: Aluminum Temperature range: 30 ° C to 570 ° C
Temperature increase rate: 20 ° C / min
FIG. 5 shows the TG-DTA measurement result of gallic acid hydrate, FIG. 6 shows the TG-DTA measurement result of the product obtained in Example 1, and FIG. 7 shows the gallic acid hydrate and Example 1. The figure (comparison figure) which shows the TG-DTA measurement result of the obtained product is shown. In FIG. 7, the broken line is gallic acid hydrate data, and the solid line is the product data obtained in Example 1.
The above results show that the product has a higher decomposition temperature than the raw material (gallic acid hydrate). Gallic acid hydrate undergoes desorption of water of crystallization at 100 ° C., causes thermal decomposition at 250 ° C., and greatly reduces the weight. Moreover, although the weight decreases even at 330 ° C., it is considered that it is not a simple thermal decomposition because it is seen with an exothermic peak.
On the other hand, the weight of the product gradually decreased from 30 to 200 ° C., which seems to be caused by volatilization of moisture or solvent. In addition, it is estimated that the slight decrease in weight at 200 ° C. is due to volatilization of volatile components. Moreover, a weight reduction similar to that of gallic acid is observed at 330 ° C. In addition, the sample after a heating was discolored black.

[溶解性]
生成物の溶解性を調べるため、ガラス製サンプル瓶中に試料約0.2mgを溶媒1mLに分散させ、溶解性を確認した。その結果、生成物は、テトラヒドロフラン、クロロホルム、水、ジメチルスルホキシド及びN,N−ジメチルホルムアミドに不溶であった。
[Solubility]
In order to examine the solubility of the product, about 0.2 mg of a sample was dispersed in 1 mL of a solvent in a glass sample bottle, and the solubility was confirmed. As a result, the product was insoluble in tetrahydrofuran, chloroform, water, dimethyl sulfoxide and N, N-dimethylformamide.

Claims (3)

没食子酸を重縮合して得られる芳香族ポリエステル。   An aromatic polyester obtained by polycondensation of gallic acid. 没食子酸を酸の存在下で重縮合させて芳香族ポリエステルを得ることを特徴とする芳香族ポリエステルの製造方法。   A process for producing an aromatic polyester, characterized in that an aromatic polyester is obtained by polycondensation of gallic acid in the presence of an acid. 没食子酸を酸とともにカルボン酸無水物の存在下で重縮合させる請求項2記載の芳香族ポリエステルの製造方法。   The method for producing an aromatic polyester according to claim 2, wherein gallic acid is polycondensed with an acid in the presence of a carboxylic anhydride.
JP2013175067A 2013-08-26 2013-08-26 Aromatic polyester Pending JP2015042720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175067A JP2015042720A (en) 2013-08-26 2013-08-26 Aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175067A JP2015042720A (en) 2013-08-26 2013-08-26 Aromatic polyester

Publications (1)

Publication Number Publication Date
JP2015042720A true JP2015042720A (en) 2015-03-05

Family

ID=52696383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175067A Pending JP2015042720A (en) 2013-08-26 2013-08-26 Aromatic polyester

Country Status (1)

Country Link
JP (1) JP2015042720A (en)

Similar Documents

Publication Publication Date Title
CN102906097B (en) Norbornane-2-spiro-alpha-cycloalkanone-alpha&#39;-spiro-2&#39;&#39;-norbornane-5,5&#39;&#39;,6,6&#39;&#39;-tetracarboxylic dianhydride, norbornane-2-spiro-alpha-cycloalkanone-alpha&#39;-spiro-2&#39;&#39;-norbornane-5,5&#39;&#39;,6,6&#39;&#39;-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-alpha-cycloalkanone-alpha&#39;-spiro-2&#39;&#39;-norbornane-5,5&#39;&#39;,6,6&#39;&#39;-tetracarboxylic dianhydride
JP6637491B2 (en) Granular amine-functionalized polyaryletherketone polymers and copolymers thereof
JP2020530051A (en) Polyetherketone Methods for producing ketones
JP4065848B2 (en) Method for producing polyetherketone particles
JP6635506B2 (en) Diamine having fluorene skeleton, polyamic acid, and polyimide
JP5985977B2 (en) Polyimide resin solution
JP2018012671A (en) Bismaleimide compound and method for producing the same
WO2018199014A1 (en) Tetracarboxylic dianhydride, polyimide precursor resin and solution thereof, and polyimide and solution thereof
RU2466153C2 (en) Polyphenylene ether ketone oximate and method for production thereof
EP3281938B1 (en) Method for producing bisimidodicarboxylic acid
JP2015042720A (en) Aromatic polyester
CN105152903B (en) Preparation method of aliphatic dicarboxylic acid
WO2001068742A1 (en) Process for producing polyimide
JP2015124225A (en) Method for producing polyphenylene sulfide block copolymer
JP2006219440A (en) Method for producing aromatic dicarboxylic acid
JP7495788B2 (en) Method for producing polyimide resin
US6172181B1 (en) (2,3,4,5,6-pentafluorobenzoyl) diphenyl ether compound, and fluorine-containing aryl ether ketone polymer
JP2017155163A (en) Tetracarboxylic acid dianhydride, polyimide and method for producing the same
JP2001064226A (en) (2,3,4,5,6-pentafluorobenzoyl)diphenyl ether compound and fluorine-containing aryl ether ketone polymer
JP2007211138A (en) Alicyclic polyether, its production method, and its use
TWI814969B (en) Manufacturing method of polyimide resin
WO2020137872A1 (en) Method for producing polyimide resin
Kohama et al. Nonstoichiometric polycondensation of 4‐acetoxybenzoic acid in the presence of monoacetate
JP6021002B2 (en) Polyetherketone and method for producing the same
JP2012229177A (en) Process for producing cyclic polyphenylene ether etherketone composition