JP2015001347A - Vertical grinding classifier - Google Patents

Vertical grinding classifier Download PDF

Info

Publication number
JP2015001347A
JP2015001347A JP2013126857A JP2013126857A JP2015001347A JP 2015001347 A JP2015001347 A JP 2015001347A JP 2013126857 A JP2013126857 A JP 2013126857A JP 2013126857 A JP2013126857 A JP 2013126857A JP 2015001347 A JP2015001347 A JP 2015001347A
Authority
JP
Japan
Prior art keywords
differential pressure
biomass
fuel
coal
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013126857A
Other languages
Japanese (ja)
Other versions
JP6218448B2 (en
Inventor
馬場 彰
Akira Baba
彰 馬場
盛士 三宅
Moriji Miyake
盛士 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2013126857A priority Critical patent/JP6218448B2/en
Publication of JP2015001347A publication Critical patent/JP2015001347A/en
Application granted granted Critical
Publication of JP6218448B2 publication Critical patent/JP6218448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement transition between both modes without deteriorating combustion quality of fuel and without hindering mill operation, in the transition between the modes of a coal exclusive grinding mode and a biomass exclusive grinding mode.SOLUTION: A vertical grinding classifier 24 includes a feeder 41 for supplying fuel, a grinder comprising a rotating table and a grinding element, and a rotary classifier for classifying ground products. There are provided differential pressure measurement means for measuring a pressure difference ΔP measured at least at a downstream side Ps1 of a throat of a rotating table outer circumference side where the airflow flows and at an entrance side Ps2 of the rotary classifier, fuel feed rate measurement means of a feeder 41, and rotary classifier control means 46. Calculation means 42 controls the increase and decrease of the rotation 45 of the rotary classifier through the rotary classifier control means so that the measured differential pressure ΔP becomes the proper differential pressure, on the basis of the differential pressure ΔP being the difference in pressure between parts measured by the differential pressure measurement means and a proper differential pressure calculated on the basis of a fuel feed rate by the fuel feed rate measurement means.

Description

本発明は、燃料として石炭とバイオマスを共用し混焼させるボイラ装置に係わり、特に、ボイラ装置の竪型粉砕分級装置に関するものである。   The present invention relates to a boiler device that uses coal and biomass as fuel and co-fires them, and more particularly to a vertical pulverization and classification device for a boiler device.

石炭とバイオマスを共用し混焼させるボイラ装置の従来技術は、図8に示すように、バイオマス用サイロ21に貯蔵されたバイオマスを石炭用の運炭コンベア22に搬送し、バンカ23を介してバイオマス用ミル24で粉砕し、バイオマス用バーナ25を通して蒸気発生装置26でバイオマスを燃焼させるものである。さらに、空気予熱器28の後流に設置された電気集塵機29の後流より再循環ガスを抽気し、加えて、一次通風機33を通して空気予熱器28で予熱された空気と混合させて混合ガスの酸素濃度及び温度を制御するというようなボイラ装置が提案されている(例えば、特許文献1を参照)。図8は従来技術に関する石炭とバイオマスを共用し混焼させるボイラ装置の系統構成を示す図である。   As shown in FIG. 8, the conventional technology of a boiler apparatus that uses coal and biomass for co-combustion conveys the biomass stored in the biomass silo 21 to a coal-carrying conveyor 22 and uses the bunker 23 for biomass. It is pulverized by a mill 24 and burned by a steam generator 26 through a biomass burner 25. Further, the recirculated gas is extracted from the wake of the electrostatic precipitator 29 installed in the wake of the air preheater 28, and then mixed with the air preheated by the air preheater 28 through the primary ventilator 33. There has been proposed a boiler apparatus that controls the oxygen concentration and the temperature (see, for example, Patent Document 1). FIG. 8 is a diagram showing a system configuration of a boiler apparatus that commonly uses coal and biomass for co-firing.

上記の特許文献1に開示されているように、石炭とバイオマスを混焼させるボイラ装置は、運炭コンベア22からバーナ25までの経路は石炭用ボイラ装置と共通しており、石炭用ボイラ装置と異なるのはミル24の内部構成とバーナ25の構造である。   As disclosed in the above-mentioned Patent Document 1, the boiler device for co-firing coal and biomass has a common route from the coal-carrying conveyor 22 to the burner 25 with the coal boiler device, and is different from the coal boiler device. These are the internal structure of the mill 24 and the structure of the burner 25.

ミル24とバーナ25は、設備上の不具合又は磨耗部の交換時においてもボイラ負荷を可能な限り維持することを考慮している。具体的には、当該事象時には、石炭ミルと石炭バーナに切り替えることが可能なように、バイオマス専用ミルとバイオマス専用バーナに改造したものではあるが、一時的に石炭専焼への短時間での切り替えが可能なように、切り替え時にボイラ装置の分解などの作業が発生しないようにしたものである。このように、バイオマス用ミル24は石炭用ミルをバイオマス用に改造したものであり、また、バーナは、粗粒のバイオマスが安定燃焼できるように着火を強化したものである。   The mill 24 and the burner 25 take into consideration that the boiler load is maintained as much as possible even at the time of equipment failure or replacement of a worn part. Specifically, in order to enable switching to a coal mill and a coal burner at the time of the event, it has been modified to a biomass dedicated mill and a biomass dedicated burner. Therefore, work such as disassembly of the boiler device is prevented from occurring at the time of switching. As described above, the biomass mill 24 is obtained by remodeling the coal mill for biomass, and the burner has enhanced ignition so that coarse-grained biomass can be stably burned.

また、上記の特許文献1に示すような従来技術において、バイオマスは石炭と比べてミル内で堆積しやすいこと、粉塵爆発し易いこと等を考慮して、バイオマスを取り扱う系統構成の内部の酸素濃度を粉塵爆発しない爆発下限以下にして少なくとも石炭の粉塵爆発リスク以下にして安全性を保つようにしている。   Moreover, in the prior art as shown in the above-mentioned Patent Document 1, in consideration of the fact that biomass is more likely to deposit in the mill than the coal, and that dust explosion is likely to occur, the oxygen concentration inside the system configuration that handles biomass The safety level is kept below the lower explosion limit for preventing dust explosions and at least below the dust explosion risk of coal.

特開2010−242999号公報JP 2010-242999 A

上記の特許文献1に示すような従来技術に関するバイオマスと石炭の共用ミル、共用バーナ、共用排ガス再循環系統を用いたボイラ装置では、バイオマス専砕・専焼モードと、石炭専砕・専焼モードが存在する。そして、各々のモードへの切り換えに際して、ミル、バーナ、排ガス再循環系統の改造を不要とするものである。   In the boiler apparatus using the biomass-coal common mill, the common burner, and the common exhaust gas recirculation system related to the prior art as shown in the above-mentioned Patent Document 1, there are a biomass exclusive-crushing / combustion mode and a coal-crushing / combustion mode. To do. And, when switching to each mode, the mill, burner, and exhaust gas recirculation system need not be modified.

しかしながら、モード切り換えを実施する場合、特にミル(ミルロール・ミルテーブルと回転分級機とから構成されるものであり、粉砕機とも称する)の運用条件が著しく異なるので、モード切り換えの自動化は容易ではなかった。具体的には、各々のモードにおける運転条件は分かっているが、石炭とバイオマスの燃料の切り換えは瞬時に行うことはできず、特定の時刻における、ミルに投入される燃料のうちバイオマスと石炭の比率が分からないので運転条件が定まらない。この理由は、コスト低減の重要性のためにバンカ23も共有しているので、燃料の切り換え時においてバンカ23内部で2種類の燃料(石炭とバイオマス)が一時的に存在し、これらの燃料が偏析すれば、安定してミルへ供給されなくなるからである。   However, when mode switching is performed, it is not easy to automate the mode switching because the operating conditions of the mill (which is composed of a mill roll / mill table and a rotary classifier, also referred to as a pulverizer) are significantly different. It was. Specifically, the operating conditions in each mode are known, but switching between coal and biomass fuel is not possible instantaneously. Since the ratio is unknown, the operating conditions cannot be determined. This is because the bunker 23 is also shared because of the importance of cost reduction, so there are two types of fuel (coal and biomass) temporarily inside the bunker 23 at the time of fuel switching. This is because if segregated, it will not be stably supplied to the mill.

燃料として石炭とバイオマスを共用し混焼させるボイラ装置において、共用できるということは、単に同じミルとバーナにバイオマス又は石炭を供給すればよいというだけではなく、石炭とバイオマスのそれぞれの燃料に対して、それぞれの粉砕性、燃焼性、ハンドリング性の諸条件を勘案して必要に応じて自動的に切り換えることが求められているのである。上記の特許文献1に示すような従来技術には、燃料の切り換えに伴う上記の諸条件を勘案した制御についての詳しい説明がなされていない。   In a boiler device that shares and co-fires coal and biomass as fuel, being able to share does not just mean supplying biomass or coal to the same mill and burner, but for each fuel of coal and biomass, It is required to automatically switch as necessary in consideration of various conditions of grindability, combustibility, and handling properties. The prior art as shown in the above-mentioned Patent Document 1 does not give a detailed description of the control in consideration of the above-mentioned various conditions accompanying the switching of fuel.

前記課題を解決するために、本発明は主として次のような構成を採用する。
石炭とバイオマスからなる燃料を供給するフィーダと、前記燃料を回転テーブルと粉砕子との噛み込みによって粉砕する粉砕機と、前記回転テーブルの外周側のスロートから噴き上げる気流によって搬送された粉砕物を分級する回転フィンをもつ回転分級機と、前記粉砕機と前記回転分級機とを収容するハウジングと、を備えた竪型粉砕分級装置であって、
前記フィーダには燃料の供給量を計測する燃料供給量計測手段を設け、前記回転分級機の回転を制御する回転分級機制御手段を設け、前記ハウジング内で、前記気流の流れる前記スロートの上流側、前記スロートの下流側、前記回転分級機の入口側、前記回転分級機の出口側、の内の少なくとも前記スロートの下流側と前記回転分級機の入口側とで圧力を計測し当該計測圧力の部位間の圧力差を計測する差圧計測手段を設け、前記差圧計測手段で計測された前記計測圧力部位間の圧力差である差圧と、前記燃料供給量計測手段で計測された燃料供給量をもとに計算された適正差圧と、に基づいて、前記計測された差圧が前記適正差圧になるように前記回転分級機制御手段を通じて前記回転分級機の回転を増減制御する演算装置を設ける構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
Classifying a feeder for supplying fuel made of coal and biomass, a pulverizer for pulverizing the fuel by biting between a rotary table and a pulverizer, and a pulverized product conveyed by an air current blown from a throat on the outer peripheral side of the rotary table A vertical pulverizing and classifying device comprising: a rotary classifier having rotating fins; and a housing for accommodating the pulverizer and the rotary classifier,
The feeder is provided with fuel supply amount measuring means for measuring the fuel supply amount, and is provided with rotary classifier control means for controlling the rotation of the rotary classifier, and upstream of the throat through which the airflow flows in the housing. The pressure is measured at least at the downstream side of the throat and the inlet side of the rotary classifier among the downstream side of the throat, the inlet side of the rotary classifier, and the outlet side of the rotary classifier. Differential pressure measuring means for measuring a pressure difference between the parts, a differential pressure that is a pressure difference between the measured pressure parts measured by the differential pressure measuring means, and a fuel supply measured by the fuel supply amount measuring means Based on the appropriate differential pressure calculated based on the quantity, an operation for increasing / decreasing the rotation of the rotary classifier through the rotary classifier control means so that the measured differential pressure becomes the appropriate differential pressure A configuration in which a device is provided; That.

また、前記竪型粉砕分級装置において、前記演算装置は、石炭の専焼からバイオマスの専焼に切り換える切り換えモードのときに、バイオマス専焼に達するときのバイオマスの燃料供給量を基にした予測差圧値を算出し、算出された予測差圧値から切り換えモードにおける目標制御差圧を設定し、燃料切り換え開始時刻での計測差圧と前記目標制御差圧とから適正差圧を求め、前記切り換えモード中において前記計測された差圧が前記適正差圧になるように前記回転分級機の回転を減少制御する構成とする。さらに、前記演算装置は、バイオマスの専焼から石炭の専焼に切り換える切り換えモードのときに、石炭専焼に達するときの石炭の燃料供給量を基にした予測差圧値を算出し、算出された予測差圧値と燃料切り換え開始時刻での計測差圧とから適正差圧を求め、前記切り換えモード中において前記計測された差圧が前記適正差圧になるように前記回転分級機の回転を増加制御する構成とする。   Further, in the vertical crushing and classifying apparatus, the arithmetic unit calculates a predicted differential pressure value based on a fuel supply amount of the biomass when reaching the biomass combustion in the switching mode for switching from the coal combustion to the biomass combustion. Calculating a target control differential pressure in the switching mode from the calculated predicted differential pressure value, obtaining an appropriate differential pressure from the measured differential pressure at the fuel switching start time and the target control differential pressure, and during the switching mode The rotation of the rotary classifier is controlled to decrease so that the measured differential pressure becomes the appropriate differential pressure. Further, the calculation device calculates a predicted differential pressure value based on a fuel supply amount of coal when reaching the coal combustion in the switching mode for switching from the biomass combustion to the coal combustion, and calculates the predicted difference An appropriate differential pressure is obtained from the pressure value and the measured differential pressure at the fuel switching start time, and the rotation of the rotary classifier is increased and controlled so that the measured differential pressure becomes the appropriate differential pressure during the switching mode. The configuration.

本発明によれば、石炭専砕モードとバイオマス専砕モードにおけるモード間の移行のときに、ミルの改造又は部品取り替え無しに、計測したミル差圧が適正差圧になるように制御することによって、燃料の燃焼性を悪化させず、ミル運転に支障を及ぼすこと無く、速やかに両モード間の移行を実施することができる。   According to the present invention, at the time of transition between modes in the coal-crushing mode and the biomass-crushing mode, the measured mill differential pressure is controlled to be an appropriate differential pressure without remodeling of the mill or replacement of parts. It is possible to quickly shift between both modes without deteriorating fuel combustibility and without affecting the mill operation.

本発明の実施形態に係る竪型粉砕分級装置をもつボイラ装置の系統構成を示す図である。It is a figure which shows the system | strain structure of the boiler apparatus which has the vertical pulverization classification apparatus which concerns on embodiment of this invention. 本実施形態に係る竪型粉砕分級装置のミルの構成と内部の圧力測定位置を示す図である。It is a figure which shows the structure of the mill of the vertical grinding | pulverization classification apparatus which concerns on this embodiment, and an internal pressure measurement position. 本実施形態に関する石炭専砕モードからバイオマス専砕モードへ移行する場合の竪型粉砕分級装置の運用に関わる状態量の時間変化を表す図である。It is a figure showing the time change of the state quantity in connection with operation | use of the vertical grinding | pulverization classification apparatus in the case of transfering from the coal monocrushing mode regarding this embodiment to the biomass monocrushing mode. 本実施形態に関するバイオマス専砕モードから石炭専砕モードへ移行する場合の竪型粉砕分級装置の運用に関わる状態量の時間変化を表す図である。It is a figure showing the time change of the state quantity in connection with operation | use of the vertical grinding | pulverization classification apparatus in the case of transfering from the biomass special crushing mode regarding this embodiment to coal special crushing mode. 本実施形態において石炭からバイオマスへ切り換わる場合、ミル差圧制御はせずに一定のレートで分級機回転数を下げたときの竪型粉砕分級装置運用に関わる状態量の時間変化例を表す図である。In the present embodiment, when switching from coal to biomass, a diagram showing a time change example of a state quantity related to operation of a vertical crushing and classifying apparatus when the classifier rotational speed is lowered at a constant rate without performing the mill differential pressure control. It is. 本実施形態においてバイオマスから石炭へ切り換える場合、ミル差圧が一定になるように分級機回転数を制御し、切り換え終了後に分級機回転数を石炭専焼時の分級機回転数へ低下させるときの竪型粉砕分級装置運用に関わる状態量の時間変化例を表す図である。In the present embodiment, when switching from biomass to coal, the classifier speed is controlled so that the mill differential pressure is constant, and after switching is completed, the classifier speed is reduced to the classifier speed at the time of coal-only firing. It is a figure showing the example of a time change of the state quantity in connection with type | mold grinding | pulverization classification apparatus operation. 本実施形態において燃料切り換え時におけるミル差圧及び分級機回転数の制御態様を示す図である。It is a figure which shows the control aspect of the mill differential pressure | voltage and classifier rotation speed at the time of fuel switching in this embodiment. 従来技術に関する竪型粉砕分級装置をもつボイラ装置の系統構成を示す図である。It is a figure which shows the system | strain structure of the boiler apparatus which has a vertical grinding | pulverization classification apparatus regarding a prior art.

本発明の実施形態に係る竪型粉砕分級装置をもつボイラ装置の系統構成について、図面を参照しながら以下説明する。本実施形態に関するボイラ装置の系統構成は、石炭焚ボイラにおいてバイオマス混焼を実施するに好適なミル(ミルローラ・ミルテーブルと回転分級機)及びバーナの構成を備えている。すなわち、本実施形態に関するバイオマス混焼の系統構成は、従来技術で用いられていた石炭・バイオマス混焼システムと別異のものではなく、従来システムの特徴であるバイオマスと石炭の共用システムにおいて、通常はバイオマス専用ミルとバイオマス専焼バーナであるが、ミル及びバーナの改造変更なしに、バイオマスから石炭へ又はその逆の自動切換えを効率よく支障なく可能とするシステムである。   A system configuration of a boiler apparatus having a vertical crushing and classifying apparatus according to an embodiment of the present invention will be described below with reference to the drawings. The system configuration of the boiler apparatus according to the present embodiment includes a mill (mill roller / mill table and rotary classifier) and a burner suitable for performing biomass co-firing in a coal fired boiler. That is, the system configuration of biomass co-firing in this embodiment is not different from the coal / biomass co-firing system used in the prior art. Although it is a dedicated mill and a biomass-burning burner, it is a system that enables automatic switching from biomass to coal and vice versa efficiently and without trouble without modification of the mill and burner.

まず、従来技術に関する石炭焚ボイラにおけるバイオマス混焼について、図8を参照しながら説明する。図8には、従来のバイオマス・石炭共用ミル及びバーナを使用した石炭焚きボイラにおけるバイオマス混焼システムを記載している。なお、図8に示すミル24の台数とバーナ25の台数は実機適用時の台数とは一致しておらず、概念的な機能として図示するものである。   First, biomass co-firing in a coal fired boiler related to the prior art will be described with reference to FIG. FIG. 8 shows a biomass co-firing system in a coal-fired boiler using a conventional biomass / coal mill and burner. Note that the number of mills 24 and the number of burners 25 shown in FIG. 8 do not match the number when the actual machine is applied, and are illustrated as conceptual functions.

上述した背景技術欄で記載したように、バイオマス用ミル24は石炭用ミルをバイオマス用に改造したものであり、また、バイオマス用バーナ25は、粗粒のバイオマスが安定燃焼できるように着火を強化したものである。さらに、バイオマスと石炭の属性等を考慮して、バイオマスを取り扱う系統構成は、その内部の酸素濃度を粉塵爆発しない爆発下限以下にして安全性を保つようにしている。   As described in the background section above, the biomass mill 24 is a modified coal mill for biomass, and the biomass burner 25 enhances ignition so that coarse-grained biomass can be stably combusted. It is a thing. Furthermore, considering the attributes of biomass and coal, etc., the system configuration that handles biomass keeps the safety by keeping the oxygen concentration inside it below the lower explosion limit that prevents dust explosion.

背景技術欄で述べた従来技術におけるミルとバーナをボイラ装置に適用した場合、バイオマスの発熱量が石炭より低いことと、バイオマスが石炭と比較して粉砕し難いこと等が要因で、ボイラへの入熱が不足するので、ボイラの100%負荷を維持できなくなるおそれがあり、これを解消するために、別に設置したバイオマス粉砕燃焼システムを追加することが求められていた。また一方で、バイオマス・石炭共用による混焼システムを構築する理由として、省スペースや低コストであることが前提であったので、この前提を満足しさらに混焼率の更なる向上が求められていた。   When the mill and burner in the prior art described in the background art column are applied to a boiler device, the heating value of biomass is lower than that of coal, and it is difficult to pulverize biomass compared to coal. Since the heat input is insufficient, there is a possibility that the boiler 100% load cannot be maintained. In order to solve this problem, it is required to add a separately installed biomass pulverization combustion system. On the other hand, the reason for constructing a mixed combustion system using both biomass and coal was based on the premise of space saving and low cost, so that this premise was satisfied and further improvement of the mixed combustion rate was required.

次に、本発明の実施形態に係る竪型粉砕分級装置をもつボイラ装置の系統構成を用いてバイオマス・石炭の燃料自動切り換え時におけるミル状態量の変化について、図1〜図4を参照しながら以下詳細に説明する。   Next, with reference to FIGS. 1 to 4, changes in the mill state quantity at the time of automatic fuel / coal switching of biomass / coal using the system configuration of the boiler apparatus having the vertical crushing and classifying apparatus according to the embodiment of the present invention. This will be described in detail below.

図1は本発明の実施形態に係る竪型粉砕分級装置をもつボイラ装置の系統構成を示す図であり、図2は本実施形態に係る竪型粉砕分級装置のミルの構成と内部の圧力測定位置を示す図である。また、図3は本実施形態に関する石炭専砕モードからバイオマス専砕モードへ移行する場合の竪型粉砕分級装置の運用に関わる状態量の時間変化を表す図であり、図4は本実施形態に関するバイオマス専砕モードから石炭専砕モードへ移行する場合の竪型粉砕分級装置の運用に関わる状態量の時間変化を表す図である。ここで、上記の状態量とは(図7に示す「項目」を参照)、詳しくは後述するが、燃料、質量流量、1次空気量、ミル差圧、分級機回転数を云う。   FIG. 1 is a diagram showing a system configuration of a boiler apparatus having a vertical pulverizing and classifying apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing a configuration of a mill and an internal pressure measurement of the vertical pulverizing and classifying apparatus according to the present embodiment. It is a figure which shows a position. Moreover, FIG. 3 is a figure showing the time change of the state quantity in connection with operation | movement of the vertical grinding | pulverization classification apparatus in the case of transfering from the coal monocrushing mode regarding this embodiment to the biomass monocrushing mode, and FIG. 4 is related with this embodiment. It is a figure showing the time change of the state quantity in connection with operation | use of the vertical crushing classification apparatus in the case of transfering from biomass exclusive crushing mode to coal crushing mode. Here, the above-mentioned state quantities (see “items” shown in FIG. 7) refer to fuel, mass flow rate, primary air quantity, mill differential pressure, and classifier rotation speed, as will be described in detail later.

図面において、21はバイオマス用サイロ、22は運炭コンベア、23はバンカ、24はバイオマス用ミル、25はバイオマス用バーナ、26は蒸気発生装置、27は脱硝装置、28は空気予熱器、29は電気集塵機、30は誘引通風機、31は脱硫装置、32は煙突、33は一次通風機、34はダンパ、35はガス再循環通風機、40はロードセル、41はフィーダ、42は演算装置、45は回転分級機モータ、46は自動ボイラ制御装置、47は自動プラント制御装置、をそれぞれ表す。   In the drawing, 21 is a biomass silo, 22 is a coal conveyor, 23 is a bunker, 24 is a biomass mill, 25 is a biomass burner, 26 is a steam generator, 27 is a denitration device, 28 is an air preheater, 29 is Electric dust collector, 30 is an induction fan, 31 is a desulfurizer, 32 is a chimney, 33 is a primary fan, 34 is a damper, 35 is a gas recirculator, 40 is a load cell, 41 is a feeder, 42 is an arithmetic unit, 45 Represents a rotary classifier motor, 46 represents an automatic boiler control device, and 47 represents an automatic plant control device.

図1において、本実施形態における、バイオマス用サイロ21、運炭コンベア22及びバンカ23からバイオマス・石炭共用ミル24を経てバイオマス用バーナ25への燃料経路と、一次通風機33、空気予熱器28及びガス再循環通風機38の燃料搬送用空気経路と、を形成する基本的構成は、図8に示す従来技術のそれと共通している。   In FIG. 1, the fuel path from the biomass silo 21, the coal carrier 22 and the bunker 23 to the biomass burner 25 through the biomass / coal common mill 24, the primary ventilator 33, the air preheater 28, and The basic structure for forming the air passage for fuel conveyance of the gas recirculation ventilator 38 is the same as that of the prior art shown in FIG.

本実施形態に係る竪型粉砕分級装置では、ミルの外に、詳細は後述するが、フィーダ41における燃料の供給量を計測する燃料供給量計測手段と、燃料搬送用空気(1次空気又は気流とも称する)の通るミル24内部の複数点での圧力を計測してその差圧を求める差圧計測手段と、を設け、さらに、この求めた差圧を基にして回転分級機のモータ45の回転数を制御する制御手段である自動ボイラ制御装置46と、差圧計測手段からのミルハウジング内の差圧及びフィーダ41における燃料供給量計測手段からの燃料供給量等を入力として、この入力に基づいて適正な差圧を演算し、計測差圧が適正差圧になるように自動ボイラ制御手段46を通じて回転分級機の回転を増減させて制御する演算装置42と、を備えている。   In the vertical crushing and classifying apparatus according to the present embodiment, in addition to the mill, as will be described in detail later, fuel supply amount measuring means for measuring the amount of fuel supplied in the feeder 41, and fuel conveying air (primary air or airflow) Differential pressure measuring means for measuring pressures at a plurality of points in the mill 24 through which the pressure passes and obtaining the differential pressure, and based on the obtained differential pressure, the motor 45 of the rotary classifier The automatic boiler control device 46, which is a control means for controlling the number of revolutions, the differential pressure in the mill housing from the differential pressure measuring means, the fuel supply amount from the fuel supply amount measuring means in the feeder 41, and the like as inputs. And an arithmetic unit 42 that calculates and controls an appropriate differential pressure on the basis of the rotational classifier through the automatic boiler control means 46 so that the measured differential pressure becomes an appropriate differential pressure.

ここで、差圧計測手段が複数点の圧力を計測し且つその差圧を計算するとしているが、圧力計測と差圧計算とは別個に実施する手段をそれぞれ設けてもよい。図1では、差圧は演算装置42で演算するように図示しているが、差圧計測手段が、ミルの各部位での圧力計測と、この圧力計測による差圧計算とを行って、その結果を演算装置42に送給してもよい。   Here, the differential pressure measuring means measures the pressure at a plurality of points and calculates the differential pressure. However, means for performing the pressure measurement and the differential pressure calculation separately may be provided. In FIG. 1, the differential pressure is illustrated to be calculated by the calculation device 42, but the differential pressure measuring means performs pressure measurement at each part of the mill and differential pressure calculation by this pressure measurement. The result may be sent to the computing device 42.

次に、本実施形態に係る竪型粉砕分級装置におけるミル(主として、ミルロール・ミルテーブルと回転分級機とから構成されるものであり、粉砕機とも称する)の構造とミル内部の圧力測定部位について、図2を参照しながら説明する。図2は本実施形態に係る竪型粉砕分級装置におけるミルの構成と内部の圧力測定位置を示す図であり、ミルの簡略構造、静圧測定点、差圧について説明している。ここで、図2は、実際の竪型ミルの構造を正確に反映したものではなく、ミルの構成要素と各々の機能を強調したものである。   Next, regarding the structure of a mill (mainly composed of a mill roll / mill table and a rotary classifier, also referred to as a pulverizer) and a pressure measurement site inside the mill in the vertical pulverization / classification apparatus according to the present embodiment This will be described with reference to FIG. FIG. 2 is a diagram showing the configuration of the mill and the internal pressure measurement position in the vertical crushing and classifying apparatus according to this embodiment, and describes the simplified structure of the mill, the static pressure measurement points, and the differential pressure. Here, FIG. 2 does not accurately reflect the actual structure of the vertical mill, but emphasizes the components and functions of the mill.

図2において、石炭やバイオマスの燃料はミルの上部のフィーダ41から定量供給され、回転テーブル(ミルテーブル)の上部表面でミルローラで粉砕された後、テーブルの回転によって半径方向外部へ搬送され、一次通風機33とガス再循環通風機38から送給されてきた1次空気の流れに同伴されて1次分級部を通過する。1次分級は重力分級なので粗粒は流れに同伴されず、再度テーブル面で粉砕される。   In FIG. 2, coal or biomass fuel is quantitatively supplied from a feeder 41 at the top of the mill, pulverized by a mill roller on the upper surface of a rotary table (mill table), and then conveyed to the outside in the radial direction by the rotation of the table. Passed by the flow of the primary air supplied from the ventilator 33 and the gas recirculation ventilator 38, it passes through the primary classification section. Since the primary classification is gravity classification, the coarse particles are not accompanied by the flow and are pulverized again on the table surface.

所定粒度まで粉砕された微粒粉は2次分級部へ搬送され、さらに細かい粒子のみが回転分級機を通過してバーナ25へ気流搬送される。回転分級機は風力分級であり、粒子は気流による抗力と回転分級機の回転数による遠心力のバランスで分級点が決まる。当然、回転数が高ければ遠心力>抗力になり、細かい粒子しか回転分級機を通過しなくなるので燃料の粒子径は細かくなる。   The fine powder pulverized to a predetermined particle size is conveyed to the secondary classification unit, and only finer particles pass through the rotary classifier and are conveyed to the burner 25 by airflow. The rotating classifier is an air classifier, and the classification point of particles is determined by the balance between the drag force caused by the airflow and the centrifugal force generated by the rotation speed of the rotating classifier. Naturally, if the rotational speed is high, centrifugal force> drag, and only fine particles pass through the rotary classifier, so the particle size of the fuel becomes fine.

図2において、Psは図2に示すような各箇所の静圧でありΔPは差圧を示す。ΔP1はテーブル前後の差圧であり、1次空気量の2乗に比例する。ΔP2はミル内部で循環する粒子群による層高さによるもので、粒子の循環量が多いと大きくなる。ΔP3は、回転分級機部における差圧であり、回転分級機回転数と正の相関があるが、ΔP1,ΔP2と比較すると低い数値になる。   In FIG. 2, Ps is the static pressure at each location as shown in FIG. 2, and ΔP is the differential pressure. ΔP1 is a differential pressure before and after the table, and is proportional to the square of the primary air amount. ΔP2 is due to the layer height of the particles that circulate inside the mill, and increases as the amount of particles circulating increases. ΔP3 is a differential pressure in the rotary classifier, and has a positive correlation with the rotational speed of the rotary classifier, but is a lower value than ΔP1 and ΔP2.

本発明の実施形態において称するミル差圧とは、ΔP2又は(ΔP1+ΔP2)又は(ΔP1+ΔP2+ΔP3)を表す。本来、ΔP2の方が物理現象と合致するが、ミル内部の流れ変動の影響を受けやすく繊細で変動も大きいため、情報処理の手段として、ΔP2に加えて、(ΔP1+ΔP2)及び/又は(ΔP1+ΔP2+ΔP3)を選択することもある。   The mill differential pressure referred to in the embodiment of the present invention represents ΔP2 or (ΔP1 + ΔP2) or (ΔP1 + ΔP2 + ΔP3). Although ΔP2 is more consistent with the physical phenomenon, it is more sensitive to fluctuations in the flow inside the mill, and is sensitive and large. Therefore, as a means of information processing, in addition to ΔP2, (ΔP1 + ΔP2) and / or (ΔP1 + ΔP2 + ΔP3) May be selected.

このように、石炭及びバイオマス粉砕時のミル差圧は、原料種(燃料種)、供給量、粒度、1次空気量の関数となるため、ミル差圧は関数F(原料種、供給量、粒度、1次空気量、他)で予測することが可能である。各々の原料(燃料)に対して ミル差圧が存在するが、燃料切り換え時には混合比率が分からないのでミル差圧許容値を想定し、この数値に対して安全をみた制限差圧を与えて、この制限差圧を制御目標として回転分級機の回転数を変化させるフィードバック制御が考えられる。   Thus, since the mill differential pressure during coal and biomass pulverization is a function of the raw material type (fuel type), the supply amount, the particle size, and the primary air amount, the mill differential pressure is a function F (raw material type, supply amount, It is possible to predict by particle size, primary air amount, etc. There is a mil differential pressure for each raw material (fuel), but since the mixing ratio is not known when the fuel is switched, an allowable mil differential pressure is assumed, and a limited differential pressure for safety is given to this value. A feedback control in which the rotational speed of the rotary classifier is changed using the limited differential pressure as a control target can be considered.

次に、本実施形態においてバイオマス・石炭の燃料自動切り換え時における動作について、以下のように説明する。本実施形態は従来のバイオマス専用ミル・専焼バーナ、そしてこれらを安全に運用するためボイラ排ガス再循環システムから構成され、ミルからバーナに至る系統の酸素濃度をバイオマスの爆発下限酸素濃度以下、又は石炭専焼時の状態量に相当するバイオマスの運用酸素濃度とするシステムを採用している。ここで、ミルとバーナ間の系統の酸素濃度を低下させることで安全性は保たれるが、一方でバーナでの安定着火が困難になるため、バーナについてはバーナ保炎器近傍の酸素濃度を向上して安定着火が可能な従来の公知技術を採用する。   Next, the operation at the time of automatic fuel switching of biomass / coal in the present embodiment will be described as follows. This embodiment is composed of a conventional biomass-only mill and a dedicated combustion burner, and a boiler exhaust gas recirculation system for safely operating these, and the oxygen concentration of the system from the mill to the burner is below the lower explosion limit oxygen concentration of biomass, or coal The system adopts the operating oxygen concentration of biomass equivalent to the state quantity at the time of exclusive firing. Here, safety is maintained by reducing the oxygen concentration in the system between the mill and the burner, but on the other hand, since stable ignition with the burner becomes difficult, the oxygen concentration in the vicinity of the burner flame holder is reduced. The conventional well-known technique which can be improved and stable ignition is adopted.

本実施形態に係る竪型粉砕分級装置の概要は、図8に示す従来の基本的な構成要素を採用した上で、ミル内部のテーブル前後の静圧P0,P1と、回転分級機前後の静圧P2,P3とを監視して、燃料切り換え時には、ミル差圧のうち炭層差圧(図2に示すΔP2)、又は(スロート差圧(図2に示すΔP1)+炭層差圧(図2に示すΔP2))に着目し(図2に示すΔP1+ΔP2+ΔP3も可)、これらが、燃料切り換え終了後の推定値になるように、燃料切り換え中に回転分級機の回転数を自動制御することを特徴とする制御システムである。または、燃料の切り換え開始時刻とその時の差圧、及び切り換え終了推定時刻とその時の差圧における差圧推定値を基に、切り換え中の時刻に対応する適正差圧になるように回転分級機の回転数を自動制御することを特徴とする制御システムである。そして、回転分級機の回転数の安定状況から燃料の切り換え終了信号(燃料切換が終了して時点で当該燃料による燃焼で必要とされる種々の動作制御において求められる制御信号として利用されるもの)を得るようにしたことを特徴とする制御システムである。   The outline of the vertical crushing and classifying apparatus according to the present embodiment is based on the conventional basic components shown in FIG. 8, and the static pressures P0 and P1 before and after the table inside the mill and the static pressure before and after the rotary classifier. The pressures P2 and P3 are monitored, and the coal bed differential pressure (ΔP2 shown in FIG. 2) or (throat differential pressure (ΔP1 shown in FIG. 2)) + coal bed differential pressure (see FIG. (ΔP2 shown in FIG. 2) (ΔP1 + ΔP2 + ΔP3 shown in FIG. 2 is also possible), and the rotational speed of the rotary classifier is automatically controlled during fuel switching so that these become estimated values after the fuel switching ends. Control system. Or, based on the fuel switching start time and the differential pressure at that time, and the estimated differential pressure value at the switching end estimated time and the differential pressure at that time, the rotation classifier is set to an appropriate differential pressure corresponding to the time during switching. It is a control system characterized by automatically controlling the rotation speed. Then, a fuel switching end signal (used as a control signal required in various operation control required for combustion with the fuel at the time when the fuel switching is completed) from the stable state of the rotational speed of the rotary classifier Is a control system characterized in that

次に、本実施形態における燃料切り換え時に発生する事象と、バイオマス・石炭の燃料自動切換の制御システムを適用したとき状態量の変化と、について、図7を用いて説明する。図7は本実施形態において燃料切り換え時におけるミル差圧及び分級機回転数の制御態様を示す図である。
図7(1)は、石炭専砕からバイオマス専砕へ切り換わる場合の状態量を示しており、図3に示す諸事象に対応している。図7(1)において、ミル入力条件について、石炭専砕時の石炭供給量を100とした場合、バイオマス専砕時においては70になる。この理由は、熱量換算で石炭の50%相当を粉砕燃焼することをベースに考えた。
Next, an event that occurs at the time of fuel switching in the present embodiment and a change in state quantity when the control system for automatic fuel switching of biomass and coal is applied will be described with reference to FIG. FIG. 7 is a diagram showing a control mode of the mill differential pressure and the classifier rotation speed at the time of fuel switching in the present embodiment.
FIG. 7 (1) shows the state quantities when switching from coal pulverization to biomass pulverization, and corresponds to the various events shown in FIG. In FIG. 7 (1), regarding the mill input condition, when the coal supply amount at the time of coal pulverization is set to 100, it becomes 70 at the time of biomass pulverization. The reason for this was considered based on the fact that 50% of coal in terms of calorie was pulverized and burned.

バイオマスは木質ペレットを考えた場合、当該燃料は石炭のおおよそ70%の熱量となることから、バイオマスの供給量は50/0.7=70%となる。従って、フィーダも共有可能である。石炭からバイオマスへの切り換えに際して燃料供給質量流量は100%から70%まで低下することになる(フィーダの共有を考慮すると、バイオマスの供給質量流量は70%とせざるを得ない)。ミル入力条件として、燃料搬送ガスである1次空気の流量も、燃料流量低下に応じて低下する。   When biomass is considered to be wood pellets, the amount of heat of the fuel is approximately 70% of that of coal, so the supply amount of biomass is 50 / 0.7 = 70%. Therefore, the feeder can also be shared. When switching from coal to biomass, the fuel supply mass flow rate will fall from 100% to 70% (considering feeder sharing, the biomass supply mass flow rate must be 70%). As a mill input condition, the flow rate of the primary air that is the fuel carrier gas also decreases in accordance with the decrease in the fuel flow rate.

従来技術において、スタート時の燃料切り換え信号(例えば、運炭コンベア22にバイオマスを供給するための信号)を得た直後、実際には燃料の切り換えが開始していない状況が続き、一方でミルへの石炭供給量は低下し始めていることから、テーブル上部の炭層レベルが低くなりミル差圧(ΔP2)は低下し分級機回転数は切り換え前の状態のままとなっている(従来技術では分級機の回転数を制御していないので)。つまり、燃料切り換え中において、本実施形態において実施するミル差圧制御が無い場合には、石炭粉砕時の回転分級機の回転数が維持されることになる。燃料切り換え時においては、石炭とバイオマスが混合した状態でミルに供給されると推定されるので、バイオマスが回転している分級機を通過しないのでミル内に滞留し、ミル差圧は次第に増加する。そして、バイオマスへ完全に切り替わった際にはミル差圧が制限値(例えば、ミルトリップとなる値)を越えることになるとミルトリップとなってしまう。   In the prior art, immediately after obtaining a fuel switching signal at the start (for example, a signal for supplying biomass to the coal conveyor 22), the situation in which the fuel switching has not actually started continues, on the other hand, to the mill Since the coal supply amount of the coal has started to decrease, the coal bed level at the top of the table has decreased, the mill differential pressure (ΔP2) has decreased, and the classifier rotation speed remains unchanged (the classifier in the prior art). Because the number of revolutions is not controlled). That is, when there is no mill differential pressure control performed in this embodiment during fuel switching, the rotational speed of the rotary classifier during coal pulverization is maintained. At the time of fuel switching, it is estimated that coal and biomass are mixed and supplied to the mill, so the biomass does not pass through the rotating classifier, so it stays in the mill and the mill differential pressure gradually increases. . And when it changes to biomass completely, if a mill differential pressure exceeds a limit value (for example, value which becomes a mill trip), it will become a mill trip.

これに対して、本実施形態では、ミル差圧を監視しこれによる分級機の回転数を制御して、ミル差圧の適正制御を組み込むことでミル差圧は安定する。バイオマス専砕の場合には回転分級機はほぼ停止とする。   On the other hand, in the present embodiment, the mill differential pressure is stabilized by monitoring the mill differential pressure, controlling the rotational speed of the classifier based on this, and incorporating appropriate control of the mill differential pressure. In the case of biomass pulverization, the rotary classifier is almost stopped.

繰り返すと、燃料切り換え時には、分級機回転数を0とすれば燃料切り換え時に石炭の粗粒がバーナへ供給されることになり、着火不安定となって、未燃分増加につながることから、本実施形態において、燃料切り換え中は分級機回転数を0にするのではなく、ミル差圧の制限値以下の値を差圧目標値として、分級機回転数を自動制御する。   In other words, if the classifier speed is set to 0 at the time of fuel switching, coarse coal particles will be supplied to the burner at the time of fuel switching, resulting in unstable ignition and increased unburned fuel. In the embodiment, the classifier rotational speed is not automatically set to 0 during fuel switching, but the classifier rotational speed is automatically controlled with a value equal to or lower than the limit value of the mill differential pressure as a differential pressure target value.

そして、燃料が石炭からバイオマスへ完全に切り換われば、分級機回転数が一定になるのでその時点を真の燃料切り換え点として、差圧制御を終了する。その時点で回転分級機回転数が>0であれば、回転分級機回転数を0に切り換えて、ミル差圧が安定するのを自動監視し、安定した時点で、完全に燃料が切り換わったと評価して、切り換え信号を出力する。ここで、切り換え信号は、燃料の完全切り換えに伴って、バイオマス燃焼に必要とされる諸々の動作態様を実施する上での制御信号として活用されるものである。   When the fuel is completely switched from coal to biomass, the classifier rotational speed becomes constant. Therefore, the differential pressure control is terminated with that point as the true fuel switching point. If the rotation classifier rotation speed is> 0 at that time, the rotation classifier rotation speed is switched to 0 to automatically monitor the stabilization of the mill differential pressure, and the fuel is completely switched at that time. Evaluate and output a switching signal. Here, the switching signal is used as a control signal for carrying out various operation modes required for biomass combustion with complete fuel switching.

次に、本実施形態におけるバイオマス専砕から石炭専砕への切り換えについて、図7(2)を用いて説明する。図7(2)に示す諸態様は図4に示す図示内容に対応する。切り換え中における燃料流量と1次空気量は、石炭からバイオマスへの切り換え時の逆である。   Next, the switching from biomass monolithic to coal monopoly in this embodiment will be described with reference to FIG. Various aspects shown in FIG. 7B correspond to the contents shown in FIG. The fuel flow rate and primary air amount during switching are the reverse of switching from coal to biomass.

初期状態で回転分級機は停止もしくは微動であり分級機能は無い。切り換え中において、石炭と1次空気を目標石炭時の条件へ向けて増加する。ミル差圧はミル内部のバイオマス粉砕粒子の滞留が減少するので低下する。しかしながら、石炭専砕時のミル差圧以下にする必要は無く、燃焼に必要な粒度を確保したまま、燃料切り換えを実施する必要がある。   In the initial state, the rotary classifier is stopped or finely moved and has no classification function. During switching, coal and primary air are increased towards the target coal conditions. The mill differential pressure decreases because the residence of the pulverized biomass particles inside the mill decreases. However, it is not necessary to make the pressure below the mill differential pressure during coal pulverization, and it is necessary to switch the fuel while ensuring the particle size necessary for combustion.

従って、ミル差圧は、石炭専砕時のそれ以下になる必要性は無いので、石炭専砕時の差圧を維持するよう制御する。   Therefore, the mill differential pressure does not need to be lower than that at the time of coal pulverization, so control is performed to maintain the pressure differential at the time of coal pulverization.

次に、燃料切り換え時における竪型粉砕分級装置の運用に関わる状態量の時系列変化について、図3と図4を参照しながら説明する。図3は石炭からバイオマスへの切り換え過程を示し、図4はバイオマスから石炭への切り換え過程を示す。   Next, the time series change of the state quantity related to the operation of the vertical crushing and classifying apparatus at the time of fuel switching will be described with reference to FIG. 3 and FIG. FIG. 3 shows the process of switching from coal to biomass, and FIG. 4 shows the process of switching from biomass to coal.

まず、図4のバイオマス専砕から石炭専砕への切り換え状態について説明する。バイオマス専砕時の燃料供給量は石炭時の70%なので切り換え時、次第に燃料の供給量を100まで増加することになる。しかし、ミル差圧(ΔP2)はバイオマス専砕条件では非常に高い状態であることから(図3でバイオマス専砕の差圧ΔP2が高いことを参照)、切り換え開始直後には実際上燃料がバイオマスから石炭に切り換わっていないので、燃料流量を増加することができない。従って、ミル差圧が低下し始める点を、真の燃料切り換え時刻として、この時点から推定燃料切り換え終了時刻まで石炭の燃料供給量を増加する。   First, the switching state from the biomass monocrushing to the coal monocrushing in FIG. 4 will be described. Since the amount of fuel supplied during biomass pulverization is 70% of that at coal, the amount of fuel supplied gradually increases to 100 when switching. However, since the mill differential pressure (ΔP2) is very high under the biomass digestion conditions (refer to FIG. 3 that the differential pressure ΔP2 for biomass digestion is high), the fuel is actually the biomass immediately after the start of switching. Since it has not switched to coal, the fuel flow rate cannot be increased. Therefore, the point at which the mill differential pressure begins to decrease is regarded as the true fuel switching time, and the coal fuel supply amount is increased from this point to the estimated fuel switching end time.

ミル差圧が仮に増加するようであれば、石炭の燃料供給量をホールドし、ミル差圧が石炭専砕時のそれに一致した時点で、その差圧を維持するように回転分級機の回転数を増加する。そして、回転分級機の回転数が安定した時点を燃料切り換え終了と判断して、燃料切り換え終了信号を出力する。   If the mill differential pressure seems to increase, hold the coal fuel supply, and when the mill differential pressure coincides with that during coal pulverization, the rotational speed of the rotary classifier will maintain that differential pressure. Increase. Then, when the rotational speed of the rotary classifier is stabilized, it is determined that the fuel switching is completed, and a fuel switching completion signal is output.

ここで、図4を用いて本実施形態に係る竪型粉砕分級装置の具体的構成について以下説明する。バイオマス専焼時と石炭専焼時における差圧は、フィーダ41に設けられた燃料供給計測手段で計測されたそれぞれの燃料供給量を関数として予測可能なものであり、差圧予測値としてそれぞれ算出され得る。そして、それぞれ算出される差圧予測値をもつそれぞれの燃料の切り換え時においては、燃料が混合されていて混合燃料の差圧予測値を算出することは困難であるので、燃料の切り換え中(切り換えモード)における適正差圧は、石炭への切り換え予想終了時刻における予測可能な石炭専焼時における差圧と、バイオマスから石炭への燃料切り換え開始時刻での計測された差圧と、に基づいて演算する。   Here, the specific configuration of the vertical crushing and classifying apparatus according to the present embodiment will be described below with reference to FIG. The differential pressure between the biomass firing and the coal firing can be predicted as a function of each fuel supply amount measured by the fuel supply measuring means provided in the feeder 41, and can be calculated as a differential pressure prediction value. . At the time of switching of each fuel having the calculated differential pressure prediction value, it is difficult to calculate the differential pressure prediction value of the mixed fuel because the fuel is mixed. Mode) is calculated based on the predictable differential pressure at the time of coal burning at the expected end time of switching to coal and the measured differential pressure at the start time of fuel switching from biomass to coal. .

図4の例では、切り換えモードにおいて差圧が漸減するカーブをもつ適正差圧を演算しており、この適正差圧と切り換えモードにおいても計測される計測差圧とを比較して、計測差圧が適正差圧になるように回転分級機の回転を制御するのである。図4の例では、回転分級機の回転数は漸増するカーブとなるように制御される(実際の回転数は点線のようになる)。換言すると、図4に示すように、燃料切り換え中において、計測した差圧ΔP2と、燃料供給量とを基にして演算された適正差圧と、を求め、差圧ΔP2が適正差圧になるように分級機の回転数を漸増するように制御する。   In the example of FIG. 4, an appropriate differential pressure having a curve in which the differential pressure gradually decreases in the switching mode is calculated, and the measured differential pressure is compared with the measured differential pressure measured in the switching mode. The rotation of the rotary classifier is controlled so that the pressure difference becomes an appropriate differential pressure. In the example of FIG. 4, the rotational speed of the rotary classifier is controlled to be a gradually increasing curve (the actual rotational speed is as indicated by a dotted line). In other words, as shown in FIG. 4, during the fuel switching, the measured differential pressure ΔP2 and the appropriate differential pressure calculated based on the fuel supply amount are obtained, and the differential pressure ΔP2 becomes the appropriate differential pressure. In this way, the classifier is controlled to increase gradually.

次に、石炭からバイオマスへの燃料切り換えに関する制御プロセスについて図3を用いて説明する。バイオマスの燃料の供給については、燃料の切り換え開始信号と燃料バンカレベルと燃料供給信号とにより、予想燃料切り換え終了時刻を演算推定する。そして、当該時刻に向けて燃料供給量を低下する。燃料搬送用空気も燃料流量に対応して減少する。回転分級機の回転数は切り換え直後は維持する。   Next, a control process relating to fuel switching from coal to biomass will be described with reference to FIG. Regarding the supply of biomass fuel, the estimated fuel switching end time is calculated and estimated from the fuel switching start signal, the fuel bunker level, and the fuel supply signal. Then, the fuel supply amount is reduced toward the time. The fuel transfer air also decreases corresponding to the fuel flow rate. The rotation speed of the rotary classifier is maintained immediately after switching.

そして、ミル差圧が増加し始めた時点を真の燃料切り換え開始時刻として、この時点から、ミルの許容差圧を目標差圧とする差圧適正制御を開始する。回転分級機の回転数を差圧適正制御になるように変化させる。分級機回転数は減少して安定した点が真の燃料切り換え終了点である。この時点ではミル差圧は、バイオマス専砕時の差圧レベルより高いので、ミル差圧制御を終了した後、分級機回転数を0とする。この操作に対応して、ミル差圧は、バイオマス専砕時の定常差圧に収束する。そして、ミル差圧が安定した点を燃料切り換え終了時刻として信号出力する。   Then, the time when the mill differential pressure starts to increase is set as the true fuel switching start time, and from this time, the differential pressure appropriate control is started with the allowable differential pressure of the mill as the target differential pressure. The rotation speed of the rotary classifier is changed so that the differential pressure is controlled appropriately. The point at which the classifier speed decreases and stabilizes is the true fuel switching end point. At this time, the mill differential pressure is higher than the differential pressure level at the time of biomass exclusive crushing, so the classifier rotation speed is set to 0 after the mill differential pressure control is finished. Corresponding to this operation, the mill differential pressure converges to a steady differential pressure during biomass crushing. Then, a signal is outputted as the fuel switching end time at the point where the mil differential pressure is stabilized.

図4に示す例では、真の燃料切り換え開始時刻での燃料の差圧と、燃料切り換え予想終了時刻におけるバイオマス専焼時の目標許容差圧と、に基づいて適正差圧を演算し、この適正差圧と切り換え中における計測された計測差圧とを比較して、計測差圧が適正差圧になるように回転分級機の回転を制御するのである。   In the example shown in FIG. 4, an appropriate differential pressure is calculated based on the differential pressure of fuel at the true fuel switching start time and the target allowable differential pressure at the time of exclusive combustion of biomass at the expected end time of fuel switching. The rotation of the rotary classifier is controlled so that the measured differential pressure becomes an appropriate differential pressure by comparing the pressure and the measured differential pressure during switching.

次に、燃料切り換え時における制御システムの他の構成例を採用することによる竪型粉砕分級装置の運用に関わる状態量の時系列変化について、図5と図6を参照しながら以下説明する。図5は本実施形態において石炭からバイオマスへ切り換わる場合、ミル差圧制御はせずに一定のレートで分級機回転数を下げたときの竪型粉砕分級装置運用に関わる状態量の時間変化例を表す図であり、図6は本実施形態においてバイオマスから石炭へ切り換える場合、ミル差圧が一定になるように分級機回転数を制御し、切り換え終了後に分級機回転数を石炭専焼時の分級機回転数へ低下させるときの竪型粉砕分級装置運用に関わる状態量の時間変化例を表す図である。   Next, the time series change of the state quantity related to the operation of the vertical crushing and classifying apparatus by adopting another configuration example of the control system at the time of fuel switching will be described below with reference to FIGS. 5 and 6. FIG. 5 shows a time change example of state quantities related to the operation of the vertical pulverization classifier when the classifier rotation speed is lowered at a constant rate without controlling the mill differential pressure when switching from coal to biomass in the present embodiment. FIG. 6 is a diagram showing the classification, and when switching from biomass to coal in this embodiment, the classifier rotation speed is controlled so that the mill differential pressure becomes constant, and after the switching is completed, the classifier rotation speed is classified at the time of coal combustion. It is a figure showing the example of a time change of the state quantity in connection with a vertical crushing and classifying apparatus operation when making it reduce to machine rotation speed.

図5は、図3と同様に石炭からバイオマスへの燃料切り換え時の状態量を示している。図3と異なるのは燃料切り換え時に、ミル差圧を適正制御するのではなく、分級機回転数を一定のレートで下げ、目標差圧を越えるようであれば、分級機回転数をさらに下げる制御をする。この制御方式は、ミル差圧適正制御方式よりも制御性で安定しているが、分級機による燃料粒度の調整面では、図3に示すミル差圧適正制御方式より劣る。図5において、差圧ΔP2で示す点線のカーブは、実際上で予想される特性を表している(分級機回転数を一定のレートで低下制御させたときの実際に予想される差圧の特性を表す)。   FIG. 5 shows the state quantities at the time of fuel switching from coal to biomass as in FIG. The difference from Fig. 3 is not to properly control the mill differential pressure at the time of fuel switching, but to reduce the classifier speed at a constant rate and further lower the classifier speed if the target differential pressure is exceeded. do. Although this control method is more stable and controllable than the proper control method for mill differential pressure, it is inferior to the proper control method for mill differential pressure shown in FIG. In FIG. 5, the dotted curve indicated by the differential pressure ΔP2 represents the characteristics that are actually expected (the characteristics of the differential pressure that are actually expected when the classifier rotational speed is controlled to decrease at a constant rate). Represents).

図6は、バイオから石炭への切り換えの際、切り換え終了まで、ミル差圧を一定制御する場合を示す。この制御方式は図4の制御方式と比較して石炭の燃料粒度では優れるが、切り換え時間がかかる。   FIG. 6 shows a case where the mill differential pressure is controlled to be constant until the end of switching when switching from bio to coal. This control method is superior in coal fuel particle size compared to the control method of FIG.

以上述べたように、本実施形態に係る竪型粉砕分級装置の概要は、基本的に切り換え後の燃料(石炭又はバイオマス)の供給量と粒度などから、ミル差圧を予測して、切り換え終了後にはその所定差圧に相当する分級機回転数になるように制御するものである。   As described above, the outline of the vertical crushing and classifying apparatus according to the present embodiment is basically determined by predicting the mill differential pressure from the supply amount and the particle size of the fuel (coal or biomass) after the switching, and the switching is completed. Thereafter, control is performed so that the classifier speed corresponds to the predetermined differential pressure.

燃料切り換え時において発生する一般的な事象について説明すると、バイオマス専砕状態から石炭専砕へ切り換わる場合、バイオマス専用粉砕時のミル条件のままでミル条件を変えずに石炭が投入された場合、バイオマス粉砕時では、ミル内部からバーナへ速やかにバイオマス微粉が排出されるように回転分級機の機能を無くしている(分級機の回転数を0)ので、石炭では、粗粒がバーナへ流れて燃焼性が悪化する。   Explaining the general events that occur at the time of fuel switching, when switching from a biomass-pulverized state to coal-only coal, when coal is input without changing the mill conditions while maintaining the mill conditions at the time of biomass-only grinding, At the time of biomass pulverization, the function of the rotary classifier is eliminated so that biomass fine powder is quickly discharged from the inside of the mill to the burner (the rotation speed of the classifier is 0), so in coal, coarse particles flow to the burner. Combustibility deteriorates.

一方、逆に、石炭専砕条件からバイオマス専砕条件へ移行した場合、回転分級機による分級機能を残したままバイオマスを粉砕することになるため、粉砕されにくいバイオマスの粗粒子がミル内部で循環することになり(分級機が回転しているため軽量であるボイオマスは分級機を通過しないため)、ミル差圧とミル動力が増加しミルトリップを引き起こすことになる。   On the other hand, when shifting from the coal pulverization condition to the biomass pulverization condition, the biomass is pulverized while leaving the classification function by the rotary classifier. (Because the classifier is rotating, the lightweight biomass does not pass through the classifier), the mill differential pressure and the mill power increase, causing a mill trip.

そこで、切り換え時においてはミル運転に支障(ミルトリップ)がないように制御することが重要であり、バイオマスと石炭が混合した場合、バンカからのそれぞれの燃料の排出状態を正確に予測するのが困難であることから、ミルの運転状態量を監視し、運転状態量のうちミル差圧を適正とする制御として、最も効果的である回転分級機の回転数を変えて、搬送ガスのミル内部における差圧を適正とすることが、本実施形態の特徴である。具体的には、ミル差圧の内で、搬送ガスがミル内部に噴出供給される場合のスロート差圧ΔP1とミル内部の燃料粒子の流動に関わる差圧(ΔP2)を加えたミル差圧、又はミル内部の燃料粒子の流動に関わる差圧に着目してこの差圧を適正にしようとするものである。   Therefore, it is important to control the mill operation so that there is no hindrance (mill trip) at the time of switching, and when biomass and coal are mixed, it is important to accurately predict the state of fuel discharge from the bunker. Because it is difficult, the operation state quantity of the mill is monitored, and as the control to make the mill differential pressure appropriate among the operation state quantity, the rotation speed of the rotary classifier that is most effective is changed, and the inside of the carrier gas inside the mill It is a feature of this embodiment that the differential pressure at is appropriate. Specifically, among the mil differential pressure, a mil differential pressure obtained by adding a throat differential pressure ΔP1 when carrier gas is jetted and supplied to the inside of the mill and a differential pressure (ΔP2) related to the flow of fuel particles inside the mill, Or, it is intended to make this differential pressure appropriate by paying attention to the differential pressure related to the flow of fuel particles inside the mill.

以上説明したいずれの制御方式についてもミル差圧制御という点では共通しているが、長短があるので運用性を確認した上で制御方式を選択できる方式とする。もしくは、あらかじめ、シミュレーションか大型の試験設備でバイオマス別の特性を把握した後に制御方式を選択するようにしてもよい。   Any of the control methods described above is common in terms of mill differential pressure control, but since it is long and short, it is assumed that the control method can be selected after confirming operability. Or you may make it select a control system, after grasping | ascertaining the characteristic according to biomass previously by simulation or a large sized test facility.

さらに、バイオマス種によっては、著しく粉砕特性が異なるものが存在するので、燃料供給量を2段階に切り分けて、燃料を切り換える方式への対応も可能とする。つまり、発熱量によって異なるが、おおよそ石炭100に対してバイオマスは70の質量流量比で投入熱量が石炭の1/2となる。これは、ミルの性能からの制限なので、将来変わる可能性もあるがこの条件を基準として考える。   Furthermore, since some biomass species have significantly different crushing characteristics, it is possible to cope with a method of switching fuel by dividing the fuel supply amount into two stages. That is, although it differs depending on the calorific value, the biomass has a mass flow ratio of 70 with respect to the coal 100 and the input heat amount becomes 1/2 that of coal. This is a limitation due to the performance of the mill and may change in the future.

石炭100からバイオマス70へ切替える場合、石炭を100から70へ低下したあと、同じ質量流量を維持して燃料を切り換える。切り換え操作は図3と図5に準ずる。また、バイオマス70から石炭100へ切替える場合は、一旦石炭70で切り換えた後に、石炭100へ質量流量を増加する。   When switching from coal 100 to biomass 70, after the coal is reduced from 100 to 70, the fuel is switched while maintaining the same mass flow rate. The switching operation is in accordance with FIGS. Further, when switching from biomass 70 to coal 100, the mass flow rate is increased to coal 100 after switching with coal 70 once.

このような2段階切り替えに関しては、図に示していないが、変化因子を少なくすれば、安定化につながるので当然の考え方であり、バイオマス種及び石炭の特性に応じて、1段階での直接切り替えの可能性もあり、制御システムの適用において双方が可能である。   Although such a two-stage switching is not shown in the figure, it is a natural idea that reducing the change factors leads to stabilization, and direct switching in one stage depending on the characteristics of the biomass species and coal. Both are possible in the application of the control system.

21 バイオマス用サイロ
22 運炭コンベア
23 バンカ
24 バイオマス用ミル
25 バイオマス用バーナ
26 蒸気発生装置
27 脱硝装置
28 空気予熱器
29 電気集塵機
30 誘引通風機
31 脱硫装置
32 煙突
33 一次通風機
34 ダンパ
35 ガス再循環通風機
40 ロードセル
41 フィーダ
42 演算装置
45 回転分級機モータ
46 自動ボイラ制御装置
47 自動プラント制御装置
21 Biomass silo 22 Coal conveyor 23 Bunker 24 Biomass mill 25 Biomass burner 26 Steam generator 27 Denitration device 28 Air preheater 29 Electric dust collector 30 Induction ventilator 31 Desulfurization device 32 Chimney 33 Primary ventilator 34 Damper 35 Gas re- Circulating ventilator 40 Load cell 41 Feeder 42 Computing device 45 Rotary classifier motor 46 Automatic boiler controller 47 Automatic plant controller

Claims (6)

石炭とバイオマスからなる燃料を供給するフィーダと、
前記燃料を回転テーブルと粉砕子との噛み込みによって粉砕する粉砕機と、
前記回転テーブルの外周側のスロートから噴き上げる気流によって搬送された粉砕物を分級する回転フィンをもつ回転分級機と、
前記粉砕機と前記回転分級機とを収容するハウジングと、を備えた竪型粉砕分級装置であって、
前記フィーダには燃料の供給量を計測する燃料供給量計測手段を設け、
前記回転分級機の回転を制御する回転分級機制御手段を設け、
前記ハウジング内で、前記気流の流れる前記スロートの上流側、前記スロートの下流側、前記回転分級機の入口側、前記回転分級機の出口側、の内の少なくとも前記スロートの下流側と前記回転分級機の入口側とで圧力を計測し当該計測圧力の部位間の圧力差を計測する差圧計測手段を設け、
前記差圧計測手段で計測された前記計測圧力部位間の圧力差である差圧と、前記燃料供給量計測手段で計測された燃料供給量をもとに計算された適正差圧と、に基づいて、前記計測された差圧が前記適正差圧になるように前記回転分級機制御手段を通じて前記回転分級機の回転を増減制御する演算装置を設ける
ことを特徴とする竪型粉砕分級装置。
A feeder for supplying fuel comprising coal and biomass;
A pulverizer for pulverizing the fuel by biting a rotary table and a pulverizer;
A rotating classifier having rotating fins for classifying the pulverized material conveyed by the air flow spouted from the throat on the outer peripheral side of the rotating table;
A vertical pulverizing and classifying device comprising a housing for accommodating the pulverizer and the rotary classifier,
The feeder is provided with a fuel supply amount measuring means for measuring a fuel supply amount,
A rotation classifier control means for controlling the rotation of the rotation classifier is provided;
In the housing, at least the downstream side of the throat and the rotational classification of the upstream side of the throat through which the airflow flows, the downstream side of the throat, the inlet side of the rotary classifier, and the outlet side of the rotary classifier A differential pressure measuring means for measuring the pressure at the inlet side of the machine and measuring the pressure difference between the measured pressure parts is provided,
Based on a differential pressure that is a pressure difference between the measured pressure sites measured by the differential pressure measuring means and an appropriate differential pressure calculated based on the fuel supply amount measured by the fuel supply amount measuring means. And a vertical pulverizing and classifying device, characterized in that an arithmetic unit is provided for controlling the rotation of the rotary classifier through the rotary classifier control means so that the measured differential pressure becomes the appropriate differential pressure.
請求項1において、
前記演算装置は、バイオマスの専焼から石炭の専焼に切り換える切り換えモードのときに、石炭専焼に達するときの石炭の燃料供給量を基にした予測差圧値を算出し、算出された予測差圧値と燃料切り換え開始時刻での計測差圧とから切り換えモードに亘る適正差圧を求め、前記切り換えモード中において前記計測された差圧が前記適正差圧になるように前記回転分級機の回転を増加制御する
ことを特徴とする竪型粉砕分級装置。
In claim 1,
The calculation device calculates a predicted differential pressure value based on the amount of fuel supplied to the coal when reaching the coal burning, in the switching mode for switching from the biomass burning to the coal burning, and the calculated predicted pressure difference The appropriate differential pressure over the switching mode is obtained from the measured differential pressure at the fuel switching start time, and the rotation of the rotary classifier is increased so that the measured differential pressure becomes the appropriate differential pressure during the switching mode. A vertical crushing and classifying device characterized by being controlled.
請求項1において、
前記演算装置は、石炭の専焼からバイオマスの専焼に切り換える切り換えモードのときに、バイオマス専焼に達するときのバイオマスの燃料供給量を基にした予測差圧値を算出し、算出された予測差圧値から切り換えモードにおける目標制御差圧を設定し、燃料切り換え開始時刻での計測差圧と前記目標制御差圧とから切り換えモードに亘る適正差圧を求め、前記切り換えモード中において前記計測された差圧が前記適正差圧になるように前記回転分級機の回転を減少制御する
ことを特徴とする竪型粉砕分級装置。
In claim 1,
The arithmetic unit calculates a predicted differential pressure value based on a fuel supply amount of biomass when reaching a biomass-only firing in a switching mode for switching from a coal-fired to a biomass-only firing, and the calculated predicted differential pressure value From the measured differential pressure at the fuel switching start time and the target control differential pressure to obtain an appropriate differential pressure over the switching mode, and the measured differential pressure during the switching mode. The vertical crushing and classifying apparatus is characterized in that the rotation of the rotary classifier is decreased and controlled so that the pressure becomes the appropriate differential pressure.
請求項2または3において、
前記演算装置は、前記計測された差圧が安定し且つ前記回転分級機の回転数が安定した一定値となった時点を以て燃料切り換え終了信号を出力する
ことを特徴とする竪型粉砕分級装置。
In claim 2 or 3,
The vertical pulverizing and classifying device, wherein the arithmetic device outputs a fuel switching end signal when the measured differential pressure is stable and the rotational speed of the rotary classifier becomes a stable and constant value.
請求項2において、
前記演算装置は、前記適正差圧になるように前記回転分級機の回転を増減制御する代わりに、前記切り換えモードの開始時刻から終了時刻までに亘る差圧一定値を求め、前記切り換えモード中において前記計測された差圧が前記差圧一定値になるように前記回転分級機の回転を増加制御する
ことを特徴とする竪型粉砕分級装置。
In claim 2,
The arithmetic unit obtains a constant differential pressure value from the start time to the end time of the switching mode instead of increasing / decreasing the rotation of the rotary classifier so as to be the appropriate differential pressure, and during the switching mode The vertical crushing and classifying device characterized in that the rotation of the rotary classifier is increased and controlled so that the measured differential pressure becomes the differential pressure constant value.
請求項3において、
前記演算装置は、前記適正差圧になるように前記回転分級機の回転を増減制御する代わりに、前記回転分級機の回転数を一定レートで低下させ、前記計測された差圧が前記目標制御差圧を超えるときには前記回転分級機の回転数をさらに低下させる制御をする
ことを特徴とする竪型粉砕分級装置。
In claim 3,
Instead of increasing / decreasing the rotation of the rotary classifier so as to achieve the appropriate differential pressure, the arithmetic device reduces the rotational speed of the rotary classifier at a constant rate, and the measured differential pressure is used as the target control. When the pressure exceeds the differential pressure, the vertical pulverizing / classifying apparatus is further controlled to further reduce the rotational speed of the rotary classifier.
JP2013126857A 2013-06-17 2013-06-17 Vertical crushing and classifying equipment Active JP6218448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126857A JP6218448B2 (en) 2013-06-17 2013-06-17 Vertical crushing and classifying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126857A JP6218448B2 (en) 2013-06-17 2013-06-17 Vertical crushing and classifying equipment

Publications (2)

Publication Number Publication Date
JP2015001347A true JP2015001347A (en) 2015-01-05
JP6218448B2 JP6218448B2 (en) 2017-10-25

Family

ID=52295978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126857A Active JP6218448B2 (en) 2013-06-17 2013-06-17 Vertical crushing and classifying equipment

Country Status (1)

Country Link
JP (1) JP6218448B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050284A (en) 2017-11-02 2019-05-10 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Mill and method of operating the mill
CN110404650A (en) * 2019-07-04 2019-11-05 国能绿色能源股份有限公司 A kind of safe and efficient coal mill system and its method for preparing lignite
CN111482242A (en) * 2019-01-25 2020-08-04 三菱日立电力系统株式会社 Solid fuel pulverizer, power generation facility provided with same, and control method therefor
JP2020116537A (en) * 2019-01-25 2020-08-06 三菱日立パワーシステムズ株式会社 Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
CN111558432A (en) * 2019-02-13 2020-08-21 三菱日立电力系统株式会社 Solid fuel pulverizer, power generation facility provided with same, and solid fuel pulverizing method
JP2020133930A (en) * 2019-02-13 2020-08-31 三菱日立パワーシステムズ株式会社 Solid fuel grinder, power plant comprising the same, and solid fuel grinding method
JP2021007898A (en) * 2019-06-28 2021-01-28 三菱パワー株式会社 Crushing device, boiler system, and operation method of crushing device
CN112387368A (en) * 2019-08-19 2021-02-23 三菱动力株式会社 Solid fuel pulverizer, method for controlling same, and power generation facility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029515A (en) * 1983-07-27 1985-02-14 Toshiba Corp Combustion controller
JPH06254421A (en) * 1993-03-02 1994-09-13 Babcock Hitachi Kk Method and apparatus for pulverizing coal
JPH08252476A (en) * 1995-03-16 1996-10-01 Ishikawajima Harima Heavy Ind Co Ltd Mill coal delivery characteristic correction device
JPH1085624A (en) * 1997-10-27 1998-04-07 Babcock Hitachi Kk Controller for vertical mill
JP2001347176A (en) * 2000-06-07 2001-12-18 Babcock Hitachi Kk Vertical type mill
JP2007127370A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Control method of atomized fuel machine and atomized fuel machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029515A (en) * 1983-07-27 1985-02-14 Toshiba Corp Combustion controller
JPH06254421A (en) * 1993-03-02 1994-09-13 Babcock Hitachi Kk Method and apparatus for pulverizing coal
JPH08252476A (en) * 1995-03-16 1996-10-01 Ishikawajima Harima Heavy Ind Co Ltd Mill coal delivery characteristic correction device
JPH1085624A (en) * 1997-10-27 1998-04-07 Babcock Hitachi Kk Controller for vertical mill
JP2001347176A (en) * 2000-06-07 2001-12-18 Babcock Hitachi Kk Vertical type mill
JP2007127370A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Control method of atomized fuel machine and atomized fuel machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175601B2 (en) 2017-11-02 2022-11-21 三菱重工業株式会社 Pulverizer and operation method of the pulverizer
JP2019084476A (en) * 2017-11-02 2019-06-06 三菱日立パワーシステムズ株式会社 Crusher and operation method for crusher
KR20190050284A (en) 2017-11-02 2019-05-10 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Mill and method of operating the mill
JP7274876B2 (en) 2019-01-25 2023-05-17 三菱重工業株式会社 Solid fuel crusher, power plant equipped with same, and control method for solid fuel crusher
CN111482242A (en) * 2019-01-25 2020-08-04 三菱日立电力系统株式会社 Solid fuel pulverizer, power generation facility provided with same, and control method therefor
JP2020116537A (en) * 2019-01-25 2020-08-06 三菱日立パワーシステムズ株式会社 Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
JP7362253B2 (en) 2019-01-25 2023-10-17 三菱重工業株式会社 Solid fuel pulverizer, power plant equipped with the same, and method for controlling the solid fuel pulverizer
JP2020116536A (en) * 2019-01-25 2020-08-06 三菱日立パワーシステムズ株式会社 Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
KR102533816B1 (en) * 2019-02-13 2023-05-17 미츠비시 파워 가부시키가이샤 Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
JP7282540B2 (en) 2019-02-13 2023-05-29 三菱重工業株式会社 Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
CN111558432A (en) * 2019-02-13 2020-08-21 三菱日立电力系统株式会社 Solid fuel pulverizer, power generation facility provided with same, and solid fuel pulverizing method
JP7341669B2 (en) 2019-02-13 2023-09-11 三菱重工業株式会社 Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
KR20220103684A (en) * 2019-02-13 2022-07-22 미츠비시 파워 가부시키가이샤 Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
JP2020133930A (en) * 2019-02-13 2020-08-31 三菱日立パワーシステムズ株式会社 Solid fuel grinder, power plant comprising the same, and solid fuel grinding method
JP2020133929A (en) * 2019-02-13 2020-08-31 三菱日立パワーシステムズ株式会社 Solid fuel grinder, power plant comprising the same, and solid fuel grinding method
JP7423204B2 (en) 2019-06-28 2024-01-29 三菱重工業株式会社 Grinding equipment, boiler system, and method of operating the grinding equipment
JP2021007898A (en) * 2019-06-28 2021-01-28 三菱パワー株式会社 Crushing device, boiler system, and operation method of crushing device
CN110404650A (en) * 2019-07-04 2019-11-05 国能绿色能源股份有限公司 A kind of safe and efficient coal mill system and its method for preparing lignite
CN110404650B (en) * 2019-07-04 2021-04-27 国能绿色能源股份有限公司 Coal grinding system and method for safely and efficiently preparing lignite
JP7317631B2 (en) 2019-08-19 2023-07-31 三菱重工業株式会社 Solid fuel crusher, power plant, and solid fuel crusher control method
JP2021030114A (en) * 2019-08-19 2021-03-01 三菱パワー株式会社 Solid fuel pulverization device, power plant and method for controlling solid fuel pulverization device
CN112387368A (en) * 2019-08-19 2021-02-23 三菱动力株式会社 Solid fuel pulverizer, method for controlling same, and power generation facility

Also Published As

Publication number Publication date
JP6218448B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6218448B2 (en) Vertical crushing and classifying equipment
JP6180218B2 (en) Solid fuel combustion equipment
US20090308292A1 (en) Coal burning boiler apparatus
JP5014044B2 (en) Solid fuel pulverization supply apparatus and method
KR102045781B1 (en) Grinding and Drying Plant
JP4801552B2 (en) Biomass crusher and control method thereof
JP2009291692A (en) Biomass grinder and method of controlling this grinder
JP2011106790A (en) Boiler device
CN109622149B (en) Solid fuel pulverizing system, control method thereof, and solid fuel pulverizing apparatus
JP2019066121A (en) Solid fuel pulverization device and control method of solid fuel pulverization device
JP7362253B2 (en) Solid fuel pulverizer, power plant equipped with the same, and method for controlling the solid fuel pulverizer
KR102488142B1 (en) Systems and methods for operating a combustion chamber
EP2778524B1 (en) System and method for low load operation of coal mill
KR20140022459A (en) Method for operating pulverized coal-fired boiler facility
KR102533816B1 (en) Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
TW201934927A (en) System and method for operating a combustion chamber
JP6195512B2 (en) Solid fuel pulverization apparatus and solid fuel pulverization method
KR20220100828A (en) Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
CN111482243B (en) Solid fuel pulverizer, power generation facility provided with same, and control method therefor
JP2556480B2 (en) Nitrogen oxide reduction device
JPH04110504A (en) Minimum load controller of coal combustion apparatus
JP2020116537A5 (en)
JP6879837B2 (en) Solid fuel mixture determination method and solid fuel crusher
JP2005282970A (en) Combustion control method for stoker type garbage incinerator, and garbage incinerator
JP6104791B2 (en) Solid fuel pulverizer and control method of solid fuel pulverizer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350