JP2556480B2 - Nitrogen oxide reduction device - Google Patents

Nitrogen oxide reduction device

Info

Publication number
JP2556480B2
JP2556480B2 JP61185325A JP18532586A JP2556480B2 JP 2556480 B2 JP2556480 B2 JP 2556480B2 JP 61185325 A JP61185325 A JP 61185325A JP 18532586 A JP18532586 A JP 18532586A JP 2556480 B2 JP2556480 B2 JP 2556480B2
Authority
JP
Japan
Prior art keywords
pulverized coal
coal
nox
particle size
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61185325A
Other languages
Japanese (ja)
Other versions
JPS6341726A (en
Inventor
学 折本
忠久 政井
茂樹 森田
成人 中下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61185325A priority Critical patent/JP2556480B2/en
Publication of JPS6341726A publication Critical patent/JPS6341726A/en
Application granted granted Critical
Publication of JP2556480B2 publication Critical patent/JP2556480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/02Solid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Crushing And Grinding (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃焼装置から排出される窒素酸化物(NO
x)を低減する装置に係り、特に石炭を微粉化して燃焼
させる燃焼装置においてNOxを低減させるのに好適な装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to nitrogen oxides (NO
The present invention relates to a device for reducing NOx, and particularly to a device suitable for reducing NOx in a combustion device in which coal is pulverized and burned.

〔従来の技術〕[Conventional technology]

火力発電所用の大型ボイラ等の事業者用の大型ボイラ
においては、石油系燃料から他の燃料、特に石炭への転
換が積極的に推進されている。石炭の埋蔵量は非常に多
いが、産炭地によってその性状がかなり相違し、将来の
石炭需要を考えると必ずしも所定の性状の石炭が常に確
保されるとはいえない。このため将来に向かって、各種
性状の石炭が燃焼できる技術をより向上させる必要があ
る。また石炭燃焼の場合も当然のことながら燃焼に伴い
排出される大気汚染物質、特にNOx量を低く抑えねばな
らない。
In large boilers for businesses such as large boilers for thermal power plants, conversion from petroleum-based fuels to other fuels, particularly coal, is being actively promoted. The reserves of coal are very large, but the properties differ considerably depending on the coal producing area, and considering future coal demand, it cannot always be said that the coal of the specified properties will always be secured. Therefore, it is necessary to further improve the technology for burning coal of various properties toward the future. Also, in the case of coal combustion, as a matter of course, the amount of air pollutants, especially NOx, emitted during combustion must be kept low.

燃焼装置における低NOx化の方法としては、従来から
低NOxバーナの採用、二段燃焼設備の装置、排煙脱硝装
置の設置などのような方法が単独若しくは組み合わせて
実施されている。
As a method for reducing NOx in a combustion apparatus, methods such as adoption of a low NOx burner, installation of a two-stage combustion equipment, and installation of a flue gas denitration apparatus have been conventionally implemented singly or in combination.

第7図は、上記方法を実施するための従来の制御系統
図がある。図中の1はボイラ入力信号発生部、2は節炭
器出口O2計、3は燃焼用空気流量計、4はO2設定器、5
は減算器、6はO2積分器、7はO2加算器、8は減算器、
9は調節器、10,13,20は手動/自動設定器、11は空気流
量調節ダンパ、12は開度設定器、14は二段燃焼用空気制
御ダンパ、15は節炭器出口NOx計、16はNH3流量計、17,1
8は演算器、19は調節計、21はNH3注入制御弁である。
FIG. 7 is a conventional control system diagram for implementing the above method. In the figure, 1 is a boiler input signal generator, 2 is an economizer outlet O 2 meter, 3 is a combustion air flow meter, 4 is an O 2 setter, 5
Is a subtractor, 6 is an O 2 integrator, 7 is an O 2 adder, 8 is a subtractor,
9 is a controller, 10, 13 and 20 are manual / automatic setting devices, 11 is an air flow rate adjusting damper, 12 is an opening setting device, 14 is a two-stage combustion air control damper, 15 is a economizer outlet NOx meter, 16 is an NH 3 flow meter, 17,1
8 is a computing unit, 19 is a controller, and 21 is an NH 3 injection control valve.

NOxの制御については、燃焼用空気量の10〜30%に相
当する空気量をバーナ用空気と風箱用空気に分け、前記
二段燃焼用空気制御ダンパ14を作動させる。これにより
先ず燃焼装置(ボイラ)の火炉出口のNOx発生量を抑
え、更に排煙脱硝装置へのNH3注入量ならびに排ガス中
のNOx量を前記NH3流量計16ならびにNOx計15で監視し、N
H3注入制御弁21によりNH3の注入量を制御することで、N
Ox量の低減を図っていた。
Regarding the control of NOx, the air amount corresponding to 10 to 30% of the combustion air amount is divided into burner air and wind box air, and the two-stage combustion air control damper 14 is operated. As a result, first, the NOx generation amount at the furnace outlet of the combustion device (boiler) is suppressed, and the NH 3 injection amount into the flue gas denitration device and the NOx amount in the exhaust gas are monitored by the NH 3 flow meter 16 and the NOx meter 15. N
By controlling the injection amount of NH 3 with the H 3 injection control valve 21,
We were trying to reduce the amount of Ox.

この制御の間、バーナレジスタの開度は固定されて燃
焼装置の運転が行なわれる。即ち、このバーナレジスタ
の開度は、バーナ点火時は試運転の調整結果に基づいて
設定された開度に固定して運転され、消化時にはバーナ
レジスタを閉じる。
During this control, the opening of the burner register is fixed and the combustion device is operated. That is, the opening degree of the burner register is fixed to the opening degree set on the basis of the adjustment result of the trial operation when the burner is ignited, and the burner register is closed when the burner is exhausted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述のように石炭の安定供給を確保するうえで多種類
の石炭を輸入する必要があり、燃焼装置に供給される石
炭の種類は目まぐるしく変化する傾向にあるから、炭種
に応じた燃焼装置の運転が望まれる。
As mentioned above, in order to secure a stable supply of coal, it is necessary to import many types of coal, and the types of coal supplied to the combustion equipment tend to change rapidly. Driving is desired.

しかし従来の燃焼装置ではN分含有率の如き石炭の性
状に対応した制御は行なわれておらず、そのためNOxの
低減効果が十分に得られていない。
However, the conventional combustion apparatus does not perform control corresponding to the properties of coal such as the N content, so that the effect of reducing NOx is not sufficiently obtained.

本発明の目的は、このような背景に鑑み、NOxの低減
効果が十分に発揮でき、また可及的に微粉粉機の動力費
を軽減するとともに、微粉炭機の延命化が図れる窒素酸
化物低減装置を提供することにある。
In view of such a background, the object of the present invention is to achieve sufficient NOx reduction effect, and also to reduce the power cost of the pulverized powder machine as much as possible, and to extend the life of the pulverized coal machine. To provide a reduction device.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するため、本発明は、微粉炭機で粉砕
された微粉炭をバーナに供給して燃焼させる装置におい
て、 前記微粉炭機が微粉炭の平均粒径を調節する例えばベ
ーンなどの粒度調節手段を有し、 窒素含有率の高い石炭に対しては前記微粉炭機から送
出される微粉炭の平均粒径を小さくし、窒素含有率の低
い石炭に対しては前記微粉炭機から送出される微粉炭の
平均粒径を大きくするように、前記粒度調節手段により
微粉炭の平均粒径が調節されるように構成されているこ
とを特徴とするものである。
In order to achieve the above object, the present invention is an apparatus for supplying pulverized coal pulverized by a pulverized coal machine to a burner and burning the pulverized coal machine, wherein the pulverized coal machine adjusts the average particle size of the pulverized coal, for example, a particle size such as a vane. Controlling means, for coal with high nitrogen content, reduce the average particle size of the pulverized coal sent from the pulverized coal machine, and for coal with low nitrogen content, delivered from the pulverized coal machine. The average particle size of the pulverized coal is adjusted by the particle size adjusting means so as to increase the average particle size of the pulverized coal.

〔作用〕[Action]

本発明は前述のように、石炭の窒素含有率−NOx発生
量−微粉炭機の動力費ならびに寿命との関係を把握し
て、使用する石炭を窒素含有率の高いものと低いものと
に分け、窒素含有率の高い石炭を使用する場合には微粉
炭の平均粒径が小さくなるように細粉化することによ
り、NOx発生量を有効に抑えることができる。
The present invention, as described above, grasps the relationship between the nitrogen content of coal-NOx generation-power cost and life of the pulverized coal machine, and divides the coal to be used into those with a high nitrogen content and those with a low nitrogen content. When using coal with a high nitrogen content, the amount of NOx generated can be effectively suppressed by pulverizing the coal so that the average particle size of the pulverized coal becomes smaller.

一方、窒素含有率の低い石炭は後述のように、本来、
窒素含有率の高い石炭に比べてNOx発生量が少ないか
ら、微粉炭の平均粒径をさほど小さくする必要がない。
そのため、NOx発生量が上昇しない範囲で微粉炭の細粉
化を抑え、その分だけ微粉炭機の動力費を軽減するとと
もに耐用寿命の延長化を図ったものである。
On the other hand, coal with a low nitrogen content is essentially
Since the amount of NOx generated is smaller than that of coal with a high nitrogen content, it is not necessary to reduce the average particle size of pulverized coal so much.
For this reason, the pulverized coal is suppressed from being finely pulverized within the range where the NOx generation amount does not increase, and the power cost of the pulverized coal machine is reduced by that amount and the service life is extended.

〔実施例〕〔Example〕

以下、本発明の実施例を図とともに説明する。第9図
は、本発明の実施例で使用されるボールミルの縦断面図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 9 is a vertical sectional view of a ball mill used in the embodiment of the present invention.

このボールミルの粉砕部は、減速機52を介して電動機
51で回転する下部粉砕輪53と、この下部粉砕輪53の円周
方向に複数個配置した粉砕用ボール60と、これら粉砕用
ボール60の上部に配置した上部粉砕輪55(固定式)とか
ら構成されている。加圧装置62により上部粉砕輪55は粉
砕用ボール60方向に加圧され、下部粉砕輪53を回転する
ことにより上下の粉砕輪55,53に挟持された粉砕用ボー
ル60が下部粉砕輪53上で転動する。
The crushing section of this ball mill uses an electric motor through a speed reducer 52.
From the lower crushing wheel 53 rotating at 51, the crushing balls 60 arranged in the circumferential direction of the lower crushing wheel 53, and the upper crushing wheel 55 (fixed type) arranged above these crushing balls 60 It is configured. The upper crushing wheel 55 is pressed in the direction of the crushing balls 60 by the pressure device 62, and by rotating the lower crushing wheel 53, the crushing balls 60 sandwiched between the upper and lower crushing wheels 55, 53 are placed on the lower crushing wheel 53. To roll.

給炭管58から供給された石炭は、下部粉砕輪53と粉砕
用ボール60の間に噛み込まれて粉砕され、下部粉砕輪53
の回転による遠心力で粉砕用ボール60の外側へ移動す
る。
The coal supplied from the coal feeding pipe 58 is bitten between the lower crushing wheel 53 and the crushing balls 60 and crushed, and the lower crushing wheel 53 is crushed.
It moves to the outside of the crushing ball 60 by the centrifugal force caused by the rotation of.

下部粉砕輪53の外周部には空気ダクト59から供給され
た熱空気が吹き込まれており、粉砕された石炭粒子が装
置上部へ吹き上げられる。そして粉砕炭はガイドベーン
56により旋回力が与えられ、分級器ホッパ57に流入す
る。この旋回力により小径の微粉炭は、微粉炭管61を経
て燃焼装置のバーナへ気流輸送される。一方、大径の石
炭粒子は自重により分級器ホッパ57内を加工し、粉砕部
において再粉砕される。
The hot air supplied from the air duct 59 is blown into the outer periphery of the lower crushing wheel 53, and the crushed coal particles are blown up to the upper part of the device. And crushed coal is a guide vane
A turning force is given by 56 and flows into the classifier hopper 57. Due to this turning force, the pulverized coal having a small diameter is pneumatically transported to the burner of the combustion device through the pulverized coal pipe 61. On the other hand, large-sized coal particles are processed in the classifier hopper 57 by their own weight and are re-ground in the crushing section.

前記ガイドベーン56の角度を変えることにより微粉炭
に与える旋回力が変化できるから、ガイドベーン56の角
度調節により分級器の分級程度、すなわちバーナへ供給
する微粉炭の平均粒径を調節することができる。
Since the turning force applied to the pulverized coal can be changed by changing the angle of the guide vanes 56, the angle of the guide vanes 56 can be adjusted to adjust the classification degree of the classifier, that is, the average particle size of the pulverized coal supplied to the burner. it can.

第10図は、回転式分級器を有する微粉炭機の縦断面図
である。シュート85から供給された石炭はアーム76で支
持された粉砕ローラ73と回転テーブル72の間に噛み込ま
れて粉砕される。粉砕された石炭粒は熱風により装置上
部に舞い上がり、回転式分級器77に入り、軸87を介して
モータ88により回転するベーン86により分級される。従
ってこの回転式分級器77の場合は、ベーン86の回転数を
制御することにより、分級器の分級程度、すなわちバー
ナへ供給する微粉炭の平均粒径を調節することができ
る。
FIG. 10 is a vertical sectional view of a pulverized coal machine having a rotary classifier. The coal supplied from the chute 85 is crushed by being caught between the crushing roller 73 supported by the arm 76 and the rotary table 72. The crushed coal particles fly up to the upper part of the device by hot air, enter the rotary classifier 77, and are classified by the vanes 86 rotated by the motor 88 via the shaft 87. Therefore, in the case of this rotary classifier 77, by controlling the rotation speed of the vane 86, the degree of classification of the classifier, that is, the average particle size of the pulverized coal supplied to the burner can be adjusted.

本発明の実施例では、第9図に示すボールミルあるい
は第10図に示す回転式分級器を有する微粉炭機が使用さ
れる。
In the embodiment of the present invention, a pulverized coal machine having a ball mill shown in FIG. 9 or a rotary classifier shown in FIG. 10 is used.

第3図は、石炭の燃料比(固定炭素/揮発分)とNOx
発生量との関係を示す特性図である。このテストでは燃
料比が1と3と4の微粉炭(いずれも石炭中のN分含有
率が1.1〜1.2%)を燃焼させて、NOxの発生量を測定し
たものである。このテスト結果から明らかなように、燃
料比が高い石炭ほどNOxの発生量が多い。
Figure 3 shows the fuel ratio of coal (fixed carbon / volatile matter) and NOx.
It is a characteristic view which shows the relationship with the generation amount. In this test, pulverized coal having a fuel ratio of 1, 3 and 4 (all of which has a N content of 1.1 to 1.2% in the coal) was burned and the amount of NOx produced was measured. As is clear from the results of this test, the higher the fuel ratio, the greater the amount of NOx generated.

第4図は、石炭中のN分含有率とNOx発生量との関係
を示す特性図である。このテストでは空気比を1.3に設
定して微粉炭を燃焼させ、NOxの発生量を測定したもの
である。なお、特性曲線に付した数値は燃料比を示す。
このテスト結果から明らかのように、石炭中のN分含有
率が高いほどNOxの発生量が多く、反対に石炭中のN分
含有率が低いほどNOxの発生量が少ない。
FIG. 4 is a characteristic diagram showing the relationship between the N content rate in coal and the NOx generation amount. In this test, the air ratio was set to 1.3 and pulverized coal was burned to measure the amount of NOx produced. The numerical value attached to the characteristic curve indicates the fuel ratio.
As is clear from the test results, the higher the N content in the coal, the greater the amount of NOx generated, and conversely, the lower the N content in the coal, the lower the amount of NOx generated.

第5図は、節炭器(ECO)出口の酸素濃度と、燃焼後
の灰中未燃分比率〔上段(A)〕およびNOx比率〔下段
(B)〕との関係を示す特性図である。図中のイ、ロ、
ハは微粉炭の粒径の違いを示しており、イ、ロ、ハの順
に平均粒径が大きくなっている(イ<ロ<ハ)。このテ
スト結果から明らかなように、微粉炭の粒径はその燃焼
に大きな影響をもっており、微粉炭の粒径が小さい方
が、灰中未燃分が少なく、NOxの発生量も少ない。
FIG. 5 is a characteristic diagram showing the relationship between the oxygen concentration at the outlet of the economizer (ECO) and the ratio of unburned ash in combustion [upper (A)] and NOx ratio [lower (B)]. . A, b in the figure,
C indicates the difference in particle size of pulverized coal, and the average particle size increases in the order of a, b, and c (a <b <c). As is clear from this test result, the particle size of pulverized coal has a great influence on its combustion, and the smaller the particle size of pulverized coal, the less unburned components in ash and the amount of NOx generated.

第6図は、異なる粒径の微粉炭におけるバーナ口空気
比とNOx比率との関係を示す特性図である。このテスト
では200メッシュパスが約70%の微粉炭(a)、約82%
の微粉炭(b)、約84%の微粉炭(c)、約86%の微粉
炭(d)を使用しており、従って微粉炭の平均粒径は
(a)>(b)>(c)>(d)の関係にある。このテ
スト結果から明らかなように、同一空気比ならば粒径の
小さい微粉炭の方がNOxの発生量が少なく、また同一粒
径の微粉炭では空気比が低いほどNOxの発生量が少な
い。
FIG. 6 is a characteristic diagram showing the relationship between the burner port air ratio and the NOx ratio in pulverized coal having different particle sizes. In this test, 200 mesh pass is about 70% pulverized coal (a), about 82%
Pulverized coal (b), about 84% pulverized coal (c), and about 86% pulverized coal (d) are used. Therefore, the average particle size of pulverized coal is (a)>(b)> (c )> (D). As is clear from the test results, pulverized coal having a smaller particle size produces less NOx at the same air ratio, and pulverized coal having the same particle size produces less NOx at a lower air ratio.

また本発明者等は各種の燃焼実験を行なうことによ
り、次の点を確認した。
The present inventors have confirmed the following points by conducting various combustion experiments.

(1)石炭燃焼におけるNOx発生は、その殆どが燃料中
のN分によって発生するNOxによるもの(所謂、フュー
エルNOx)である。
(1) Most NOx generation in coal combustion is due to NOx generated by N content in fuel (so-called fuel NOx).

(2)石炭中の揮発分放出時のN分放出量は揮発分の割
合が高いほど高くなる。
(2) The N content release amount at the time of volatile content release in coal increases as the proportion of volatile content increases.

(3)微粉炭を微細化すればバーナの直ぐ下流での保炎
性や着火性が良好になり、高温となる外、チャー自体が
小径の粒子であるため、微粉炭を微細化するほどチャー
中のN分放出率が高くなる。
(3) If the pulverized coal is miniaturized, the flame holding property and ignitability immediately downstream of the burner will be good, and the temperature will be high. In addition, the char itself is a small-diameter particle. The release rate of N in the inside becomes high.

(4)微粉炭が微細であればこの微粉炭を燃焼するバー
ナの中心域に形成される還元域においてN分が短時間で
放出されるため、N分のNOxへの転換率は低くなり、結
果的にはNOxの発生量が低減する。
(4) If the pulverized coal is fine, N content is released in a short time in the reduction zone formed in the central area of the burner that burns this pulverized coal, so the conversion rate of N content to NOx becomes low, As a result, the amount of NOx generated is reduced.

前述の各特性図ならびに各種燃焼実験の知見より、 .石炭中のN分含有率が高いものほどNOxの発生量が
多い。
From the above characteristic diagrams and findings of various combustion experiments ,. The higher the N content in coal, the greater the amount of NOx generated.

.微粉炭をより微細化することにより、NOxの発生量
ならびに灰中未燃分量を低減することができる。
. By making the pulverized coal finer, it is possible to reduce the amount of NOx generated and the amount of unburned matter in ash.

.石炭中のN分含有率が低いものは本質的にNOxの発
生量が少ないため、微粉炭を必要以上に微細化する必要
はない。むしろ石炭の必要以上の微細化は、粉砕のため
の動力費がかさみ、しかも微粉炭機の部品の消耗が激し
く短命化を招くから、N分含有率が低い石炭に対しては
さほど微細化する必要はない。
. It is not necessary to make the pulverized coal finer than necessary because the amount of NOx generated is essentially small in coal with a low N content. On the contrary, if the coal is refined more than necessary, the power cost for pulverization will be high, and the parts of the pulverized coal machine will be consumed so much that the life of the coal will be shortened. No need.

という見解に立脚して本発明が構成されている。The present invention is constructed based on this view.

第1図は、本発明の第1の実施例を示す制御系統図で
ある。
FIG. 1 is a control system diagram showing a first embodiment of the present invention.

節炭器出口NOx計15により測定されたNOx濃度は、演算
器17に入力される。後続する演算器18にはNH3流量計16
で測定された注入NH3流量が補正値として入力され、調
節計19、手動/自動設定器20を経てNH3注入量調節弁21
の開度を制御する。
The NOx concentration measured by the economizer outlet NOx meter 15 is input to the calculator 17. NH 3 flow meter 16
The injected NH 3 flow rate measured at is input as a correction value, and the controller 19 and the manual / automatic setting device 20 are used to supply the NH 3 injection amount control valve 21.
Control the opening of.

燃焼用空気流量計3は燃焼用空気の流量を測定し、開
度測定器12、二段燃焼用加算器32、手動/自動設定器13
を経て二段燃焼空気流量制御ダンパ14の開度を調節す
る。なおこの場合、後述するNOx設定器25のNOx濃度目標
値信号に基づいて二段燃焼空気流量制御ダンパ14の開度
調節は補正される。
The combustion air flow meter 3 measures the flow rate of the combustion air, and the opening degree measuring device 12, the two-stage combustion adder 32, the manual / automatic setting device 13
After that, the opening degree of the two-stage combustion air flow rate control damper 14 is adjusted. In this case, the opening degree adjustment of the two-stage combustion air flow rate control damper 14 is corrected based on the NOx concentration target value signal of the NOx setting device 25 described later.

ボイラ入力信号発生部1からの信号はO2設定器4を経
て減算器5において節炭器出口O2計2から出力されたO2
濃度信号を減算し、更にO2積分器6を経てO2加算器7に
至り、前記した生のボイラ入力信号と加算され、減算器
8に至る。この信号は更に調節計9、手動/自動設定器
10を経て空気流量調節ダンパ11を作動させる。
The signal from the boiler input signal generator 1 passes through the O 2 setter 4 and the subtracter 5 outputs the O 2 output from the economizer outlet O 2 meter 2.
The concentration signal is subtracted, further reaches the O 2 adder 7 via the O 2 integrator 6, is added to the above-mentioned raw boiler input signal, and reaches the subtractor 8. This signal is further adjusted by the controller 9, manual / automatic setting device
The air flow rate adjustment damper 11 is operated via 10.

NOx設定器25において設定したNOx濃度目標値信号は、
二段燃焼用バイアス器31を経て二段燃焼用加算器32に入
力され、二段燃焼空気流量制御ダンパ14の開度調節を補
正する。
The NOx concentration target value signal set in the NOx setter 25 is
It is input to the two-stage combustion adder 32 via the two-stage combustion bias device 31 and corrects the opening adjustment of the two-stage combustion air flow rate control damper 14.

また前記NOx設定器25において設定したNOx濃度目標値
信号は、バイアス器27を経て加算器28に至り、分級器ベ
ーン開度設定器26を経由して入力されたボイラ入力信号
と加算され、手動/自動設定器10を経て複数のボールミ
ルの分級器ベーン30の開度を制御する。
Further, the NOx concentration target value signal set in the NOx setting device 25 reaches the adder 28 via the bias device 27, is added to the boiler input signal input via the classifier vane opening setting device 26, and is manually operated. / Controls the openings of the classifier vanes 30 of a plurality of ball mills via the automatic setting device 10.

本実施例において、N分含有率の高い石炭を使用する
場合には、分級器のベーン開度を微粉炭機の振動制御内
で絞り、微粉炭機から送出される微粉炭の平均粒径を小
さくする(例えば200メッシュパスが約86%)ととも
に、二段燃焼空気流量制御ダンパ14の開度は大きくす
る。反対にN分含有率の低い石炭を使用する場合には、
微粉炭機から送出される微粉炭の平均粒径を大きくする
(例えば200メッシュパスが約70%)とともに、二段燃
焼空気流量制御ダンパ14の開度は小さくして運転する。
なお、N分含有率は、炭種別に分析により予め求められ
ている。
In the present embodiment, when using coal with a high N content, the vane opening of the classifier is reduced within the vibration control of the pulverized coal machine to determine the average particle size of the pulverized coal sent from the pulverized coal machine. The opening degree of the two-stage combustion air flow rate control damper 14 is increased as the size is reduced (for example, 200 mesh pass is about 86%). On the other hand, when using coal with a low N content,
The average particle size of the pulverized coal sent from the pulverized coal machine is increased (for example, 200 mesh pass is about 70%), and the opening degree of the two-stage combustion air flow rate control damper 14 is reduced to operate.
In addition, the N content content is obtained in advance by analysis for each type of charcoal.

このようにN分含有率により微粉炭の平均粒径を調節
する信号を出力するのは前記バイアス器27であり、N分
含有率により二段燃焼空気流量制御ダンパ14の開度を調
節する信号を出力するのは前記二段燃焼用バイアス器31
である。
The bias device 27 outputs a signal for adjusting the average particle size of pulverized coal according to the N content, and a signal for adjusting the opening degree of the two-stage combustion air flow rate control damper 14 according to the N content. Is output from the two-stage combustion bias device 31
Is.

燃焼装置の負荷が40〜60%程度までの起動状態におい
ては、二段燃焼空気流量制御ダンパ14は閉、微粉炭機の
分級器のガイドベーン開度は「小程度」若しくは「中程
度」とする。第8図はこのベーン開度を具体的に示す。
なお図中の曲線イはベーン開度「小」、曲線ロはベーン
開度「中」、曲線ハはベーン開度「大」を各々示す。燃
焼装置の負荷が上昇するに伴って二段燃焼空気流量制御
ダンパ14はNOx設定器25に基づいて自動的に開とされ
る。
When the load of the combustor is up to about 40 to 60%, the two-stage combustion air flow rate control damper 14 is closed, and the guide vane opening of the pulverized coal classifier is "small" or "medium". To do. FIG. 8 specifically shows the vane opening.
Curve A in the figure indicates vane opening "small", curve B indicates vane opening "medium", and curve C indicates vane opening "large". The two-stage combustion air flow rate control damper 14 is automatically opened based on the NOx setting device 25 as the load of the combustion device increases.

第2図は、別の実施例を示す。この実施例は前記実施
例よりも更に正確に制御を行なうように構成したもので
ある。
FIG. 2 shows another embodiment. This embodiment is constructed so as to perform control more accurately than the above embodiments.

即ち、分級器ベーン30の制御系統から示すと、手動/
自動設定器28と分級器ベーン30の間に信号切り換え器29
が設置され、これに対してバーナ消火信号演算器31が接
続されている。
That is, from the control system of the classifier vane 30,
Signal switch 29 between automatic setter 28 and classifier vane 30
Is installed, to which the burner extinguishing signal calculator 31 is connected.

また二段燃焼用空気流量ダンパ制御系統に対してゲイ
ン調節器33が設置され、二段燃焼用空気流量ダンパ開度
調節器32を介してNOx設定器25からのNOx濃度設定信号が
補正値として入力される。さらに手動/自動設定器13と
二段燃焼用空気流量ダンパ14の間に信号切り換え器34が
設置され、これに対して微粉炭機停止信号設定器35が接
続している。
Further, a gain controller 33 is installed for the two-stage combustion air flow rate damper control system, and the NOx concentration setting signal from the NOx setting device 25 via the two-stage combustion air flow rate damper opening degree controller 32 is used as a correction value. Is entered. Further, a signal switch 34 is installed between the manual / automatic setting device 13 and the two-stage combustion air flow rate damper 14, and a pulverized coal machine stop signal setting device 35 is connected thereto.

以上の構成において、NOx設定器25から出力されたNOx
濃度目標値信号は二段燃焼用空気流量ダンパ14と分級器
ベーン30の両方に対して開度信号を発する。この信号圧
力において、例えばその信号が4〜20mmAqのうち、4〜
16mmAqの圧力を示す場合は二段燃焼用空気流量ダンパ14
の開度が調節され、また15〜20mmAqの場合はこれに加え
て分級器ベーン30の開度も制御するようにし、シリーズ
で制御する。ここにおいて、二段燃焼用空気流量ダンパ
14のNOx制御信号が高くなれば、二段燃焼用空気流量ダ
ンパ14の開度は開方向へ、かつ分級器ベーン30は絞り方
向に制御する。
With the above configuration, the NOx output from the NOx setter 25
The concentration target value signal issues an opening signal to both the two-stage combustion air flow rate damper 14 and the classifier vane 30. At this signal pressure, for example, if the signal is 4 to 20 mmAq,
When showing a pressure of 16 mmAq, the two-stage combustion air flow damper 14
Is adjusted, and in the case of 15 to 20 mmAq, in addition to this, the opening of the classifier vane 30 is also controlled, and is controlled in series. Here, the two-stage combustion air flow rate damper
When the NOx control signal of 14 becomes high, the opening degree of the two-stage combustion air flow rate damper 14 is controlled in the opening direction and the classifier vane 30 is controlled in the throttling direction.

この実施例においても、火炉に対して高N分炭が供給
される場合は、二段燃焼用空気流量ダンパ14は全開近く
に調節し、かつ分級器ベーン30の開度は絞り、分級器内
での旋回力を増加させることにより微粉炭の粒径を小さ
くし、NOx発生量および灰分発生量の増加を防止する。
反対に低N分炭が供給される場合は、二段燃焼用空気流
量ダンパ14は絞り、かつ分級器ベーン30の開度はNOx発
生量が上昇しない範囲で開いて、微粉炭機の動力費の低
減を図る。
Also in this embodiment, when a high N coal is supplied to the furnace, the two-stage combustion air flow rate damper 14 is adjusted to near full opening, and the opening degree of the classifier vane 30 is reduced so that the inside of the classifier is reduced. The particle size of the pulverized coal is reduced by increasing the swirling force at, and the increase of NOx generation amount and ash generation amount is prevented.
On the other hand, when low N coal is supplied, the two-stage combustion air flow damper 14 is throttled and the opening of the classifier vane 30 is opened within the range where the NOx generation amount does not rise, and the power cost of the pulverized coal machine is reduced. To reduce

〔発明の効果〕〔The invention's effect〕

本発明は前述のように、石炭の窒素含有率−NOx発生
量−微粉炭機の動力費ならびに寿命との関係を把握し
て、使用する石炭を窒素含有率の高いものと低いものと
に分け、窒素含有率の高い石炭を使用する場合には微粉
炭の平均粒径が小さくなるように細粉化することによ
り、NOx発生量を有効に抑えることができる。
The present invention, as described above, grasps the relationship between the nitrogen content of coal-NOx generation-power cost and life of the pulverized coal machine, and divides the coal to be used into those with a high nitrogen content and those with a low nitrogen content. When using coal with a high nitrogen content, the amount of NOx generated can be effectively suppressed by pulverizing the coal so that the average particle size of the pulverized coal becomes smaller.

一方、窒素含有率の低い石炭は後述のように、本来、
窒素含有率の高い石炭に比べてNOx発生量が少ないか
ら、微粉炭の平均粒径をさほど小さくする必要がない。
そのため、NOx発生量が上昇しない範囲で微粉炭の細粉
化を抑え、その分だけ微粉炭機の動力費を軽減するとと
もに耐用寿命の延長化を図ることができる。
On the other hand, coal with a low nitrogen content is essentially
Since the amount of NOx generated is smaller than that of coal with a high nitrogen content, it is not necessary to reduce the average particle size of pulverized coal so much.
Therefore, it is possible to suppress the pulverization of the pulverized coal within the range where the NOx generation amount does not increase, reduce the power cost of the pulverized coal machine by that amount, and extend the service life.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す窒素酸化物低減装
置の制御系統図、第2図は本発明の第2の実施例を示す
窒素酸化物低減装置の制御系統図、第3図は燃料比とNO
x値との関係を示す特性図、第4図はN分含有率とNOx値
との関係を示す特性図、第5図は節炭器出口酸素濃度と
灰中未燃分比率及びNOx比率との関係を示す特性図、第
6図は異なる微粉炭粒径におけるバーナ口空気比とNOx
比率との関係を示す特性図、第7図は従来の窒素酸化物
低減装置の制御系統図、第8図は給炭率と微粉炭粒度及
びミル負荷率との関係を示す特性図、第9図は本発明の
実施例で使用されるボールミルの縦断面図、第10図は回
転式分級器を有する微粉炭機の縦断面図である。 11……空気流量制御ダンパ、14……二段燃焼用空気流量
ダンパ、25……NOx濃度設定器、26……分級器ベーン開
度設定器、30,56……分級器ベーン、35……微粉炭機停
止信号設定器、57……分級器ホッパ、77……回転式分級
器、86……回転式ベーン。
FIG. 1 is a control system diagram of a nitrogen oxide reduction apparatus showing a first embodiment of the present invention, FIG. 2 is a control system diagram of a nitrogen oxide reduction apparatus showing a second embodiment of the present invention, and FIG. The figure shows the fuel ratio and NO
Fig. 4 is a characteristic diagram showing the relationship with the x value, Fig. 4 is a characteristic diagram showing the relationship between the N content rate and the NOx value, and Fig. 5 is the oxygen concentration at the economizer outlet and the unburned ash content and NOx ratio. Fig. 6 shows the relationship between NOx and burner port air ratio at different pulverized coal particle sizes.
Fig. 7 is a characteristic diagram showing the relationship with the ratio, Fig. 7 is a control system diagram of a conventional nitrogen oxide reduction device, Fig. 8 is a characteristic diagram showing the relationship between the coal feed rate, the pulverized coal particle size and the mill load factor, the 9th. FIG. 1 is a vertical sectional view of a ball mill used in an embodiment of the present invention, and FIG. 10 is a vertical sectional view of a pulverized coal machine having a rotary classifier. 11 …… Air flow control damper, 14 …… Two-stage combustion air flow damper, 25 …… NOx concentration setter, 26 …… Classifier vane opening setter, 30,56 …… Classifier vane, 35 …… Pulverized coal machine stop signal setter, 57 …… Classifier hopper, 77 …… Rotary classifier, 86 …… Rotary vane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中下 成人 呉市宝町6番9号 バブコツク日立株式 会社呉工場内 (56)参考文献 特開 昭57−19506(JP,A) 実開 昭57−178940(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nakashita Adult 6-9 Takaracho, Kure City Bab Kotsk Hitachi Co., Ltd. Kure Factory (56) References JP 57-19506 (JP, A) Actual development Sho 57- 178940 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微粉炭機で粉砕された微粉炭をバーナに供
給して燃焼させる装置において、 前記微粉炭機が微粉炭の平均粒径を調節する粒度調節手
段を有し、 窒素含有率の高い石炭に対しては前記微粉炭機から送出
される微粉炭の平均粒径を小さくし、窒素含有率の低い
石炭に対しては前記微粉炭機から送出される微粉炭の平
均粒径を大きくするように、前記粒度調節手段により微
粉炭の平均粒径が調節されるように構成されていること
を特徴とする窒素酸化物低減装置。
1. A device for supplying pulverized coal pulverized by a pulverized coal machine to a burner and burning the pulverized coal machine, wherein the pulverized coal machine has a particle size adjusting means for adjusting an average particle size of the pulverized coal, For high coal, reduce the average particle size of the pulverized coal delivered from the pulverized coal machine, and for coal with a low nitrogen content, increase the average particle size of the pulverized coal delivered from the pulverized coal machine. Thus, the nitrogen oxide reducing apparatus is configured such that the average particle size of the pulverized coal is adjusted by the particle size adjusting means.
JP61185325A 1986-08-08 1986-08-08 Nitrogen oxide reduction device Expired - Fee Related JP2556480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185325A JP2556480B2 (en) 1986-08-08 1986-08-08 Nitrogen oxide reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185325A JP2556480B2 (en) 1986-08-08 1986-08-08 Nitrogen oxide reduction device

Publications (2)

Publication Number Publication Date
JPS6341726A JPS6341726A (en) 1988-02-23
JP2556480B2 true JP2556480B2 (en) 1996-11-20

Family

ID=16168853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185325A Expired - Fee Related JP2556480B2 (en) 1986-08-08 1986-08-08 Nitrogen oxide reduction device

Country Status (1)

Country Link
JP (1) JP2556480B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637316B2 (en) * 1991-09-12 1997-08-06 川崎重工業株式会社 Boiler combustion control device
JP5083797B2 (en) * 2006-08-31 2012-11-28 一般財団法人電力中央研究所 Coal combustion apparatus and coal combustion method
EP2336637A1 (en) * 2009-12-14 2011-06-22 ABB Research Ltd. System and associated method for monitoring and controlling a power plant
JP6803747B2 (en) * 2016-12-28 2020-12-23 三菱パワー株式会社 Rotation speed control device for mill classifier and fuel ratio calculation device suitable for this

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3011631C2 (en) * 1980-03-26 1982-05-27 Steag Ag, 4300 Essen Process for operating a pulverized coal boiler and pulverized coal boiler set up for the process
JPS57178940U (en) * 1981-05-09 1982-11-12

Also Published As

Publication number Publication date
JPS6341726A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
US20090308292A1 (en) Coal burning boiler apparatus
JP2929317B2 (en) Low emission and low excess air system
BG64878B1 (en) Solid fuel burner and method for the adjustment of burning effected by the solid fuel burner
JP6218448B2 (en) Vertical crushing and classifying equipment
EP2623861A1 (en) Combustion system and method for operating same
JPS58106319A (en) Method of burning powdered fuel
JP5357714B2 (en) Boiler equipment
CN203223912U (en) Intermediate storage type super nitrogen reduction system for coal-fired boiler coal mill
CN209495349U (en) A kind of biomass molding fuel and coal direct-coupling pulverized coal preparation system
JP4801552B2 (en) Biomass crusher and control method thereof
CN110906359B (en) Combustion device capable of adjusting secondary air temperature and use method
JP2556480B2 (en) Nitrogen oxide reduction device
JPS6262123A (en) Method for controlling temperatures of primary air at outlet of coal pulverizer for boiler
JP2947900B2 (en) Minimum load control unit for coal combustion equipment
JPH08135953A (en) Combustion method for coal-burning boiler
JPH08110014A (en) Fine powder coal combustor
JPH08159436A (en) Combustion control method of waste melting furnace
JPS58108306A (en) Method for low nox combustion of pulverized coal
JP2015105812A (en) Apparatus and method for pulverizing solid fuel
JPH0120486Y2 (en)
JPH0268405A (en) Pulverized coal burner
JPH0375403A (en) Pulverized coal burner
JPH07243611A (en) Method and apparatus for burning finely ground coal
JPS58219951A (en) Load resposive type crushing and classifying apparatus
CN114764091A (en) Method for reducing carbon content of boiler fly ash

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees