JP2014075927A - Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method - Google Patents

Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method Download PDF

Info

Publication number
JP2014075927A
JP2014075927A JP2012222583A JP2012222583A JP2014075927A JP 2014075927 A JP2014075927 A JP 2014075927A JP 2012222583 A JP2012222583 A JP 2012222583A JP 2012222583 A JP2012222583 A JP 2012222583A JP 2014075927 A JP2014075927 A JP 2014075927A
Authority
JP
Japan
Prior art keywords
power
request signal
transmission
power supply
transmission request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012222583A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yamamoto
洋由 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012222583A priority Critical patent/JP2014075927A/en
Publication of JP2014075927A publication Critical patent/JP2014075927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enable non-standard charging without adding hardware for new communication.SOLUTION: A reception apparatus 50 comprises: reception side control means 53 for enabling switching between a first current mode where an electric load LD can be supplied with rating current having a first current value and a second current mode where the electric load LD can be supplied with rating current having a second current value larger than the first current value; and request signal transmission means 57 for enabling transmission of a first transmission request signal for requesting first transmission power required for power supply in the first current mode and a second transmission request signal as transmission request signals. A power supply stand 10 comprises power control means 13 for enabling switching the first transmission power in the case of receiving the first transmission request signal at request signal reception means 14 and second transmission power. When the request signal reception means 14 receives the second transmission request signal and the first transmission request signal from the request signal transmission means 57, the power supply stand 10 makes the power control means 13 transmit the second transmission power according to the second transmission request signal and ignores the first transmission request signal.

Description

本発明は、送電コイルと受電コイルとを電磁結合するように互いに接近して配置し、送電コイルから受電コイルに電磁誘導作用で給電する無接点給電システム、受電機器、給電台、無接点給電方法に関する。   The present invention relates to a non-contact power feeding system, a power receiving device, a power feeding base, and a non-contact power feeding method in which a power transmitting coil and a power receiving coil are arranged close to each other so as to be electromagnetically coupled and power is fed from the power transmitting coil to the power receiving coil by electromagnetic induction. About.

送電コイルを内蔵する給電台に、受電コイルを内蔵する受電機器をセットして、送電コイルから受電コイルに電力搬送する無接点給電方法は開発されている(特許文献1参照)。この無接点給電方法は、例えば図12に示すように、携帯電話等の受電機器260を、無接点の給電台220の充電面221に載置し、給電台220から受電機器260に電力を搬送して、受電機器260に内蔵される二次電池を充電する。このような無接点給電を実現するために、給電台220の送電コイル251に、携帯電話の受電コイル261を接近させて、送電コイル251から受電コイル261に給電する。これにより、受電コイル261に誘導される電力でもって内蔵電池が充電される。この給電方法は、コネクタを介して携帯電話を給電台に接続する必要がなく、無接点方式で携帯電話に電力搬送できる利点が得られる。また受電機器として携帯電話に限られず、受電コイルを内蔵した緊急充電器等も利用できる。   A contactless power feeding method has been developed in which a power receiving device with a built-in power receiving coil is set on a power feeding base with a built-in power transmitting coil, and power is transferred from the power transmitting coil to the power receiving coil (see Patent Document 1). In this non-contact power supply method, for example, as shown in FIG. 12, a power receiving device 260 such as a mobile phone is placed on a charging surface 221 of a non-contact power supply base 220, and power is transferred from the power supply base 220 to the power receiving device 260. Then, the secondary battery built in the power receiving device 260 is charged. In order to realize such non-contact power feeding, the power receiving coil 261 of the mobile phone is brought close to the power transmitting coil 251 of the power feeding base 220, and power is supplied from the power transmitting coil 251 to the power receiving coil 261. As a result, the internal battery is charged with the electric power induced in the power receiving coil 261. This power supply method does not require the mobile phone to be connected to the power supply base via a connector, and has the advantage that power can be transferred to the mobile phone in a contactless manner. Further, the power receiving device is not limited to a mobile phone, and an emergency charger with a built-in power receiving coil can be used.

ところで近年の受電機器は、大画面化や電池駆動時間の長期化等の要求によって、一層の高出力化が求められており、内蔵される二次電池の容量は大型化される傾向にある。この結果、充電に要する電力も大きくなり、従来と同じ送電電力であれば充電時間が長くなる傾向にある。また一方で、充電時間をできるだけ短くしたいという要求も強く、給電台の高出力化も求められているところである。   By the way, power receiving devices in recent years are required to have higher output due to demands such as a larger screen and longer battery driving time, and the capacity of built-in secondary batteries tends to be increased. As a result, the power required for charging also increases, and the charging time tends to be longer if the transmission power is the same as in the past. On the other hand, there is a strong demand for shortening the charging time as much as possible, and there is a demand for higher output of the power supply stand.

その一方で、異なる機種や製造元の受電機器でも、共通の充電台でもって充電できるように、無接点給電の方式の規格化が進められている。例えば標準化団体の一であるWPC(Wireless Power Consortium)では、図13に示すように充電台1310が受電機器1350供給する電力が5Wに規定されている。このため、該規格に対応させようとすれば、規格値(WPCでは5W)以上の電力で充電することができない。   On the other hand, standardization of the contactless power feeding method is being promoted so that different models and manufacturers of power receiving devices can be charged with a common charging stand. For example, in a WPC (Wireless Power Consortium) which is one of standardization organizations, the power supplied by the charging base 1310 to the power receiving device 1350 is defined as 5 W as shown in FIG. For this reason, if it is going to correspond to this standard, it cannot charge with electric power more than a standard value (5W in WPC).

高出力の受電機器を短時間で充電するには、上述の通り給電台を高出力化することが考えられる。そこで、規格に対応させた充電を可能としつつも、規格外の高出力での充電に対応させた受電機器と給電台の組み合わせにおいては、高出力での充電を可能とすることが考えられる。例えば、WPCでは、受電機器から給電台側への通信(AM変調)のみが規定されている。これに対して、図14に示すように、給電台側から受電機器に対して規格外の独自方式で通信(例えばFM変調)を行うことによって、給電台と受電機器とが互いに独自方式に対応していることを把握でき、高出力での充電が可能となる。   In order to charge a high-output power receiving device in a short time, it is conceivable to increase the power supply stand as described above. Accordingly, it is conceivable that charging with high output is possible in a combination of a power receiving device and a power supply base that is compatible with charging with high output outside the standard while enabling charging according to the standard. For example, in WPC, only communication (AM modulation) from the power receiving device to the power supply base is defined. On the other hand, as shown in FIG. 14, the power supply base and the power receiving device correspond to each other by performing communication (for example, FM modulation) to the power receiving device from the power supply stand side by a nonstandard standard method. This makes it possible to grasp that the battery is charging and to charge at a high output.

しかしながら、この方式では規格上は必要とされない給電台から受電機器への通信が必須となるため、給電台側に送信機を、受電機器側に受信機を設ける必要があり、このような部材の追加によって構成が複雑化してコスト高となるという問題があった。   However, in this method, communication from the power supply base to the power receiving device, which is not required by the standard, is indispensable. Therefore, it is necessary to provide a transmitter on the power supply base side and a receiver on the power receiving device side. There is a problem that the configuration becomes complicated by the addition and the cost becomes high.

さらに、このような規格外の高出力での給電に対応した電気機器を用意すると、規格外の高出力給電に対応していない給電台に載置した場合には、電気機器から規格値以上の高出力で給電を求められる結果、給電台の電流値が上昇して発熱したり、あるいは該電流値や温度の上昇によって、給電台と受電機器との間に異物が介在していると誤検出されて、給電が停止されてしまうといった問題もあった。   Furthermore, if you prepare an electrical device that can supply power at such a high power outside the standard, if it is placed on a power supply stand that does not support high power power outside the standard, the electrical device will exceed the standard value. As a result of requiring power supply at high output, the current value of the power supply base rises and generates heat, or a foreign object is interposed between the power supply base and the power receiving device due to the current value or temperature increase. As a result, there is a problem that power supply is stopped.

特開2008−17562号公報JP 2008-17562 A

本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、新たな通信のためのハードウェアを追加すること無く、規格外の充電を可能とした無接点給電システム、受電機器、給電台、無接点給電方法を提供することにある。   The present invention has been made in view of such conventional problems. A main object of the present invention is to provide a non-contact power supply system, a power receiving device, a power supply stand, and a non-contact power supply method that enable non-standard charging without adding hardware for new communication. is there.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の第1の無接点給電システムによれば、電気負荷を有する受電機器と、前記受電機器に給電する給電台とを備え、前記受電機器に対して、前記給電台から無接点で電力を送電して給電可能な無接点給電システムであって、前記受電機器は、前記電気負荷と、前記給電台からの給電を受けるための受電コイルと、前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、前記受電機器側で実際に得られた受電側検出電力を検出する電力値取得手段と、前記電力値取得手段で検出された受電側検出電力に基づいて、前記給電台から受電機器に送電される送電電力量に関して指示する送電要求信号を前記給電台側に送信するための要求信号送信手段とを備え、前記給電台は、受電コイルと電磁結合して送電するための送電コイルと、前記要求信号送信手段から送信される送電要求信号を受信するための要求信号受信手段と、前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する送電電力量を制御するための電力制御手段とを備え、前記受電側制御手段は、前記電気負荷に対して、第一電流値を定格電流として給電可能な第一電流モードと、前記第一電流値よりも大きい第二電流値を定格電流として給電可能な第二電流モードを切り替え可能としており、前記要求信号送信手段は、送電要求信号として、第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号とを送信可能であり、前記給電台は、前記要求信号受信手段で第一送電要求信号を受けた場合の第一送電電力と、第二送電要求信号を受けた場合の第二送電電力とを、前記電力制御手段で切り替え可能としており、前記要求信号受信手段で、前記要求信号送信手段から前記第二送電要求信号と第一送電要求信号とを受信すると、第二送電要求信号に従い第二送電電力を前記電力制御手段で送電する一方、前記第一送電要求信号を無視するよう構成できる。上記構成により、より高出力の第二電流モードでの給電を可能としつつ、仮に給電台又は受電機器が、このような第二電流モードでの給電に対応していない場合でも、第一電流モードでの給電を可能として、安全に利用することが可能となる。またこの方式であれば、既存の無接点充電に容易に適用できるため、新たな部材を追加すること無く安価に実装できる利点も得られる。   In order to solve the above-described problem, according to the first contactless power feeding system of the present invention, the power receiving device includes an electric load, and a power feeding base that feeds power to the power receiving device. A contactless power supply system capable of supplying power by transmitting power from a power supply without contact, wherein the power receiving device includes the electric load, a power receiving coil for receiving power from the power feeding base, and the power receiving coil. With the received power received, the power receiving side control means for controlling the driving of the electric load, the power value acquisition means for detecting the power receiving side detection power actually obtained on the power receiving device side, and the power value acquisition means Request signal transmission means for transmitting to the power supply base side a power transmission request signal for instructing a transmission power amount transmitted from the power supply base to the power receiving device based on the detected power reception side detection power. The powerhouse A power transmission coil for electromagnetically coupling with the power receiving coil to transmit power, a request signal receiving means for receiving a power transmission request signal transmitted from the request signal transmitting means, and a power transmission request signal received by the request signal receiving means And a power control means for controlling the amount of transmitted power transmitted from the power transmission coil, and the power receiving side control means can feed the electrical load with a first current value as a rated current. It is possible to switch between a first current mode and a second current mode in which power can be supplied using a second current value larger than the first current value as a rated current, and the request signal transmission means uses a first current as a power transmission request signal. The first transmission request signal for requesting the first transmission power required for power supply in the mode and the second transmission request signal for requesting the second transmission power required for power supply in the second current mode can be transmitted. The power supply base uses the power control means to convert the first transmitted power when the first transmission request signal is received by the request signal receiving means and the second transmitted power when the second transmission request signal is received. When the request signal receiving means receives the second power transmission request signal and the first power transmission request signal from the request signal transmitting means, the power control means supplies the second transmitted power according to the second power transmission request signal. The first power transmission request signal can be ignored while power is transmitted. With the above configuration, the power supply in the second current mode with higher output is enabled, and even if the power supply base or the power receiving device does not support such power supply in the second current mode, the first current mode This makes it possible to use the power supply safely and safely. In addition, this method can be easily applied to existing non-contact charging, so that an advantage that it can be mounted at low cost without adding a new member can be obtained.

また第2の無接点給電システムによれば、前記電気負荷が、二次電池であり、前記給電台が、前記二次電池を充電する充電台であり、前記受電機器に対して、前記給電台から無接点で電力を送電して、前記二次電池を充電可能とできる。   According to the second contactless power supply system, the electrical load is a secondary battery, the power supply base is a charging base for charging the secondary battery, and the power supply base is connected to the power receiving device. Thus, the secondary battery can be charged by transmitting power without contact.

さらに第3の無接点給電システムによれば、第一電流値が、規格化された無接点充電方式に従った電流値であり、第二電流値を、規格化されていない無接点充電方式に従った電流値とできる。上記構成により、規格化された無接点充電方式に対応させた給電台及び受電機器で給電を可能としつつ、規格化された電流値よりもさらに高出力での給電にも対応させることができる。   Furthermore, according to the third contactless power supply system, the first current value is a current value according to a standardized contactless charging method, and the second current value is changed to a non-standardized contactless charging method. According to the current value. With the above-described configuration, it is possible to supply power at a higher output than the standardized current value while enabling power supply with a power supply base and a power receiving device that are compatible with the standardized contactless charging method.

さらにまた第4の無接点給電システムによれば、第一電流値が、700mAであり、第二電流値を1Aとできる。これにより、Qi規格に従った無接点給電に対応させつつ、独自規格によってこれよりも高出力でも給電可能とできる。   Furthermore, according to the fourth contactless power feeding system, the first current value can be 700 mA and the second current value can be 1 A. As a result, it is possible to supply power even at higher output than the original standard while supporting non-contact power supply according to the Qi standard.

さらにまた第5の無接点給電システムによれば、前記要求信号送信手段は、前記第一送電要求信号と、第二送電要求信号とを時分割で送信可能とできる。上記構成により、一の要求信号送信手段でもって第一送電要求信号と第二送電要求信号とを送信でき、送信機構を共通化して構成の簡素化を図ることができる。   Furthermore, according to the fifth contactless power feeding system, the request signal transmitting means can transmit the first power transmission request signal and the second power transmission request signal in a time-sharing manner. With the above configuration, the first transmission request signal and the second transmission request signal can be transmitted by one request signal transmission unit, and the configuration can be simplified by sharing the transmission mechanism.

さらにまた第6の無接点給電システムによれば、さらに前記送電コイルを、前記受電機器を載置する載置面内で移動させるための移動機構を備えることができる。上記構成により、受電機器を載置面内の任意の位置に載置して、送電コイルを移動させて受電コイルと電磁結合させることができる。   Furthermore, according to the sixth contactless power feeding system, it is possible to further include a moving mechanism for moving the power transmission coil within a mounting surface on which the power receiving device is mounted. With the above configuration, the power receiving device can be placed at an arbitrary position within the placement surface, and the power transmission coil can be moved to be electromagnetically coupled to the power reception coil.

さらにまた第7の無接点給電システムによれば、前記送電コイルを固定式とできる。上記構成により、送電コイルの移動機構を省き低コストな無接点給電が実現できる。   Furthermore, according to the seventh contactless power feeding system, the power transmission coil can be fixed. With the above configuration, low-cost non-contact power feeding can be realized by omitting the moving mechanism of the power transmission coil.

さらにまた第8の無接点給電システムによれば、前記受電側制御手段は、第一電流モードに代えて、第一電力値を定格電力として給電可能な第一電力モードと、第二電流モードに変えて、前記第一電力値よりも大きい第二電力値を定格電力として給電可能な第二電力モードとを切り替え可能としており、前記要求信号送信手段は、送電要求信号として、第一電力モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、第二電力モードでの給電に必要な第二送電電力を要求する第二送電要求信号とを送信可能とできる。上記構成により、電流値に限らず電力値を用いても給電の判定を的確に行うことが可能となる。   Furthermore, according to the eighth contactless power feeding system, the power receiving side control means can be switched to the first power mode capable of feeding the first power value as the rated power and the second current mode instead of the first current mode. It is possible to switch between the second power mode in which the second power value larger than the first power value can be supplied as the rated power, and the request signal transmission means can transmit the request power transmission signal in the first power mode as a power transmission request signal. It is possible to transmit a first transmission request signal for requesting first transmission power required for power supply and a second transmission request signal for requesting second transmission power required for power supply in the second power mode. With the above-described configuration, it is possible to accurately determine whether or not to supply power, not only using the current value but also using the power value.

さらにまた第9の受電機器によれば、給電台に内蔵される送電コイルから送電される電力でもって無接点で駆動可能な受電機器であって、前記電気負荷と、前記電気負荷に給電する電力を受けるため、送電コイルと電磁結合可能な受電コイルと、前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、前記受電機器側で実際に得られた受電側検出電力を検出する電力値取得手段と、前記電力値取得手段で検出された受電側検出電力に基づいて、前記給電台から受電機器に送電される送電電力量に関して指示する送電要求信号を前記給電台側に送信するための要求信号送信手段とを備え、前記受電側制御手段は、前記電気負荷に対して、第一電流値を定格電流として給電可能な第一電流モードと、前記第一電流値よりも大きい第二電流値を定格電流として給電可能な第二電流モードを切り替え可能としており、前記要求信号送信手段は、送電要求信号として、第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号と、これに次いで第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号とを送信可能とできる。上記構成により、より高出力の第二電流モードでの給電を可能としつつ、仮に給電台側が、このような第二電流モードでの給電に対応していない場合でも、第一電流モードでの給電を可能として、安全な利用が図られる。   Furthermore, according to the ninth power receiving device, the power receiving device can be driven in a contactless manner with the power transmitted from the power transmission coil built in the power supply stand, and the power is supplied to the electrical load and the electrical load. Power receiving coil that can be electromagnetically coupled to the power transmitting coil, power receiving side control means for controlling the driving of the electric load with the received power received by the power receiving coil, and actually obtained on the power receiving device side A power value acquisition means for detecting a power reception side detection power, and a power transmission request signal for instructing a transmission power amount transmitted from the power supply to the power receiving device based on the power reception side detection power detected by the power value acquisition means. A request signal transmission means for transmitting to the power supply side, the power reception side control means, for the electric load, a first current mode capable of supplying a first current value as a rated current; and The second current mode that can be fed with a second current value larger than the one current value as a rated current can be switched, and the request signal transmitting means is a power transmission request signal that is necessary for feeding in the second current mode. It is possible to transmit a second transmission request signal for requesting two transmission powers and a first transmission request signal for requesting the first transmission power necessary for power supply in the first current mode. With the above configuration, power supply in the second current mode with higher output is possible, but even if the power supply stand side does not support power supply in the second current mode, power supply in the first current mode is possible. Can be used safely.

さらにまた第10の受電機器によれば、前記受電側制御手段は、第一電流モードに代えて、第一電力値を定格電力として給電可能な第一電力モードと、第二電流モードに変えて、前記第一電力値よりも大きい第二電力値を定格電力として給電可能な第二電力モードとを切り替え可能としており、前記要求信号送信手段は、送電要求信号として、第二電力モードでの給電に必要な第二送電電力を要求する第二送電要求信号と、これに次いで第一電力モードでの給電に必要な第一送電電力を要求する第一送電要求信号とを送信可能とできる。上記構成により、電流値に限らず電力値を用いても給電の判定を的確に行うことが可能となる。   Further, according to the tenth power receiving device, the power receiving side control means changes to the first power mode in which the first power value can be supplied as the rated power and the second current mode instead of the first current mode. The second power mode can be switched to a second power mode in which a second power value larger than the first power value can be fed as a rated power, and the request signal transmitting means feeds power in the second power mode as a power transmission request signal. The second transmission request signal for requesting the second transmission power required for the transmission and the first transmission request signal for requesting the first transmission power required for the power supply in the first power mode can be transmitted subsequently. With the above-described configuration, it is possible to accurately determine whether or not to supply power, not only using the current value but also using the power value.

さらにまた第11の給電台によれば、電気負荷を有する受電機器に対し、無接点で電力を送電して給電可能な給電台であって、受電機器に内蔵された受電コイルと電磁結合して、該受電機器に給電するための送電コイルと、受電機器から送信される、前記給電台から受電機器に送電される送電電力量に関して指示する送電要求信号を受信するための要求信号受信手段と、前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する電力量を制御するための電力制御手段とを備え、前記電力制御手段は、前記要求信号受信手段で、第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号を受けた場合に、前記送電コイルから第一送電電力を送電し、前記第一電流値よりも大きい第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号を受けた場合に、前記送電コイルから第二送電電力を送電するよう構成され、前記要求信号受信手段で、受電機器から前記第二送電要求信号と第一送電要求信号とを受信すると、前記第二送電要求信号に従い第二送電電力を前記電力制御手段で送電する一方、前記第一送電要求信号を無視するよう構成できる。上記構成により、より高出力の第二電流モードでの給電を可能としつつ、仮に受電機器が、このような第二電流モードでの給電に対応していない場合でも、第一電流モードでの給電を可能として、安全に利用することが可能となる。   Furthermore, according to the eleventh power supply stand, it is a power supply stand that can transmit power to a power receiving device having an electrical load without contact, and is electromagnetically coupled to a power receiving coil incorporated in the power receiving device. A power transmission coil for supplying power to the power receiving device; and a request signal receiving means for receiving a power transmission request signal transmitted from the power receiving device and instructing the amount of power transmitted from the power supply base to the power receiving device; Power control means for controlling the amount of power transmitted from the power transmission coil based on the power transmission request signal received by the request signal receiving means, wherein the power control means is the request signal receiving means, When a first transmission request signal for requesting a first transmission power required for power supply in the first current mode for supplying power to an electrical load is received with one current value as a rated current, the first transmission power is obtained from the power transmission coil. Sending And receiving a second transmission request signal for requesting the second transmission power required for power supply in the second current mode for supplying power to the electric load with the second current value larger than the first current value as the rated current. The second transmission request signal is configured to transmit the second transmission power from the power transmission coil, and when the request signal receiving unit receives the second transmission request signal and the first transmission request signal from the power receiving device. The second transmission power is transmitted by the power control unit according to the configuration, while the first transmission request signal is ignored. With the above configuration, power supply in the first current mode is possible even when the power receiving device does not support such power supply in the second current mode while enabling power supply in the second current mode with higher output. Can be used safely.

さらにまた第12の給電台によれば、前記電力制御手段は、前記要求信号受信手段で、第一電流値に代えて、第一電力値を定格電力として、電気負荷に給電する第一電力モードでの給電に必要な第一送電電力を要求する第一送電要求信号を受けた場合に、前記送電コイルから第一送電電力を送電し、第二電流値に代えて、前記第一電力値よりも大きい第二電力値を定格電力として、電気負荷に給電する第二電力モードでの給電に必要な第二送電電力を要求する第二送電要求信号を受けた場合に、前記送電コイルから第二送電電力を送電するよう構成できる。上記構成により、電流値に限らず電力値を用いても給電の判定を的確に行うことが可能となる。   Furthermore, according to the twelfth power supply stand, the power control means is a first power mode in which the request signal receiving means supplies power to the electric load using the first power value as the rated power instead of the first current value. When the first transmission request signal for requesting the first transmission power required for power supply is received, the first transmission power is transmitted from the power transmission coil, and instead of the second current value, the first power value When receiving a second transmission request signal for requesting the second transmission power required for power supply in the second power mode for supplying power to the electrical load, with the second power value having a larger value as the rated power, It can be configured to transmit transmitted power. With the above-described configuration, it is possible to accurately determine whether or not to supply power, not only using the current value but also using the power value.

さらにまた第13の無接点給電方法によれば、電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して給電する無接点給電方法であって、前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への給電を開始すると共に、受電側検出電流又は受電側検出電力を検出する工程と、検出された受電側検出電流又は受電側検出電力に基づいて、前記給電台から前記受電機器に送電される送電電力量の増減を指示する送電要求信号を前記給電台に送信する工程と、前記送電要求信号に従って、前記前記電力制御手段は前記送電コイルから前記受電コイルに送電する送電電力量を調整する工程とを含み、前記受電機器は、送電要求信号として、第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、前記第一電流値よりも大きい第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号とを併せて前記給電台に送信し、前記給電台は、前記受電機器から前記第二送電要求信号と第一送電要求信号とをこの順で受信すると、前記第二送電要求信号に従い第二送電電力を前記受電機器に送電する一方、前記第一送電要求信号を無視することができる。これにより、より高出力の第二電流モードでの給電を可能としつつ、仮に給電台又は受電機器が、このような第二電流モードでの給電に対応していない場合でも、第一電流モードでの給電を可能として、安全に利用することが可能となる。   Furthermore, according to the thirteenth contactless power supply method, there is provided a contactless power supply method in which power is supplied from a power supply base without contact to a power receiving device having an electrical load, the power receiving coil of the power receiving device. In a state in which power is transmitted from the power transmission coil to the power receiving coil in an electromagnetically coupled state to the power transmission coil of the power supply stand, and the power receiving device receives the electric power by the power received by the power receiving coil. Based on the detected power reception side detection current or power reception side detection power and the detected power reception side detection current or power reception side detection power, power is transmitted from the power supply base to the power reception device. The power control means transmits power from the power transmission coil to the power receiving coil in accordance with the step of transmitting a power transmission request signal instructing to increase or decrease the amount of transmitted power to the power supply stand, and the power transmission request signal. Adjusting the amount of transmitted power, and the power receiving device uses, as a power transmission request signal, the first transmitted power necessary for power supply in the first current mode for supplying power to the electric load using the first current value as the rated current. The second transmission power required for power supply in the second current mode for supplying power to the electric load using the first transmission request signal to request and the second current value larger than the first current value as the rated current. The power transmission request signal is transmitted to the power supply stand together, and the power supply stand receives the second power transmission request signal and the first power transmission request signal from the power receiving device in this order, according to the second power transmission request signal. While transmitting the second transmitted power to the power receiving device, the first transmission request signal can be ignored. As a result, it is possible to supply power in the second current mode with higher output, but even if the power supply base or the power receiving device does not support such power supply in the second current mode, Therefore, it can be safely used.

さらにまた第14の無接点給電方法によれば、電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して給電する無接点給電方法であって、前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への給電を開始すると共に、受電側検出電流又は受電側検出電力を検出する工程と、検出された受電側検出電流又は受電側検出電力に基づいて、前記給電台から前記受電機器に送電される送電電力量の増減を指示する送電要求信号を前記給電台に送信する工程と、前記送電要求信号に従って、前記前記電力制御手段は前記送電コイルから前記受電コイルに送電する送電電力量を調整する工程とを含み、前記受電機器は、送電要求信号として、規格化された無接点充電方式に従った第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、前記第一電流値よりも大きい、規格化されていない無接点充電方式に従った第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号とを前記給電台に対し、前記第二送電要求信号、第一送電要求信号の順で送信し、前記給電台は、第二電流モードでの送電に対応していない場合、前記第一送電要求信号を受信して、該信号に従って第一送電電力を前記受電機器に給電し、第二電流モードでの送電に対応している場合、前記第二送電要求信号及び第一送電要求信号を受信して、前記第二送電要求信号に従って第二送電電力を前記受電機器に送電する一方、前記第一送電要求信号を無視することができる。上記構成により、より高出力の第二電流モードでの給電を可能としつつ、仮に給電台側が、このような第二電流モードでの給電に対応していない場合でも、第一電流モードでの給電を可能として、安全な利用が図られる。   Furthermore, according to the fourteenth contactless power supply method, there is provided a contactless power supply method in which electric power is transmitted from a power supply base in a contactless manner to a power receiving device having an electrical load, the power receiving coil of the power receiving device. In a state in which power is transmitted from the power transmission coil to the power receiving coil in an electromagnetically coupled state to the power transmission coil of the power supply stand, and the power receiving device receives the electric power by the power received by the power receiving coil. Based on the detected power reception side detection current or power reception side detection power and the detected power reception side detection current or power reception side detection power, power is transmitted from the power supply base to the power reception device. The power control means transmits power from the power transmission coil to the power receiving coil in accordance with the step of transmitting a power transmission request signal instructing to increase or decrease the amount of transmitted power to the power supply stand, and the power transmission request signal. Adjusting the amount of transmitted power, wherein the power receiving device supplies, as a power transmission request signal, a first current value according to a standardized non-contact charging method as a rated current to supply power to an electric load. The first transmission request signal for requesting the first transmission power necessary for power supply in the second current value according to the non-standard contactless charging method larger than the first current value, as the rated current, The second transmission request signal for requesting the second transmission power required for power supply in the second current mode for supplying power to the electric load, in the order of the second transmission request signal and the first transmission request signal to the power supply stand And when the power supply stand does not support power transmission in the second current mode, the power supply base receives the first power transmission request signal and feeds the first transmitted power to the power receiving device according to the signal, If it supports power transmission in current mode, Two power transmission request signal and the first transmission request signal to receive, while transmitting the second transmission power to the power receiving device according to the second transmission request signal, it is possible to ignore the first transmission request signal. With the above configuration, power supply in the second current mode with higher output is possible, but even if the power supply stand side does not support power supply in the second current mode, power supply in the first current mode is possible. Can be used safely.

さらにまた第15の無接点給電方法によれば、電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して給電する無接点給電方法であって、前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への給電を開始すると共に、受電側検出電流又は受電側検出電力を検出する工程と、検出された受電側検出電流又は受電側検出電力に基づいて、前記給電台から前記受電機器に送電される送電電力量の増減を指示する送電要求信号を前記給電台に送信する工程と、前記送電要求信号に従って、前記前記電力制御手段は前記送電コイルから前記受電コイルに送電する送電電力量を調整する工程とを含み、前記給電台は、前記受電機器から、規格化された無接点充電方式に従った第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号を受けた場合に、前記送電コイルから第一送電電力を送電し、前記第一電流値よりも大きい、規格化されていない無接点充電方式に従った第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号を受けた場合に、前記送電コイルから第二送電電力を送電し、前記前記第二送電要求信号と第一送電要求信号とをこの順で受けた場合に、前記第二送電要求信号に従い第二送電電力を前記電力制御手段で送電する一方、前記第一送電要求信号を無視するよう構成できる。上記構成により、より高出力の第二電流モードでの給電を可能としつつ、仮に受電機器が、このような第二電流モードでの給電に対応していない場合でも、第一電流モードでの給電を可能として、安全に利用することが可能となる。   Furthermore, according to the fifteenth contactless power supply method, there is provided a contactless power supply method in which power is supplied to a power receiving device having an electrical load by contactless power transmission from a power supply stand, wherein the power receiving coil of the power receiving device In a state in which power is transmitted from the power transmission coil to the power receiving coil in an electromagnetically coupled state to the power transmission coil of the power supply stand, and the power receiving device receives the electric power by the power received by the power receiving coil. Based on the detected power reception side detection current or power reception side detection power and the detected power reception side detection current or power reception side detection power, power is transmitted from the power supply base to the power reception device. The power control means transmits power from the power transmission coil to the power receiving coil in accordance with the step of transmitting a power transmission request signal instructing to increase or decrease the amount of transmitted power to the power supply stand, and the power transmission request signal. Adjusting the amount of transmitted power, wherein the power supply base supplies a first current value according to a standardized non-contact charging method to the electric load from the power receiving device as a rated current. When the first transmission request signal for requesting the first transmission power required for power supply is received, the first transmission power is transmitted from the power transmission coil and is larger than the first current value, which is not standardized. When the second current value according to the non-contact charging method is used as the rated current, when the second transmission request signal for requesting the second transmission power required for power supply in the second current mode for supplying power to the electric load is received, When the second transmission power is transmitted from the power transmission coil and the second transmission request signal and the first transmission request signal are received in this order, the second transmission power is transmitted to the power control unit according to the second transmission request signal. While the first power transmission request It can be configured to ignore the issue. With the above configuration, power supply in the first current mode is possible even when the power receiving device does not support such power supply in the second current mode while enabling power supply in the second current mode with higher output. Can be used safely.

実施の形態1に係る無接点充電システムを示すブロック図である。1 is a block diagram showing a contactless charging system according to Embodiment 1. FIG. 実施の形態2に係る無接点充電システムを示すブロック図である。It is a block diagram which shows the non-contact charge system which concerns on Embodiment 2. FIG. 実施の形態3に係る無接点充電システムを示すブロック図である。FIG. 6 is a block diagram showing a contactless charging system according to a third embodiment. 5W対応、5W/10W対応の電池内蔵機器を、それぞれ5W対応又は5W/10W対応の充電台に載置する組み合わせを示す模式図である。It is a schematic diagram which shows the combination which mounts the battery built-in apparatus corresponding to 5W and 5W / 10W on the charging stand corresponding to 5W or 5W / 10W, respectively. 本実施の形態に係る充電台と電池内蔵機器で、電池内蔵機器から通信を行う様子を示す模式図である。It is a schematic diagram which shows a mode that it communicates from a battery built-in apparatus with the charging stand and battery built-in apparatus which concern on this Embodiment. 図4の各組み合わせにおいて、充電台が電池内蔵機器に電力伝送制御を行う様子を示すブロック図である。FIG. 5 is a block diagram illustrating a state where a charging stand performs power transmission control on a battery built-in device in each combination of FIG. 4. 第一充電モードにおいて受電機器の定電流、定電圧充電を行うためのV−I特性を示すグラフである。It is a graph which shows the VI characteristic for performing the constant current and constant voltage charge of a receiving device in 1st charge mode. 第二充電モードにおいて受電機器の定電流、定電圧充電を行うためのV−I特性を示すグラフである。It is a graph which shows the VI characteristic for performing constant current and constant voltage charge of a receiving device in 2nd charge mode. 図5の無接点給電システムにおいて、受電機器から給電台に対して通信を行う様子を示すタイミングチャートである。6 is a timing chart illustrating a state in which communication is performed from a power receiving device to a power supply stand in the non-contact power supply system of FIG. 5. 受電機器における受電時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the power reception in a power receiving apparatus. 給電台における給電時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the electric power feeding in a feed stand. 従来の無接点充電台と携帯電話を示す斜視図である。It is a perspective view which shows the conventional non-contact charging stand and a mobile phone. 無接点充電を行う規格に従った充電台で電池内蔵機器を充電する様子を示す模式図である。It is a schematic diagram which shows a mode that a battery built-in apparatus is charged with the charging stand according to the standard which performs non-contact charge. 無接点充電の規格に従いつつ、規格外の充電も可能にした充電台から、電池内蔵機器に通信を行う様子を示す模式図である。It is a schematic diagram which shows a mode that it communicates with the apparatus with a built-in battery from the charging stand which also enabled the non-standard charge while following the standard of non-contact charge.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための無接点給電システム、受電機器、給電台、無接点給電方法を例示するものであって、本発明は無接点給電システム、受電機器、給電台、無接点給電方法を以下のものに特定しない。特に本明細書は、特許請求の範囲を理解し易いように、実施の形態に示される部材に対応する番号を、「特許請求の範囲の欄」、及び「課題を解決するための手段の欄」に示される部材に付記しているが、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below exemplify a non-contact power supply system, a power receiving device, a power supply stand, and a non-contact power supply method for embodying the technical idea of the present invention. The system, power receiving device, power supply stand, and contactless power supply method are not specified as follows. In particular, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the embodiments are referred to as “claims” and “means for solving the problems”. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
(Embodiment 1)

図1は、本発明の実施の形態1に係る無接点給電システム100を示すブロック図である。この図に示す給電台10は、無接点給電方法で受電機器50に電力搬送する。図では、給電台10の上に受電機器50を載せて、給電台10から受電機器50に給電する状態を示している。この実施の形態では、給電台10を充電台とし、受電機器50を電池内蔵機器として、充電台から電池内蔵機器に給電して、電池内蔵機器の二次電池52を充電する状態を示している。   FIG. 1 is a block diagram showing a non-contact power feeding system 100 according to Embodiment 1 of the present invention. The power supply stand 10 shown in this figure conveys power to the power receiving device 50 by a non-contact power supply method. In the figure, a state is shown in which the power receiving device 50 is placed on the power supply base 10 and power is supplied from the power supply base 10 to the power reception device 50. In this embodiment, the power supply base 10 is a charging base, the power receiving device 50 is a battery built-in device, and power is supplied from the charging stand to the battery built-in device to charge the secondary battery 52 of the battery built-in device. .

なお本発明は、給電台を充電台に、あるいは受電機器を電池内蔵機器に、それぞれ特定するものではない。受電機器は照明器具や充電アダプタとして、給電台から受電機器に給電して、受電機器を電力駆動することができる。例えば受電機器が照明機器の場合は、給電台から給電される電力で光源を点灯し、また受電機器が充電アダプタの場合は、給電台から給電される電力でもって、充電アダプタに接続される電池内蔵機器に電池の充電電力を供給して、電池内蔵機器の電池を充電する。また、受電機器は、パック電池であっても良い。   The present invention does not specify the power supply stand as a charging stand or the power receiving device as a battery built-in device. The power receiving device can drive the power of the power receiving device as a lighting fixture or a charging adapter by supplying power from the power supply stand to the power receiving device. For example, when the power receiving device is a lighting device, the light source is turned on with power supplied from the power supply stand. When the power receiving device is a charge adapter, the battery connected to the charge adapter is supplied with power supplied from the power supply stand. Supply the battery charging power to the internal device to charge the battery of the internal battery device. The power receiving device may be a battery pack.

給電台10は、ケース20の上面に、受電機器50を一定の位置にセットして載せる上面プレート21を設けて、この上面プレート21の内側に送電コイル11を配置している。送電コイル11は、交流電源12を接続して、交流電源12を電力制御手段13で制御している。   In the power supply stand 10, an upper surface plate 21 on which the power receiving device 50 is set and placed at a fixed position is provided on the upper surface of the case 20, and the power transmission coil 11 is disposed inside the upper surface plate 21. The power transmission coil 11 is connected to an AC power source 12 and controls the AC power source 12 by a power control means 13.

電力制御手段13は、受電機器50から伝送される増減要求信号で交流電源12を制御して、送電コイル11に供給する電力を調整する。電力制御手段13は、要求信号受信手段14から入力される増加要求信号で交流電源12から送電コイル11への出力電力を大きくし、減少要求信号で送電コイル11への出力を小さくして、受電機器50から要求された要求電力を給電する。電力制御手段13は、交流電源12の出力を最大出力に以下に調整し、あるいはあらかじめ設定している設定電力以下に調整する。電力制御手段13は、増加要求信号によって交流電源12の出力を増加させるが、交流電源12の出力が最大電力に、あるいは設定電力まで増加される状態においては、増加要求信号を検出しても、交流電源12の出力を増加させない。   The power control unit 13 controls the AC power supply 12 with an increase / decrease request signal transmitted from the power receiving device 50 to adjust the power supplied to the power transmission coil 11. The power control means 13 increases the output power from the AC power supply 12 to the power transmission coil 11 with the increase request signal input from the request signal reception means 14, and decreases the output to the power transmission coil 11 with the decrease request signal. The requested power requested from the device 50 is supplied. The power control means 13 adjusts the output of the AC power supply 12 to the maximum output as follows, or adjusts it below the preset set power. The power control means 13 increases the output of the AC power supply 12 by the increase request signal. In the state where the output of the AC power supply 12 is increased to the maximum power or the set power, even if the increase request signal is detected, The output of the AC power supply 12 is not increased.

給電台10は、送電コイル11を受電コイル51に電磁結合して、送電コイル11から受電コイル51に電力搬送、すなわち給電する。受電機器50を上面プレート21の自由な位置にセットして、二次電池52を充電する給電台10は、送電コイル11を受電コイル51に接近するように移動させる移動機構16を内蔵している。この給電台10は、送電コイル11をケース20の上面プレート21の下に配設して、上面プレート21に沿って移動させて受電コイル51に接近させる。   The power supply base 10 electromagnetically couples the power transmission coil 11 to the power reception coil 51, and carries power, that is, supplies power from the power transmission coil 11 to the power reception coil 51. The power supply base 10 that charges the secondary battery 52 by setting the power receiving device 50 at a free position on the top plate 21 incorporates a moving mechanism 16 that moves the power transmission coil 11 so as to approach the power reception coil 51. . In the power supply stand 10, the power transmission coil 11 is disposed below the upper surface plate 21 of the case 20 and moved along the upper surface plate 21 to approach the power reception coil 51.

給電台10と受電機器50は、受電機器50を給電台10の定位置にセットする位置決め部機構を設けて、受電機器50を給電台10の定位置にセットすることができる。位置決め部機構は、受電コイル51を送電コイル11に接近させるように、受電機器50を給電台10の定位置にセットする。送電コイル11に接近する受電コイル51は、電磁誘導作用で送電コイル11から受電コイル51に電力搬送して給電する。
(実施の形態2)
The power supply base 10 and the power receiving device 50 can be provided with a positioning unit mechanism that sets the power receiving device 50 at a fixed position of the power supply stand 10, and the power receiving device 50 can be set at a fixed position of the power supply stand 10. The positioning unit mechanism sets the power receiving device 50 at a fixed position of the power supply base 10 so that the power receiving coil 51 approaches the power transmitting coil 11. The power receiving coil 51 that approaches the power transmitting coil 11 carries power from the power transmitting coil 11 to the power receiving coil 51 by electromagnetic induction to supply power.
(Embodiment 2)

以上の例では、送電コイル11を上面プレート21内面において、移動機構16で水平面内に移動させる構成を説明した。ただ、送電コイルを固定式とした給電台を利用することもできる。このような例を実施の形態2として、図2に示す。この図に示す無接点給電システム200は、給電台10’と受電機器50で構成される。給電台10’は、送電コイル11を受電コイル51と電磁結合させるための位置決め部機構22として、給電台10’の定位置に受電機器50をセットする嵌合構造を利用している。図2の嵌合構造は、給電台10’上面に受電機器50を嵌入する嵌入凹部23を設けて、嵌入凹部23に受電機器50を入れて定位置にセットしている。なお図示しないが、位置決め部機構は、給電台と受電機器との対向面に嵌合構造の凹凸を設けて、受電機器を給電台の定位置にセットすることもできる。嵌合構造は、受電機器の位置ずれを防止できる。   In the above example, the configuration in which the power transmission coil 11 is moved in the horizontal plane by the moving mechanism 16 on the inner surface of the upper surface plate 21 has been described. However, it is also possible to use a power supply stand with a fixed power transmission coil. Such an example is shown in FIG. The non-contact power feeding system 200 shown in this figure includes a power feeding base 10 ′ and a power receiving device 50. The power supply base 10 ′ uses a fitting structure in which the power receiving device 50 is set at a fixed position of the power supply base 10 ′ as the positioning unit mechanism 22 for electromagnetically coupling the power transmission coil 11 to the power reception coil 51. The fitting structure of FIG. 2 is provided with a fitting recess 23 into which the power receiving device 50 is fitted on the upper surface of the power supply base 10 ′, and the power receiving device 50 is put in the fitting recess 23 and set at a fixed position. Although not shown, the positioning unit mechanism can also set the power receiving device at a fixed position of the power supply base by providing concavity and convexity of the fitting structure on the opposing surface of the power supply base and the power receiving device. The fitting structure can prevent displacement of the power receiving device.

送電コイル11は、上面プレート21と平行な面で渦巻き状に巻いてなる平面コイルで、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。送電コイル11は、磁性材からなるコア(図示せず)に線材を巻いてインダクタンスを大きくできる。コアのある送電コイルは、磁束を特定部分に集束して、効率よく電力を受電コイルに伝送できる。ただ、送電コイルは、必ずしもコアを設ける必要はなく、空芯コイルとすることもできる。空芯コイルは軽いので、送電コイルを上面プレートの内面で移動させる構造にあっては、移動機構を簡単にできる。送電コイル11は、受電コイル51の外径にほぼ等しくして、受電コイル51に効率よく電力搬送する。   The power transmission coil 11 is a planar coil wound in a spiral shape on a surface parallel to the upper surface plate 21, and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21. The power transmission coil 11 can increase the inductance by winding a wire around a core (not shown) made of a magnetic material. The power transmission coil with the core can concentrate the magnetic flux to a specific part and efficiently transmit power to the power reception coil. However, the power transmission coil does not necessarily need to be provided with a core, and may be an air-core coil. Since the air-core coil is light, the moving mechanism can be simplified in the structure in which the power transmission coil is moved on the inner surface of the top plate. The power transmission coil 11 is substantially equal to the outer diameter of the power reception coil 51 and efficiently conveys power to the power reception coil 51.

交流電源12は、電力制御手段13でもって送電コイル11に供給する電力が調整されて、たとえば、20kHz〜1MHzの高周波電力を送電コイル11に供給する。送電コイル11を受電コイル51に接近するように移動させる給電台10は、交流電源12を、可撓性のリード線を介して送電コイル11に接続している。交流電源12は、発振回路と、この発振回路から出力される交流を電力増幅するパワーアンプとを備える。   The AC power supply 12 adjusts the power supplied to the power transmission coil 11 by the power control means 13 and supplies, for example, high frequency power of 20 kHz to 1 MHz to the power transmission coil 11. The power supply stand 10 that moves the power transmission coil 11 so as to approach the power reception coil 51 connects the AC power supply 12 to the power transmission coil 11 via a flexible lead wire. The AC power supply 12 includes an oscillation circuit and a power amplifier that amplifies the AC output from the oscillation circuit.

給電台10は、送電コイル11を受電コイル51に接近させた状態で、交流電源12で送電コイル11に交流電力を供給する。送電コイル11の交流電力は、受電コイル51に送電されて、二次電池52を充電する。給電台10は、二次電池52が満充電され、あるいは異物検出し、あるいはまた異常判定する状態で、受電機器50から伝送される信号で送電コイル11への電力供給を停止して、二次電池52の充電を停止する。   The power supply base 10 supplies AC power to the power transmission coil 11 with the AC power supply 12 in a state where the power transmission coil 11 is brought close to the power reception coil 51. The AC power of the power transmission coil 11 is transmitted to the power reception coil 51 to charge the secondary battery 52. The power supply base 10 stops the power supply to the power transmission coil 11 by a signal transmitted from the power receiving device 50 in a state in which the secondary battery 52 is fully charged, foreign matter is detected, or abnormality is determined. The charging of the battery 52 is stopped.

図1と図2の受電機器50は電池内蔵機器5で、給電台10の送電コイル11に電磁結合される受電コイル51を内蔵している。受電コイル51に誘導される受電電力で二次電池52を充電する。したがって、図1の受電機器50は、二次電池52と、受電コイル51と、この受電コイル51に誘導される交流を直流に変換する整流回路56と、整流回路56から出力される直流で二次電池52を充電する充電電流や電圧を調整する受電側制御手段53と、受電機器50の情報信号を給電台10に伝送する伝送回路54と、整流回路56の出力から受電電力を検出して、受電電力を、二次電池52を充電するために必要な電力である要求電力に比較して増減要求信号を検出すると共に、この増減要求信号から異物検出する検出回路55とを備える。   The power receiving device 50 in FIGS. 1 and 2 is a battery built-in device 5 and includes a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11 of the power supply base 10. The secondary battery 52 is charged with the received power induced by the power receiving coil 51. Accordingly, the power receiving device 50 in FIG. 1 includes a secondary battery 52, a power receiving coil 51, a rectifier circuit 56 that converts alternating current induced in the power receiving coil 51 into direct current, and a direct current that is output from the rectifier circuit 56. The power receiving side control means 53 for adjusting the charging current and voltage for charging the secondary battery 52, the transmission circuit 54 for transmitting the information signal of the power receiving device 50 to the power supply base 10, and the received power from the output of the rectifier circuit 56 are detected. The detection circuit 55 includes a detection circuit 55 that detects the increase / decrease request signal by comparing the received power with the required power that is necessary for charging the secondary battery 52 and detects a foreign matter from the increase / decrease request signal.

二次電池52は、リチウムイオン電池又はリチウムポリマー電池である。ただし、電池は、ニッケル水素電池やニッケルカドミウム電池などの充電できる全ての電池とすることができる。受電機器50は、1個ないし複数の二次電池52を内蔵している。複数の二次電池52は、直列又は並列に接続され、あるいは直列と並列に接続される。   The secondary battery 52 is a lithium ion battery or a lithium polymer battery. However, the battery can be any rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery. The power receiving device 50 includes one or a plurality of secondary batteries 52. The plurality of secondary batteries 52 are connected in series or in parallel, or connected in series and in parallel.

整流回路56は、受電コイル51に誘導される交流をダイオードブリッジで全波整流して脈流を平滑コンデンサーで平滑化する。整流回路は、ダイオードブリッジで交流を整流するが、整流回路には、FETをブリッジに接続して、交流に同期してFETをオンオフに切り換えて整流する同期整流回路も使用できる。FETの同期整流回路はオン抵抗が小さく、整流回路の発熱を少なくして、受電機器50のケース内温度の上昇を少なくできる。また、平滑コンデンサーは必ずしも必要でなく、ダイオードブリッジや同期整流回路の出力で電池を充電することもできる。   The rectifier circuit 56 full-wave rectifies the alternating current induced in the power receiving coil 51 with a diode bridge, and smoothes the pulsating current with a smoothing capacitor. The rectifier circuit rectifies alternating current with a diode bridge, but a synchronous rectifier circuit can be used for the rectifier circuit in which an FET is connected to the bridge and the FET is switched on and off in synchronization with the alternating current. The synchronous rectification circuit of the FET has a small on-resistance, reduces the heat generation of the rectification circuit, and can reduce the increase in the temperature inside the case of the power receiving device 50. Further, the smoothing capacitor is not always necessary, and the battery can be charged by the output of the diode bridge or the synchronous rectifier circuit.

受電側制御手段53は、リチウムイオン電池やリチウムポリマー電池等を定電圧・定電流充電し、またニッケル水素電池やニッケルカドミウム電池を定電流充電する。さらに、受電側制御手段53は、二次電池52の満充電を検出して、満充電信号を伝送回路54を介して給電台10に伝送する。給電台10は、伝送回路54から伝送される満充電信号や受電機器50の情報信号を要求信号受信手段14で検出する。給電台10は、受電機器50からの情報信号を検出し、電力制御手段13で交流電源12を制御する。給電台10は、満充電信号を検出すると、送電コイル11への電力供給を停止させる。
(実施の形態3)
The power receiving side control means 53 charges a lithium ion battery, a lithium polymer battery or the like at a constant voltage / constant current, and charges a nickel metal hydride battery or a nickel cadmium battery at a constant current. Further, the power receiving side control means 53 detects the full charge of the secondary battery 52 and transmits a full charge signal to the power supply base 10 via the transmission circuit 54. The power supply stand 10 detects the full charge signal transmitted from the transmission circuit 54 and the information signal of the power receiving device 50 by the request signal receiving unit 14. The power supply stand 10 detects an information signal from the power receiving device 50 and controls the AC power supply 12 by the power control means 13. When the power supply stand 10 detects the full charge signal, the power supply stand 10 stops the power supply to the power transmission coil 11.
(Embodiment 3)

なお、図1や図2の例では受電側制御手段として充電制御手段を用いて、二次電池52を充電させる例を説明した。ただ本発明は、受電した電力を二次電池の充電に利用する例に限られず、受電機器の電気負荷を駆動させる電力として利用することもできる。このような無接点給電システムの例を、実施の形態3として図3に示す。この図に示す無接点給電システム300では、受電機器50が、受電側制御手段として充電制御手段に代えて電気負荷を駆動する電力を供給する負荷駆動制御手段53Bを備えている。他の部材は、上述した実施の形態1や2と同様の構成が利用できる。負荷駆動制御手段53Bは、受電機器50の電気負荷LDを駆動する電力に変換する。受電機器50の電気負荷には、例えば携帯電話やキッチン用品、照明装置等が利用できる。このようにして、受電した電力を二次電池の充電以外に、電気負荷の駆動電力に直接利用することもできる。なお、電気負荷として二次電池を利用すれば上述した実施の形態1や2の構成となる。また、受電した電力を電気負荷の駆動と二次電池の充電の両方に利用する構成も採用で   In the example of FIGS. 1 and 2, the example in which the secondary battery 52 is charged using the charge control unit as the power receiving side control unit has been described. However, the present invention is not limited to the example in which the received power is used for charging the secondary battery, and can also be used as power for driving the electric load of the power receiving device. An example of such a non-contact power feeding system is shown in FIG. In the non-contact power feeding system 300 shown in this figure, the power receiving device 50 includes load drive control means 53B that supplies power for driving an electric load instead of the charge control means as the power receiving side control means. Other members can use the same configuration as in the first and second embodiments described above. The load drive control unit 53B converts the electric power to drive the electric load LD of the power receiving device 50. For example, a mobile phone, kitchenware, or a lighting device can be used as the electrical load of the power receiving device 50. In this way, the received power can be directly used for driving power of the electric load in addition to charging the secondary battery. If a secondary battery is used as the electrical load, the configuration of the first or second embodiment described above is obtained. It is also possible to adopt a configuration that uses the received power for both driving the electrical load and charging the secondary battery.

伝送回路54は、受電機器50から給電台10に、給電台10の出力を増加又は減少するための増加要求信号と減少要求信号からなる増減要求信号、二次電池52の満充電信号、充電している二次電池52の電圧、充電電流、電池温度、電池のシリアル番号、電池の充電電流を特定する許容充電電流、電池の充電をコントロールする許容温度等の電池情報などの種々の情報信号を給電台10に伝送する。伝送回路54は、受電コイル51の負荷インピーダンスを変化させて、送電コイル11に種々の情報信号を伝送する。この伝送回路54は、図示しないが、受電コイル51に変調回路を接続している。変調回路は、コンデンサーや抵抗等の負荷とスイッチング素子とを直列に接続して、スイッチング素子のオンオフを制御して種々の情報信号を給電台10に伝送する。   The transmission circuit 54 supplies power to the power supply base 10 from the power receiving device 50, an increase / decrease request signal including an increase request signal and a decrease request signal for increasing or decreasing the output of the power supply base 10, a full charge signal for the secondary battery 52, and charging. Various information signals such as the voltage of the secondary battery 52, the charging current, the battery temperature, the battery serial number, the allowable charging current for specifying the charging current of the battery, the battery information such as the allowable temperature for controlling the charging of the battery, etc. It is transmitted to the power supply stand 10. The transmission circuit 54 changes various load impedances of the power reception coil 51 and transmits various information signals to the power transmission coil 11. Although not shown, the transmission circuit 54 has a modulation circuit connected to the power receiving coil 51. The modulation circuit connects a load such as a capacitor and a resistor and a switching element in series, controls on / off of the switching element, and transmits various information signals to the power supply base 10.

給電台10の要求信号受信手段14は、送電コイル11のインピーダンス変化、電圧変化、電流変化等を検出して、伝送回路54から伝送される情報信号を検出する。受電コイル51の負荷インピーダンスが変化すると、これに電磁結合している送電コイル11のインピーダンスや電圧や電流が変化するので、要求信号受信手段14は、これ等の変化を検出して、受電機器50の情報信号を検出することができる。   The request signal receiving means 14 of the power supply stand 10 detects an information signal transmitted from the transmission circuit 54 by detecting an impedance change, a voltage change, a current change and the like of the power transmission coil 11. When the load impedance of the power receiving coil 51 changes, the impedance, voltage, and current of the power transmitting coil 11 that is electromagnetically coupled to the power receiving coil 51 change. Therefore, the request signal receiving unit 14 detects these changes and receives the power receiving device 50. It is possible to detect the information signal.

ただし、伝送回路は、搬送波を変調して伝送する回路、すなわち送信機とすることもできる。この伝送回路から伝送される情報信号の要求信号受信手段は、搬送波を受信して、情報信号を検出する受信器である。伝送回路と要求信号受信手段とは、受電機器から給電台に情報信号を伝送できる全ての回路構成とすることができる。   However, the transmission circuit may be a circuit that modulates and transmits a carrier wave, that is, a transmitter. The request signal receiving means for the information signal transmitted from the transmission circuit is a receiver that receives the carrier wave and detects the information signal. The transmission circuit and the request signal receiving means can have all circuit configurations capable of transmitting an information signal from the power receiving device to the power supply base.

検出回路55は、所定の周期で、整流回路56から出力される受電電力を要求電力に比較して増減要求信号を出力する比較部55Aと、比較部55Aの増加要求信号から異物検出を判定する判定部55Bとを備える。なお、異物検出の判定は受電機器側でなく、給電台側で行うこともできる。この場合は、例えば受電機器側から給電台に二次電池の電圧と充電電流を通知し、給電台側で送電電力と比較して、伝送効率が基準値よりも低い場合は異物が存在すると判断し、送電を停止する。   The detection circuit 55 compares the received power output from the rectifier circuit 56 with the required power at a predetermined period and outputs an increase / decrease request signal, and determines foreign object detection from the increase request signal of the comparison unit 55A. And a determination unit 55B. Note that the foreign object detection can be determined not on the power receiving device side but on the power supply stand side. In this case, for example, the voltage and charging current of the secondary battery are notified from the power receiving device side to the power supply stand, and when the transmission efficiency is lower than the reference value compared to the transmission power on the power supply stand side, it is determined that there is a foreign object. Then stop power transmission.

比較部55Aは、整流回路56の出力電圧と電流の積から受電電力を検出し、検出する受電電力を要求電力に比較して増減要求信号を出力する。比較部55Aは、二次電池52を充電するために必要な電力を要求電力として検出する。比較部55Aは、二次電池52の種類、電池電圧、充電する電流等を検出して、二次電池52を充電するために必要な電力、すなわち要求電力を検出する。リチウムイオン電池やリチウムポリマー電池は、定電圧・定電流特性で充電されるので、二次電池52が満充電に近づくに従って充電電流は減少する。したがって、二次電池52が満充電に近づくにしたがって要求電力を小さくする。図1と図2は、受電機器50を電池内蔵機器として、消費電力で二次電池52を充電する。この受電機器50は、要求電力を二次電池52の充電電力とするが、受電機器は必ずしも電池内蔵機器には限定しない。電池内蔵機器でない受電機器は、要求電力を負荷の消費電力や定格電力として検出する。   The comparison unit 55A detects the received power from the product of the output voltage and current of the rectifier circuit 56, compares the detected received power with the required power, and outputs an increase / decrease request signal. 55 A of comparison parts detect the electric power required in order to charge the secondary battery 52 as request | requirement electric power. 55 A of comparison parts detect the kind of secondary battery 52, battery voltage, the electric current to charge, etc., and the electric power required in order to charge the secondary battery 52, ie, required electric power. Since the lithium ion battery and the lithium polymer battery are charged with constant voltage / constant current characteristics, the charging current decreases as the secondary battery 52 approaches full charge. Therefore, the required power is reduced as the secondary battery 52 approaches full charge. 1 and 2, the power receiving device 50 is used as a battery built-in device, and the secondary battery 52 is charged with power consumption. The power receiving device 50 uses the required power as charging power for the secondary battery 52, but the power receiving device is not necessarily limited to a battery built-in device. A power receiving device that is not a battery built-in device detects the required power as load power consumption or rated power.

増減要求信号は、給電台10の出力を増加させる増加要求信号と、出力を小さくする減少要求信号である。比較部55Aは、受電電力が要求電力よりも小さいことを検出して増加要求信号を出力し、受電電力が要求電力よりも大きいことを検出して減少要求信号を出力する。比較部55Aは、電気負荷に最適な電力を供給できるように、受電電力を要求電力に比較して、増加要求信号又は減少要求信号からなる増減要求信号を出力する。
(高出力対応)
The increase / decrease request signal is an increase request signal for increasing the output of the power supply base 10 and a decrease request signal for decreasing the output. The comparison unit 55A detects that the received power is smaller than the required power and outputs an increase request signal, detects that the received power is larger than the required power, and outputs a decrease request signal. The comparison unit 55A compares the received power with the required power and outputs an increase / decrease request signal composed of an increase request signal or a decrease request signal so that the optimum power can be supplied to the electric load.
(High output)

以上説明した給電台は、給電時、すなわち送電の最大電力量を予め規定されている。同様に電池内蔵機器も、給電時に受けることのできる電力量が予め規定されている。特に、異なる機器間でも無接点給電が可能なように、無接点給電の規格が定められている。一般的には、WPC(Wireless Power Consortium)により策定されたQi規格が国際標準規格として知られている。同規格の低電力仕様の規格書(Volume I: Low Power)によれば、給電電力は最大5Wに制限されている。   In the power supply stand described above, the maximum amount of power for power transmission, that is, power transmission is defined in advance. Similarly, in the battery built-in device, the amount of power that can be received at the time of power feeding is specified in advance. In particular, a standard for contactless power supply is defined so that contactless power supply is possible between different devices. In general, the Qi standard established by WPC (Wireless Power Consortium) is known as an international standard. According to the low power specification standard (Volume I: Low Power) of the same standard, the power supply is limited to a maximum of 5W.

しかしながら、近年のタブレット機器(スレートPC)に代表される受電機器の大画面化、高性能化に伴う駆動電力の増大等に伴い、受電機器を駆動する電池の大容量化が進んでいる。電池容量が大きくなるにつれて、充電時間が長くなるが、その一方で充電時間をできるだけ短縮して稼働時間を長くしたいという要望も強い。これに応えるには、充電時の電力量を増大させる必要がある。ここで、規格外の大電流で充電可能な充電台や電池内蔵機器を設計すると、特定の組み合わせでしか充電できなくなって、使い勝手が悪くなる。そこで、Qi規格のような、既存の規格にも対応させた充電台や電池内蔵機器を設計することが考えられる。ここで、Qi規格に対応した5W対応の充電台及び電池内蔵機器に対し、より高出力の、例えば10Wでの充電にも対応させつつ、Qi規格の5W充電にも対応させた5W/10W対応の充電台及び電池内蔵機器を導入した場合において、既存の充電台、電池内蔵機器との互換性を考えると、図4のような組み合わせが考えられる。このように、図4の組み合わせにおいては、
(1)5W対応の電池内蔵機器50Aを5W対応の充電台10Aに置いて充電する場合、
(2)5W対応の電池内蔵機器50Aを5W/10W対応の充電台10Bに置いて充電する場合、
(3)5W/10W対応の電池内蔵機器50Bを5W対応の充電台10Aに置いて充電する場合、
(4)5W/10W対応の電池内蔵機器50Bを5W/10W対応の充電台10Bに置いて充電する場合、
の4通りが考えられる。この内、(1)5W対応の電池内蔵機器50Aと5W対応の充電台10Aとの組み合わせは、従来型の電池内蔵機器と充電台の組み合わせであるため、問題なく動作する。また、(4)5W/10W対応の電池内蔵機器50Bと5W/10W対応の充電台10Bとの組み合わせも、独自規格の10Wに対応させた機器同士の組み合わせであるため問題なく動作する。
However, with the recent increase in the screen size of power receiving devices typified by tablet devices (slate PCs) and the increase in driving power associated with higher performance, the capacity of batteries driving the power receiving devices has been increasing. As the battery capacity increases, the charging time becomes longer. On the other hand, there is a strong demand for shortening the charging time as much as possible to increase the operating time. In order to respond to this, it is necessary to increase the amount of power during charging. Here, if a charging stand or a battery built-in device that can be charged with a non-standard large current can be designed, it can be charged only in a specific combination, and the usability is deteriorated. Therefore, it is conceivable to design a charging stand and a battery built-in device that are compatible with existing standards such as the Qi standard. Here, 5W / 10W compatible with Qi standard 5W charging while supporting higher power, for example, 10W charging, for 5W compatible charging stand and battery built-in device compatible with Qi standard When the charging stand and the battery built-in device are introduced, considering the compatibility with the existing charging stand and the battery built-in device, a combination as shown in FIG. 4 can be considered. Thus, in the combination of FIG.
(1) When charging the battery built-in device 50A for 5W on the charging base 10A for 5W,
(2) When charging the battery built-in device 50A for 5W on the charging base 10B for 5W / 10W,
(3) When charging the battery built-in device 50B compatible with 5W / 10W on the charging stand 10A compatible with 5W,
(4) When charging the battery built-in device 50B compatible with 5W / 10W on the charging stand 10B compatible with 5W / 10W,
There are four possible ways. Among them, (1) the combination of the 5W-compatible battery-equipped device 50A and the 5W-compatible charging base 10A is a combination of a conventional battery-equipped device and a charging base, and thus operates without problems. Further, (4) the combination of the 5W / 10W compatible battery built-in device 50B and the 5W / 10W compatible charging base 10B is also a combination of devices compatible with the original standard 10W, and thus operates without any problem.

一方で、(2)5W対応の電池内蔵機器50Aと5W/10W対応の充電台10Bとの組み合わせにおいては、電池内蔵機器50Aが従来の規格に対応させた5Wの送電電力を充電台側に要求することで、正しく充電できる。言い換えると、この組み合わせでは、電池内蔵機器50Aが5W以上の送電電力を求めることはできず、低電力での充電のみが可能となる。   On the other hand, (2) In the combination of the 5W battery built-in device 50A and the 5W / 10W compatible charging stand 10B, the battery built-in device 50A requires the charging stand side to supply 5W of transmission power corresponding to the conventional standard. By doing so, it can be charged correctly. In other words, with this combination, the battery built-in device 50A cannot obtain transmission power of 5 W or more, and only charging with low power is possible.

しかしながら、(3)5W/10W対応の電池内蔵機器50Bを5W対応の充電台10Aに置いて充電する場合は、5W/10W対応の電池内蔵機器50Bが10Wの電力での充電を5W対応の充電台10Aに対して求めると、送電電力が5Wでは足りず、これ以上に増加するように求める結果、充電台側から見れば、規定値以上の電力を求められ続ける状態となって、充電台に異物が載置されているものと誤判断されて充電が停止されてしまい、結果として充電ができなくなる虞があった。特にQi規格においては、レシーバー(電池内蔵機器)側からトランスミッター(充電台)側への通信のみが規定されており、逆に充電台から電池内蔵機器側への通信が規定されていないため、電池内蔵機器側で充電台の仕様を取得して、これに応じて充電台側に要求する電力量を調整するといった制御ができなかった。   However, (3) when the battery built-in device 50B compatible with 5W / 10W is placed on the charging stand 10A compatible with 5W, the battery built-in device 50B compatible with 5W / 10W is charged with 10W power for charging with 5W. When it is calculated for the base 10A, the transmission power is not enough at 5W, and as a result of requesting that it be increased more than this, as seen from the charging base side, it becomes a state where power exceeding the specified value is continuously required, It is erroneously determined that a foreign object is placed, and charging is stopped. As a result, there is a possibility that charging cannot be performed. In particular, in the Qi standard, only communication from the receiver (battery built-in device) side to the transmitter (charging stand) side is prescribed, and conversely, communication from the charging stand to the battery built-in device side is not prescribed. Control such as acquiring the specifications of the charging stand on the built-in device side and adjusting the amount of power required on the charging stand side according to this was not possible.

これを回避するために、例えば図14に示すように、規格外の独自方式で給電台1410から受電機器1450側への通信を行い、給電台1410と受電機器1450とが互いに独自方式に対応していることを確認できた場合には、高出力での給電を行うこととし、一方いずれかが確認できない場合は規格に従った充電のみを行うようにすることが考えられる。しかしながら、この方法では給電台1410側から受電機器1450側に通信を行うための通信設備を、給電台1410と受電機器1450の両方に設ける必要があり、追加の部材が必要となって製造コストが高騰し構成も複雑化する。特にQi規格では現在のところ、受電機器側から給電台側への通信のみが規定され、逆方向の給電台側から受電機器側に通信を行うことは規定されていないため、新たな通信設備の追加が必要となり、ハードウェア上の構成を変更する必要がある。言い換えると、既存の設備に適用することは困難となる。   In order to avoid this, for example, as shown in FIG. 14, communication from the power supply base 1410 to the power receiving device 1450 side is performed by a nonstandard original method, and the power supply base 1410 and the power receiving device 1450 correspond to each other in an original method. If it is confirmed that the power supply is confirmed, it is considered that power supply is performed at a high output, and if any one of them cannot be confirmed, only charging according to the standard is performed. However, in this method, it is necessary to provide communication facilities for performing communication from the power supply base 1410 side to the power receiving device 1450 side in both the power supply base 1410 and the power receiving device 1450, which requires an additional member and reduces manufacturing costs. Soaring and complications. In particular, the Qi standard currently defines only communication from the power receiving device side to the power supply stand side, and does not stipulate communication from the power supply stand side in the reverse direction to the power receiving device side. It is necessary to add, and it is necessary to change the configuration on the hardware. In other words, it is difficult to apply to existing facilities.

そこで本実施の形態においては、図5に示すように受電機器50側から通信代側への通信を行いつつ、受電機器50側から、Qi規格に従った第一送電要求信号に加えて、独自規格に従った第二送電要求信号も送出する。そして、給電台10側が第二送電要求信号を受信できる場合は、第一送電要求信号を無視する、あるいは該信号で規定された処理を行わないようにする。このようにすることで、Qi規格のみに対応した給電台の場合は、第一送電要求信号を解釈でき、これに応じた給電を行う一方、独自規格に非対応のため第二送電要求信号を処理できず、結果としてQi規格の充電のみが実行される。また、Qi規格及び独自規格の両方に対応した充電台の場合は、第二送電要求信号を処理する一方で、第一送電要求信号については処理を行わないようにしている。この結果、図4の(4)のように5W/10W対応の充電台10Bで、5W/10W対応の電池内蔵機器50Bを充電する場合においては、充電台10Bが第二送電要求信号が受け取ると、Qi規格に対応した第一送電要求信号を実行しないので、独自規格に従った高出力対応の充電のみが実行される   Therefore, in the present embodiment, as shown in FIG. 5, while performing communication from the power receiving device 50 side to the communication proxy side, in addition to the first power transmission request signal according to the Qi standard, A second power transmission request signal according to the standard is also transmitted. When the power supply stand 10 side can receive the second power transmission request signal, the first power transmission request signal is ignored or the processing specified by the signal is not performed. In this way, in the case of a power supply stand that only supports the Qi standard, the first power transmission request signal can be interpreted, and power is supplied accordingly. On the other hand, the second power transmission request signal is not compatible with the original standard. As a result, only Qi standard charging is performed. Moreover, in the case of a charging stand that supports both the Qi standard and the original standard, the second power transmission request signal is processed, while the first power transmission request signal is not processed. As a result, when charging the 5W / 10W battery built-in device 50B with the 5W / 10W compatible charging base 10B as shown in FIG. 4 (4), the charging base 10B receives the second power transmission request signal. Since the first power transmission request signal corresponding to the Qi standard is not executed, only the charging corresponding to the high output according to the original standard is executed.

この方式であれば、給電台がQi規格のみに対応した場合、Qi規格と独自規格の両方に対応した場合のいずれであっても、それぞれの充電方法で適切に充電できる。しかも、給電台側から受電機器側への通信のための設備といった、新たな部材を追加する必要が無く、既存の受電機器側から給電台側への通信のみを行えば足りるので、既存の設備への適用も容易となり、安価に実装できる利点が得られる。   With this method, when the power supply base is compatible only with the Qi standard or when the power supply base is compatible with both the Qi standard and the original standard, it can be appropriately charged by the respective charging methods. In addition, there is no need to add a new member such as a facility for communication from the power supply stand side to the power receiving device side, and it is only necessary to perform communication from the existing power receiving device side to the power supply stand side. Therefore, it can be easily applied to the device, and the advantage that it can be mounted at low cost is obtained.

なお、図5の例では規格による通信をQi規格とした例を説明したが、本発明はこれに限定されるものでなく、その他の無接点充電方式に関して規格化された通信方式、あるいは規格化されていなくとも、広く採用されている事実上標準の通信方式などが適宜採用できる。   In the example of FIG. 5, an example in which the communication according to the standard is the Qi standard has been described. However, the present invention is not limited to this, and a communication method standardized with respect to other contactless charging methods or standardization Even if it is not, a practically standard communication method widely adopted can be adopted as appropriate.

ここで、図4の各組み合わせにおいて、給電台10が受電機器50に電力伝送制御を行う様子を、図6のブロック図に基づいて説明する。この図に示す給電台10は、受電コイル51と電磁結合して送電するための送電コイル11と、要求信号送信手段57から送信される送電要求信号を受信するための要求信号受信手段14と、要求信号受信手段14で受信された送電要求信号に基づいて、送電コイル11から送電する送電電力量を制御するための電力制御手段13とを備える。
(受電機器50)
Here, how the power supply base 10 performs power transmission control on the power receiving device 50 in each combination of FIG. 4 will be described based on the block diagram of FIG. 6. The power supply stand 10 shown in this figure includes a power transmission coil 11 for electromagnetically coupling with the power receiving coil 51 to transmit power, a request signal receiving means 14 for receiving a power transmission request signal transmitted from the request signal transmitting means 57, Based on the power transmission request signal received by the request signal receiving means 14, a power control means 13 for controlling the amount of transmitted power transmitted from the power transmission coil 11 is provided.
(Power receiving device 50)

一方、受電機器50は、受電コイル51と、電気負荷LDと、電力値取得手段58と、要求信号送信手段57とを備える。電気負荷LDは、例えば二次電池52と、これを充電する充電電流を制御する受電側制御手段53とで構成される。電力値取得手段58は、受電機器50側で実際に得られた受電側検出電力を検出する。要求信号送信手段57は、電力値取得手段58で検出された受電側検出電力に基づいて、給電台10から受電機器50に送電される送電電力量に関して指示する送電要求信号を、給電台10側に送信する。この要求信号送信手段57は、図1、図2で示した伝送回路54が利用できる。また図6の例では、電力値取得手段58と要求信号送信手段57とを別部材としているが、これらを一のICなどで構成することもできる。なお送電要求信号は、要求信号送信手段57の指示により受電コイル51を介して給電台10側に送信される。   On the other hand, the power receiving device 50 includes a power receiving coil 51, an electric load LD, a power value acquisition unit 58, and a request signal transmission unit 57. The electric load LD includes, for example, a secondary battery 52 and a power receiving side control unit 53 that controls a charging current for charging the secondary battery 52. The power value acquisition unit 58 detects the power receiving side detection power actually obtained on the power receiving device 50 side. The request signal transmission unit 57 transmits a power transmission request signal for instructing the amount of transmitted power transmitted from the power supply base 10 to the power receiving device 50 based on the power reception side detected power detected by the power value acquisition means 58. Send to. The request signal transmission means 57 can use the transmission circuit 54 shown in FIGS. In the example of FIG. 6, the power value acquisition unit 58 and the request signal transmission unit 57 are separate members, but they can be configured by a single IC or the like. The power transmission request signal is transmitted to the power supply base 10 via the power receiving coil 51 according to an instruction from the request signal transmission unit 57.

これら給電台10と受電機器50とは、それぞれ一種類の無接点充電規格(例えばQi規格)にのみ対応したものと、複数種類の無接点充電規格に対応したものとがあり、その組み合わせは図4に示すように4通りが考えられる。ここでは、(4)の組み合わせを中心に説明する。
(受電側制御手段53)
Each of the power supply base 10 and the power receiving device 50 includes one corresponding to only one type of contactless charging standard (for example, Qi standard) and one corresponding to a plurality of types of contactless charging standards. As shown in FIG. Here, the combination (4) will be mainly described.
(Power receiving side control means 53)

図6に示す受電機器50の受電側制御手段53は、電気負荷LDに対して、第一電流値を定格電流として給電可能な第一電流モードと、第一電流値よりも大きい第二電流値を定格電流として給電可能な第二電流モードを切り替え可能としている。
(要求信号送信手段57)
The power receiving side control means 53 of the power receiving device 50 shown in FIG. 6 has a first current mode in which the first current value can be supplied to the electric load LD as a rated current, and a second current value larger than the first current value. It is possible to switch the second current mode in which power can be supplied with the rated current as.
(Request signal transmission means 57)

要求信号送信手段57は、電力値取得手段58で検出された受電側検出電力値を所定値と比較し、この所定値よりも低い場合は、送電電力を増加するように指示する電力増加要求信号を、送電要求信号として給電台10に送信する。一方、この所定値よりも高い場合は、送電電力を低減するように指示する電力減少要求信号を、送電要求信号として給電台10に送信する。これによって実際に送電される送電電力に応じた適切な充電が可能となる。このような送電要求信号は、規格化された信号が好適に利用でき、例えばQi規格の場合は、5W用の制御誤差(Control Error)信号を利用できる。これにより、Qi規格に従った二次電池の充電が可能となる。   The request signal transmission unit 57 compares the power-receiving-side detection power value detected by the power value acquisition unit 58 with a predetermined value, and if it is lower than the predetermined value, a power increase request signal that instructs to increase the transmission power Is transmitted to the power supply base 10 as a power transmission request signal. On the other hand, if it is higher than this predetermined value, a power reduction request signal instructing to reduce the transmission power is transmitted to the power supply base 10 as a power transmission request signal. This makes it possible to charge appropriately according to the transmitted power that is actually transmitted. As such a power transmission request signal, a standardized signal can be preferably used. For example, in the case of the Qi standard, a control error signal for 5W can be used. Thereby, the secondary battery according to the Qi standard can be charged.

また要求信号送信手段57は、第一電流モードと第二電流モードに応じて、送電要求信号として、第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号とを送信可能としている。例えば電気負荷LDへの給電として、二次電池への充電をQi規格、及びこれよりも高出力で充電可能な独自規格で行う場合を考える。第一電流モードでの充電時は、図7に示すように、第一電流値を700mAとして、この電流以下で充電する。また、二次電池が所定電圧となるよう充電することもできる。所定電圧は、例えばQi規格の低電力仕様(Volume I: Low Power)に従えば、5Wが定格のため、約7Vとなる。また第二電流モードの場合は、図8に示すように、第二電流値を1Aとして二次電池が所定電圧となるように充電する。   Further, the request signal transmission means 57, according to the first current mode and the second current mode, as a power transmission request signal, a first power transmission request signal for requesting the first transmission power required for power supply in the first current mode, It is possible to transmit a second transmission request signal for requesting the second transmission power necessary for power supply in the second current mode. For example, as a power supply to the electric load LD, consider a case where charging of the secondary battery is performed according to the Qi standard and an original standard capable of charging at a higher output than this. At the time of charging in the first current mode, as shown in FIG. 7, the first current value is set to 700 mA, and charging is performed below this current. Further, the secondary battery can be charged to a predetermined voltage. The predetermined voltage is about 7V because 5 W is rated according to the low power specification (Volume I: Low Power) of the Qi standard, for example. In the second current mode, as shown in FIG. 8, the secondary battery is charged with a second current value of 1 A so that the secondary battery has a predetermined voltage.

要求信号送信手段57は、給電台10に対して第一送電要求信号と第二送電要求信号とを同時に送出する。好ましくは、図9に示すように第一送電要求信号と第二送電要求信号とを時分割で送信する。これにより、一の要求信号送信手段でもって二種類の送電要求信号を送信できるので、それぞれの送電要求信号を送出する送信機を個別に用意すること無く、送信機構を共通化して構成の簡素化を図ることができる。第一送電要求信号と第二送電要求信号とは、例えば250μs毎に更新される。
(電力制御手段13)
The request signal transmission unit 57 simultaneously transmits a first power transmission request signal and a second power transmission request signal to the power supply base 10. Preferably, as shown in FIG. 9, the first power transmission request signal and the second power transmission request signal are transmitted in a time division manner. As a result, two types of power transmission request signals can be transmitted by one request signal transmission means, so that the transmission mechanism is shared and the configuration is simplified without separately preparing transmitters for transmitting the respective power transmission request signals. Can be achieved. The first power transmission request signal and the second power transmission request signal are updated every 250 μs, for example.
(Power control means 13)

一方、給電台10は、要求信号受信手段14で第一送電要求信号を受けた場合には、第一送電電力で受電機器50に送電する。また第二送電要求信号を受けた場合には、第二送電電力を送電する。これら送電電力の切り替えは、電力制御手段13で行われる。ここで第一送電電力をQi規格に対応させた5Wとする。また、第二送電電力は、独自規格として例えば10Wに設定できる。   On the other hand, when the request signal receiving unit 14 receives the first power transmission request signal, the power supply base 10 transmits power to the power receiving device 50 with the first transmitted power. When receiving the second transmission request signal, the second transmission power is transmitted. Switching between these transmission powers is performed by the power control means 13. Here, the first transmission power is 5 W corresponding to the Qi standard. The second transmitted power can be set to 10 W, for example, as a unique standard.

上述の通り、受電機器50の要求信号送信手段57は、図9に示すように常時、第二送電要求信号と第一送電要求信号とを併せて送出している。そして給電台10が、第二送電電力に対応している場合は、要求信号受信手段14が第二送電要求信号と第一送電要求信号とを受信すると、第二送電要求信号に従い第二送電電力を電力制御手段13で送電する一方、第一送電要求信号を無視する。このようにすることで、より高出力の第二電流モードでの給電が可能となる。   As described above, the request signal transmission unit 57 of the power receiving device 50 constantly transmits the second power transmission request signal and the first power transmission request signal as shown in FIG. And when the power supply stand 10 respond | corresponds to 2nd transmitted power, if the request signal receiving means 14 receives a 2nd power transmission request signal and a 1st power transmission request signal, according to a 2nd power transmission request signal, 2nd transmitted power Is transmitted by the power control means 13, while the first transmission request signal is ignored. By doing so, it is possible to supply power in the second current mode with higher output.

一方、給電台10又は受電機器50の一方又は両方が、このような第二電流モードでの給電に対応していない場合でも、第一電流モードでの給電を可能として、安全に利用することが可能となる。またこの方式であれば、既存の無接点充電に容易に適用できるため、新たな部材を追加すること無く安価に実装できる利点も得られる。
(第一送電要求信号)
On the other hand, even when one or both of the power supply base 10 and the power receiving device 50 do not support such power supply in the second current mode, power supply in the first current mode can be performed and used safely. It becomes possible. In addition, this method can be easily applied to existing non-contact charging, so that an advantage that it can be mounted at low cost without adding a new member can be obtained.
(First transmission request signal)

第一送電要求信号は、規格化された送電要求信号とできる。例えばQi規格の場合は、5W用の制御誤差(コントロールエラー)信号を利用できる。これにより、Qi規格に従った二次電池の充電が可能となる。   The first power transmission request signal can be a standardized power transmission request signal. For example, in the case of the Qi standard, a 5 W control error (control error) signal can be used. Thereby, the secondary battery according to the Qi standard can be charged.

一方、第二電力用の増加要求信号は、このような規格によらない、任意の電力値での充電に対応させた送電要求信号とする。   On the other hand, the increase request signal for the second power is a power transmission request signal corresponding to charging at an arbitrary power value, which is not based on such a standard.

なお、この例では説明を簡素化するため、5W/10W対応の充電台10Bと電池内蔵機器50B、及び5W対応の充電台10Aと電池内蔵機器50Aの組み合わせについて説明する。ただ、本発明において電力値は5Wや10Wに限定されるものでない。例えば15Wや20W以上の高電力で充電可能な充電台や電池内蔵機器としてもよい。また、無接点充電の規格もQi規格に限られるものでなく、他の無接点充電規格に対応した充電台や電池内蔵機器に対しても、本願発明を適用できる。さらに無接点(ワイヤレス)充電方式としては、可動コイル型の他、マグネット吸引型、コイルアレイ型などが適宜利用できる。
(電池内蔵機器から充電台への電力伝送制御)
In this example, in order to simplify the description, a combination of the charging base 10B and battery built-in device 50B compatible with 5W / 10W, and the charging base 10A compatible with 5W and battery built-in device 50A will be described. However, in the present invention, the power value is not limited to 5 W or 10 W. For example, a charging stand or a battery built-in device that can be charged with high power of 15 W or 20 W or more may be used. In addition, the standard for contactless charging is not limited to the Qi standard, and the present invention can be applied to a charging stand and a battery built-in device corresponding to other contactless charging standards. Furthermore, as a contactless (wireless) charging method, a magnet attraction type, a coil array type, and the like can be used as appropriate in addition to a movable coil type.
(Power transmission control from the battery built-in device to the charging stand)

次に、電池内蔵機器が充電台に電力伝送制御を行う手順を、5W/10W対応の電池内蔵機器50Bと、5W/10W対応の充電台10Bのそれぞれについて、図10、図11のフローチャートに基づいて説明する。
(電池内蔵機器の動作)
Next, the procedure in which the battery built-in device performs power transmission control to the charging stand is based on the flowcharts of FIGS. 10 and 11 for the battery built-in device 50B compatible with 5W / 10W and the charging stand 10B compatible with 5W / 10W. I will explain.
(Battery built-in device operation)

まず5W/10W対応の電池内蔵機器50Bの場合を、図10に基づいて説明する。はじめにステップS101において、図6に示す電力値取得手段58が受電側検出電力値を検出する。例えば、受電側制御手段53が二次電池を充電する充電電流値や充電電圧値、充電電力値、あるいは受電コイル51が受電した受電電力値等を測定し、これを受電側検出電力値とする。検出された受電側検出電力値は、A/D変換されて、要求信号送信手段57に送出される。   First, the case of the battery built-in device 50B compatible with 5W / 10W will be described with reference to FIG. First, in step S101, the power value acquisition means 58 shown in FIG. 6 detects the power receiving side detected power value. For example, the receiving side control means 53 measures a charging current value, a charging voltage value, a charging power value, a receiving power value received by the receiving coil 51, or the like for charging the secondary battery, and uses this as the receiving side detection power value. . The detected power-reception-side detected power value is A / D converted and sent to the request signal transmission means 57.

次にステップS102において、電池内蔵機器50Bの要求信号送信手段57が、第二送電要求信号を給電台10の要求信号受信手段14に送信し、さらにステップS103において、第一送電要求信号を給電台10に送信する。これらの送電要求信号は、同時に行うこともできる。例えば上述の通り時分割で第二送電要求信号と第一送電要求信号とを送信できる。ただ、好ましくは第一送電要求信号よりも先に第二送電要求信号を送信する。これは給電台10側が第二送電要求信号に対応している場合を考慮したものであり、第二送電要求信号を受信すると、続いて受信されるであろう第一送電要求信号を無視するよう、事前に給電台10側で処理を予定乃至準備できるからである。   Next, in step S102, the request signal transmitting unit 57 of the battery built-in device 50B transmits the second power transmission request signal to the request signal receiving unit 14 of the power supply base 10, and in step S103, the first power transmission request signal is transmitted to the power supply base. 10 to send. These power transmission request signals can be performed simultaneously. For example, the second power transmission request signal and the first power transmission request signal can be transmitted by time division as described above. However, the second power transmission request signal is preferably transmitted before the first power transmission request signal. This considers the case where the power supply stand 10 side corresponds to the second power transmission request signal. When the second power transmission request signal is received, the first power transmission request signal that will be subsequently received is ignored. This is because the processing can be scheduled or prepared in advance on the power supply stand 10 side.

ここで、ステップS101で検出された受電側検出電力値が所定値を超えていないと判定した場合は、充電台に送信する送電要求信号に、送電電力を増加する命令を含める。なお送電要求信号が第一送電要求信号の場合は(ステップS103)、規格化された送電要求信号とできる。例えばQi規格の場合は、5W用の制御誤差(Control Error)信号を利用できる。これにより、Qi規格に従った二次電池の充電が可能となる。   Here, if it is determined that the power receiving side detected power value detected in step S101 does not exceed the predetermined value, a command to increase the transmitted power is included in the power transmission request signal transmitted to the charging stand. When the power transmission request signal is the first power transmission request signal (step S103), it can be a standardized power transmission request signal. For example, in the case of the Qi standard, a control error signal for 5 W can be used. Thereby, the secondary battery according to the Qi standard can be charged.

次にステップS104に進み、これらの第二送電要求信号、第一送電要求信号の給電台10側への送信回数が所定回数に達したかどうかを判定し、未だの場合はステップS101に戻って上記の処理を繰り返す。すなわち、第二送電要求信号、第一送電要求信号の送信によって、給電台10側から得られた送電電力をステップS101において再度検出する。このように電池内蔵機器50Bから給電台10側への第二送電要求信号、第一送電要求信号の送信を一回のみとせず、所定の回数繰り返させることで、送信エラーや受信エラーといった通信ミスを低減できる。そして通信回数が所定値に到達すると、ステップS105に進み、受電量の判定を行う。ここでは、給電台10が第二送電要求信号、第一送電要求信号のいずれに反応したかを、電力値取得手段58で検出された受電側検出電力値でもって判定し、給電台10が5W対応の充電台10Aか、10W対応の充電台10Bかを識別する。また電力値に代えて、受電側検出電流値で判定することもできる。   Next, it progresses to step S104, it is determined whether the frequency | count of transmission of these 2nd power transmission request signals and the 1st power transmission request signal to the electric power feeding stand 10 side has reached the predetermined number, and when not yet, it returns to step S101 Repeat the above process. That is, the transmission power obtained from the power supply base 10 side is detected again in step S101 by transmitting the second transmission request signal and the first transmission request signal. In this way, the second power transmission request signal and the first power transmission request signal from the battery built-in device 50B to the power supply base 10 side are not transmitted only once, but are repeated a predetermined number of times, thereby causing communication errors such as transmission errors and reception errors. Can be reduced. When the number of communications reaches a predetermined value, the process proceeds to step S105, and the amount of received power is determined. Here, it is determined from the power reception side detected power value detected by the power value acquisition means 58 whether the power supply base 10 has responded to the second power transmission request signal or the first power transmission request signal. Whether the charging base 10A is compatible or the charging base 10B is 10W is identified. Moreover, it can replace with an electric power value and can also determine with a receiving side detection electric current value.

そして、10W対応と判定された場合はステップS107に進み、第二送電要求信号に応じた送電電力である10Wの定格電力で電池内蔵機器50Bの充電を行う。なお、受電機器50が5W対応の電池内蔵機器50Aと判定された場合はステップS106に進み、第一送電要求信号に応じた送電電力である5Wの定格電力で電池内蔵機器50Bの充電を行うことになる。   If it is determined that it is compatible with 10W, the process proceeds to step S107, and the battery built-in device 50B is charged with the rated power of 10W that is the transmitted power corresponding to the second power transmission request signal. If it is determined that the power receiving device 50 is a 5 W battery built-in device 50 </ b> A, the process proceeds to step S <b> 106 and the battery built-in device 50 </ b> B is charged with the rated power of 5 W that is the transmitted power corresponding to the first power transmission request signal. become.

このようにして、規格化された送電要求信号に加えて、独自規格の送電要求信号も給電台に対して送出することで、独自規格に非対応の充電台10A、対応した充電台10Bのいずれに対しても、送電要求信号によって電力制御を行うことができる。   In this way, in addition to the standardized power transmission request signal, the power transmission request signal of the original standard is also sent to the power supply stand, so that either the charging base 10A that does not comply with the original standard or the charging base 10B that supports the original standard. However, power control can be performed by a power transmission request signal.

すなわち、充電台10Aが10W充電に非対応の場合は、ステップS102の第二送電要求信号を解釈できないので、該ステップでは処理を行わず、代わりに次のステップS103において第一電力用の送電電力要求信号を処理することで、送電電力を5W以下に減少させるよう制御することにより、5Wまでの充電を正しく行うことができる。   That is, when the charging stand 10A does not support 10W charging, the second power transmission request signal in step S102 cannot be interpreted. Therefore, the processing is not performed in this step, and instead the transmission power for the first power in the next step S103. By processing the request signal, it is possible to correctly charge up to 5 W by controlling the transmission power to be reduced to 5 W or less.

一方、充電台10Bが10W充電対応の場合は、ステップS102の第二送電要求信号を解釈できるので、10Wの高電力を実行できる。また、この場合は続くステップS103において、第一電力用の送電電力減少要求信号が送信されても、10W充電対応の充電台10Bは該送電要求信号を無視することで、10Wの高電力充電を継続できる。このようにして、5W対応の充電台10A、5W/10W対応の充電台10Bのいずれの上に5W/10W対応の電池内蔵機器50Bを載置しても、それぞれの充電台に対応した適切な電力でもって充電することが可能となる。
(充電台10Bの動作)
On the other hand, when the charging stand 10B is compatible with 10W charging, the second power transmission request signal in step S102 can be interpreted, so high power of 10W can be executed. Further, in this case, even in the subsequent step S103, even if the transmission power reduction request signal for the first power is transmitted, the charging stand 10B corresponding to 10W charging ignores the transmission request signal so that 10W high power charging is performed. Can continue. In this way, even if the 5W / 10W battery built-in device 50B is placed on any of the 5W charging base 10A and the 5W / 10W charging base 10B, it is possible to use the appropriate charging base for each charging base. It can be charged with electric power.
(Operation of charging stand 10B)

次に、5W/10W対応の充電台10B側の動作を、図11に基づいて説明する。はじめにステップS111において、電池内蔵機器50Bからの送電電力要求信号を受信する。ここでは、電池内蔵機器50Bの要求信号送信手段57あるいは受電コイル51から、送電電力要求信号を充電台10Bの要求信号受信手段14で受信する。   Next, the operation on the charging stand 10B side corresponding to 5W / 10W will be described based on FIG. First, in step S111, a transmission power request signal from the battery built-in device 50B is received. Here, the transmitted power request signal is received by the request signal receiving means 14 of the charging base 10B from the request signal transmitting means 57 of the battery built-in device 50B or the power receiving coil 51.

次にステップS112において、受信した送電電力要求信号に、第二電力用の送電電力要求信号が含まれるかどうかを判定する。第二電力用の送電電力要求信号が含まれる場合は、ステップS113に進み、この第二電力用の送電電力要求信号を処理する。この場合は、上述の通り、電池内蔵機器50BからステップS103に対応する、第一電力用の送電電力減少要求信号が送信されても、これを無視することで、第二電力用(例えば10W)の高電力充電を実行できる。   Next, in step S112, it is determined whether the received transmission power request signal includes a transmission power request signal for second power. When the transmission power request signal for the second power is included, the process proceeds to step S113, and the transmission power request signal for the second power is processed. In this case, as described above, even if the transmission power reduction request signal for the first power corresponding to step S103 is transmitted from the battery built-in device 50B, by ignoring this, the second power (for example, 10 W) is ignored. High power charging can be performed.

一方、第二電力用の送電電力要求信号でない場合は、ステップS115に進み、第一電力用の送電電力要求信号を処理する。   On the other hand, when it is not the transmission power request signal for the second power, the process proceeds to step S115, and the transmission power request signal for the first power is processed.

そして、ステップS114、ステップS115のいずれの場合も、処理後はステップS111に戻って同様の処理を繰り返す。   In either case of step S114 or step S115, after processing, the process returns to step S111 and the same processing is repeated.

このようにして、高電力での充電に対応させた電池内蔵機器50Bを、高電力に対応させた充電台10Bに載置した場合に、この電池内蔵機器50Bを正しく充電させることに加え、非対応の場合であっても、低電力での充電が実行されるため、適切な給電が実現される。この結果、規格対応機種、規格外対応機種のいずれの組み合わせにおいても、給電や充電を適切に行うことができる。   In this way, when the battery built-in device 50B corresponding to high power charging is placed on the charging base 10B corresponding to high power, in addition to correctly charging the battery built-in device 50B, Even in the case of correspondence, since charging with low power is executed, appropriate power feeding is realized. As a result, it is possible to appropriately perform power feeding and charging in any combination of the standard-compliant model and the non-standard-compliant model.

また、別途電池内蔵機器50Bから充電台10Bへ独自コマンドを用いて、10W対応の機器であることを通知する仕組みを適用することもできる。このような独自コマンドは、独自規格非対応の充電台10Aでは無視される。こうすることで、S54とS55の処理の順序を逆にしても、送電電力が5Wを超えた場合に第一電力用の送電減少要求信号を常に無視するように動作させることができる。   Further, it is also possible to apply a mechanism for notifying that the device is compatible with 10W from the battery built-in device 50B to the charging stand 10B separately using a unique command. Such a unique command is ignored in the charging stand 10A that does not support the unique standard. By doing so, even if the order of the processing of S54 and S55 is reversed, when the transmission power exceeds 5 W, the first power transmission reduction request signal can be always ignored.

本発明に係る無接点給電システム、受電機器、給電台、無接点給電方法は、充電台等の給電台から電池内蔵機器等の受電機器に電磁結合作用で電力搬送して電池を充電する方法に最適に利用できる。また、充電器に限らず、受電機器の電気負荷に電力を供給して駆動させるシステム、例えば照明器具やミキサーのようなキッチン製品、あるいは充電アダプターに無接点で給電する方法にも利用できる。   The contactless power supply system, the power receiving device, the power supply stand, and the contactless power supply method according to the present invention are a method for charging a battery by transferring power from a power supply stand such as a charging stand to a power receiving device such as a battery built-in device by electromagnetic coupling action. It can be used optimally. Further, the present invention can be used not only for a charger but also for a system for supplying electric power to an electric load of a power receiving device and driving it, for example, a kitchen product such as a lighting fixture or a mixer, or a method for supplying power to a charging adapter in a contactless manner.

100、200、300…無接点給電システム
10、10’…給電台;10A…5W対応の充電台;10B…5W/10W対応の充電台
11…送電コイル
12…交流電源
13…電力制御手段
14…要求信号受信手段
15…検出回路
16…移動機構
20…ケース
21…上面プレート
22…位置決め部機構
23…嵌入凹部
50…受電機器
50A…5W対応の電池内蔵機器;50B…5W/10W対応の電池内蔵機器
51…受電コイル
52…二次電池
53…受電側制御手段;53B…負荷駆動制御手段
54…伝送回路
55…検出回路;55A…比較部;55B…判定部
56…整流回路
57…要求信号送信手段
58…電力値取得手段
220…給電台
221…充電面
251…送電コイル
260…受電機器
261…受電コイル
1310…充電台
1350…受電機器
1410…給電台
1450…受電機器
LD…電気負荷
DESCRIPTION OF SYMBOLS 100, 200, 300 ... Non-contact electric power feeding system 10, 10 '... Feed stand; 10A ... Charging stand corresponding to 5W; 10B ... Charging stand 11 corresponding to 5W / 10W ... Power transmission coil 12 ... AC power supply 13 ... Power control means 14 ... Request signal receiving means 15 ... detection circuit 16 ... moving mechanism 20 ... case 21 ... top plate 22 ... positioning mechanism 23 ... insertion recess 50 ... power receiving device 50A ... 5W compatible battery built-in device; 50B ... 5W / 10W compatible battery built-in Equipment 51 ... Receiving coil 52 ... Secondary battery 53 ... Receiving side control means; 53B ... Load drive control means 54 ... Transmission circuit 55 ... Detection circuit; 55A ... Comparison part; 55B ... Determination part 56 ... Rectification circuit 57 ... Request signal transmission Means 58 ... Power value acquisition means 220 ... Power supply base 221 ... Charging surface 251 ... Power transmission coil 260 ... Power receiving device 261 ... Power reception coil 1310 ... Charging base 1350 ... Reception Electric equipment 1410 ... Feeding stand 1450 ... Power receiving equipment LD ... Electric load

Claims (15)

電気負荷を有する受電機器と、
前記受電機器に給電する給電台とを備え、
前記受電機器に対して、前記給電台から無接点で電力を送電して給電可能な無接点給電システムであって、
前記受電機器は、
前記電気負荷と、
前記給電台からの給電を受けるための受電コイルと、
前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、
前記受電機器側で実際に得られた受電側検出電力を検出する電力値取得手段と、
前記電力値取得手段で検出された受電側検出電力に基づいて、前記給電台から受電機器に送電される送電電力量に関して指示する送電要求信号を前記給電台側に送信するための要求信号送信手段と
を備え、
前記給電台は、
受電コイルと電磁結合して送電するための送電コイルと、
前記要求信号送信手段から送信される送電要求信号を受信するための要求信号受信手段と、
前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する送電電力量を制御するための電力制御手段と
を備え、
前記受電側制御手段は、前記電気負荷に対して、
第一電流値を定格電流として給電可能な第一電流モードと、
前記第一電流値よりも大きい第二電流値を定格電流として給電可能な第二電流モードを切り替え可能としており、
前記要求信号送信手段は、送電要求信号として、
第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、
第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号とを送信可能であり、
前記給電台は、
前記要求信号受信手段で第一送電要求信号を受けた場合の第一送電電力と、
第二送電要求信号を受けた場合の第二送電電力とを、前記電力制御手段で切り替え可能としており、
前記要求信号受信手段で、前記要求信号送信手段から前記第二送電要求信号と第一送電要求信号とを受信すると、第二送電要求信号に従い第二送電電力を前記電力制御手段で送電する一方、前記第一送電要求信号を無視するよう構成してなることを特徴とする無接点給電システム。
A power receiving device having an electrical load;
A power supply for supplying power to the power receiving device,
A non-contact power supply system capable of supplying power by transmitting power from the power supply base without contact to the power receiving device,
The power receiving device is:
The electrical load;
A power receiving coil for receiving power from the power supply stand;
Power receiving side control means for controlling driving of the electric load with the received power received by the power receiving coil;
Power value acquisition means for detecting the power receiving side detection power actually obtained on the power receiving device side;
Request signal transmitting means for transmitting a power transmission request signal instructing the amount of transmitted power transmitted from the power supply base to the power receiving device based on the power reception side detected power detected by the power value acquisition means to the power supply base side. And
The power supply stand is
A power transmission coil for electromagnetically coupling with the power receiving coil to transmit power;
Request signal receiving means for receiving a power transmission request signal transmitted from the request signal transmitting means;
Power control means for controlling the amount of transmitted power transmitted from the power transmission coil based on the power transmission request signal received by the request signal receiving means;
The power receiving side control means is configured to
A first current mode capable of supplying power with the first current value as a rated current;
The second current mode capable of supplying power as a rated current with a second current value larger than the first current value is switchable,
The request signal transmission means, as a power transmission request signal,
A first transmission request signal for requesting the first transmission power necessary for power supply in the first current mode;
A second transmission request signal for requesting the second transmission power required for power supply in the second current mode can be transmitted;
The power supply stand is
First transmission power when receiving the first transmission request signal by the request signal receiving means,
The second transmission power when receiving the second transmission request signal can be switched by the power control means,
When receiving the second power transmission request signal and the first power transmission request signal from the request signal transmitting means in the request signal receiving means, while transmitting the second transmitted power in the power control means according to the second power transmission request signal, A contactless power supply system configured to ignore the first power transmission request signal.
請求項1に記載の無接点給電システムであって、
前記電気負荷が、二次電池であり、
前記給電台が、前記二次電池を充電する充電台であり、
前記受電機器に対して、前記給電台から無接点で電力を送電して、前記二次電池を充電可能としてなることを特徴とする無接点給電システム。
The contactless power feeding system according to claim 1,
The electrical load is a secondary battery;
The power supply base is a charging base for charging the secondary battery;
A contactless power supply system, wherein the secondary battery can be charged by transmitting power to the power receiving device without contact from the power supply stand.
請求項2に記載の無接点給電システムであって、
第一電流値が、規格化された無接点充電方式に従った電流値であり、
第二電流値が、規格化されていない無接点充電方式に従った電流値であることを特徴とする無接点給電システム。
The contactless power supply system according to claim 2,
The first current value is a current value according to a standardized contactless charging method,
A non-contact power supply system, wherein the second current value is a current value according to a non-standardized non-contact charging method.
請求項3に記載の無接点給電システムであって、
第一電流値が、700mAであり、
第二電流値が、1Aであることを特徴とする無接点給電システム。
It is a non-contact electric power feeding system according to claim 3,
The first current value is 700 mA,
A non-contact power feeding system, wherein the second current value is 1A.
請求項1から4のいずれか一に記載の無接点給電システムであって、
前記要求信号送信手段は、前記第一送電要求信号と、第二送電要求信号とを時分割で送信可能としてなることを特徴とする無接点給電システム。
It is a non-contact electric power feeding system as described in any one of Claim 1 to 4,
The non-contact power feeding system according to claim 1, wherein the request signal transmission means is capable of transmitting the first power transmission request signal and the second power transmission request signal in a time-sharing manner.
請求項1から5のいずれか一に記載の無接点給電システムであって、さらに、
前記送電コイルを、前記受電機器を載置する載置面内で移動させるための移動機構を備えることを特徴とする無接点給電システム。
The contactless power feeding system according to any one of claims 1 to 5, further comprising:
A contactless power feeding system comprising: a moving mechanism for moving the power transmission coil within a mounting surface on which the power receiving device is mounted.
請求項1から5のいずれか一に記載の無接点給電システムであって、
前記送電コイルを固定式としてなることを特徴とする無接点給電システム。
A contactless power feeding system according to any one of claims 1 to 5,
A non-contact power feeding system, wherein the power transmission coil is fixed.
請求項1から7のいずれか一に記載の無接点給電システムであって、
前記受電側制御手段は、
第一電流モードに代えて、第一電力値を定格電力として給電可能な第一電力モードと、
第二電流モードに変えて、前記第一電力値よりも大きい第二電力値を定格電力として給電可能な第二電力モードとを切り替え可能としており、
前記要求信号送信手段は、送電要求信号として、
第一電力モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、
第二電力モードでの給電に必要な第二送電電力を要求する第二送電要求信号とを送信可能としてなることを特徴とする無接点給電システム。
A contactless power supply system according to any one of claims 1 to 7,
The power receiving side control means includes:
Instead of the first current mode, a first power mode capable of feeding the first power value as the rated power,
Changing to the second current mode, it is possible to switch between the second power mode capable of feeding the second power value larger than the first power value as the rated power,
The request signal transmission means, as a power transmission request signal,
A first transmission request signal for requesting the first transmission power necessary for power supply in the first power mode;
A contactless power supply system capable of transmitting a second transmission request signal for requesting second transmission power required for power supply in the second power mode.
給電台に内蔵される送電コイルから送電される電力でもって無接点で駆動可能な受電機器であって、
前記電気負荷と、
前記電気負荷に給電する電力を受けるため、送電コイルと電磁結合可能な受電コイルと、
前記受電コイルで受電した受電電力でもって、前記電気負荷の駆動を制御する受電側制御手段と、
前記受電機器側で実際に得られた受電側検出電力を検出する電力値取得手段と、
前記電力値取得手段で検出された受電側検出電力に基づいて、前記給電台から受電機器に送電される送電電力量に関して指示する送電要求信号を前記給電台側に送信するための要求信号送信手段と
を備え、
前記受電側制御手段は、前記電気負荷に対して、
第一電流値を定格電流として給電可能な第一電流モードと、
前記第一電流値よりも大きい第二電流値を定格電流として給電可能な第二電流モードを切り替え可能としており、
前記要求信号送信手段は、送電要求信号として、
第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号と、これに次いで第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号とを送信可能としてなることを特徴とする受電機器。
A power receiving device that can be driven in a contactless manner with electric power transmitted from a power transmission coil built in a power supply stand,
The electrical load;
In order to receive power to supply power to the electrical load, a power receiving coil that can be electromagnetically coupled to the power transmitting coil,
Power receiving side control means for controlling driving of the electric load with the received power received by the power receiving coil;
Power value acquisition means for detecting the power receiving side detection power actually obtained on the power receiving device side;
Request signal transmitting means for transmitting a power transmission request signal instructing the amount of transmitted power transmitted from the power supply base to the power receiving device based on the power reception side detected power detected by the power value acquisition means to the power supply base side. And
The power receiving side control means is configured to
A first current mode capable of supplying power with the first current value as a rated current;
The second current mode capable of supplying power as a rated current with a second current value larger than the first current value is switchable,
The request signal transmission means, as a power transmission request signal,
A second transmission request signal for requesting second transmission power required for power supply in the second current mode, and a first transmission request signal for requesting first transmission power required for power supply in the first current mode following this Can be transmitted.
請求項9に記載の受電機器であって、
前記受電側制御手段は、
第一電流モードに代えて、第一電力値を定格電力として給電可能な第一電力モードと、
第二電流モードに変えて、前記第一電力値よりも大きい第二電力値を定格電力として給電可能な第二電力モードとを切り替え可能としており、
前記要求信号送信手段は、送電要求信号として、
第二電力モードでの給電に必要な第二送電電力を要求する第二送電要求信号と、これに次いで第一電力モードでの給電に必要な第一送電電力を要求する第一送電要求信号とを送信可能としてなることを特徴とする受電機器。
The power receiving device according to claim 9,
The power receiving side control means includes:
Instead of the first current mode, a first power mode capable of feeding the first power value as the rated power,
Changing to the second current mode, it is possible to switch between the second power mode capable of feeding the second power value larger than the first power value as the rated power,
The request signal transmission means, as a power transmission request signal,
A second transmission request signal for requesting second transmission power required for power supply in the second power mode, and a first transmission request signal for requesting first transmission power required for power supply in the first power mode following this Can be transmitted.
電気負荷を有する受電機器に対し、無接点で電力を送電して給電可能な給電台であって、
受電機器に内蔵された受電コイルと電磁結合して、該受電機器に給電するための送電コイルと、
受電機器から送信される、前記給電台から受電機器に送電される送電電力量に関して指示する送電要求信号を受信するための要求信号受信手段と、
前記要求信号受信手段で受信された送電要求信号に基づいて、前記送電コイルから送電する電力量を制御するための電力制御手段と
を備え、
前記電力制御手段は、前記要求信号受信手段で、
第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号を受けた場合に、前記送電コイルから第一送電電力を送電し、
前記第一電流値よりも大きい第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号を受けた場合に、前記送電コイルから第二送電電力を送電するよう構成され、
前記要求信号受信手段で、受電機器から前記第二送電要求信号と第一送電要求信号とを受信すると、前記第二送電要求信号に従い第二送電電力を前記電力制御手段で送電する一方、前記第一送電要求信号を無視するよう構成してなることを特徴とする給電台。
A power supply stand that can transmit power to a power receiving device having an electrical load without contact,
A power transmission coil that is electromagnetically coupled to a power reception coil incorporated in the power reception device to supply power to the power reception device;
A request signal receiving means for receiving a transmission request signal transmitted from the power receiving device and instructing a transmission power amount transmitted from the power supply to the power receiving device;
Power control means for controlling the amount of power transmitted from the power transmission coil based on the power transmission request signal received by the request signal receiving means;
The power control means is the request signal receiving means,
When receiving a first transmission request signal for requesting the first transmission power required for power supply in the first current mode for supplying power to the electric load with the first current value as the rated current, the first transmission power is transmitted from the power transmission coil. Power transmission,
When the second current value larger than the first current value is set as the rated current, when receiving the second transmission request signal for requesting the second transmission power required for power supply in the second current mode for supplying power to the electric load, Configured to transmit the second transmitted power from the power transmission coil,
When the request signal receiving means receives the second power transmission request signal and the first power transmission request signal from the power receiving device, the second power transmission power is transmitted by the power control means according to the second power transmission request signal. A power supply stand configured to ignore one power transmission request signal.
請求項11に記載の給電台であって、
前記電力制御手段は、前記要求信号受信手段で、
第一電流値に代えて、第一電力値を定格電力として、電気負荷に給電する第一電力モードでの給電に必要な第一送電電力を要求する第一送電要求信号を受けた場合に、前記送電コイルから第一送電電力を送電し、
第二電流値に代えて、前記第一電力値よりも大きい第二電力値を定格電力として、電気負荷に給電する第二電力モードでの給電に必要な第二送電電力を要求する第二送電要求信号を受けた場合に、前記送電コイルから第二送電電力を送電するよう構成されてなることを特徴とする給電台。
The power supply stand according to claim 11,
The power control means is the request signal receiving means,
In place of the first current value, the first power value as the rated power, when receiving a first transmission request signal for requesting the first transmission power required for power supply in the first power mode for supplying power to the electrical load, Transmitting the first transmitted power from the power transmission coil,
Instead of the second current value, the second power transmission requesting the second transmission power required for power feeding in the second power mode for feeding the electric load with the second power value larger than the first power value as the rated power. A power supply stand configured to transmit second transmission power from the power transmission coil when receiving a request signal.
電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して給電する無接点給電方法であって、
前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、
前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への給電を開始すると共に、受電側検出電流又は受電側検出電力を検出する工程と、
検出された受電側検出電流又は受電側検出電力に基づいて、前記給電台から前記受電機器に送電される送電電力量の増減を指示する送電要求信号を前記給電台に送信する工程と、
前記送電要求信号に従って、前記前記電力制御手段は前記送電コイルから前記受電コイルに送電する送電電力量を調整する工程と
を含み、
前記受電機器は、送電要求信号として、
第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、
前記第一電流値よりも大きい第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号と
を併せて前記給電台に送信し、
前記給電台は、前記受電機器から前記第二送電要求信号と第一送電要求信号とをこの順で受信すると、前記第二送電要求信号に従い第二送電電力を前記受電機器に送電する一方、前記第一送電要求信号を無視することを特徴とする無接点充電方法。
A non-contact power supply method for supplying power by transmitting power from a power supply stand without contact to a power receiving device having an electrical load,
A step of transmitting power from the power transmission coil to the power reception coil in a state where the power reception coil of the power reception device is electromagnetically coupled to the power transmission coil of the power supply base;
The power receiving device starts power feeding to the electric load based on the received power received by the power receiving coil, and detects a power receiving side detection current or a power receiving side detection power;
A step of transmitting a power transmission request signal instructing increase / decrease in the amount of transmitted power transmitted from the power supply base to the power receiving device based on the detected power reception side detection current or power reception side detection power;
Adjusting the amount of transmitted power transmitted from the power transmission coil to the power reception coil in accordance with the power transmission request signal;
The power receiving device, as a power transmission request signal,
A first transmission request signal for requesting a first transmission power required for power supply in a first current mode for supplying power to an electrical load with a first current value as a rated current;
A second current value larger than the first current value as a rated current and a second transmission request signal for requesting a second transmission power required for power supply in a second current mode for supplying power to an electric load. Send it to the powerhouse,
The power supply stand receives the second power transmission request signal and the first power transmission request signal in this order from the power receiving device, while transmitting the second transmitted power to the power receiving device according to the second power transmission request signal, A contactless charging method, wherein the first power transmission request signal is ignored.
電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して給電する無接点給電方法であって、
前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、
前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への給電を開始すると共に、受電側検出電流又は受電側検出電力を検出する工程と、
検出された受電側検出電流又は受電側検出電力に基づいて、前記給電台から前記受電機器に送電される送電電力量の増減を指示する送電要求信号を前記給電台に送信する工程と、
前記送電要求信号に従って、前記前記電力制御手段は前記送電コイルから前記受電コイルに送電する送電電力量を調整する工程と
を含み、
前記受電機器は、送電要求信号として、
規格化された無接点充電方式に従った第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号と、
前記第一電流値よりも大きい、規格化されていない無接点充電方式に従った第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号と
を前記給電台に対し、前記第二送電要求信号、第一送電要求信号の順で送信し、
前記給電台は、
第二電流モードでの送電に対応していない場合、前記第一送電要求信号を受信して、該信号に従って第一送電電力を前記受電機器に給電し、
第二電流モードでの送電に対応している場合、前記第二送電要求信号及び第一送電要求信号を受信して、前記第二送電要求信号に従って第二送電電力を前記受電機器に送電する一方、前記第一送電要求信号を無視することを特徴とする無接点充電方法。
A non-contact power supply method for supplying power by transmitting power from a power supply stand without contact to a power receiving device having an electrical load,
A step of transmitting power from the power transmission coil to the power reception coil in a state where the power reception coil of the power reception device is electromagnetically coupled to the power transmission coil of the power supply base;
The power receiving device starts power feeding to the electric load based on the received power received by the power receiving coil, and detects a power receiving side detection current or a power receiving side detection power;
A step of transmitting a power transmission request signal instructing increase / decrease in the amount of transmitted power transmitted from the power supply base to the power receiving device based on the detected power reception side detection current or power reception side detection power;
Adjusting the amount of transmitted power transmitted from the power transmission coil to the power reception coil in accordance with the power transmission request signal;
The power receiving device, as a power transmission request signal,
A first transmission request signal for requesting a first transmission power necessary for power supply in a first current mode for supplying power to an electrical load, with a first current value according to a standardized contactless charging method as a rated current,
The second transmission power required for power supply in the second current mode for supplying power to the electrical load, with the second current value in accordance with the non-standardized contactless charging method larger than the first current value as the rated current, Sending the requested second power transmission request signal to the power supply stand in the order of the second power transmission request signal and the first power transmission request signal,
The power supply stand is
If the power transmission in the second current mode is not supported, the first transmission request signal is received, and the first transmission power is supplied to the power receiving device according to the signal,
In the case of supporting power transmission in the second current mode, the second power transmission request signal and the first power transmission request signal are received, and the second transmitted power is transmitted to the power receiving device according to the second power transmission request signal. The contactless charging method, wherein the first power transmission request signal is ignored.
電気負荷を有する受電機器に対して、給電台から無接点で電力を送電して給電する無接点給電方法であって、
前記受電機器の受電コイルを、前記給電台の送電コイルと電磁結合させた状態で、前記送電コイルから前記受電コイルに対して電力を送電する工程と、
前記受電機器が、前記受電コイルで受けた受電電力により、前記電気負荷への給電を開始すると共に、受電側検出電流又は受電側検出電力を検出する工程と、
検出された受電側検出電流又は受電側検出電力に基づいて、前記給電台から前記受電機器に送電される送電電力量の増減を指示する送電要求信号を前記給電台に送信する工程と、
前記送電要求信号に従って、前記前記電力制御手段は前記送電コイルから前記受電コイルに送電する送電電力量を調整する工程と
を含み、
前記給電台は、前記受電機器から、
規格化された無接点充電方式に従った第一電流値を定格電流として、電気負荷に給電する第一電流モードでの給電に必要な第一送電電力を要求する第一送電要求信号を受けた場合に、前記送電コイルから第一送電電力を送電し、
前記第一電流値よりも大きい、規格化されていない無接点充電方式に従った第二電流値を定格電流として、電気負荷に給電する第二電流モードでの給電に必要な第二送電電力を要求する第二送電要求信号を受けた場合に、前記送電コイルから第二送電電力を送電し、
前記前記第二送電要求信号と第一送電要求信号とをこの順で受けた場合に、
前記第二送電要求信号に従い第二送電電力を前記電力制御手段で送電する一方、前記第一送電要求信号を無視するよう構成してなることを特徴とする給電台。
A non-contact power supply method for supplying power by transmitting power from a power supply stand without contact to a power receiving device having an electrical load,
A step of transmitting power from the power transmission coil to the power reception coil in a state where the power reception coil of the power reception device is electromagnetically coupled to the power transmission coil of the power supply base;
The power receiving device starts power feeding to the electric load based on the received power received by the power receiving coil, and detects a power receiving side detection current or a power receiving side detection power;
A step of transmitting a power transmission request signal instructing increase / decrease in the amount of transmitted power transmitted from the power supply base to the power receiving device based on the detected power reception side detection current or power reception side detection power;
Adjusting the amount of transmitted power transmitted from the power transmission coil to the power reception coil in accordance with the power transmission request signal;
The power supply stand is from the power receiving device,
Received a first transmission request signal requesting the first transmission power required for power supply in the first current mode for supplying power to the electrical load, with the first current value according to the standardized contactless charging method as the rated current The first transmission power is transmitted from the power transmission coil,
The second transmission power required for power supply in the second current mode for supplying power to the electrical load, with the second current value in accordance with the non-standardized contactless charging method larger than the first current value as the rated current, When receiving the requested second transmission request signal, the second transmission power is transmitted from the power transmission coil,
When the second power transmission request signal and the first power transmission request signal are received in this order,
According to the second power transmission request signal, the second power transmission power is transmitted by the power control means, while the first power transmission request signal is ignored.
JP2012222583A 2012-10-04 2012-10-04 Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method Pending JP2014075927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222583A JP2014075927A (en) 2012-10-04 2012-10-04 Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222583A JP2014075927A (en) 2012-10-04 2012-10-04 Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method

Publications (1)

Publication Number Publication Date
JP2014075927A true JP2014075927A (en) 2014-04-24

Family

ID=50749697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222583A Pending JP2014075927A (en) 2012-10-04 2012-10-04 Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method

Country Status (1)

Country Link
JP (1) JP2014075927A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147208A (en) * 2013-01-29 2014-08-14 Sanyo Electric Co Ltd Noncontact power supply system, power receiving device, power supply stand, and noncontact power supply method
CN104898025A (en) * 2015-06-10 2015-09-09 航天科工深圳(集团)有限公司 Cable line fault monitoring circuit based on double coils
JP2015231252A (en) * 2014-06-03 2015-12-21 ローム株式会社 Wireless power transmission device, wireless power reception device and electronic apparatus using the same, wireless power supply system, wireless power supply method
JP2019510449A (en) * 2015-12-29 2019-04-11 エナージャス コーポレイション Radar motion detection using step frequency in wireless power transfer system
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
JP2014147208A (en) * 2013-01-29 2014-08-14 Sanyo Electric Co Ltd Noncontact power supply system, power receiving device, power supply stand, and noncontact power supply method
JP2015231252A (en) * 2014-06-03 2015-12-21 ローム株式会社 Wireless power transmission device, wireless power reception device and electronic apparatus using the same, wireless power supply system, wireless power supply method
CN104898025A (en) * 2015-06-10 2015-09-09 航天科工深圳(集团)有限公司 Cable line fault monitoring circuit based on double coils
JP2019510449A (en) * 2015-12-29 2019-04-11 エナージャス コーポレイション Radar motion detection using step frequency in wireless power transfer system
US11777342B2 (en) 2016-11-03 2023-10-03 Energous Corporation Wireless power receiver with a transistor rectifier
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11715980B2 (en) 2019-09-20 2023-08-01 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11799328B2 (en) 2019-09-20 2023-10-24 Energous Corporation Systems and methods of protecting wireless power receivers using surge protection provided by a rectifier, a depletion mode switch, and a coupling mechanism having multiple coupling locations
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11411437B2 (en) 2019-12-31 2022-08-09 Energous Corporation System for wirelessly transmitting energy without using beam-forming control
US11817719B2 (en) 2019-12-31 2023-11-14 Energous Corporation Systems and methods for controlling and managing operation of one or more power amplifiers to optimize the performance of one or more antennas
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Similar Documents

Publication Publication Date Title
JP2014075927A (en) Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method
KR101253670B1 (en) Apparatus for wireless power transmission using multi antenna and Method for controlling thereof
US20180351414A1 (en) Wireless power transmitter supporting multiple modes
KR20130098958A (en) Wireless power transmitter and wireless power receiver and method for controlling each thereof
US10103553B2 (en) Wireless power transmitter and receiver
US9438315B2 (en) Wireless power adapter
US20180212470A1 (en) Wirelessly charging battery and wireless charging control method
EP3557775A1 (en) Wirelesspower transmitter for excluding cross-connected wireless power receiver and method for controlling the same
KR20190108168A (en) Apparatus and method for performing communication in a wireless power transmission system
US11616398B2 (en) Method and apparatus for performing communication in wireless power transmission system
US11108281B2 (en) Wireless power receiving device, wireless power transmitting device, and method for calibrating power using the same
JP6081207B2 (en) Contactless power supply system, power receiving device, power supply stand, contactless power supply method
JP5905357B2 (en) Contactless power supply system, power receiving device, power supply stand, contactless power supply method
JP2015231329A (en) Wireless power transmission device
US20230126095A1 (en) Wireless power transmission device and wireless power transmission method
JP2015006068A (en) Noncontact power supply method
KR101809295B1 (en) Wireless power transmitter and wireless power receiver and method for controlling each thereof
US20120086268A1 (en) Power feeder and power feeding system
KR20170077587A (en) Wire/wireless power transmission controlling method, and apparatus for therefor
KR20130112233A (en) Multi feeding coil antenna capable of frequency tuning and apparatus for wireless power transmission using the same
KR102439256B1 (en) Wireless power transmitting-receiving apparatus and method for controlling the same
KR20220152221A (en) Wireless power transmitter, wireless power receiver and authentication method thereof
KR20170024999A (en) Wireless power transmitting apparatus and method for controlling the same
US20230048919A1 (en) Wireless power transmission apparatus, wireless power transmission method, wireless power reception apparatus, and wireless power reception method
EP4304049A1 (en) Wireless power transfer device