JP2013531580A - Ship fuel saving system using energy efficiency optimization for realizing ship operation instruction optimization, method thereof, and recording medium storing computer program by the method - Google Patents

Ship fuel saving system using energy efficiency optimization for realizing ship operation instruction optimization, method thereof, and recording medium storing computer program by the method Download PDF

Info

Publication number
JP2013531580A
JP2013531580A JP2013518209A JP2013518209A JP2013531580A JP 2013531580 A JP2013531580 A JP 2013531580A JP 2013518209 A JP2013518209 A JP 2013518209A JP 2013518209 A JP2013518209 A JP 2013518209A JP 2013531580 A JP2013531580 A JP 2013531580A
Authority
JP
Japan
Prior art keywords
rpm
optimum
fuel
speed
weather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013518209A
Other languages
Japanese (ja)
Inventor
キム,ジェヨル
イ,ソジョン
Original Assignee
ニュー−ワールド マリタイム カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニュー−ワールド マリタイム カンパニー リミテッド filed Critical ニュー−ワールド マリタイム カンパニー リミテッド
Publication of JP2013531580A publication Critical patent/JP2013531580A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Abstract

本発明は船舶運航指示最適化具現のためのエネルギー効率最適化を利用した船舶燃料節減システム、その方法及びその方法によるコンピュータープログラムを保存した記録媒体に関し、本発明による船舶燃料節減方法は、(a)基準船舶仕様を収集する基準船舶仕様収集段階と、(b)基準運航データを収集する基準運航データ収集段階と、(c)最適RPM算出モジュールを生成する最適RPM算出モジュール生成段階と、(d)前記最適RPM算出モジュールに前記現在のスケジュール条件及び運航条件を入力して最適RPMを算出する最適RPM算出段階と、(e)前記最適RPMを受けて船舶のエンジンに適用するRPM適用段階とを含み、船舶内外部の全てのエネルギーの消耗を集中的に分析して、運航条件別エネルギー効率最適化を通じて、船舶の主エネルギーである燃料油を節減することができ、且つ、エネルギー消費最適化のための船舶航海情報器機とエンジン制御機との統合によって最適運航条件を算出する技術を具現し、これを利用してエンジン制御の無人化を誘導することができ、エネルギー節減で所要軍の経費を節減し、船舶会社の運営費用を節減することができ、人力節減を通じて、海上運送の経済性及び高効率性を確保し、燃料油の消耗を最適化することによって、炭素排出権の確保、同時に地球温暖化防止に積極的に対応することができるという効果を奏する。
【選択図】図2
The present invention relates to a marine fuel saving system using energy efficiency optimization for realizing vessel navigation instruction optimization, a method thereof, and a recording medium storing a computer program by the method, and the marine fuel saving method according to the present invention includes: (B) a reference operation data collection stage for collecting reference operation data; (c) an optimal RPM calculation module generation stage for generating an optimal RPM calculation module; ) An optimal RPM calculation step for calculating the optimal RPM by inputting the current schedule condition and operation condition into the optimal RPM calculation module; and (e) an RPM application step for receiving the optimal RPM and applying it to the engine of the ship. Optimum energy efficiency by operating conditions by intensively analyzing all energy consumption inside and outside the ship Through which the fuel oil, which is the main energy of the ship, can be saved, and the technology for calculating the optimum operating conditions is realized by integrating the ship navigation information equipment and the engine controller for energy consumption optimization. Can be used to induce unmanned engine control, save energy by reducing energy costs, and reduce operating costs for shipping companies. By ensuring efficiency and optimizing the consumption of fuel oil, it is possible to secure carbon emission rights and at the same time actively respond to the prevention of global warming.
[Selection] Figure 2

Description

本発明は燃料効率最適化を利用した船舶燃料節減システム、その方法及びその方法によるコンピュータープログラムを保存した記録媒体に関し、より詳しくは、船舶の運航条件をリアルタイムで収集して各動力器機を最適の運転条件で運航するようにすることで、燃料消耗量を節減し、COの発生を最小化するエネルギー効率最適化を利用した船舶燃料節減システム、その方法及びその方法によるコンピュータープログラムを保存した記録媒体に関する。 The present invention relates to a ship fuel saving system using fuel efficiency optimization, a method thereof, and a recording medium storing a computer program according to the method, and more particularly, to collect each ship's operating conditions in real time to optimize each power equipment. A marine fuel saving system using energy efficiency optimization that saves fuel consumption and minimizes the generation of CO 2 by operating under operating conditions, a method thereof, and a computer program stored by the method It relates to the medium.

燃料の消費が少ない船舶を開発して建造することは未来の造船産業の核心である。一日100トンの燃料を消費し、320トンの二酸化炭素を排出する船舶を仮定すれば、1%の燃費改善は年間24万ドル以上の費用を節減し、25年間では約6百万ドルも減らすことができ、中古船市場でも燃費は最も重要な要素中の一つである。   Developing and building ships that consume less fuel is the core of the future shipbuilding industry. Assuming a ship that consumes 100 tons of fuel a day and emits 320 tons of carbon dioxide, a 1% improvement in fuel economy will save more than $ 240,000 annually, and about $ 6 million in 25 years Fuel consumption is one of the most important factors in the used ship market.

また、現代社会は、温室ガスを排出する動力輸送システムに大部分依存しており、船舶も温室ガスを排出する主な原因で、CO排出は地球温暖化、気候変化と海洋酸性化を起こす核心要因であると広く知られている。1トンの貨物を1マイル輸送するのに排出されるCOの量は、船舶が輸送手段の中で最も効率的にもかかわらず、世界貿易で最も圧倒的な輸送手段であることからCO排出量が産業界で排出する全体温室ガス排出量の約3%を占める。 In addition, modern society is largely dependent on power transportation systems that emit greenhouse gases, and ships are also the main cause of greenhouse gas emissions. CO 2 emissions cause global warming, climate change and ocean acidification. It is widely known as a core factor. 1 The amount of CO 2 emitted for one mile transporting cargo ton vessels despite most efficient in transportation, CO 2 because it is the most dominant transportation in the world trade Emissions account for about 3% of total greenhouse gas emissions in industry.

また、船舶運航の既存の手作業及び半自動化方式は、船員の業務水準によって差があるが、燃料消耗も現在の方式では船員の経験と能力に依存するしかなく、半自動化方式に開発されたシステムの場合にも、当該船舶のみに適用可能な状況である。そこで、多様な船種を包括することができるシステムを具現するためにはソフトウェア工学的アプローチが必要であり、類似する種類の応用開発のために土台(プラットフォーム)を提供する概念であるソフトウェアフレームワークの開発が必要である。   In addition, the existing manual and semi-automated methods of ship operation differ depending on the level of work of the crew, but the fuel consumption also depends on the experience and ability of the crew in the current method, and was developed as a semi-automated method. In the case of the system, the situation is applicable only to the ship concerned. Therefore, a software engineering approach is necessary to implement a system that can encompass various ship types, and a software framework that is a concept that provides a platform for similar types of application development. Development is necessary.

上記のような理由で、船舶の燃料節減のための努力が多方面で試みられており、現在は市中に導入された気象条件を反映して最適航路を提供する方式と、船体条件を考慮して最適航路及び最適エンジンモードを提供する方式がある。気象条件を反映するモデルの場合、陸上の気象情報提供業者で送信される気象条件のみに基づいて最適航路を設計するという点で、気象条件、船体条件、エンジン条件を全部考慮して最適RPMを提供する本発明とは考慮する条件と提供する情報で差があり、国内に導入された件は多数あるが、油類節減効果はわずかなものであるのが実情である。   For the reasons mentioned above, efforts have been made in many ways to reduce the fuel consumption of ships.Currently, a method for providing an optimum route reflecting the weather conditions introduced in the city and the hull conditions are considered. Thus, there is a method for providing an optimum route and an optimum engine mode. In the case of a model that reflects the weather conditions, the optimum RPM is designed in consideration of all weather conditions, hull conditions, and engine conditions in that the optimum route is designed based only on the weather conditions transmitted by the onshore weather information provider. The present invention to be provided differs from the conditions to be considered and the information to be provided, and there are many cases introduced in the country, but the actual situation is that the oil saving effect is slight.

他の方式としては、船舶を設計する時考慮される船体条件を広く考慮して、最適航路と最適エンジンモードを提示するモデルがある。このモデルは、エンジンの最適状態を決める際に、出発時間と到着時間を距離で分けて速力を計算する方式で、定速概念を適用する。本発明は変速(正変速、変変速両方とも含む)しながら周期的に最適RPMを提供するという面で差がある。また、ばら積み貨物船や光弾船のように帰って来る船舶には船積物がなくバラスト運航をする場合は、正確に計算することが困難であるが、本発明の船体条件は船積物も含む概念であり、エンジンと船の使用年数(船齢)によって減価償却を考慮することができる。(バラスト運航:船舶の中心及び平衡を維持するために最低入水深さを維持するように船積物がない場合水を積み込んで運航する;ballast water:平衡水)も、従来には船舶会社、即ち、陸上で運航船舶の環境変化による正確な燃料消耗量を検証することができるモニタリング道具(Monitoring Tool)がなくて、単純比較方式、即ち他の船舶対比若しくは前航次対比などで正確な検証が不可能であったが、本発明は燃料効率分析機能を提供することによってより客観的に検証をすることができる。   As another method, there is a model that presents an optimum route and an optimum engine mode in consideration of the hull conditions that are considered when designing a ship. This model applies the constant speed concept by calculating the speed by dividing the departure time and arrival time by distance when determining the optimum state of the engine. The present invention is different in that the optimum RPM is periodically provided while shifting (including both forward shifting and variable shifting). In addition, ships that return such as bulk cargo ships and light bullet ships do not have cargo and it is difficult to calculate accurately when performing ballast operation, but the hull conditions of the present invention also include cargo. It is a concept, and depreciation can be taken into account according to the age of use of the engine and the ship (ship age). (Ballast operations: operate with water loaded when there is no cargo to maintain the minimum depth of entry to maintain vessel center and balance; ballast water) There is no monitoring tool (Monitoring Tool) that can verify the exact fuel consumption due to the environmental changes of vessels operating on land, and accurate verification is not possible using a simple comparison method, i.e., comparison with other vessels or previous navigation. Although possible, the present invention can be more objectively verified by providing a fuel efficiency analysis function.

以下、従来の船舶運航システムに関する先行技術は次の通りである。   Hereinafter, the prior art regarding the conventional ship operation system is as follows.

韓国特許出願公開第1997−0071419号明細書(以下、「先行技術1」とする)は船舶の最適運航システムに関するもので、船舶に装着されて、要請信号を発信する音響発信機及び応答信号を受信する音響受信機を有する音響装置と、上記要請信号に応答して、応答信号を発信する峡谷下部に設置される音響反応器機とを含む。   Korean Patent Application Publication No. 1997-0071419 (hereinafter referred to as “Prior Art 1”) relates to an optimal navigation system for a ship, and is equipped with an acoustic transmitter and a response signal that are attached to a ship and transmit a request signal. An acoustic device having an acoustic receiver for receiving, and an acoustic reactor installed at a lower part of the gorge for transmitting a response signal in response to the request signal.

韓国特許第0433258号明細書(以下、「先行技術2」とする)は船舶安全運航と船舶の管制のためのウェブサービス方法に関するもので、多数の船舶に設置されたECS端末機で船舶の識別番号、船舶の名前、長さ、幅、種類、位置情報、速度、航海状態、船首方向、ヨー角速度、船舶の進行方向の船舶データを生成する段階と;上記船舶データを周期的に人工衛星を通じてASPシステムに転送する段階と;上記ASPシステムに構築された船舶管理モジュールが上記船舶データ使用者に適するように加工して船舶DBに保存する段階と;上記船舶DBに保存された船舶データを抽出するためのECS端末機と、管制クライアント端末機にウェブ上に電子海図を示すプログラムが設置されたホームページに接続する段階と;上記ホームページは船舶情報がASPシステムに転送されて電子海図DBに保存されたデータを利用して電子海図上に船舶を表現する段階と;ウェブ上に具現されたホームページ上の電子海図に示された多数の船舶をクリックして、上記船舶にすべての情報をリアルタイムで獲得する段階とで構成される。   Korean Patent No. 0433258 (hereinafter referred to as “Prior Art 2”) relates to a web service method for vessel safe operation and vessel control, and identifies vessels using ECS terminals installed in many vessels. Generating ship data of number, ship name, length, width, type, position information, speed, nautical condition, bow direction, yaw angular speed, ship traveling direction; and periodically sending the ship data through an artificial satellite Transferring to the ASP system; processing the ship management module built in the ASP system to be suitable for the ship data user and storing it in the ship DB; and extracting ship data stored in the ship DB Connecting an ECS terminal to a homepage in which a control client terminal is installed with a program showing an electronic chart on the web; The page is a stage where the ship information is transferred to the ASP system and the data stored in the electronic chart DB is used to represent the ship on the electronic chart; many of the charts shown on the electronic chart on the website And acquiring all the information in real time by clicking on the ship.

上記先行技術1は、音響信号を利用して、直線峡谷での峡谷真中央だけではなく、峡谷の深さの変化予測、峡谷の屈曲度などを予測することができる効果があり、上記先行技術2は、船舶の航海者に最新の電子海図と現在の気象環境のような船舶安全関連情報サービスをリアルタイムで提供することができ、船舶の位置情報をインターネットを通じて何れの所でもサービスを受けることができるという効果があるが、船舶の運航状況をリアルタイムで収集して各動力器機を最適な運転条件で運航するようにすることによって、燃料消耗量を節減する本発明の技術的特徴については全く記載または言及されていない。   The prior art 1 has an effect that it is possible to predict not only the true center of the canyon in the straight canyon but also the depth change of the canyon, the bend degree of the canyon, etc. by using an acoustic signal. 2. The ship's navigation information can be provided in real time to the ship's navigator, including the latest electronic charts and the current weather environment, and the ship's location information can be received anywhere through the Internet. Although there is an effect that it can be done, the technical features of the present invention that reduce fuel consumption by collecting the operation status of the ship in real time and operating each power machine under optimal operating conditions are completely described Or not mentioned.

本発明は上述した従来の技術的問題を解決するために案出されたもので、船舶の各種情報機器から気象情報、航海情報、積載物情報、エンジン情報などをリアルタイムで入手して、次の目的地まで最も経済的に運航することができる最適RPMを算出して、エネルギーの消費を節減することによって燃料消費を節減し、運航条件の変更によって速かに最適RPMを変更し、最適運航を通じる燃料節減効果を客観的に算出して、次の航次に反映して、統合的な燃料油の節減によってエネルギーの効率を最適化し、上記の過程を自動または半自動的に行うことができる船舶燃料節減システム、その方法及びその方法によるコンピュータープログラムを保存した記録媒体を提供することを目的とする。   The present invention has been devised in order to solve the above-described conventional technical problems, and obtains weather information, voyage information, load information, engine information, etc. in real time from various information devices of the ship. Calculate the optimal RPM that can be operated most economically to the destination, reduce energy consumption, reduce fuel consumption, and change the optimal RPM quickly by changing the operating conditions. Marine fuel that can objectively calculate the fuel saving effect through which it will be reflected in the next voyage, optimize energy efficiency through integrated fuel oil saving, and perform the above process automatically or semi-automatically An object of the present invention is to provide a saving system, a method thereof, and a recording medium storing a computer program according to the method.

本発明の解決課題は上記言及されたものなどに限定されず、言及されない他の解決課題は以下の記載から当業者にさらに明確に理解されることができる。   The problems to be solved by the present invention are not limited to those mentioned above, and other problems not mentioned can be more clearly understood by those skilled in the art from the following description.

上述した技術的に課題を解決するための手段として、本発明の船舶燃料節減システムは、基準船舶仕様を収集する基準船舶仕様収集部10と;基準運航の時、運航条件を変更させながら速度と燃料消耗率を測定した基準運航データを収集する基準運航データ収集部20と;前記基準船舶仕様及び基準運航データを受けて最適RPM算出モジュールを生成する最適RPM算出モジュール生成部30と;前記最適RPM算出モジュール生成部30で受けた前記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出する最適RPM算出部50と;前記最適RPM算出部50で前記最適RPMを受けて船舶のエンジンに適用するRPM適用部60と;を含み、前記基準運航は、工場試運転、海上試運転、新潮後N航次、最近M航次を含み、前記N及びMは関係者が任意に指定する回数であり、前記最適RPMは、前記現在のスケジュール条件及び運航条件対比燃料を最低に消耗するRPMであり、前記スケジュール条件は、目標距離、目標時間、可変時間を含み、前記運航条件は、船体条件、気象条件、エンジン条件を含み、前記最適RPM=[標準最適速度−運航条件対比速度増減量]×RPM変換係数×気象補償係数、前記標準最適速度は、目標速度、可変目標速度、前記目標速度と可変目標速度との間の速度の中の速度対比燃料消耗率(=標準運航条件でのマイル当たり燃料消耗率/速度)が最低である速度、前記標準運航条件は工場試運転時の運航条件、前記目標速度=目標距離/目標時間、前記可変目標速度=目標距離/(目標時間+可変時間)、前記運航条件対比速度増減量は、現在の運航条件で標準最適RPMで運航した場合、前記標準最適速度に比べて増減される速度、前記標準最適RPMは、前記標準運航条件である時、前記標準最適速度で運航することができるRPM、前記RPM変換係数は、前記[標準最適速度−運航条件対比速度増減量]に掛け合わせて現在の運航条件で前記[標準最適速度−運航条件対比速度増減量]の速度を出すことができるRPMに変換する係数、前記気象補償係数=順気象係数(順気象程度−正気象程度)−乱気象係数(乱気象程度−正気象程度)、前記正気象程度は、前記標準運航条件の気象条件の程度を数値化した値、前記順気象程度は、現在の気象条件の順気象程度を数値化した値、前記乱気象程度は、現在の気象条件の乱気象程度を数値化した値、前記順気象係数は、前記[順気象係数(順気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが順気象限界RPM以上にならないように限定する係数、前記順気象限界RPMは、RPMを増加させた時、燃料消耗増加量/速度増加量が増加する点のRPM、前記乱気象係数は、前記[乱気象係数(乱気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが乱気象限界RPM以下にならないように限定する係数、前記乱気象限界RPMは、RPMを減少させた時、現在の運航条件でのマイル当たり燃料消耗減少量/速度感少量が減少する点のRPMであることを特徴とする。   As means for solving the technical problems described above, the ship fuel saving system of the present invention includes a reference ship specification collecting unit 10 that collects reference ship specifications; and speed while changing operation conditions during reference operation. A reference operation data collection unit 20 that collects reference operation data obtained by measuring a fuel consumption rate; an optimum RPM calculation module generation unit 30 that generates an optimum RPM calculation module in response to the reference ship specifications and reference operation data; and the optimum RPM An optimum RPM calculating unit 50 for calculating the optimum RPM by inputting the current schedule condition and operation condition to the optimum RPM calculating module received by the calculating module generating unit 30; and receiving the optimum RPM by the optimum RPM calculating unit 50 An RPM application unit 60 that is applied to a ship engine, and the standard operation includes factory test operation, sea test operation, and new tide N and M include the latest M, N and M are the number of times arbitrarily designated by the parties concerned, and the optimum RPM is the RPM that consumes the minimum fuel for the current schedule condition and operation condition, The schedule conditions include target distance, target time, and variable time, and the operation conditions include hull conditions, weather conditions, and engine conditions, and the optimal RPM = [standard optimal speed−speed increase / decrease amount relative to operation conditions] × RPM conversion Coefficient x weather compensation coefficient, the standard optimum speed is a target speed, a variable target speed, a fuel consumption rate compared to a speed between the target speed and the variable target speed (= fuel consumption per mile under standard operating conditions) Rate / speed) is the lowest speed, the standard operating conditions are the operating conditions at the time of factory trial operation, the target speed = target distance / target time, the variable target speed = target distance / (target time + variable) When the standard optimum RPM is operated under the current operation conditions, the speed increase / decrease amount compared with the operation conditions is a speed that is increased / decreased compared to the standard optimum speed, and the standard optimum RPM is the standard operation condition. The RPM that can be operated at the standard optimum speed, and the RPM conversion coefficient are multiplied by the [standard optimum speed−operation condition comparison speed increase / decrease amount] and the current operation condition in the [standard optimum speed−operation condition comparison Speed change amount] coefficient to convert to RPM capable of producing speed, weather compensation coefficient = forward weather coefficient (forward weather degree−normal weather degree) −turbulent weather coefficient (turbulent weather degree−normal weather degree), positive The degree of weather is a value obtained by quantifying the degree of weather conditions of the standard operating conditions, the degree of forward weather is a value obtained by quantifying the degree of forward weather of the current weather conditions, and the degree of turbulent weather is the value of the current weather conditions. Stormy weather The forward weather coefficient is obtained by multiplying the [forward weather coefficient (forward weather degree−normal weather degree)] by the [standard optimum speed−speed increase / decrease amount relative to operating conditions] × RPM conversion coefficient. When determining, a coefficient that limits the optimum RPM not to exceed the normal weather limit RPM, the normal weather limit RPM is the RPM at which the fuel consumption increase / speed increase increases when the RPM is increased, The turbulent weather coefficient is obtained by multiplying the [turbid weather coefficient (degree of turbulent weather-degree of normal weather)] by the [standard optimum speed-speed increase / decrease in operating conditions] × RPM conversion coefficient to obtain the optimum RPM. The coefficient that limits the climatic limit RPM so that it does not fall below the turbulent weather limit RPM. The turbulent weather limit RPM is the RPM at which the fuel consumption reduction per mile / the small amount of speed per mile will decrease when the RPM is reduced. And wherein the Rukoto.

上述した技術的課題を解決するための手段として、本発明の船舶燃料節減システムは、前記最適RPMを自動に変更する時、使用者の選択事項が入力される最適RPM自動変更設定部43をさらに含み、前記最適RPM自動変更設定部43は、変変速時には前記最適RPM算出部50に最適RPM生成命令を伝達し、正変速時には使用者から初期RPMを受けて前記RPM適用部60に伝達する変変速/正変速設定部44と;前記最適RPMの変更時間間隔を受けて、前記変更時間間隔ごとに前記最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM自動変更時間設定部46と;をさらに含むことを特徴とする。   As a means for solving the technical problem described above, the marine fuel saving system of the present invention further includes an optimum RPM automatic change setting unit 43 to which a user's selection is inputted when the optimum RPM is changed to automatic. The optimum RPM automatic change setting unit 43 transmits an optimum RPM generation command to the optimum RPM calculation unit 50 at the time of variable speed change, and receives an initial RPM from a user at the normal speed change and transmits it to the RPM application unit 60. A shift / forward shift setting unit 44; an optimum RPM automatic change time setting unit 46 that receives the change time interval of the optimum RPM and transmits the optimum RPM generation command to the optimum RPM calculation unit 50 at each change time interval; Is further included.

上述した技術的課題を解決するための手段として、前記船舶燃料節減システムは、使用者の最適RPM変更要請が入力されると、最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM手動変更設定部42をさらに含むことを特徴とする。   As a means for solving the above-described technical problem, the marine fuel saving system is configured to transmit an optimum RPM generation command to the optimum RPM calculation unit 50 when a user request for an optimum RPM change is input. A change setting unit 42 is further included.

上述した技術的課題を解決するための手段として、前記最適RPM算出部50は、前記最適RPM算出モジュールに入力される現在のスケジュール条件及び運航条件を収集するスケジュール/運航条件収集部52と;前記最適RPM生成命令が伝達されると、前記スケジュール/運航条件収集部52で前記現在のスケジュール条件及び運航条件を受けて、前記最適RPM算出モジュールに入力して最適RPMを算出する最適RPM算出モジュール実行部54と;を含むことを特徴とする。   As a means for solving the technical problem described above, the optimum RPM calculation unit 50 includes a schedule / operation condition collection unit 52 that collects current schedule conditions and operation conditions input to the optimum RPM calculation module; When an optimum RPM generation command is transmitted, the schedule / operation condition collection unit 52 receives the current schedule condition and operation condition and inputs them to the optimum RPM calculation module to calculate an optimum RPM. And a portion 54;

上述した技術的課題を解決するための手段として、前記船舶燃料節減システムは、前記船舶燃料節減システムを適用しない一般運航時と、前記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較して分析するための燃料効率分析部70を含み、前記燃料効率分析部70は、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗データ、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗データを収集する燃料消耗データ収集部72と;前記最適運航の燃料消耗率、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗率、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗率を算出する燃料消耗率計算部74と;前記燃料消耗率計算部74で前記一般運航の燃料消耗率、前記基準運航の燃料消耗率を受けて一般運航の燃料損失率を算出し、前記燃料消耗率計算部74で前記最適運航の燃料消耗率、前記基準運航の燃料消耗率を受けて最適運航の燃料損失率を算出する燃料損失率計算部76と;前記一般運航燃料損失率計算部76で前記一般運航の燃料損失率を受けて、前記最適運航燃料損失率計算部76で前記最適運航の燃料消耗率を受けて、最適運航の燃料節減率を算出する燃料節減率計算部78と;を含み、前記最適運航の燃料損失率=最適運航の燃料消耗率−基準運航の燃料消耗率、前記一般運航の燃料損失率=一般運航の燃料消耗率−基準運航の燃料消耗率、前記最適運航の燃料節減率=一般運航の燃料損失率−最適運航の燃料損失率であることを特徴とする。   As a means for solving the above-mentioned technical problem, the ship fuel saving system compares the fuel saving effect at the time of optimum operation to which the ship fuel saving system is applied and the general operation without applying the ship fuel saving system. The fuel efficiency analysis unit 70 is configured to analyze the fuel consumption data of the reference operation and the fuel of the normal operation and the same schedule condition as the optimal operation. A fuel consumption data collection unit 72 that collects consumption data; a fuel consumption rate of the optimum operation, a fuel consumption rate of the reference operation, a fuel consumption rate of the standard operation, and a fuel consumption rate of the general operation A fuel consumption rate calculation unit 74 for calculating a rate; a fuel consumption rate for the general operation in the fuel consumption rate calculation unit 74; The fuel loss rate of the general operation is calculated based on the fuel consumption rate of the operation, and the fuel consumption rate of the optimal operation is received by the fuel consumption rate calculation unit 74 based on the fuel consumption rate of the optimal operation and the fuel consumption rate of the reference operation. A fuel loss rate calculation unit 76 for calculating a fuel loss rate for the general operation in response to the fuel loss rate for the general operation in the general operation fuel loss rate calculation unit 76; And a fuel saving rate calculation unit 78 for calculating the fuel saving rate of the optimum operation, wherein the fuel loss rate of the optimum operation = the fuel consumption rate of the optimum operation−the fuel consumption rate of the standard operation, the fuel of the general operation Loss rate = fuel consumption rate of general operation−fuel consumption rate of standard operation, fuel saving rate of optimal operation = fuel loss rate of general operation−fuel loss rate of optimal operation

上述した技術的課題を解決するための手段として、基準船舶仕様収集部10、基準運航データ収集部20、最適RPM算出モジュール生成部30、最適RPM算出部50、RPM適用部60を含む船舶燃料節減システムを使った船舶燃料節減方法は、(a)前記基準船舶仕様収集部10が基準船舶仕様を収集する基準船舶仕様収集段階(S10)と;(b)前記基準運航データ収集部20が基準運航データを収集する基準運航データ収集段階(S20)と;(c)前記最適RPM算出モジュール生成部30が前記基準船舶仕様及び基準運航データを受けて最適RPM算出モジュールを生成する最適RPM算出モジュール生成段階(S30)と;(d)前記最適RPM算出部50が前記最適RPM算出モジュール生成部30で受けた前記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出する最適RPM算出段階(S50)と;(e)前記RPM適用部60が前記最適RPM算出部50で前記最適RPMを受けて船舶のエンジンに適用するRPM適用段階(S60)と;を含み、前記基準運航は工場試運転、海上試運転、新潮後N航次、最近M航次を含み、前記N及びMは関係者が任意に指定する回数であり、前記最適RPMは前記現在のスケジュール条件及び運航条件対比燃料を最低に消耗するRPMであり、前記スケジュール条件は目標距離、目標時間、可変時間を含み、前記運航条件は船体条件、気象条件、エンジン条件を含み、前記最適RPM=[標準最適速度−運航条件対比速度増減量]×RPM変換係数×気象補償係数、前記標準最適速度は目標速度、可変目標速度、前記目標速度と可変目標速度との間の速度の中の速度対比燃料消耗率(=標準運航条件でのマイル当たり燃料消耗率/速度)が最低である速度、前記標準運航条件は工場試運転時の運航条件、前記目標速度=目標距離/目標時間、前記可変目標速度=目標距離/(目標時間+可変時間)、前記運航条件対比速度増減量は、現在の運航条件で標準最適RPMで運航した場合、前記標準最適速度に比べて増減される速度、前記標準最適RPMは、前記標準運航条件である時、前記標準最適速度で運航することができるRPM、前記RPM変換係数は、前記[標準最適速度−運航条件対比速度増減量]に掛け合わせて現在の運航条件で前記[標準最適速度−運航条件対比速度増減量]の速度を出すことができるRPMに変換する係数、前記気象補償係数=順気象係数(順気象程度−正気象程度)−乱気象係数(乱気象程度−正気象程度)、前記正気象程度は前記標準運航条件の気象条件の程度を数値化した値、前記順気象程度は現在の気象条件の順気象程度を数値化した値、前記乱気象程度は現在の気象条件の乱気象程度を数値化した値、前記順気象係数は、前記[順気象係数(順気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが順気象限界RPM以上にならないように限定する係数、前記順気象限界RPMは、RPMを増加させた時、燃料消耗増加量/速度増加量が増加する点のRPM、前記乱気象係数は、前記[乱気象係数(乱気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが乱気象限界RPM以下にならないように限定する係数、前記乱気象限界RPMは、RPMを減少させた時、現在の運航条件でのマイル当たり燃料消耗減少量/速度感少量が減少する点のRPMであることを特徴とする。   As means for solving the above technical problem, a ship fuel saving including a reference ship specification collecting part 10, a reference operation data collecting part 20, an optimum RPM calculating module generating part 30, an optimum RPM calculating part 50, and an RPM applying part 60 is provided. The ship fuel saving method using the system includes: (a) a reference ship specification collecting stage (S10) in which the reference ship specification collecting unit 10 collects reference ship specifications; and (b) the reference operation data collecting unit 20 performing reference operation. A reference operation data collection step (S20) for collecting data; and (c) an optimum RPM calculation module generation step in which the optimum RPM calculation module generation unit 30 receives the reference vessel specification and reference operation data and generates an optimum RPM calculation module. (S30); and (d) the optimum RPM received by the optimum RPM calculating module 50 by the optimum RPM calculating module generating unit 30. An optimal RPM calculation step (S50) for calculating the optimum RPM by inputting the current schedule condition and operation condition into the M calculation module; and (e) the RPM application unit 60 receives the optimum RPM at the optimum RPM calculation unit 50. RPM application stage (S60) applied to the engine of the ship, and the standard operation includes factory test operation, sea test operation, N voyage after new tide, and recently M voyage, where N and M are arbitrarily designated by the parties concerned The optimal RPM is an RPM that consumes the fuel at the minimum relative to the current schedule condition and operation condition, and the schedule condition includes a target distance, a target time, and a variable time, and the operation condition includes a hull condition, Including weather conditions and engine conditions, the optimum RPM = [standard optimum speed−speed increase / decrease relative to operation conditions] × RPM conversion coefficient × weather compensation coefficient, standard The optimum speed is the target speed, the variable target speed, the speed between the target speed and the speed between the target speed and the variable target speed, and the speed with the lowest fuel consumption rate (= fuel consumption rate per mile / speed under standard operating conditions). The standard operating conditions are the operating conditions at the time of factory trial operation, the target speed = target distance / target time, the variable target speed = target distance / (target time + variable time), When operating at standard optimal RPM under operating conditions, the speed that is increased or decreased compared to the standard optimal speed, the standard optimal RPM when the standard operating conditions, the RPM that can operate at the standard optimal speed, The RPM conversion coefficient can be multiplied by the above-mentioned [Standard Optimal Speed−Operating Condition Comparison Speed Increase / Decrease] to obtain the [Standard Optimal Speed−Operating Condition Comparison Speed Increase / Decrease] speed under the current operation conditions. Coefficient for conversion to RPM, the weather compensation coefficient = forward weather coefficient (forward weather degree−normal weather degree) −turbulent weather coefficient (turbulent weather degree−normal weather degree), and the positive weather degree is the weather condition of the standard operating conditions. The numerical value of the degree, the normal weather degree is a numerical value of the normal weather degree of the current weather condition, the turbulent degree is a numerical value of the turbulent degree of the current weather condition, and the normal weather coefficient is When the [normal weather coefficient (normal weather degree−normal weather degree)] is multiplied by the [standard optimum speed−operational condition relative speed increase / decrease amount] × RPM conversion coefficient, the optimum RPM is determined as the normal weather limit RPM. The forward weather limit RPM, which is a coefficient that limits the above-mentioned conditions, is the RPM at which the fuel consumption increase / speed increase increases when the RPM is increased. Degree of turbulent weather-degree of normal weather) Is obtained by multiplying the above-mentioned [standard optimum speed-operational condition relative speed increase / decrease amount] × RPM conversion coefficient, the coefficient limiting the optimum RPM so that it does not fall below the turbulent weather limit RPM, the turbulent weather limit RPM is: When the RPM is decreased, the RPM is such that the fuel consumption reduction per mile / the small amount of speed per mile decreases under the current operating conditions.

上述した技術的課題を解決するための手段として、前記船舶燃料節減システムを用いた船舶燃料節減方法は、(f)最適RPM変更設定段階(S40);をさらに含み、前記最適RPMを自動に変更しようとする時、変変速時には前記最適RPM自動変更設定部43が前記最適RPM算出部50に最適RPM生成命令を伝達し、正変速時には使用者から初期RPMを入力して前記RPM適用部60に伝達する正変速/変変速設定段階(S46)と;前記最適RPMを自動に変更しようとする時、前記最適RPM自動変更設定部43に変更時間間隔が入力されて、前記変更時間間隔ごとに前記最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM自動変更時間設定段階(S44)と;をさらに含み、前記RPM適用部60は前記初期RPMを受けて船舶のエンジンに適用することを特徴とする。   As a means for solving the above technical problem, the ship fuel saving method using the ship fuel saving system further includes: (f) an optimum RPM change setting step (S40); and the optimum RPM is automatically changed. When trying to change, the optimum RPM automatic change setting unit 43 transmits an optimum RPM generation command to the optimum RPM calculation unit 50 at the time of variable speed change, and inputs an initial RPM from the user to the RPM application unit 60 at the normal speed change. A normal transmission / variable transmission setting step (S46) to be transmitted; when changing the optimum RPM to automatic, a change time interval is input to the optimum RPM automatic change setting unit 43, and the change is performed at each change time interval. An optimum RPM automatic change time setting step (S44) for transmitting an optimum RPM generation command to the optimum RPM calculation unit 50; In response to initial RPM is characterized by applying to the ship in the engine.

上述した技術的課題を解決するための手段として、本発明の前記船舶燃料節減システムを用いた船舶燃料節減方法は、(f)最適RPM変更設定段階(S40)を含み、前記(f)段階は、前記最適RPM手動変更設定部42が使用者の最適RPM変更要請を受けると、最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM手動変更設定段階(S42);を含むことを特徴とする。   As a means for solving the above-described technical problem, the marine fuel saving method using the marine fuel saving system of the present invention includes (f) an optimal RPM change setting step (S40), and the step (f) includes And an optimum RPM manual change setting step (S42) for transmitting an optimum RPM generation command to the optimum RPM calculation unit 50 when the optimum RPM manual change setting unit 42 receives an optimum RPM change request from a user. And

上述した技術的課題を解決するための手段として、本発明の前記船舶燃料節減システムを用いた船舶燃料節減方法における前記(d)段階は、前記最適RPM算出部50が前記最適RPM算出モジュールに入力される前記現在のスケジュール条件及び運航条件を収集するスケジュール/運航条件収集段階(S52)と;前記最適RPM算出部50が前記現在のスケジュール条件及び運航条件を前記最適RPM算出モジュールに入力して前記最適RPMを算出する最適RPM算出モジュール実行段階(S54);を含むことを特徴とする。   As means for solving the technical problem described above, in the step (d) in the marine fuel saving method using the marine fuel saving system according to the present invention, the optimum RPM calculating unit 50 inputs to the optimum RPM calculating module. A schedule / operation condition collection step (S52) for collecting the current schedule condition and operation condition, wherein the optimum RPM calculation unit 50 inputs the current schedule condition and operation condition to the optimum RPM calculation module, and An optimum RPM calculating module executing step (S54) for calculating the optimum RPM.

上述した技術的課題を解決するための手段として、本発明の前記船舶燃料節減システムを用いた船舶燃料節減方法は、(g)前記船舶燃料節減システムを適用しない一般運航時と、前記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較分析するための燃料効率分析段階(S70);をさらに含み、前記燃料効率分析段階(S70)は、前記燃料効率分析部70が前記船舶燃料節減システムを適用した最適運航時の燃料消耗データ、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗データ、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗データを収集する燃料消耗データ収集段階(S72)と;前記燃料効率分析部70が前記燃料消耗データで前記船舶燃料節減システムを適用した最適運航の燃料消耗率、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗率、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗率を算出する燃料消耗率計算段階(S74)と;前記燃料効率分析部70が前記一般運航の燃料消耗率、前記基準運航の燃料消耗率で一般運航の燃料損失率を算出し、前記最適運航の燃料消耗率、前記基準運航の燃料消耗率で最適運航の燃料損失率を算出する燃料損失率計算段階(S76)と;前記燃料効率分析部70が前記一般運航の燃料損失率、前記最適運航の燃料消耗率で最適運航の燃料節減率を算出する燃料節減率計算段階(S78)と;を含み、前記最適運航の燃料損失率=最適運航の燃料消耗率−基準運航の燃料消耗率、前記一般運航の燃料損失率=一般運航の燃料消耗率−基準運航の燃料消耗率、前記最適運航の燃料節減率=一般運航の燃料損失率−最適運航の燃料損失率であることを特徴とする。   As a means for solving the above-mentioned technical problem, a ship fuel saving method using the ship fuel saving system according to the present invention includes (g) a general operation not using the ship fuel saving system, and the ship fuel saving. A fuel efficiency analysis step (S70) for comparatively analyzing the fuel saving effect at the time of optimum operation to which the system is applied, and the fuel efficiency analysis step (S70) is performed by the fuel efficiency analysis unit 70. Fuel consumption data collection stage for collecting fuel consumption data at the time of optimum operation applying the system, fuel consumption data for the standard operation compared to the same schedule conditions as the optimum operation, and fuel consumption data for general operations compared to the same schedule conditions as the optimum operation (S72); and the fuel efficiency analysis unit 70 uses the fuel consumption data to apply the marine fuel saving system. A fuel consumption rate calculation step (S74) for calculating a fuel consumption rate of the reference operation and a fuel consumption rate of the general operation compared with the same schedule condition as the optimal operation; The analysis unit 70 calculates the fuel loss rate of the general operation based on the fuel consumption rate of the general operation and the fuel consumption rate of the standard operation, and the fuel of the optimal operation based on the fuel consumption rate of the optimal operation and the fuel consumption rate of the standard operation. A fuel loss rate calculation step (S76) for calculating a loss rate; and a fuel saving rate at which the fuel efficiency analysis unit 70 calculates a fuel saving rate for the optimal operation based on the fuel loss rate for the general operation and the fuel consumption rate for the optimal operation. And calculating the fuel loss rate of the optimal operation = the fuel consumption rate of the optimal operation−the fuel consumption rate of the standard operation, the fuel loss rate of the general operation = the fuel consumption rate of the general operation−the standard operation. Fuel depletion rate, the optimum operating the fuel economy rate = general flight fuel loss rates - characterized in that it is a fuel loss rate optimal flight.

本発明によれば、船舶内外部の全てのエネルギーの消耗を集中的に分析して、運航条件別エネルギー効率最適化を通じて、船舶の主エネルギーである燃料油を節減することができ、且つ、エネルギー消費最適化のための船舶航海情報機器とエンジン制御機との統合によって最適運航条件を算出する技術を具現し、これを利用してエンジン制御の無人化を誘導することができ、エネルギー節減で所要軍の経費を節減し、船舶会社の運営費用を節減することができ、人力節減を通じて、海上運送の経済性及び高効率性を確保し、燃料油の消耗を最適化することによって、炭素排出権の確保、同時に地球温暖化防止に積極的に対応することができるという効果を奏する。   According to the present invention, fuel oil, which is the main energy of a ship, can be saved through intensive analysis of all energy consumption inside and outside the ship, and optimization of energy efficiency according to operational conditions. Implementing technology to calculate optimum operating conditions by integrating ship navigation information equipment and engine controller for optimization of consumption, which can be used to induce unmanned engine control, which is necessary for energy saving. Carbon emissions credits can be saved by optimizing fuel oil consumption by saving the cost of the military, reducing the operating costs of shipping companies, ensuring the economic and high efficiency of maritime transport through the saving of manpower. As a result, it is possible to actively respond to the prevention of global warming at the same time.

本発明の効果は上記言及されたものに限定されず、言及されない他の効果は以下の記載から当業者にさらに明確に理解されることができる。   The effects of the present invention are not limited to those mentioned above, and other effects not mentioned can be understood more clearly by those skilled in the art from the following description.

従来の船舶運航システムである。It is a conventional ship navigation system. 本発明の船舶燃料節減システムを示す図面である。1 is a view showing a marine fuel saving system according to the present invention. 図2の船舶燃料節減システムを船舶運航システムに適用した実施例を示す図面である。It is drawing which shows the Example which applied the ship fuel saving system of FIG. 2 to the ship operation system. 工場試運転で生成された基準運航データの例を示す図面である。It is drawing which shows the example of the standard operation data produced | generated by the factory test run. 海上試運転で生成された基準運航データの例を示す図面である。It is drawing which shows the example of the standard operation data produced | generated by the sea trial run. 新潮後N航次で生成された基準運航データの例を示す図面である。It is drawing which shows the example of the standard operation data produced | generated by N voyages after a new tide. 標準運航条件でのマイル当たり燃料消耗率/速度グラフを示す図面である。It is drawing which shows the fuel consumption rate / speed graph per mile on standard operating conditions. 本発明の船舶燃料節減方法を示す図面である。1 is a view showing a marine fuel saving method according to the present invention. 図8の詳細な方法を示す図面である。It is drawing which shows the detailed method of FIG.

10 基準船舶仕様収集部
20 基準運航データ収集部
30 最適RPM算出モジュール生成部
42 最適RPM手動変更設定部
43 最適RPM自動変更設定部
44 変変速/正変速設定部
46 最適RPM自動変更時間設定部
50 最適RPM算出部
52 スケジュール/運航条件収集部
54 最適RPM算出モジュール実行部
60 RPM適用部
70 燃料効率分析部
72 燃料消耗データ収集部
74 燃料消耗率計算部
76 燃料損失率計算部
78 燃料節減率計算部
S10 基準船舶仕様収集段階
S20 基準運航データ収集段階
S30 最適RPM算出モジュール生成段階
S40 最適RPM変更設定段階
S42 最適RPM手動変更設定段階
S44 最適RPM自動変更時間設定段階
S46 正変速/変変速設定段階
S50 最適RPM算出段階
S52 スケジュール/運航条件収集段階
S54 最適RPM算出モジュール実行段階
S60 RPM適用段階
S70 燃料効率分析段階
S72 燃料消耗データ収集段階
S74 燃料消耗率計算段階
S76 燃料損失率計算段階
S78 燃料節減率計算段階
DESCRIPTION OF SYMBOLS 10 Reference | standard ship specification collection part 20 Reference | standard operation data collection part 30 Optimal RPM calculation module production | generation part 42 Optimal RPM manual change setting part 43 Optimal RPM automatic change setting part 44 Variable speed / forward change setting part 46 Optimal RPM automatic change time setting part 50 Optimal RPM calculation unit 52 Schedule / operation condition collection unit 54 Optimal RPM calculation module execution unit 60 RPM application unit 70 Fuel efficiency analysis unit 72 Fuel consumption data collection unit 74 Fuel consumption rate calculation unit 76 Fuel loss rate calculation unit 78 Fuel saving rate calculation Part S10 Reference ship specification collection stage S20 Reference operation data collection stage S30 Optimal RPM calculation module generation stage S40 Optimum RPM change setting stage S42 Optimal RPM manual change setting stage S44 Optimal RPM automatic change time setting stage S46 Normal speed / variable speed setting stage S50 Optimal RPM calculation stage S52 Schedule / operating condition collecting step S54 optimum RPM calculation module executed steps S60 RPM application phase S70 fuel efficiency analysis stage S72 of fuel consumed data collecting phase S74 fuel wear rate calculation step S76 fuel loss rate calculation step S78 fuel saving rate calculation step

本発明は船舶燃料節減システムを適用して、目標距離を目標時間内に運航しながらも、運航条件を考慮して燃料消耗を最小化する最適化されたRPMを求めて実際の運航に適用することを目的とする。   The present invention applies a marine fuel saving system to obtain an optimized RPM that minimizes fuel consumption in consideration of operating conditions while operating a target distance within a target time, and applies it to actual operations. For the purpose.

一般的な船舶の運航システム
一般的な船舶の運航(以下、「一般運航」と表記する)は、図1に示すように、船長と機関士がスケジュール条件と運航条件を考慮して、速度の変更が必要であると判断する度にエンジンのRPMを再調整する。
General Ship Operation System General ship operation (hereinafter referred to as “general operation”), as shown in Figure 1, the master and engineer take into account the schedule conditions and the operation conditions. The engine RPM is readjusted whenever it is determined that a change is necessary.

上記一般運航の場合、船長は上記運航条件の中で気象条件、スケジュール条件、船体条件を主に判断し、機関士は上記運航条件の中でエンジン条件、船体条件を主に判断して、RPMを再調整する。即ち、一般運航時には、目標時間または後述される可変目標時間以内に目的地に到着するために、船長または機関士が気象条件、スケジュール条件、船体条件、エンジン条件を考慮してRPMを調整して速度を調節する。   In the case of the above general operation, the master mainly determines the weather conditions, schedule conditions, and hull conditions in the above operating conditions, and the engineer mainly determines the engine conditions and hull conditions in the above operating conditions. Readjust. That is, during general operation, in order to arrive at the destination within the target time or the variable target time described later, the master or engineer adjusts the RPM in consideration of weather conditions, schedule conditions, hull conditions, and engine conditions. Adjust the speed.

このように、一般運航は上記運航条件を全部考慮してRPMを決めるように見えるが、実際には、機関士と船長が上記言及された条件の中で主に一部だけで判断するため、最適のRPMを算出することは不可能であると言える。また、船舶運航分野の専門家が上記運航条件を全部含んだ情報を受信して運航するとしても、考慮すべき運航条件が多すぎて最適のRPMを算出することは不可能であり、主観的で、経験から判断して適当な値であると予想されるRPMに調節するしかない。   In this way, general operation seems to determine the RPM in consideration of all the above operating conditions, but in fact, because the engineer and the captain mainly determine only a part of the above mentioned conditions, It can be said that it is impossible to calculate the optimum RPM. Moreover, even if an expert in the ship operation field receives information including all the above operation conditions and operates, it is impossible to calculate the optimum RPM because there are too many operation conditions to be considered. Therefore, there is no choice but to adjust to the RPM that is expected to be an appropriate value based on experience.

それで、本発明は、上記運航条件を総合的に考慮して、目標時間または可変目標時間内に目標距離を運航しながらも、燃料効率性を最大化するRPM(以下、「最適RPM」と表記する)を算出するシステムである船舶燃料節減システムを船舶に適用することを目的とする(以下、「上記船舶燃料節減システムを最適化システム」と表記する)。   Therefore, the present invention comprehensively considers the above operating conditions, and RPM that maximizes fuel efficiency while operating the target distance within the target time or variable target time (hereinafter referred to as “optimum RPM”). The object of the present invention is to apply a marine fuel saving system, which is a system for calculating the marine fuel economy, to a marine vessel (hereinafter, the “marine fuel saving system is referred to as an optimization system”).

スケジュール条件及び運航条件
上記スケジュール条件は、目標距離D、目標時間H、可変時間hを含み、上記目標距離を目標時間で割ったのが目標速度Vで、上記目標距離Dを目標時間Hと可変時間hの和である可変目標時間Hvで割ったのが可変目標速度Vvである。
Schedule conditions and operation conditions The schedule conditions include a target distance D, a target time H, and a variable time h, and the target distance divided by the target time is a target speed V, and the target distance D is variable with the target time H. The variable target speed Vv is divided by the variable target time Hv that is the sum of the time h.

数学式1
V=D/H
Vv=D/(H+h)=D/(HV)
Mathematical Formula 1
V = D / H
Vv = D / (H + h) = D / (HV)

上記運航条件は船体条件、気象条件、エンジン条件を含む。   The operating conditions include hull conditions, weather conditions, and engine conditions.

上記気象条件は、風速、潮流速度、ピッチング、ローリング、水深を含み、上記ピッチングとは、船舶が前後に揺れることであり、上記ローリングとは、船舶が左右に揺れることである。   The weather conditions include wind speed, tidal velocity, pitching, rolling, and water depth. The pitching is that the ship swings back and forth, and the rolling is that the ship swings left and right.

上記エンジン条件は、RPM、エンジン負荷、エンジン性能を含む。   The engine conditions include RPM, engine load, and engine performance.

上記船体条件は、排水量、船体傾斜、船体重量中心、貨物積載量、燃料油積載量、バラスト水積載量を含む。   The hull conditions include drainage, hull inclination, hull weight center, cargo load, fuel oil load, and ballast water load.

一般的に、外部条件が均一である場合、船舶の速度増加はRPMの増加に比例するが、上記運航条件の変化によって船舶が影響を受けるため、RPMの変化量が速度に完全に反映されないか(例えば、逆風、逆潮流の場合)、超えて反映される(例え、順風、順潮流の場合)。また、RPMを変化させるよる燃料消耗変化率も上記運航条件によって増加されることもあり(例え、貨物積載量が普通より多い場合)、減少されることもある(例え、貨物積載量が普通より少ない場合)。このように、上記運航条件が異なると、同じRPMで運航しても、実際速度と実際燃料消耗量がそれぞれ異なるので、実際燃料消耗量対比実際速度が高いRPMで運航することが燃料消耗量を減少させ、且つ時間的にも効率的な運航になる。RPMを最高に維持すれば、速度は早いが、燃料が過多に消耗される。燃料消耗率を最小に維持すると、速度が目標速度より低い場合、目標時間内に目的地に到着しにくい。そこで、燃料消耗量、及び速度を全部考慮して、平均的に目標速度Vまたは可変目標速度Vvを維持して燃料消耗量を節減することができるRPMで運航することが費用と効果の面で適切である。   In general, when the external conditions are uniform, the increase in vessel speed is proportional to the increase in RPM. However, since the vessel is affected by the change in the operating conditions, is the change in RPM fully reflected in the velocity? (For example, in the case of headwind and current flow), it is reflected beyond (for example, in case of wind current and current flow). In addition, the rate of change in fuel consumption due to changes in RPM may be increased depending on the above operating conditions (for example, if the cargo load is greater than normal) or may be decreased (eg, the cargo load is less than normal). If less). Thus, if the above operating conditions are different, the actual speed and the actual fuel consumption are different even when operating at the same RPM. Therefore, operating at an RPM with a higher actual speed compared to the actual fuel consumption will reduce the amount of fuel consumed. Reduced and time efficient operation. If RPM is maintained at the maximum, the speed is high, but fuel is exhausted excessively. If the fuel consumption rate is kept to a minimum, if the speed is lower than the target speed, it is difficult to reach the destination within the target time. Therefore, in consideration of all fuel consumption and speed, it is cost and effective to operate with RPM that can save fuel consumption by maintaining the target speed V or variable target speed Vv on average. Is appropriate.

基準運航データ及び基準運航
上記目的を達するために、最適RPMを算出する基準になるデータ(以下、「基準運航データ」という)を各運航条件別に測定する。この時、RPMと上記運航条件を変化させながら、それによる速度、燃料消耗量を測定する。上記基準運航データは数回の運航にかけて測定され、上記基準運航データの測定対象になる運航を基準運航とする。
Standard operation data and standard operation In order to achieve the above-mentioned purpose, data serving as a reference for calculating the optimum RPM (hereinafter referred to as “reference operation data”) is measured for each operation condition. At this time, the speed and fuel consumption are measured while changing the RPM and the above operating conditions. The above-mentioned reference operation data is measured over several operations, and the operation that is the measurement target of the above-mentioned reference operation data is the reference operation.

上記基準運航は、工場試運転、海上試運転、新潮後N航次、最近M航次などの運航を含むもので、上記4つの運航の中の一部運航のみ含まれる場合もある。即ち、上記最適化システムの基準となるデータを測定するために、上記最適化システムの管理者、船主、使用者などが予め上記4つの運航の中の幾つかを基準運航として選定する。(N、Mも本システムの管理者、船主、使用者などが予め任意に基準に決める運航回数である。)図4は上記工場試運転の時測定した基準運航データの例であり、図5は上記海上試運転の時測定した基準運航データの例であり、図6は新潮後N航次の時測定した基準運航データの例である。   The above-mentioned standard operation includes operations such as factory test operation, maritime test operation, N voyage after new tide, and recently M voyage, and may include only a part of the above four operations. That is, in order to measure data serving as a reference for the optimization system, an administrator, a shipowner, a user, and the like of the optimization system select some of the four operations as reference operations in advance. (N and M are the number of operations that the administrator, shipowner, user, etc. of this system arbitrarily determines in advance.) FIG. 4 is an example of reference operation data measured at the time of the above-mentioned factory test operation, and FIG. FIG. 6 is an example of the reference operation data measured at the time of the N voyage after the new tide.

上記基準運航データを全部収集すれば、上記基準運航データに基づいて運航条件対比最適RPMを算出する最適RPM算出モジュールを生成し、上記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出して運航に適用(以下、上記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出して運航することを最適運航と表記する)することによって一般運航対比燃料消耗を最小化する。   If all the above-mentioned reference operation data is collected, an optimum RPM calculation module for calculating the optimum RPM for operation conditions is generated based on the above-mentioned reference operation data, and the current schedule conditions and operation conditions are input to the optimum RPM calculation module. General operation by calculating the optimal RPM and applying it to the operation (hereinafter referred to as calculating the optimal RPM by inputting the current schedule conditions and operation conditions into the above-mentioned optimal RPM calculation module and operating) Minimize relative fuel consumption.

船舶燃料節減システム
図2は本発明の上記目的を達するための一実施例による船舶燃料節減システムを示すもので、上記船舶燃料節減システムは、基準船舶仕様収集部10、基準運航データ収集部20、最適RPM算出モジュール生成部30、最適RPM自動変更設定部43、最適RPM手動変更設定部42、最適RPM算出部50、RPM適用部60、燃料効率分析部70を含み、次のような機能を果たす。
Ship Fuel Saving System FIG. 2 shows a ship fuel saving system according to an embodiment for achieving the above object of the present invention. The ship fuel saving system includes a reference ship specification collecting unit 10, a reference operation data collecting unit 20, It includes an optimum RPM calculation module generation unit 30, an optimum RPM automatic change setting unit 43, an optimum RPM manual change setting unit 42, an optimum RPM calculation unit 50, an RPM application unit 60, and a fuel efficiency analysis unit 70, and performs the following functions. .

上記基準船舶仕様収集部10は、上記最適化システムを適用する船舶の船舶仕様(以下「基準船舶仕様」と表記する)を収集する。上記基準船舶仕様にはトン数、船の使用年数、船形、船級が含まれる。   The reference ship specification collecting unit 10 collects ship specifications of the ship to which the optimization system is applied (hereinafter referred to as “reference ship specification”). The above-mentioned standard ship specifications include tonnage, ship age, ship shape and ship classification.

上記基準運航データ収集部20は、上記最適RPM算出モジュール生成に利用される基準運航データを収集する。   The reference operation data collection unit 20 collects reference operation data used for generating the optimum RPM calculation module.

上記最適RPM算出モジュール生成部30は、基準運航時測定される基準運航データが入力されて最適RPM算出モジュールを生成する。   The optimum RPM calculation module generation unit 30 receives the reference operation data measured during the reference operation and generates an optimal RPM calculation module.

上記最適RPM自動変更設定部43は、変変速/正変速設定部44、最適RPM自動変更設定部43を含む。   The optimum RPM automatic change setting unit 43 includes a variable speed / forward change setting unit 44 and an optimum RPM automatic change setting unit 43.

上記変変速/正変速設定部44は、変変速時には上記最適RPM算出部50に最適RPM生成命令を伝達して、正変速時には使用者(船長または機関士)から初期RPMを入力してRPM適用部60に伝達する。   The variable shift / normal shift setting unit 44 transmits an optimal RPM generation command to the optimal RPM calculation unit 50 at the time of variable shift, and inputs the initial RPM from the user (master or engineer) at the normal shift to apply the RPM. Transmitted to the unit 60.

上記最適RPM自動変更設定部43は、最適RPMの変更時間間隔が入力されて、上記変更時間間隔ごとに最適RPM生成命令を上記最適RPM算出部50に伝達する。   The optimum RPM automatic change setting unit 43 receives an optimum RPM change time interval and transmits an optimum RPM generation command to the optimum RPM calculation unit 50 at each change time interval.

上記正変速と変変速は、変速方法の種類で、本発明では初期RPM値によって分けられる。上記変速とは速度を変更しても平均的には目標速度を維持しながら変速することで、この時、初期RPMに目標速度を出すと予想されるRPM、以前の運航RPMなど任意のRPMを入力して運航することが正変速であり、初期RPMに上記最適化システムを通じて求めた最適RPMを入力して運航することが変変速である。即ち、変変速で運航すれば、運航初期から最適化が始まるので燃料効率がさらに高くなる長所があるが、本発明では使用者の必要によって、または現在運航条件の収集が不可能である場合正変速を選択して運航することも可能である。   The normal speed change and the variable speed change are types of speed change methods, and are divided according to the initial RPM value in the present invention. The above-mentioned shift means shifting while maintaining the target speed on average even if the speed is changed. At this time, any RPM such as the RPM that is expected to reach the target speed in the initial RPM, the previous operation RPM, etc. Entering and operating is the normal shift, and inputting and operating the optimum RPM obtained through the optimization system as the initial RPM is the variable speed change. In other words, when operating at variable speed, optimization starts from the beginning of operation and has the advantage of further increasing fuel efficiency, but in the present invention, it is correct if the current operating conditions cannot be collected according to the needs of the user. It is also possible to operate by selecting a shift.

上記最適RPM手動変更設定部42は、使用者の最適RPM変更要請を受けると、最適RPM生成命令を上記最適RPM算出部50に伝達する。   When receiving the optimum RPM change request from the user, the optimum RPM manual change setting unit 42 transmits an optimum RPM generation command to the optimum RPM calculation unit 50.

上記最適RPM算出部50は、上記最適RPM自動変更設定部43で上記使用者の設定を受け、上記最適RPM算出基準生成部で上記最適RPM算出モジュールを受けて上記運航条件による最適RPMを算出する。   The optimum RPM calculation unit 50 receives the setting of the user by the optimum RPM automatic change setting unit 43 and receives the optimum RPM calculation module by the optimum RPM calculation reference generation unit to calculate the optimum RPM according to the operation condition. .

上記最適RPM算出部50は、スケジュール/運航条件収集部52、最適RPM算出モジュール実行部54を含む。   The optimum RPM calculation unit 50 includes a schedule / operation condition collection unit 52 and an optimum RPM calculation module execution unit 54.

上記スケジュール/運航条件収集部52は、上記最適RPM算出モジュールに入力される現在のスケジュール条件及び運航条件を収集する。   The schedule / operation condition collection unit 52 collects the current schedule condition and operation condition input to the optimum RPM calculation module.

上記最適RPM算出モジュール実行部54は、上記最適RPM生成命令を上記最適RPM自動変更設定部43または上記最適RPM手動変更設定部42から受けると、上記スケジュール/運航条件収集部52で現在のスケジュール条件及び運航条件を受けて上記最適RPM算出モジュールに入力して上記最適RPMを算出する。   When the optimum RPM calculation module execution unit 54 receives the optimum RPM generation command from the optimum RPM automatic change setting unit 43 or the optimum RPM manual change setting unit 42, the schedule / operation condition collection unit 52 causes the current schedule condition to be obtained. In response to the operational conditions, the optimum RPM is calculated and input to the optimum RPM calculation module.

上記RPM適用部60は、上記最適RPM算出部50から上記最適RPMを受けるか、正変速である時、上記最適RPM自動変更設定部43から上記初期RPMを受けると船舶のエンジンに適用する。   The RPM application unit 60 receives the optimum RPM from the optimum RPM calculation unit 50 or applies the initial RPM from the optimum RPM automatic change setting unit 43 to the marine engine when the gear shift is normal.

上記燃料効率分析部70は、上記船舶燃料節減システムを適用しない一般運航時と、上記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較分析する。   The fuel efficiency analysis unit 70 performs a comparative analysis on the fuel saving effect at the time of general operation where the ship fuel saving system is not applied and at the time of optimum operation where the ship fuel saving system is applied.

上記燃料効率分析部70は、燃料消耗データ収集部72、燃料消耗率計算部74、燃料損失率計算部76、燃料節減率計算部78を含む。   The fuel efficiency analysis unit 70 includes a fuel consumption data collection unit 72, a fuel consumption rate calculation unit 74, a fuel loss rate calculation unit 76, and a fuel saving rate calculation unit 78.

上記燃料消耗データ収集部72は、上記最適運航と同じスケジュール対比上記基準運航の燃料消耗データ、上記最適運航と同じスケジュール対比一般運航の燃料消耗データを収集する。   The fuel consumption data collection unit 72 collects the fuel consumption data of the reference operation and the fuel consumption data of the general operation and the same schedule as the optimal operation.

上記燃料消耗率計算部74は、上記燃料消耗データ収集部72で燃料消耗データを受けて、上記船舶燃料節減システムを適用した最適運航の燃料消耗率、上記最適運航と同じスケジュール対比上記基準運航の燃料消耗率、上記最適運航と同じスケジュール対比一般運航の燃料消耗率を算出する。   The fuel consumption rate calculation unit 74 receives the fuel consumption data from the fuel consumption data collection unit 72 and receives the fuel consumption rate of the optimum operation using the marine fuel saving system. The fuel consumption rate and the fuel consumption rate of the general operation compared to the same schedule as the above optimal operation are calculated.

上記燃料損失率計算部76は、上記燃料消耗率計算部74から上記一般運航の燃料消耗率、上記基準運航の燃料消耗率を受けて、一般運航の燃料損失率を算出し、上記燃料消耗率計算部74から上記最適運航の燃料消耗率、上記基準運航の燃料消耗率を受けて、最適運航の燃料損失率を算出する。   The fuel loss rate calculation unit 76 receives the fuel consumption rate of the general operation and the fuel consumption rate of the reference operation from the fuel consumption rate calculation unit 74, calculates the fuel loss rate of the general operation, and calculates the fuel consumption rate. Based on the fuel consumption rate of the optimal operation and the fuel consumption rate of the reference operation from the calculation unit 74, the fuel loss rate of the optimal operation is calculated.

上記燃料節減率計算部78は、上記一般運航燃料損失率計算部76から上記一般運航の燃料損失率を受け、上記最適運航燃料損失率計算部76から上記最適運航の燃料消耗率を受けて、最適運航の燃料節減率を算出する。   The fuel saving rate calculation unit 78 receives the fuel loss rate of the general operation from the general operation fuel loss rate calculation unit 76, receives the fuel consumption rate of the optimal operation from the optimal operation fuel loss rate calculation unit 76, Calculate the fuel saving rate for optimal operation.

船舶燃料節減システムの適用例
本発明の船舶燃料節減システムは、PCに多様な方法で設置されることができる。上記船舶燃料節減システムは、一つのPCにシステム全体が皆設置されることができる。この時、他のPCとネットワークで連結されるか、PCに適用可能な電子記録媒体で必要な資料を取り交わすことができる。また、複数のPCに複数のシステムがそれぞれ設置される。上記最適化システムの構成要素を全部備えたまま設置されることができ、この時、それぞれのシステムはネットワークで情報を伝達して同期化することができる。また、複数のPCに複数のシステムがそれぞれ設置される。上記最適化システムの構成要素をそれぞれのPCが分けて備えたまま設置されることができ、この時、それぞれのシステムはネットワークで情報を伝達して同期化することができる。
Application Examples of Ship Fuel Saving System The ship fuel saving system of the present invention can be installed in a PC in various ways. The entire ship fuel saving system can be installed in one PC. At this time, necessary data can be exchanged with an electronic recording medium that is connected to another PC via a network or applicable to the PC. A plurality of systems are installed on a plurality of PCs, respectively. The system can be installed with all the components of the optimization system, and at this time, each system can synchronize by transmitting information over the network. A plurality of systems are installed on a plurality of PCs, respectively. The components of the optimization system can be installed with each PC separately provided. At this time, each system can transmit information and synchronize with the network.

図3は本発明の船舶燃料節減システムを適用した船舶、及びこの船舶とネットワークで連結された船舶燃料節減システム管理者のPC、船主のPCを示すもので、複数のPCに複数の上記船舶燃料節減システム(以下、「最適化システム」と表記)を設置した例である。上記最適化システムは、船舶内外の多様な装備とネットワークで連結されて資料を収集し、エンジンをコントロールする。   FIG. 3 shows a ship to which a marine fuel saving system of the present invention is applied, and a PC of a marine fuel saving system administrator and a shipowner PC connected to the marine vessel through a network. This is an example of installing a saving system (hereinafter referred to as “optimization system”). The optimization system is connected to various equipment inside and outside the ship through a network to collect data and control the engine.

上記基準船舶仕様収集部10は入出力装置または他のPCと連結されて、上記基準運航仕様が入力され、上記基準運航データ収集部20に連結されて基準船舶仕様を伝達する。   The reference vessel specification collection unit 10 is connected to an input / output device or another PC, and the reference operation specification is input, and is connected to the reference operation data collection unit 20 to transmit the reference vessel specification.

上記基準運航データ収集部20は、入出力装置または他のPCと連結されて、基準運航データが入力され、上記最適RPM算出モジュール生成部30に連結されて基準運航データを伝達し、上記燃料効率分析部70に連結されて、基準運航時の燃料消耗率を伝達する。   The reference operation data collection unit 20 is connected to an input / output device or another PC, receives reference operation data, is connected to the optimum RPM calculation module generation unit 30 to transmit the reference operation data, and the fuel efficiency It is connected to the analysis unit 70 and transmits the fuel consumption rate during the standard operation.

上記最適RPM算出モジュール生成部30は上記基準船舶仕様収集部10と上記基準運航データ収集部20に連結されて、上記基準船舶仕様及び基準運航データが入力されて、最適RPM算出モジュールを生成する。   The optimum RPM calculation module generation unit 30 is connected to the reference vessel specification collection unit 10 and the reference operation data collection unit 20, and receives the reference vessel specification and the reference operation data to generate an optimum RPM calculation module.

上記最適RPM算出部50は上記最適RPM自動変更設定部43または最適RPM手動変更設定部42から使用者の選択事項が伝達され、上記最適RPM算出モジュール生成部30から上記最適RPM算出モジュールが伝達されて、現在のスケジュール条件及び運航条件による最適RPMを算出して上記RPM適用部60に伝達する。   The optimum RPM calculation unit 50 receives user's selection items from the optimum RPM automatic change setting unit 43 or the optimum RPM manual change setting unit 42, and the optimum RPM calculation module generation unit 30 receives the optimum RPM calculation module. Then, the optimum RPM according to the current schedule condition and operation condition is calculated and transmitted to the RPM application unit 60.

また、上記最適RPM算出モジュールに入力する現在のスケジュール条件及び運航条件を収集するために、入出力装置または他のPCまたは船舶内外の情報収集装置と連結されて、上記運航条件の中の気象条件を受信し、入出力装置または他のPCまたはエンジン制御装置と連結されてエンジン条件を受信し、入出力装置または他のPCと連結されて船体条件及びスケジュール条件を受信する。   In addition, in order to collect the current schedule conditions and operation conditions to be input to the optimum RPM calculation module, it is connected to an input / output device, another PC, or an information collecting device inside or outside the ship, and the weather conditions in the operation conditions. Is connected to the input / output device or another PC or the engine control device to receive the engine condition, and is connected to the input / output device or another PC to receive the hull condition and the schedule condition.

上記最適RPM算出部50に連結された情報収集装置(図1及び図3には第1収集装置〜第N収集装置と表記)は、GPS、風速計(ANEMOMETER)、ジャイロコンパス(GYROCOMPASS)、スピードログ(SPEED LOG)、船首方位制御装置(HEADING/TRACK CONTROL SYSTEM)などのような収集装置で構成されており、電子海図、BWWAS、コンバータが上記情報収集装置と上記最適化システムとの間に連結されることができる。上記コンバータは上記情報収集装置の情報を上記最適化システムが設置されたPCで入力することができる形態のデータに変換するためのものである。   The information collection device (indicated as the first collection device to the Nth collection device in FIGS. 1 and 3) connected to the optimum RPM calculation unit 50 is a GPS, an anemometer (ANEMOMETER), a gyrocompass (GYROCOMPASS), a speed. Consists of a collection device such as a log (SPEED LOG), heading control device (HEADING / TRACK CONTROL SYSTEM), etc. The electronic chart, BWWAS, and converter are connected between the information collection device and the optimization system. Can be done. The converter is for converting the information of the information collecting apparatus into data in a form that can be input by a PC in which the optimization system is installed.

上記RPM適用部60は出力装置に連結されて、最適RPM算出部50で伝達された上記最適RPMを出力するか、機関室のETC、船長室のETCの中の一つ以上に連結されて、上記最適RPM算出部50で受けた上記最適RPMを送信する。   The RPM application unit 60 is connected to an output device and outputs the optimum RPM transmitted from the optimum RPM calculation unit 50, or is connected to one or more of the engine room ETC and the captain room ETC, The optimum RPM received by the optimum RPM calculator 50 is transmitted.

上記燃料効率分析部70は、一般運航時と、上記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較分析するために、上記基準運航データ収集部20と連結されて基準運航データを受信し、上記最適RPM算出部50と連結されて、最適運航適用時のスケジュール条件、運航条件、燃料消耗量を受信する。   The fuel efficiency analysis unit 70 is connected to the reference operation data collection unit 20 and compares the reference operation data with the reference operation data collection unit 20 in order to compare and analyze the fuel saving effect at the time of general operation and the optimal operation using the ship fuel saving system. Received and connected to the optimum RPM calculating unit 50 to receive schedule conditions, operation conditions, and fuel consumption when the optimum operation is applied.

上記連結は直接ケーブルで連結するか、有無線ネットワークで可能である。   The connection can be made by a direct cable connection or a wired / wireless network.

最適RPM及び最適RPM算出モジュール
上記最適RPM算出モジュールは次のような方式で最適RPMを生成する。
Optimal RPM and Optimal RPM Calculation Module The optimal RPM calculation module generates an optimal RPM in the following manner.

数学式2
最適RPM=[標準最適速度−運航条件対比速度増減量]×RPM変換係数×気象補償係数
Mathematical Formula 2
Optimum RPM = [Standard optimum speed-Speed increase / decrease relative to operating conditions] x RPM conversion coefficient x Weather compensation coefficient

上記公式は、上記最適RPM算出モジュール生成部30が基準船舶仕様と、基準運航データをシミュレーションして生成し、基準船舶仕様が変更されると再び生成しなければならない。   The above-mentioned formula must be generated again when the optimal RPM calculation module generation unit 30 generates the simulation by simulating the standard ship specification and the standard operation data, and the standard ship specification is changed.

上記標準最適速度は、上記目標速度、可変目標速度、上記目標速度と可変目標速度との間の速度の中の速度対比標準運航条件でのマイル当たり燃料消耗率/速度が最低である速度であり、上記標準運航条件は工場試運転時の運航条件である。図7によれば、横軸は速度、縦軸は標準運航条件でのマイル当たり燃料消耗率、Aは目標速度、Bは可変速度とした時、AとBとの間でマイル当たり燃料消耗率が最も小さい点はCであるので、Cである時の速度が標準最適速度になる。   The standard optimum speed is the speed at which the fuel consumption rate per mile / speed is the lowest under standard operating conditions in the target speed, the variable target speed, and the speed between the target speed and the variable target speed. The standard operating conditions are the operating conditions at the time of factory test operation. According to FIG. 7, the horizontal axis represents the speed, the vertical axis represents the fuel consumption rate per mile under standard operating conditions, A represents the target speed, and B represents the variable speed, and the fuel consumption rate per mile between A and B. Since C is the smallest point, the speed when C is the standard optimum speed.

上記運航条件対比速度増減量は、現在の運航条件で標準最適RPMで運航した場合、上記標準最適速度に比べて増減される速度の量であり、上記標準最適RPMは上記標準運航条件である時上記標準最適速度で運航することができるRPMである。   The speed increase / decrease rate compared to the operating conditions is the amount of speed that is increased / decreased compared to the standard optimal speed when operating at the standard optimal RPM under the current operating conditions. When the standard optimal RPM is the standard operating condition, It is an RPM that can be operated at the standard optimum speed.

上記RPM変換係数は、上記[標準最適速度−運航条件対比速度増減量]に掛け合わせて現在の運航条件で上記[標準最適速度−運航条件対比速度増減量]の速度を出すことができるRPMに変換する係数である。   The RPM conversion coefficient is multiplied by the above-mentioned [standard optimum speed−operation condition relative speed increase / decrease amount] to the RPM that can output the speed of [standard optimum speed−operation condition comparison speed increase / decrease amount] under the current operation conditions. The coefficient to convert.

上記気象補償係数の数学式は次の通りである。   The mathematical formula of the weather compensation coefficient is as follows.

数学式3
気象補償係数=順気象係数(順気象程度−正気象程度)−乱気象係数(乱気象程度−正気象程度)
Mathematical Formula 3
Weather compensation coefficient = Forward weather coefficient (Normal weather degree-Positive weather degree)-Turbulent weather coefficient (Disturbance degree-Normal weather degree)

上記正気象程度は上記標準運航条件の気象条件の程度を数値化した値で、一般的に風及び潮流の強度が0である時が標準運航条件となる。上記順気象程度は現在の気象条件の順気象程度を数値化した値であり、上記乱気象程度は現在の気象条件の乱気象程度を数値化した値である。即ち、順気象程度は順風と順潮流の強度を数値化したもので、乱気象程度は逆風と逆潮流の強度を数値化したもので、上記(順気象程度−正気象程度)と、(乱気象程度−正気象程度)は上記気象条件が速度の増減に及ぶ影響を現わす。   The normal weather condition is a value obtained by quantifying the weather condition of the standard operation condition. Generally, the standard operation condition is when the strength of wind and tide is zero. The normal weather degree is a value obtained by quantifying the normal weather degree of the current weather condition, and the turbulent weather degree is a value obtained by quantifying the abnormal weather degree of the current weather condition. In other words, the forward weather level is a numerical value of the strength of the normal wind and the forward current, and the turbulent weather level is a numerical value of the strength of the back wind and the reverse power flow. The degree of weather-the degree of normal weather) shows the effect of the above meteorological conditions on the speed increase and decrease.

上記順気象係数は、上記[順気象係数(順気象程度−正気象程度)]を上記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、RPMが順気象限界RPM以上にならないように限定する係数であり、上記順気象限界RPMは、RPMを増加させた時、燃料消耗増加量/速度増加量が増加する点のRPMである。   The forward weather coefficient is obtained by multiplying the [forward weather coefficient (forward weather degree−normal weather degree)] by the above-mentioned [standard optimum speed−increase / decrease speed relative to operating conditions] × RPM conversion coefficient, and the RPM is forward. The forward weather limit RPM is an RPM at which the fuel consumption increase / speed increase increases when the RPM is increased.

上記乱気象係数は、上記[乱気象係数(乱気象程度−正気象程度)]を上記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、RPMが乱気象限界RPM以下にならないように限定する係数であり、上記乱気象限界RPMは、RPMを減少させた時、燃料消耗減少量/速度感少量が減少する点のRPMである。   The turbulent weather coefficient is calculated by multiplying the [turbid weather coefficient (turbulent weather degree−normal weather degree)] by the above-mentioned [standard optimum speed−operational condition relative speed increase / decrease amount] × RPM conversion coefficient, and RPM is disturbed. It is a coefficient which limits so that it may not become below the weather limit RPM, and the above-mentioned turbulent weather limit RPM is the RPM at which the fuel consumption decrease amount / the small amount of speed feeling decreases when the RPM is decreased.

最適運航の燃料節減率
上記最適運航の燃料節減率を求める式は以下の通りである。
The fuel saving rate of the optimum operation The formula for obtaining the fuel saving rate of the optimum operation is as follows.

最適運航の燃料節減率=一般運航の燃料損失率−最適運航の燃料損失率   Fuel saving rate for optimal operation = Fuel loss rate for general operation-Fuel loss rate for optimal operation

この時、上記最適運航の燃料損失率と一般運航の燃料損失率は次の通りである。   At this time, the fuel loss rate of the optimum operation and the fuel loss rate of the general operation are as follows.

最適運航の燃料損失率=最適運航の燃料消耗率−基準運航の燃料消耗率
一般運航の燃料損失率=一般運航の燃料消耗率−基準運航の燃料消耗率
Fuel loss rate for optimal operation = Fuel consumption rate for optimal operation-Fuel consumption rate for standard operation Fuel loss rate for general operation = Fuel consumption rate for general operation-Fuel consumption rate for standard operation

ここで基準運航の燃料消耗率は、基準運航データを通じて算出した基準運航時の平均燃料消耗率である。   Here, the fuel consumption rate of the standard operation is an average fuel consumption rate during the standard operation calculated through the standard operation data.

船舶燃料節減方法
図8は本発明の船舶燃料節減方法を示す図面で、図9は図8の船舶燃料節減方法をより詳細に示す図面で、上記最適化システムを用いた船舶燃料節減方法は、基準船舶仕様収集段階(S10)、基準運航データ収集段階(S20)、最適RPM算出モジュール生成段階(S30)、最適RPM変更設定段階(S40)、最適RPM算出段階(S50)、RPM適用段階(S60)、燃料効率分析段階(S70)を含む。
The marine fuel economy methods Figure 8 illustrates a marine fuel saving method of the present invention, FIG. 9 is a view showing in more detail the marine fuel saving method of FIG. 8, marine fuel economy method using the optimization system, Reference ship specification collection stage (S10), reference operation data collection stage (S20), optimum RPM calculation module generation stage (S30), optimum RPM change setting stage (S40), optimum RPM calculation stage (S50), RPM application stage (S60) ) And a fuel efficiency analysis step (S70).

上記基準船舶仕様収集段階(S10)では上記最適化システムの基準船舶仕様収集部10が基準船舶仕様を収集する。   In the reference ship specification collection stage (S10), the reference ship specification collection unit 10 of the optimization system collects the reference ship specifications.

上記基準運航データ収集段階(S20)では上記基準運航データ収集部20が上記基準運航データを収集する。   In the reference operation data collection step (S20), the reference operation data collection unit 20 collects the reference operation data.

上記最適RPM算出モジュール生成段階(S30)では上記最適RPM算出モジュール生成部30が上記基準船舶仕様及び基準運航データを受けて最適RPM算出モジュールを生成する。   In the optimum RPM calculation module generation step (S30), the optimum RPM calculation module generation unit 30 receives the reference ship specification and reference operation data and generates an optimum RPM calculation module.

上記最適RPM変更設定段階(S40)では最適RPMの算出及び適用方法に対する使用者の設定が入力され、使用者の選択によって、自動的に最適RPMを調節するか、手動的に最適RPMを調節することができ、自動的に運航の時には、正変速または変変速の中で選択して運航することができる。   In the optimum RPM change setting step (S40), the user's setting for the calculation and application method of the optimum RPM is input, and the optimum RPM is adjusted automatically or manually according to the user's selection. In the case of automatic operation, it is possible to select and operate in the normal speed change or variable speed change.

上記最適RPM変更設定段階(S40)は上記最適RPMを自動に変更する時正変速/変変速設定段階(S46)、最適RPM自動変更時間設定段階(S44)を含む。   The optimum RPM change setting stage (S40) includes a forward shift / variable speed setting stage (S46) and an optimum RPM automatic change time setting stage (S44) when changing the optimum RPM to automatic.

上記正変速/変変速設定段階(S46)では上記最適RPM自動変更設定部43が上記最適RPM算出部50に最適RPM生成命令を伝達し、正変速時には使用者から初期RPMを受けて上記RPM適用部60に伝達する。   In the normal shift / variable shift setting step (S46), the optimal RPM automatic change setting unit 43 transmits an optimal RPM generation command to the optimal RPM calculation unit 50, and receives the initial RPM from the user during the normal shift and applies the RPM. Transmitted to the unit 60.

上記最適RPM自動変更時間設定段階(S44)では上記最適RPM自動変更設定部43が変更時間間隔を受けて、上記変更時間間隔ごとに最適RPM生成命令を上記最適RPM算出部50に伝達する。   In the optimum RPM automatic change time setting step (S44), the optimum RPM automatic change setting unit 43 receives the change time interval and transmits an optimum RPM generation command to the optimum RPM calculation unit 50 for each change time interval.

上記最適RPM手動変更設定段階(S42)では上記最適RPM手動変更設定部42が使用者の最適RPM変更要請を受けると、最適RPM生成命令を上記最適RPM算出部50に伝達する。   In the optimum RPM manual change setting step (S42), when the optimum RPM manual change setting unit 42 receives an optimum RPM change request from the user, an optimum RPM generation command is transmitted to the optimum RPM calculation unit 50.

上記最適RPM算出段階(S50)では上記最適RPM算出部50が伝達された上記最適RPM算出モジュールに上記現在のスケジュール条件及び運航条件を入力して最適RPMを算出する。   In the optimum RPM calculation step (S50), the optimum RPM is calculated by inputting the current schedule condition and operation condition to the optimum RPM calculation module transmitted to the optimum RPM calculation unit 50.

上記最適RPM算出段階(S50)は、スケジュール/運航条件収集段階(S52)、最適RPM算出モジュール実行段階(S54)を含む。   The optimum RPM calculation stage (S50) includes a schedule / operation condition collection stage (S52) and an optimum RPM calculation module execution stage (S54).

上記スケジュール/運航条件収集段階(S52)では上記最適RPM算出モジュールに入力される上記現在のスケジュール条件及び運航条件を収集する。   In the schedule / operation condition collection stage (S52), the current schedule conditions and operation conditions input to the optimum RPM calculation module are collected.

上記最適RPM算出モジュール実行段階(S54)では上記最適RPM算出部50が上記最適RPM生成命令が上記最適RPM自動変更設定部43または最適RPM手動変更設定部42から伝達されると、上記最適RPM算出部50が上記現在のスケジュール条件及び運航条件を上記最適RPM算出モジュールに入力して上記最適RPMを算出する。   In the optimum RPM calculation module execution step (S54), when the optimum RPM generation unit 50 receives the optimum RPM generation command from the optimum RPM automatic change setting unit 43 or the optimum RPM manual change setting unit 42, the optimum RPM calculation unit 50 calculates the optimum RPM. The unit 50 inputs the current schedule condition and operation condition to the optimum RPM calculation module and calculates the optimum RPM.

上記RPM適用段階(S60)では上記RPM適用部60が上記最適RPM算出部50から上記最適RPMが伝達され、正変速の時には上記最適RPM自動変更設定部43で上記初期RPMが伝達されて船舶のエンジンに適用する。   In the RPM application step (S60), the RPM application unit 60 receives the optimum RPM from the optimum RPM calculation unit 50, and at the time of a normal shift, the optimum RPM automatic change setting unit 43 transmits the initial RPM to the ship. Applies to the engine.

上記燃料効率分析段階(S70)では上記船舶燃料節減システムを適用しない一般運航時と、上記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較分析する。   In the fuel efficiency analysis step (S70), the fuel saving effect at the time of general operation not using the ship fuel saving system and the optimum operation using the ship fuel saving system are compared and analyzed.

上記燃料効率分析段階(S70)は燃料消耗データ収集段階(S72)、燃料消耗率計算段階(S74)、燃料損失率計算段階(S76)、燃料節減率計算段階(S78)を含む。   The fuel efficiency analysis step (S70) includes a fuel consumption data collection step (S72), a fuel consumption rate calculation step (S74), a fuel loss rate calculation step (S76), and a fuel saving rate calculation step (S78).

上記燃料消耗データ収集段階(S72)では上記燃料効率分析部70が上記船舶燃料節減システムを適用した最適運航時の燃料消耗データ、上記最適運航と同じスケジュール対比上記基準運航の燃料消耗データ、上記最適運航と同じスケジュール対比一般運航の燃料消耗データを収集する。   In the fuel consumption data collection step (S72), the fuel efficiency analysis unit 70 uses the ship fuel saving system to apply optimal fuel consumption data, compares the same schedule with the optimal operation, and uses the standard operation fuel consumption data. Collect fuel consumption data for general operations compared to the same schedule.

上記燃料消耗率計算段階(S74)では上記燃料効率分析部70が上記燃料消耗データで上記船舶燃料節減システムを適用した最適運航の燃料消耗率、上記最適運航と同じスケジュール対比上記基準運航の燃料消耗率、上記最適運航と同じスケジュール対比一般運航の燃料消耗率を算出する。   In the fuel consumption rate calculation step (S74), the fuel efficiency analysis unit 70 uses the fuel consumption data to apply the ship fuel saving system to the optimal operation fuel consumption rate, the same schedule as the optimal operation, and the standard operation fuel consumption. The fuel consumption rate of the general operation is compared with the same schedule as the above-mentioned optimal operation.

上記燃料損失率計算段階(S76)では上記燃料効率分析部70が上記一般運航の燃料消耗率、上記基準運航の燃料消耗率で一般運航の燃料損失率を算出して、上記最適運航の燃料消耗率、上記基準運航の燃料消耗率で最適運航の燃料損失率を算出する。   In the fuel loss rate calculation step (S76), the fuel efficiency analysis unit 70 calculates the fuel loss rate of the general operation based on the fuel consumption rate of the general operation and the fuel consumption rate of the reference operation, and the fuel consumption of the optimal operation. The fuel loss rate of the optimal operation is calculated by the rate and the fuel consumption rate of the standard operation.

上記燃料節減率計算段階(S78)では上記燃料効率分析部70が上記一般運航の燃料損失率、上記最適運航の燃料消耗率で最適運航の燃料節減率を算出する。   In the fuel saving rate calculation step (S78), the fuel efficiency analysis unit 70 calculates the fuel saving rate of the optimum operation based on the fuel loss rate of the general operation and the fuel consumption rate of the optimum operation.

上記船舶燃料節減方法はコンピュータープログラムで記録媒体に保存されて使用することができる。   The marine fuel saving method can be used by being stored in a recording medium by a computer program.

以上で説明した本発明の好ましい実施例は技術的課題を解決するために開示されたもので、本発明が属する技術分野において通常の知識を有する者(陸上技術担当者、船舶内実務者)であれば、本発明の思想と範囲内で多様な修正、変更、付加などが可能であり、このような修正変更などは以下の特許請求の範囲に属するべきである。   The preferred embodiments of the present invention described above are disclosed in order to solve the technical problem, and are those who have ordinary knowledge in the technical field to which the present invention belongs (land engineer, in-ship practitioner). If so, various modifications, changes, additions, and the like are possible within the spirit and scope of the present invention, and such modifications and changes should belong to the following claims.

発明の実施のための形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明の船舶燃料節減システムは、基準船舶仕様を収集する基準船舶仕様収集部10と;基準運航の時、運航条件を変更させながら速度と燃料消耗率を測定した基準運航データを収集する基準運航データ収集部20と;前記基準船舶仕様及び基準運航データを受けて最適RPM算出モジュールを生成する最適RPM算出モジュール生成部30と;前記最適RPM算出モジュール生成部30で受けた前記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出する最適RPM算出部50と;前記最適RPM算出部50で前記最適RPMを受けて船舶のエンジンに適用するRPM適用部60と;を含み、前記基準運航は、工場試運転、海上試運転、新潮後N航次、最近M航次を含み、前記N及びMは関係者が任意に指定する回数であり、前記最適RPMは、前記現在のスケジュール条件及び運航条件対比燃料を最低に消耗するRPMであり、前記スケジュール条件は、目標距離、目標時間、可変時間を含み、前記運航条件は、船体条件、気象条件、エンジン条件を含み、前記最適RPM=[標準最適速度−運航条件対比速度増減量]×RPM変換係数×気象補償係数、前記標準最適速度は、目標速度、可変目標速度、前記目標速度と可変目標速度との間の速度の中の速度対比燃料消耗率(=標準運航条件でのマイル当たり燃料消耗率/速度)が最低である速度、前記標準運航条件は工場試運転時の運航条件、前記目標速度=目標距離/目標時間、前記可変目標速度=目標距離/(目標時間+可変時間)、前記運航条件対比速度増減量は、現在の運航条件で標準最適RPMで運航した場合、前記標準最適速度に比べて増減される速度、前記標準最適RPMは、前記標準運航条件である時、前記標準最適速度で運航することができるRPM、前記RPM変換係数は、前記[標準最適速度−運航条件対比速度増減量]に掛け合わせて現在の運航条件で前記[標準最適速度−運航条件対比速度増減量]の速度を出すことができるRPMに変換する係数、前記気象補償係数=順気象係数(順気象程度−正気象程度)−乱気象係数(乱気象程度−正気象程度)、前記正気象程度は、前記標準運航条件の気象条件の程度を数値化した値、前記順気象程度は、現在の気象条件の順気象程度を数値化した値、前記乱気象程度は、現在の気象条件の乱気象程度を数値化した値、前記順気象係数は、前記[順気象係数(順気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが順気象限界RPM以上にならないように限定する係数、前記順気象限界RPMは、RPMを増加させた時、燃料消耗増加量/速度増加量が増加する点のRPM、前記乱気象係数は、前記[乱気象係数(乱気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが乱気象限界RPM以下にならないように限定する係数、前記乱気象限界RPMは、RPMを減少させた時、現在の運航条件でのマイル当たり燃料消耗減少量/速度感少量が減少する点のRPMであることを手段とする。   The ship fuel saving system of the present invention includes a reference ship specification collecting unit 10 for collecting reference ship specifications; and reference operation for collecting reference operation data obtained by measuring speed and fuel consumption rate while changing operation conditions during reference operation. A data collection unit 20; an optimum RPM calculation module generation unit 30 that receives the reference ship specification and reference operation data and generates an optimum RPM calculation module; and the optimum RPM calculation module received by the optimum RPM calculation module generation unit 30 An optimum RPM calculating unit 50 for calculating an optimum RPM by inputting current schedule conditions and operation conditions; and an RPM applying unit 60 for receiving the optimum RPM at the optimum RPM calculating unit 50 and applying the optimum RPM to a ship engine. The standard operations include factory test operation, sea test operation, N voyage after new tide, and recently M voyage, where N and M are related parties The optimum RPM is an RPM that consumes the minimum fuel for the current schedule condition and operation condition, and the schedule condition includes a target distance, a target time, and a variable time. The conditions include hull conditions, weather conditions, and engine conditions. The optimum RPM = [standard optimum speed−operational condition relative speed increase / decrease] × RPM conversion coefficient × weather compensation coefficient, the standard optimum speed is a target speed, a variable target. Speed, the speed at which the fuel consumption rate (= fuel consumption rate per mile under standard operating conditions / speed) in the speed between the target speed and the variable target speed is the lowest, the standard operating condition is a factory test run Operation conditions at the time, the target speed = target distance / target time, the variable target speed = target distance / (target time + variable time), and the amount of increase / decrease in speed compared to the operation condition is the current operation When operating at the standard optimum RPM, the speed that is increased or decreased compared to the standard optimum speed, the standard optimum RPM when the standard operation conditions are satisfied, the RPM that can be operated at the standard optimum speed, the RPM The conversion coefficient is converted into an RPM that can be multiplied by the [standard optimum speed−operational condition relative speed increase / decrease amount] to obtain the speed of the [standard optimum speed−operational condition relative speed increase / decrease amount] under the current operation conditions. Coefficient, weather compensation coefficient = forward weather coefficient (forward weather degree−normal weather degree) −turbulent weather coefficient (turbulent weather degree−normal weather degree), and the positive weather degree is a numerical value indicating the degree of weather conditions of the standard operating conditions. The normal weather degree is a value obtained by quantifying the forward weather degree of the current weather condition, the turbulent weather degree is a value obtained by quantifying the turbulent weather degree of the current weather condition, and the forward weather coefficient is: [Forward weather When calculating the RPM by multiplying the number (ordinary weather degree-normal weather degree) by the above-mentioned [standard optimum speed-increase / decrease speed relative to operating conditions] × RPM conversion coefficient, the optimum RPM should not exceed the normal weather limit RPM. The limiting factor, the forward weather limit RPM, the RPM at which the fuel consumption increase / speed increase increases when the RPM is increased, and the turbulence coefficient The degree of meteorological conditions)] is multiplied by the above-mentioned [standard optimum speed-amount of increase / decrease in relative speed of operation conditions] × RPM conversion coefficient, and a coefficient for limiting the optimum RPM so that it does not fall below the turbulent weather limit RPM, The limit RPM is a means that the RPM is the point at which the decrease in fuel consumption per mile / small amount of speed per mile decreases under the current operating conditions when the RPM is decreased.

本発明の船舶燃料節減システムは、前記最適RPMを自動に変更する時、使用者の選択事項が入力される最適RPM自動変更設定部43をさらに含み、前記最適RPM自動変更設定部43は、変変速時には前記最適RPM算出部50に最適RPM生成命令を伝達し、正変速時には使用者から初期RPMを受けて前記RPM適用部60に伝達する変変速/正変速設定部44と;前記最適RPMの変更時間間隔を受けて、前記変更時間間隔ごとに前記最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM自動変更時間設定部46と;をさらに含むことを手段とする。   The marine fuel saving system of the present invention further includes an optimum RPM automatic change setting unit 43 to which a user's selection is input when changing the optimum RPM to automatic, and the optimum RPM automatic change setting unit 43 is changed. A variable speed / forward shift setting unit 44 that transmits an optimal RPM generation command to the optimal RPM calculation unit 50 at the time of a shift and receives an initial RPM from a user and transmits it to the RPM application unit 60 at the time of a normal shift; And an optimum RPM automatic change time setting unit 46 which receives the change time interval and transmits the optimum RPM generation command to the optimum RPM calculation unit 50 at each change time interval.

本発明の船舶燃料節減システムは、使用者の最適RPM変更要請が入力されると、最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM手動変更設定部42をさらに含むことを手段とする。   The marine fuel saving system of the present invention further includes an optimum RPM manual change setting unit 42 that transmits an optimum RPM generation command to the optimum RPM calculation unit 50 when a user's request for an optimum RPM change is input. To do.

本発明の船舶燃料節減システムにおける前記最適RPM算出部50は、前記最適RPM算出モジュールに入力される現在のスケジュール条件及び運航条件を収集するスケジュール/運航条件収集部52と;前記最適RPM生成命令が伝達されると、前記スケジュール/運航条件収集部52で前記現在のスケジュール条件及び運航条件を受けて、前記最適RPM算出モジュールに入力して最適RPMを算出する最適RPM算出モジュール実行部54と;を含むことを手段とする。   The optimum RPM calculation unit 50 in the marine fuel saving system of the present invention includes a schedule / operation condition collection unit 52 that collects current schedule conditions and operation conditions input to the optimum RPM calculation module; When transmitted, the schedule / operation condition collection unit 52 receives the current schedule condition and operation condition, inputs to the optimum RPM calculation module, and calculates an optimum RPM, and an optimum RPM calculation module execution unit 54; Including means.

本発明の船舶燃料節減システムは、前記船舶燃料節減システムを適用しない一般運航時と、前記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較して分析するための燃料効率分析部70を含み、前記燃料効率分析部70は、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗データ、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗データを収集する燃料消耗データ収集部72と;前記最適運航の燃料消耗率、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗率、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗率を算出する燃料消耗率計算部74と;前記燃料消耗率計算部74で前記一般運航の燃料消耗率、前記基準運航の燃料消耗率を受けて一般運航の燃料損失率を算出し、前記燃料消耗率計算部74で前記最適運航の燃料消耗率、前記基準運航の燃料消耗率を受けて最適運航の燃料損失率を算出する燃料損失率計算部76と;前記一般運航燃料損失率計算部76で前記一般運航の燃料損失率を受けて、前記最適運航燃料損失率計算部76で前記最適運航の燃料消耗率を受けて、最適運航の燃料節減率を算出する燃料節減率計算部78と;を含み、前記最適運航の燃料損失率=最適運航の燃料消耗率−基準運航の燃料消耗率、前記一般運航の燃料損失率=一般運航の燃料消耗率−基準運航の燃料消耗率、前記最適運航の燃料節減率=一般運航の燃料損失率−最適運航の燃料損失率であることを手段とする。   The marine fuel saving system according to the present invention includes a fuel efficiency analysis unit 70 for comparing and analyzing the fuel saving effect at the time of general operation to which the marine fuel saving system is not applied and at the optimum operation to which the marine fuel saving system is applied. The fuel efficiency analysis unit 70 collects fuel consumption data for the same schedule conditions as the optimal operation and fuel consumption data for the standard operations and fuel consumption data for general operations and the same schedule conditions as the optimal operation. A fuel consumption rate calculation unit 74 that calculates a fuel consumption rate of the optimum operation, a fuel consumption rate of the reference operation that is the same as the optimal operation, and a fuel consumption rate of the general operation that is the same schedule condition as the optimal operation; The fuel consumption rate of the general operation in response to the fuel consumption rate of the general operation and the fuel consumption rate of the reference operation in the fuel consumption rate calculation unit 74; A fuel loss rate calculation unit 76 for calculating a fuel loss rate for the optimum operation in response to the fuel consumption rate for the optimum operation and the fuel consumption rate for the reference operation in the fuel consumption rate calculation unit 74; The fuel that calculates the fuel saving rate of the optimum operation by receiving the fuel loss rate of the general operation in the operation fuel loss rate calculation unit 76 and the fuel consumption rate of the optimum operation in the optimum operation fuel loss rate calculation unit 76 A fuel loss rate of the optimal operation = fuel consumption rate of the optimal operation−fuel consumption rate of the standard operation, fuel loss rate of the general operation = fuel consumption rate of the general operation−reference operation The fuel consumption rate, the fuel saving rate of the optimum operation = the fuel loss rate of the general operation−the fuel loss rate of the optimum operation.

本発明の前記船舶燃料節減システムを用いた燃料節減方法は、(a)前記基準船舶仕様収集部10が基準船舶仕様を収集する基準船舶仕様収集段階(S10)と;(b)前記基準運航データ収集部20が基準運航データを収集する基準運航データ収集段階(S20)と;(c)前記最適RPM算出モジュール生成部30が前記基準船舶仕様及び基準運航データを受けて最適RPM算出モジュールを生成する最適RPM算出モジュール生成段階(S30)と;(d)前記最適RPM算出部50が前記最適RPM算出モジュール生成部30で受けた前記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出する最適RPM算出段階(S50)と;(e)前記RPM適用部60が前記最適RPM算出部50で前記最適RPMを受けて船舶のエンジンに適用するRPM適用段階(S60)と;を含み、前記基準運航は工場試運転、海上試運転、新潮後N航次、最近M航次を含み、前記N及びMは関係者が任意に指定する回数であり、前記最適RPMは前記現在のスケジュール条件及び運航条件対比燃料を最低に消耗するRPMであり、前記スケジュール条件は目標距離、目標時間、可変時間を含み、前記運航条件は船体条件、気象条件、エンジン条件を含み、前記最適RPM=[標準最適速度−運航条件対比速度増減量]×RPM変換係数×気象補償係数、前記標準最適速度は目標速度、可変目標速度、前記目標速度と可変目標速度との間の速度の中の速度対比燃料消耗率(=標準運航条件でのマイル当たり燃料消耗率/速度)が最低である速度、前記標準運航条件は工場試運転時の運航条件、前記目標速度=目標距離/目標時間、前記可変目標速度=目標距離/(目標時間+可変時間)、前記運航条件対比速度増減量は、現在の運航条件で標準最適RPMで運航した場合、前記標準最適速度に比べて増減される速度、前記標準最適RPMは、前記標準運航条件である時、前記標準最適速度で運航することができるRPM、前記RPM変換係数は、前記[標準最適速度−運航条件対比速度増減量]に掛け合わせて現在の運航条件で前記[標準最適速度−運航条件対比速度増減量]の速度を出すことができるRPMに変換する係数、前記気象補償係数=順気象係数(順気象程度−正気象程度)−乱気象係数(乱気象程度−正気象程度)、前記正気象程度は前記標準運航条件の気象条件の程度を数値化した値、前記順気象程度は現在の気象条件の順気象程度を数値化した値、前記乱気象程度は現在の気象条件の乱気象程度を数値化した値、前記順気象係数は、前記[順気象係数(順気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが順気象限界RPM以上にならないように限定する係数、前記順気象限界RPMは、RPMを増加させた時、燃料消耗増加量/速度増加量が増加する点のRPM、前記乱気象係数は、前記[乱気象係数(乱気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが乱気象限界RPM以下にならないように限定する係数、前記乱気象限界RPMは、RPMを減少させた時、現在の運航条件でのマイル当たり燃料消耗減少量/速度感少量が減少する点のRPMであることを手段とする。   The fuel saving method using the ship fuel saving system according to the present invention includes: (a) a reference ship specification collecting step (S10) in which the reference ship specification collecting unit 10 collects a reference ship specification; and (b) the reference operation data. A reference operation data collection stage (S20) in which the collection unit 20 collects reference operation data; and (c) the optimum RPM calculation module generation unit 30 receives the reference vessel specification and reference operation data and generates an optimum RPM calculation module. Optimum RPM calculation module generation step (S30); and (d) the optimal RPM calculation unit 50 inputs the current schedule conditions and operation conditions to the optimal RPM calculation module received by the optimal RPM calculation module generation unit 30 to optimize An optimal RPM calculation step (S50) for calculating an RPM; and (e) the RPM application unit 60 performs the optimal RPM calculation unit 50. An RPM application step (S60) that receives the optimum RPM and applies it to the engine of the ship; and the standard operation includes a factory test operation, a sea test operation, a N voyage after new tide, and a recent M voyage, where N and M are related The optimum RPM is an RPM that consumes the fuel at the minimum relative to the current schedule condition and operation condition, and the schedule condition includes a target distance, a target time, and a variable time. The conditions include hull conditions, weather conditions, and engine conditions. The optimum RPM = [standard optimum speed−operation condition relative speed increase / decrease amount] × RPM conversion coefficient × weather compensation coefficient, the standard optimum speed is a target speed, a variable target speed, The speed at which the fuel consumption rate (= fuel consumption rate per mile under standard operating conditions) is the lowest among the speeds between the target speed and the variable target speed, before Standard operating conditions are the operating conditions at the time of factory trial operation, the target speed = target distance / target time, the variable target speed = target distance / (target time + variable time), and the speed increase / decrease amount compared to the operating condition is the current operating condition When operating at the standard optimal RPM, the speed that is increased or decreased compared to the standard optimal speed, the standard optimal RPM when the standard operating conditions, the RPM that can operate at the standard optimal speed, the RPM conversion The coefficient is a coefficient that is converted into an RPM that can be multiplied by the [standard optimum speed−operational condition relative speed increase / decrease amount] to obtain the speed of the [standard optimum speed−operational condition relative speed increase / decrease amount] under the current operation conditions. , The weather compensation coefficient = forward weather coefficient (normal weather degree−normal weather degree) −turbulent weather coefficient (turbulent weather degree−normal weather degree), and the normal weather degree indicates the degree of the weather condition of the standard operating condition. The quantified value, the forward weather degree is a value obtained by quantifying the forward weather degree of the current weather condition, the turbulent weather degree is a value obtained by quantifying the turbulent weather degree of the current weather condition, and the forward weather coefficient is When the [normal weather coefficient (normal weather degree−normal weather degree)] is multiplied by the above-mentioned [standard optimum speed−operating condition relative speed increase / decrease] × RPM conversion coefficient, the optimum RPM is equal to or greater than the normal weather limit RPM. The normal weather limit RPM is a coefficient that limits the increase in fuel consumption / speed increase when the RPM is increased. Degree-regular weather degree)] is multiplied by the above-mentioned [standard optimal speed-operation condition relative speed increase / decrease amount] × RPM conversion coefficient to determine the RPM so that the optimum RPM does not fall below the turbulent weather limit RPM, The stormy weather limit RPM, when reduced RPM, Miles per fuel exhaustion decrease in the current operating conditions / speed feeling small amount is a means that the RPM of points decreases.

本発明の前記船舶燃料節減システムを用いた船舶燃料節減方法は、(f)最適RPM変更設定段階(S40);をさらに含み、前記最適RPMを自動に変更しようとする時、変変速時には前記最適RPM自動変更設定部43が前記最適RPM算出部50に最適RPM生成命令を伝達し、正変速時には使用者から初期RPMを入力して前記RPM適用部60に伝達する正変速/変変速設定段階(S46)と;前記最適RPMを自動に変更しようとする時、前記最適RPM自動変更設定部43に変更時間間隔が入力されて、前記変更時間間隔ごとに前記最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM自動変更時間設定段階(S44)と;をさらに含み、前記RPM適用部60は前記初期RPMを受けて船舶のエンジンに適用することを手段とする。   The marine fuel saving method using the marine fuel saving system of the present invention further includes (f) an optimal RPM change setting step (S40); The automatic RPM change setting unit 43 transmits an optimal RPM generation command to the optimal RPM calculation unit 50, and at the time of a normal shift, a normal shift / variable shift setting step of inputting an initial RPM from a user and transmitting it to the RPM applying unit 60 ( S46); when changing the optimum RPM to automatic, a change time interval is input to the optimum RPM automatic change setting unit 43, and the optimum RPM generation command is sent to the optimum RPM generation unit at each change time interval. And an optimum RPM automatic change time setting step (S44) to be transmitted to 50, wherein the RPM application unit 60 receives the initial RPM and is suitable for a ship engine. And it means to be.

本発明の前記船舶燃料節減システムを用いた船舶燃料節減方法は、(f)最適RPM変更設定段階(S40)を含み、前記(f)段階は、前記最適RPM手動変更設定部42が使用者の最適RPM変更要請を受けると、最適RPM生成命令を前記最適RPM算出部50に伝達する最適RPM手動変更設定段階(S42);を含むことを手段とする。   The marine fuel saving method using the marine fuel saving system according to the present invention includes (f) an optimal RPM change setting step (S40). In the step (f), the optimum RPM manual change setting unit 42 is operated by the user. When an optimum RPM change request is received, an optimum RPM manual change setting step (S42) for transmitting an optimum RPM generation command to the optimum RPM calculation unit 50 is included.

本発明の前記船舶燃料節減システムを用いた船舶燃料節減方法における前記(d)段階は、前記最適RPM算出部50が前記最適RPM算出モジュールに入力される前記現在のスケジュール条件及び運航条件を収集するスケジュール/運航条件収集段階(S52)と;前記最適RPM算出部50が前記現在のスケジュール条件及び運航条件を前記最適RPM算出モジュールに入力して前記最適RPMを算出する最適RPM算出モジュール実行段階(S54);を含むことを手段とする。   The step (d) in the marine fuel saving method using the marine fuel saving system of the present invention collects the current schedule condition and operation condition that the optimum RPM calculating unit 50 inputs to the optimum RPM calculating module. A schedule / operation condition collection step (S52); and an optimum RPM calculation module execution step (S54) in which the optimum RPM calculation unit 50 inputs the current schedule condition and operation conditions to the optimum RPM calculation module to calculate the optimum RPM. );

本発明の前記船舶燃料節減システムを用いた船舶燃料節減方法は、(g)前記船舶燃料節減システムを適用しない一般運航時と、前記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較分析するための燃料効率分析段階(S70);をさらに含み、前記燃料効率分析段階(S70)は、前記燃料効率分析部70が前記船舶燃料節減システムを適用した最適運航時の燃料消耗データ、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗データ、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗データを収集する燃料消耗データ収集段階(S72)と;前記燃料効率分析部70が前記燃料消耗データで前記船舶燃料節減システムを適用した最適運航の燃料消耗率、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗率、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗率を算出する燃料消耗率計算段階(S74)と;前記燃料効率分析部70が前記一般運航の燃料消耗率、前記基準運航の燃料消耗率で一般運航の燃料損失率を算出し、前記最適運航の燃料消耗率、前記基準運航の燃料消耗率で最適運航の燃料損失率を算出する燃料損失率計算段階(S76)と;前記燃料効率分析部70が前記一般運航の燃料損失率、前記最適運航の燃料消耗率で最適運航の燃料節減率を算出する燃料節減率計算段階(S78)と;を含み、前記最適運航の燃料損失率=最適運航の燃料消耗率−基準運航の燃料消耗率、前記一般運航の燃料損失率=一般運航の燃料消耗率−基準運航の燃料消耗率、前記最適運航の燃料節減率=一般運航の燃料損失率−最適運航の燃料損失率であることを手段とする。   The ship fuel saving method using the ship fuel saving system according to the present invention includes: (g) comparing the fuel saving effect at the time of general operation not using the ship fuel saving system and the optimum operation using the ship fuel saving system. A fuel efficiency analysis step (S70) for analyzing, wherein the fuel efficiency analysis step (S70) includes fuel consumption data at the time of optimum operation to which the fuel efficiency analysis unit 70 applies the marine fuel saving system, The fuel consumption data collection step (S72) for collecting the fuel consumption data of the reference operation compared to the schedule operation same as the optimum operation and the fuel consumption data of the general operation compared to the schedule operation same as the optimum operation; The fuel consumption rate of the optimal operation using the ship fuel saving system in the fuel consumption data, the same schedule conditions as the optimal operation A fuel consumption rate calculation step (S74) for calculating a fuel consumption rate of the standard operation and a fuel consumption rate of the general operation in comparison with the same schedule condition as the optimum operation; The fuel loss rate calculation step of calculating the fuel loss rate of the general operation with the fuel consumption rate of the reference operation and calculating the fuel loss rate of the optimal operation with the fuel consumption rate of the optimal operation and the fuel consumption rate of the reference operation ( A fuel saving rate calculation step (S78) in which the fuel efficiency analysis unit 70 calculates a fuel saving rate of the optimum operation based on the fuel loss rate of the general operation and the fuel consumption rate of the optimum operation; Fuel loss rate of optimal operation = Fuel consumption rate of optimal operation-Fuel consumption rate of standard operation, Fuel loss rate of general operation = Fuel consumption rate of general operation-Fuel consumption rate of standard operation, Fuel saving rate of optimal operation = General Wataru fuel loss rate - and means that it is a fuel loss rate optimal flight.

本発明による船舶運航指示最適化具現のためのエネルギー効率最適化を利用した船舶燃料節減システム、その方法及びその方法によるコンピュータープログラムを保存した記録媒体は、船舶内外部の全てのエネルギーの消耗を集中的に分析して、運航条件別エネルギー効率の最適化を通じて、船舶の主エネルギーである燃料油を節減することができ、且つ、エネルギー消費最適化のための船舶航海情報器機とエンジン制御機との統合によって最適運航条件を算出する技術を具現し、これを利用してエンジン制御の無人化を誘導することができ、エネルギー節減で所要軍の経費を節減し、船舶会社の運営費用を節減することができ、人力節減を通じて、海上運送の経済性及び高効率性を確保し、燃料油の消耗を最適化することによって、炭素排出権の確保、同時に地球温暖化防止に積極的に対応することができる船舶燃料節減システム、その方法及びその方法によるコンピュータープログラムを保存した記録媒体で、産業現場で広く用いられることと期待される。   A marine fuel saving system using energy efficiency optimization for realizing vessel operation instruction optimization according to the present invention, a method thereof, and a recording medium storing a computer program according to the method concentrate all energy consumption inside and outside the vessel. Analysis of the fuel efficiency, which is the main energy of the ship, through the optimization of the energy efficiency according to operational conditions, and the relationship between the ship navigation information device and the engine controller for energy consumption optimization. Realize technology to calculate optimal operating conditions through integration, and use this to induce unmanned engine control, reduce energy costs and reduce required military costs, and reduce shipping company operating costs Through the reduction of manpower, ensuring the economic and high efficiency of maritime transport and optimizing the consumption of fuel oil. Marine fuel economy system rights reserved, it is possible to respond positively to prevent global warming simultaneously, the recording medium having stored a computer program according to the method and method is expected to be widely used in industrial fields.

Claims (11)

船舶燃料節減システムにおいて、
基準船舶仕様を収集する基準船舶仕様収集部(10)と;
基準運航の時、運航条件を変更させながら速度と燃料消耗率を測定した基準運航データを収集する基準運航データ収集部(20)と;
前記基準船舶仕様及び基準運航データを受けて最適RPM算出モジュールを生成する最適RPM算出モジュール生成部(30)と;
前記最適RPM算出モジュール生成部(30)で受けた前記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出する最適RPM算出部(50)と;
前記最適RPM算出部(50)で前記最適RPMを受けて船舶のエンジンに適用するRPM適用部(60)と;を含み、
前記基準運航は、工場試運転、海上試運転、新潮後N航次、最近M航次を含み、
前記N及びMは関係者が任意に指定する回数であり、
前記最適RPMは、前記現在のスケジュール条件及び運航条件対比燃料を最低に消耗するRPMであり、
前記スケジュール条件は、目標距離、目標時間、可変時間を含み、
前記運航条件は、船体条件、気象条件、エンジン条件を含み、
前記最適RPM=[標準最適速度−運航条件対比速度増減量]×RPM変換係数×気象補償係数、
前記標準最適速度は、目標速度、可変目標速度、前記目標速度と可変目標速度との間の速度の中の速度対比燃料消耗率(=標準運航条件でのマイル当たり燃料消耗率/速度)が最低である速度、
前記標準運航条件は工場試運転時の運航条件、
前記目標速度=目標距離/目標時間、
前記可変目標速度=目標距離/(目標時間+可変時間)、
前記運航条件対比速度増減量は、現在の運航条件で標準最適RPMで運航した場合、前記標準最適速度に比べて増減される速度、
前記標準最適RPMは、前記標準運航条件である時、前記標準最適速度で運航することができるRPM、
前記RPM変換係数は、前記[標準最適速度−運航条件対比速度増減量]に掛け合わせて現在の運航条件で前記[標準最適速度−運航条件対比速度増減量]の速度を出すことができるRPMに変換する係数、
前記気象補償係数=順気象係数(順気象程度−正気象程度)−乱気象係数(乱気象程度−正気象程度)、
前記正気象程度は、前記標準運航条件の気象条件の程度を数値化した値、
前記順気象程度は、現在の気象条件の順気象程度を数値化した値、
前記乱気象程度は、現在の気象条件の乱気象程度を数値化した値、
前記順気象係数は、前記[順気象係数(順気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが順気象限界RPM以上にならないように限定する係数、
前記順気象限界RPMは、RPMを増加させた時、燃料消耗増加量/速度増加量が増加する点のRPM、
前記乱気象係数は、前記[乱気象係数(乱気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが乱気象限界RPM以下にならないように限定する係数、
前記乱気象限界RPMは、RPMを減少させた時、現在の運航条件でのマイル当たり燃料消耗減少量/速度感少量が減少する点のRPMであることを特徴とする船舶燃料節減システム。
In the ship fuel saving system,
A reference ship specification collection unit (10) for collecting reference ship specifications;
A reference operation data collection unit (20) for collecting reference operation data obtained by measuring speed and fuel consumption rate while changing operation conditions at the time of reference operation;
An optimum RPM calculation module generation unit (30) that receives the reference ship specification and reference operation data and generates an optimum RPM calculation module;
An optimum RPM calculation unit (50) for calculating an optimum RPM by inputting a current schedule condition and an operation condition to the optimum RPM calculation module received by the optimum RPM calculation module generation unit (30);
An RPM application unit (60) that receives the optimum RPM at the optimum RPM calculation unit (50) and applies it to a ship engine;
The standard operations include factory test operation, sea test operation, N voyage after new tide, and recently M voyage,
N and M are the numbers arbitrarily designated by the parties concerned,
The optimum RPM is an RPM that consumes the fuel to a minimum as compared with the current schedule condition and operation condition,
The schedule conditions include target distance, target time, variable time,
The operating conditions include hull conditions, weather conditions, engine conditions,
Optimum RPM = [standard optimum speed−speed increase / decrease relative to operating conditions] × RPM conversion coefficient × weather compensation coefficient,
The standard optimum speed has the lowest target speed, variable target speed, speed fuel consumption rate (= fuel consumption rate per mile / speed under standard operating conditions) among speeds between the target speed and the variable target speed. Speed, which is
The standard operating conditions are the operating conditions at the time of factory trial operation,
Target speed = target distance / target time,
Variable target speed = target distance / (target time + variable time),
The speed increase / decrease relative to the operating conditions is the speed that is increased or decreased compared to the standard optimal speed when operating at the standard optimal RPM under the current operating conditions.
The standard optimum RPM is an RPM that can be operated at the standard optimum speed when the standard operation conditions are satisfied,
The RPM conversion coefficient is multiplied by the above-mentioned [standard optimum speed−operation condition relative speed increase / decrease amount] to the RPM that can output the speed of [standard optimum speed−operation condition comparison speed increase / decrease amount] under the current operation conditions. Coefficient to convert,
The weather compensation coefficient = forward weather coefficient (normal weather degree−normal weather degree) −turbulent weather coefficient (turbulent weather degree−normal weather degree),
The positive weather degree is a value obtained by quantifying the degree of the weather condition of the standard operating condition,
The normal weather degree is a numerical value of the normal weather degree of the current weather conditions,
The turbulent weather level is a numerical value of the turbulent weather level of the current weather conditions,
The forward weather coefficient is obtained by multiplying the [forward weather coefficient (normal weather degree−normal weather degree)] by the [standard optimum speed−operational condition relative speed increase / decrease amount] × RPM conversion coefficient to obtain the optimum RPM. Is a coefficient that limits so that it does not exceed the normal weather limit RPM,
The normal weather limit RPM is the RPM at which the fuel consumption increase / speed increase increases when the RPM is increased,
The turbulent weather coefficient is obtained by multiplying the [turbid weather coefficient (degree of turbulent weather-degree of normal weather)] by the [standard optimum speed-speed increase / decrease in operating conditions] × RPM conversion coefficient to obtain the optimum RPM. Is a factor that limits the climatic limit so that it does not fall below the turbulent weather limit RPM,
The marine weather limit RPM is an RPM at a point where a decrease in fuel consumption per mile / a small amount of speed per mile decreases under the current operating conditions when the RPM is decreased.
前記船舶燃料節減システムは、前記最適RPMを自動に変更する時、使用者の選択事項が入力される最適RPM自動変更設定部(43)をさらに含み、
前記最適RPM自動変更設定部(43)は、変変速時には前記最適RPM算出部(50)に最適RPM生成命令を伝達し、正変速時には使用者から初期RPMを受けて前記RPM適用部(60)に伝達する変変速/正変速設定部(44)と;
前記最適RPMの変更時間間隔を受けて、前記変更時間間隔ごとに前記最適RPM生成命令を前記最適RPM算出部(50)に伝達する最適RPM自動変更時間設定部(46)と;をさらに含むことを特徴とする請求項1に記載の船舶燃料節減システム。
The marine fuel saving system further includes an optimum RPM automatic change setting unit (43) to which a user's selection is input when changing the optimum RPM to automatic,
The optimum RPM automatic change setting unit (43) transmits an optimum RPM generation command to the optimum RPM calculation unit (50) at the time of variable speed change, and receives the initial RPM from the user at the normal speed change, and receives the initial RPM from the user. A variable speed / forward speed setting unit (44) for transmitting to
And an optimum RPM automatic change time setting unit (46) for receiving the optimum RPM change time interval and transmitting the optimum RPM generation command to the optimum RPM calculation unit (50) at each change time interval. The marine fuel saving system according to claim 1.
前記船舶燃料節減システムは、使用者の最適RPM変更要請が入力されると、最適RPM生成命令を前記最適RPM算出部(50)に伝達する最適RPM手動変更設定部(42)をさらに含むことを特徴とする請求項1に記載の船舶燃料節減システム。   The marine fuel saving system further includes an optimum RPM manual change setting unit (42) for transmitting an optimum RPM generation command to the optimum RPM calculation unit (50) when a user request for an optimum RPM change is input. 2. A marine fuel saving system according to claim 1 characterized in that: 前記最適RPM算出部(50)は、
前記最適RPM算出モジュールに入力される現在のスケジュール条件及び運航条件を収集するスケジュール/運航条件収集部(52)と;
前記最適RPM生成命令が伝達されると、前記スケジュール/運航条件収集部(52)で前記現在のスケジュール条件及び運航条件を受けて、前記最適RPM算出モジュールに入力して最適RPMを算出する最適RPM算出モジュール実行部(54)と;を含むことを特徴とする請求項2又は3に記載の船舶燃料節減システム。
The optimum RPM calculating unit (50)
A schedule / operation condition collection unit (52) for collecting the current schedule conditions and operation conditions input to the optimum RPM calculation module;
When the optimum RPM generation command is transmitted, the schedule / operation condition collection unit (52) receives the current schedule condition and operation condition and inputs the optimum RPM to the optimum RPM calculation module to calculate the optimum RPM. The marine fuel saving system according to claim 2 or 3, comprising a calculation module execution unit (54).
前記船舶燃料節減システムは、
前記船舶燃料節減システムを適用しない一般運航時と、前記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較して分析するための燃料効率分析部(70)を含み、
前記燃料効率分析部(70)は、
前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗データ、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗データを収集する燃料消耗データ収集部(72)と;
前記最適運航の燃料消耗率、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗率、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗率を算出する燃料消耗率計算部(74)と;
前記燃料消耗率計算部(74)で前記一般運航の燃料消耗率、前記基準運航の燃料消耗率を受けて一般運航の燃料損失率を算出し、前記燃料消耗率計算部(74)で前記最適運航の燃料消耗率、前記基準運航の燃料消耗率を受けて最適運航の燃料損失率を算出する燃料損失率計算部(76)と;
前記一般運航燃料損失率計算部(76)で前記一般運航の燃料損失率を受けて、前記最適運航燃料損失率計算部(76)で前記最適運航の燃料消耗率を受けて、最適運航の燃料節減率を算出する燃料節減率計算部(78)と;を含み、
前記最適運航の燃料損失率=最適運航の燃料消耗率−基準運航の燃料消耗率、
前記一般運航の燃料損失率=一般運航の燃料消耗率−基準運航の燃料消耗率、
前記最適運航の燃料節減率=一般運航の燃料損失率−最適運航の燃料損失率であることを特徴とする請求項1に記載の船舶燃料節減システム。
The marine fuel saving system includes:
A fuel efficiency analysis unit (70) for comparing and analyzing the fuel saving effect at the time of general operation not applying the marine fuel saving system and at the time of optimal operation applying the marine fuel saving system;
The fuel efficiency analysis unit (70)
A fuel consumption data collection unit (72) that collects fuel consumption data of the reference operation compared to the same schedule conditions as the optimal operation and fuel consumption data of general operations compared to the same schedule conditions as the optimal operation;
A fuel consumption rate calculation unit (74) for calculating the fuel consumption rate of the optimum operation, the same schedule condition as the optimal operation, the fuel consumption rate of the standard operation, and the fuel consumption rate of the general operation and the same schedule condition as the optimal operation; ;
The fuel consumption rate calculation unit (74) receives the fuel consumption rate of the general operation and the fuel consumption rate of the reference operation to calculate the fuel loss rate of the general operation, and the fuel consumption rate calculation unit (74) calculates the optimum fuel loss rate. A fuel loss rate calculation unit (76) for calculating the fuel loss rate of the optimum operation in response to the fuel consumption rate of the operation and the fuel consumption rate of the reference operation;
The fuel for the optimum operation is received by the fuel loss rate for the general operation at the fuel loss rate calculation unit (76), and the fuel consumption rate for the optimum operation is received at the fuel loss rate calculation unit (76). A fuel saving rate calculation unit (78) for calculating a saving rate; and
Fuel loss rate of the optimal operation = fuel consumption rate of the optimal operation−fuel consumption rate of the standard operation
Fuel loss rate of general operation = fuel consumption rate of general operation−fuel consumption rate of standard operation
2. The marine fuel saving system according to claim 1, wherein the fuel saving rate of the optimum operation = the fuel loss rate of the general operation−the fuel loss rate of the optimum operation.
基準船舶仕様収集部(10)、基準運航データ収集部(20)、最適RPM算出モジュール生成部(30)、最適RPM算出部(50)、RPM適用部(60)を含む船舶燃料節減システムを使った船舶燃料節減方法において、
(a)前記基準船舶仕様収集部(10)が基準船舶仕様を収集する基準船舶仕様収集段階(S10)と;
(b)前記基準運航データ収集部(20)が基準運航データを収集する基準運航データ収集段階(S20)と;
(c)前記最適RPM算出モジュール生成部(30)が前記基準船舶仕様及び基準運航データを受けて最適RPM算出モジュールを生成する最適RPM算出モジュール生成段階(S30)と;
(d)前記最適RPM算出部(50)が前記最適RPM算出モジュール生成部(30)で受けた前記最適RPM算出モジュールに現在のスケジュール条件及び運航条件を入力して最適RPMを算出する最適RPM算出段階(S50)と;
(e)前記RPM適用部(60)が前記最適RPM算出部(50)で前記最適RPMを受けて船舶のエンジンに適用するRPM適用段階(S60)と;を含み、
前記基準運航は工場試運転、海上試運転、新潮後N航次、最近M航次を含み、
前記N及びMは関係者が任意に指定する回数であり、
前記最適RPMは前記現在のスケジュール条件及び運航条件対比燃料を最低に消耗するRPMであり、
前記スケジュール条件は目標距離、目標時間、可変時間を含み、
前記運航条件は船体条件、気象条件、エンジン条件を含み、
前記最適RPM=[標準最適速度−運航条件対比速度増減量]×RPM変換係数×気象補償係数、
前記標準最適速度は目標速度、可変目標速度、前記目標速度と可変目標速度との間の速度の中の速度対比燃料消耗率(=標準運航条件でのマイル当たり燃料消耗率/速度)が最低である速度、
前記標準運航条件は工場試運転時の運航条件、
前記目標速度=目標距離/目標時間、
前記可変目標速度=目標距離/(目標時間+可変時間)、
前記運航条件対比速度増減量は、現在の運航条件で標準最適RPMで運航した場合、前記標準最適速度に比べて増減される速度、
前記標準最適RPMは、前記標準運航条件である時、前記標準最適速度で運航することができるRPM、
前記RPM変換係数は、前記[標準最適速度−運航条件対比速度増減量]に掛け合わせて現在の運航条件で前記[標準最適速度−運航条件対比速度増減量]の速度を出すことができるRPMに変換する係数、
前記気象補償係数=順気象係数(順気象程度−正気象程度)−乱気象係数(乱気象程度−正気象程度)、
前記正気象程度は前記標準運航条件の気象条件の程度を数値化した値、
前記順気象程度は現在の気象条件の順気象程度を数値化した値、
前記乱気象程度は現在の気象条件の乱気象程度を数値化した値、
前記順気象係数は、前記[順気象係数(順気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが順気象限界RPM以上にならないように限定する係数、
前記順気象限界RPMは、RPMを増加させた時、燃料消耗増加量/速度増加量が増加する点のRPM、
前記乱気象係数は、前記[乱気象係数(乱気象程度−正気象程度)]を前記[標準最適速度−運航条件対比速度増減量]×RPM変換係数に掛けてRPMを求める時、前記最適RPMが乱気象限界RPM以下にならないように限定する係数、
前記乱気象限界RPMは、RPMを減少させた時、現在の運航条件でのマイル当たり燃料消耗減少量/速度感少量が減少する点のRPMであることを特徴とする船舶燃料節減方法。
Using a ship fuel saving system including a reference ship specification collection part (10), a reference operation data collection part (20), an optimum RPM calculation module generation part (30), an optimum RPM calculation part (50), and an RPM application part (60) In the ship fuel saving method,
(A) a reference ship specification collection stage (S10) in which the reference ship specification collection unit (10) collects reference ship specifications;
(B) a reference operation data collection step (S20) in which the reference operation data collection unit (20) collects reference operation data;
(C) an optimum RPM calculation module generation step (S30) in which the optimum RPM calculation module generation unit (30) receives the reference ship specification and reference operation data and generates an optimum RPM calculation module;
(D) Optimal RPM calculation in which the optimal RPM calculation unit (50) calculates the optimal RPM by inputting the current schedule condition and operation condition to the optimal RPM calculation module received by the optimal RPM calculation module generation unit (30). Stage (S50);
(E) an RPM application step (S60) in which the RPM application unit (60) receives the optimum RPM from the optimum RPM calculation unit (50) and applies it to the engine of the ship;
The standard operations include factory test operation, sea test operation, N voyage after new tide, and recently M voyage,
N and M are the numbers arbitrarily designated by the parties concerned,
The optimum RPM is the RPM that consumes the fuel to the minimum compared with the current schedule condition and operation condition,
The schedule conditions include target distance, target time, variable time,
The operating conditions include hull conditions, weather conditions, engine conditions,
Optimum RPM = [standard optimum speed−speed increase / decrease relative to operating conditions] × RPM conversion coefficient × weather compensation coefficient,
The standard optimum speed is the target speed, the variable target speed, the speed between the target speed and the speed between the target speed and the variable target speed, the fuel consumption rate (= fuel consumption rate per mile / speed under standard operating conditions) is the lowest A certain speed,
The standard operating conditions are the operating conditions at the time of factory trial operation,
Target speed = target distance / target time,
Variable target speed = target distance / (target time + variable time),
The speed increase / decrease relative to the operating conditions is the speed that is increased or decreased compared to the standard optimal speed when operating at the standard optimal RPM under the current operating conditions.
The standard optimum RPM is an RPM that can be operated at the standard optimum speed when the standard operation conditions are satisfied,
The RPM conversion coefficient is multiplied by the above-mentioned [standard optimum speed−operation condition relative speed increase / decrease amount] to the RPM that can output the speed of [standard optimum speed−operation condition comparison speed increase / decrease amount] under the current operation conditions. Coefficient to convert,
The weather compensation coefficient = forward weather coefficient (normal weather degree−normal weather degree) −turbulent weather coefficient (turbulent weather degree−normal weather degree),
The positive weather degree is a numerical value of the degree of the weather condition of the standard operating conditions,
The normal weather degree is a numerical value of the normal weather degree of the current weather conditions,
The turbulent weather level is a numerical value of the turbulent weather level of the current weather conditions,
The forward weather coefficient is obtained by multiplying the [forward weather coefficient (normal weather degree−normal weather degree)] by the [standard optimum speed−operational condition relative speed increase / decrease amount] × RPM conversion coefficient to obtain the optimum RPM. Is a coefficient that limits so that it does not exceed the normal weather limit RPM,
The normal weather limit RPM is the RPM at which the fuel consumption increase / speed increase increases when the RPM is increased,
The turbulent weather coefficient is obtained by multiplying the [turbid weather coefficient (degree of turbulent weather-degree of normal weather)] by the [standard optimum speed-speed increase / decrease in operating conditions] × RPM conversion coefficient to obtain the optimum RPM. Is a factor that limits the climatic limit so that it does not fall below the turbulent weather limit RPM,
The turbulent weather limit RPM is an RPM at a point where a decrease in fuel consumption per mile / a small amount of speed per mile under current operating conditions decreases when the RPM is decreased.
前記船舶燃料節減システムは、最適RPM自動変更設定部(43)をさらに含み、
前記船舶燃料節減方法は、
(f)最適RPM変更設定段階(S40);をさらに含み、
前記最適RPMを自動に変更しようとする時、変変速時には前記最適RPM自動変更設定部(43)が前記最適RPM算出部(50)に最適RPM生成命令を伝達し、正変速時には使用者から初期RPMを入力して前記RPM適用部(60)に伝達する正変速/変変速設定段階(S46)と;
前記最適RPMを自動に変更しようとする時、前記最適RPM自動変更設定部(43)に変更時間間隔が入力されて、前記変更時間間隔ごとに前記最適RPM生成命令を前記最適RPM算出部(50)に伝達する最適RPM自動変更時間設定段階(S44)と;をさらに含み、
前記RPM適用部(60)は前記初期RPMを受けて船舶のエンジンに適用することを特徴とする請求項6に記載の船舶燃料節減方法。
The marine fuel saving system further includes an optimum RPM automatic change setting unit (43),
The marine fuel saving method is:
(F) an optimal RPM change setting step (S40);
When trying to change the optimum RPM to automatic, the optimum RPM automatic change setting unit (43) transmits an optimum RPM generation command to the optimum RPM calculation unit (50) at the time of variable speed change, and the initial from the user at the time of normal gear change. A forward shift / variable shift setting step (S46) for inputting the RPM and transmitting it to the RPM application unit (60);
When the optimum RPM is to be changed automatically, a change time interval is input to the optimum RPM automatic change setting unit (43), and the optimum RPM generation command is sent to the optimum RPM calculation unit (50) for each change time interval. And an optimal RPM automatic change time setting step (S44) to be transmitted to
The marine fuel saving method according to claim 6, wherein the RPM application unit (60) receives the initial RPM and applies the initial RPM to a marine engine.
前記船舶燃料節減システムは最適RPM手動変更設定部(42)をさらに含み、
前記船舶燃料節減方法は、
(f)最適RPM変更設定段階(S40)を含み、
前記(f)段階は、前記最適RPM手動変更設定部(42)が使用者の最適RPM変更要請を受けると、最適RPM生成命令を前記最適RPM算出部(50)に伝達する最適RPM手動変更設定段階(S42);を含むことを特徴とする請求項6に記載の船舶燃料節減方法。
The marine fuel saving system further includes an optimum RPM manual change setting unit (42),
The marine fuel saving method is:
(F) including an optimal RPM change setting step (S40),
In the step (f), when the optimum RPM manual change setting unit (42) receives an optimum RPM change request from a user, an optimum RPM manual change setting for transmitting an optimum RPM generation command to the optimum RPM calculation unit (50). The marine fuel saving method according to claim 6, further comprising: (S42).
前記(d)段階は、前記最適RPM算出部(50)が前記最適RPM算出モジュールに入力される前記現在のスケジュール条件及び運航条件を収集するスケジュール/運航条件収集段階(S52)と;
前記最適RPM算出部(50)が前記現在のスケジュール条件及び運航条件を前記最適RPM算出モジュールに入力して前記最適RPMを算出する最適RPM算出モジュール実行段階(S54);を含むことを特徴とする請求項7または請求項8の中の何れか一項に記載の船舶燃料節減方法。
The step (d) includes a schedule / operation condition collection step (S52) in which the optimum RPM calculation unit (50) collects the current schedule condition and operation condition input to the optimum RPM calculation module;
The optimum RPM calculation unit (50) includes an optimum RPM calculation module execution step (S54) for inputting the current schedule condition and operation condition to the optimum RPM calculation module and calculating the optimum RPM. The marine fuel saving method according to any one of claims 7 and 8.
前記船舶燃料節減システムは燃料効率分析部(70)をさらに含み、
前記船舶燃料節減方法は、
(g)前記船舶燃料節減システムを適用しない一般運航時と、前記船舶燃料節減システムを適用した最適運航時の燃料節減効果を比較分析するための燃料効率分析段階(S70);をさらに含み、
前記燃料効率分析段階(S70)は、前記燃料効率分析部(70)が前記船舶燃料節減システムを適用した最適運航時の燃料消耗データ、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗データ、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗データを収集する燃料消耗データ収集段階(S72)と;
前記燃料効率分析部(70)が前記燃料消耗データで前記船舶燃料節減システムを適用した最適運航の燃料消耗率、前記最適運航と同じスケジュール条件対比前記基準運航の燃料消耗率、前記最適運航と同じスケジュール条件対比一般運航の燃料消耗率を算出する燃料消耗率計算段階(S74)と;
前記燃料効率分析部(70)が前記一般運航の燃料消耗率、前記基準運航の燃料消耗率で一般運航の燃料損失率を算出し、前記最適運航の燃料消耗率、前記基準運航の燃料消耗率で最適運航の燃料損失率を算出する燃料損失率計算段階(S76)と;
前記燃料効率分析部(70)が前記一般運航の燃料損失率、前記最適運航の燃料消耗率で最適運航の燃料節減率を算出する燃料節減率計算段階(S78)と;を含み、
前記最適運航の燃料損失率=最適運航の燃料消耗率−基準運航の燃料消耗率、前記一般運航の燃料損失率=一般運航の燃料消耗率−基準運航の燃料消耗率、
前記最適運航の燃料節減率=一般運航の燃料損失率−最適運航の燃料損失率であることを特徴とする請求項6に記載の船舶燃料節減方法。
The marine fuel saving system further includes a fuel efficiency analysis unit (70),
The marine fuel saving method is:
(G) a fuel efficiency analysis step (S70) for comparing and analyzing the fuel saving effect at the time of general operation not applying the ship fuel saving system and the optimum operation applying the ship fuel saving system;
In the fuel efficiency analysis step (S70), the fuel efficiency analysis unit (70) uses the ship fuel saving system to apply the fuel consumption data during the optimum operation, and compares the same schedule conditions as the optimum operation and the fuel consumption data for the reference operation. A fuel consumption data collection step (S72) for collecting fuel consumption data for general operation in comparison with the same schedule conditions as the optimum operation;
The fuel efficiency analysis unit (70) uses the fuel consumption data to apply the ship fuel saving system to the optimal operation fuel consumption rate, the same schedule conditions as the optimal operation, the reference operation fuel consumption rate, the same as the optimal operation A fuel consumption rate calculation step (S74) for calculating a fuel consumption rate of the general operation in comparison with the schedule condition;
The fuel efficiency analysis unit (70) calculates the fuel loss rate of the general operation based on the fuel consumption rate of the general operation and the fuel consumption rate of the standard operation, and the fuel consumption rate of the optimal operation and the fuel consumption rate of the standard operation A fuel loss rate calculation step (S76) for calculating a fuel loss rate for optimum operation at
The fuel efficiency analysis unit (70) includes a fuel saving rate calculation step (S78) of calculating a fuel saving rate of the optimal operation based on the fuel loss rate of the general operation and the fuel consumption rate of the optimal operation,
The fuel loss rate of the optimal operation = the fuel consumption rate of the optimal operation−the fuel consumption rate of the standard operation, the fuel loss rate of the general operation = the fuel consumption rate of the general operation−the fuel consumption rate of the standard operation,
The marine fuel saving method according to claim 6, wherein the fuel saving rate of the optimum operation = the fuel loss rate of the general operation−the fuel loss rate of the optimum operation.
請求項6〜10のうちの何れか一項に記載の船舶燃料節減方法によるコンピュータープログラムを保存した記録媒体。   The recording medium which preserve | saved the computer program by the ship fuel saving method as described in any one of Claims 6-10.
JP2013518209A 2010-07-07 2010-08-31 Ship fuel saving system using energy efficiency optimization for realizing ship operation instruction optimization, method thereof, and recording medium storing computer program by the method Pending JP2013531580A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0065574 2010-07-07
KR20100065574 2010-07-07
PCT/KR2010/005893 WO2012005408A1 (en) 2010-07-07 2010-08-31 System and method for saving marine fuel by optimizing energy efficiency for optimally sailing a ship, and recording medium for recording a computer program for implementing the method

Publications (1)

Publication Number Publication Date
JP2013531580A true JP2013531580A (en) 2013-08-08

Family

ID=44405733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013518209A Pending JP2013531580A (en) 2010-07-07 2010-08-31 Ship fuel saving system using energy efficiency optimization for realizing ship operation instruction optimization, method thereof, and recording medium storing computer program by the method

Country Status (4)

Country Link
JP (1) JP2013531580A (en)
KR (1) KR101042334B1 (en)
CN (1) CN103124965A (en)
WO (1) WO2012005408A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464323B1 (en) * 2014-03-28 2014-11-25 주식회사 에이드 Apparatus for vessel navigation efficiency
KR20160065229A (en) * 2014-11-28 2016-06-09 삼성중공업 주식회사 Ship Energy Management Method and System

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203252B1 (en) * 2012-03-02 2012-11-21 (주) 윈플러스코포레이션 Determining system for optimum navigation condition for ship
KR101422507B1 (en) 2012-11-08 2014-07-28 삼성중공업 주식회사 Apparatus of operating the economic navigation of a ship and control method of thereof
KR101419049B1 (en) * 2014-01-20 2014-07-14 (주)뉴월드마리타임 Method for trading and compensating saved fuel oils using system for trading and compensating saved fuel oils, and computer-readable recording medium with trading and compensating program of saved fuel oils
KR101642752B1 (en) 2014-08-04 2016-07-26 현대중공업 주식회사 Method of providing ship navigation information, server performing the same and storage media storing the same
KR20160022990A (en) 2014-08-20 2016-03-03 현대중공업 주식회사 Method of providing ship navigation information, apparatus performing the same and storage media storing the same
KR101644557B1 (en) 2014-10-29 2016-08-01 삼성중공업 주식회사 Method for optimizing energy efficiency of vessel
KR20160063595A (en) 2014-11-27 2016-06-07 현대중공업 주식회사 Method of providing optimal navigation route, apparatus performing the same and storage media storing the same
KR20160063593A (en) 2014-11-27 2016-06-07 현대중공업 주식회사 Method of controling ship navigation, apparatus performing the same and storage media storing the same
KR20160063597A (en) 2014-11-27 2016-06-07 현대중공업 주식회사 Method of prediting fuel comsumption, apparatus performing the same and storage media storing the same
KR20160063594A (en) 2014-11-27 2016-06-07 현대중공업 주식회사 Method of monitoring fuel condition, apparatus performing the same and storage media storing the same
JP6251842B2 (en) * 2015-02-25 2017-12-20 三菱重工業株式会社 Ship operation support system and ship operation support method
KR102315031B1 (en) 2015-04-16 2021-10-20 대우조선해양 주식회사 Fuel management system of LNG ships using dual fuel and method of the same
KR101640881B1 (en) * 2015-05-27 2016-07-20 (주)띵크마린 Analysis service status of fuel oil through collection of ship operation information service system
CN105083491A (en) * 2015-09-21 2015-11-25 杭州比孚科技有限公司 Ship oil consumption lowering method
JP6062095B1 (en) * 2016-06-09 2017-01-18 株式会社マリタイムイノベーションジャパン Instruction device for ship propulsion engine
KR102257970B1 (en) * 2016-08-24 2021-05-28 한국조선해양 주식회사 An system and method for optimizing driving of the engine
KR101805510B1 (en) * 2016-10-24 2017-12-07 대우조선해양 주식회사 Operation Method of Engine for a Ship
JP6807237B2 (en) * 2017-01-16 2021-01-06 ナブテスコ株式会社 Information processing equipment and programs
JP6921560B2 (en) * 2017-03-02 2021-08-18 ナブテスコ株式会社 Information processing equipment and programs
CN107358048A (en) * 2017-07-14 2017-11-17 广东省环境科学研究院 A kind of high-precision Pollution From Ships thing Emission amount calculation method based on AIS data
KR101914920B1 (en) * 2017-12-29 2018-11-05 마린웍스 주식회사 Method and apparatus for monitoring fuel consumption and calculating RPM of vessel
KR102482085B1 (en) * 2018-03-30 2022-12-29 한국조선해양 주식회사 operation management system and ship having the same
EP3790795B1 (en) * 2018-05-08 2022-09-28 CPAC Systems AB Improved engine control
CN112088122B (en) * 2018-05-14 2024-04-09 国立研究开发法人海上·港湾·航空技术研究所 Method and system for evaluating actual sea area propulsion performance of ship and computer readable storage medium
KR102475553B1 (en) * 2018-06-29 2022-12-07 대우조선해양 주식회사 System and method for providing optimized speed of a vessel and computer-readable recording medium thereof
WO2020190279A1 (en) * 2019-03-19 2020-09-24 Wärtsilä SAM Electronics GmbH Method and apparatus for automated energy management of marine vessel
US11898934B1 (en) 2022-09-28 2024-02-13 Inlecom Group BV Integration and tuning of performance control parameters of a vessel in order to meet decarbonization goals
CN116663696A (en) * 2023-01-14 2023-08-29 武汉理工大学 Method and device for optimizing north-south east-north route multi-target speed based on genetic algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643096A (en) * 1979-06-29 1981-04-21 Salen Technologies Ab Method and device for minimizing fuel consumption of ship
JP2004025914A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Operation system for ship
US6885919B1 (en) * 2003-06-02 2005-04-26 Brunswick Corporation Method for controlling the operation of a marine vessel
JP2009286230A (en) * 2008-05-28 2009-12-10 Mitsui Eng & Shipbuild Co Ltd Operation support system of marine vessel and operation support method of marine vessel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1920368A2 (en) * 2005-08-11 2008-05-14 Marorka EHF Optimization of energy source usage in ships
US20090048726A1 (en) * 2007-08-14 2009-02-19 Lofall Marine Systems, Llc Vessel performance monitoring system and method
US20100106350A1 (en) * 2008-10-28 2010-04-29 Glacier Bay, Inc. Real-time efficiency monitoring for marine vessel
KR20090051150A (en) * 2009-04-29 2009-05-21 김상호 Information recording medium on which a computer-readable program for ship's energy consumption optimization system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643096A (en) * 1979-06-29 1981-04-21 Salen Technologies Ab Method and device for minimizing fuel consumption of ship
JP2004025914A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Operation system for ship
US6885919B1 (en) * 2003-06-02 2005-04-26 Brunswick Corporation Method for controlling the operation of a marine vessel
JP2009286230A (en) * 2008-05-28 2009-12-10 Mitsui Eng & Shipbuild Co Ltd Operation support system of marine vessel and operation support method of marine vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464323B1 (en) * 2014-03-28 2014-11-25 주식회사 에이드 Apparatus for vessel navigation efficiency
KR20160065229A (en) * 2014-11-28 2016-06-09 삼성중공업 주식회사 Ship Energy Management Method and System
KR101661928B1 (en) 2014-11-28 2016-10-05 삼성중공업 주식회사 Ship Energy Management Method and System

Also Published As

Publication number Publication date
CN103124965A (en) 2013-05-29
KR101042334B1 (en) 2011-06-17
WO2012005408A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP2013531580A (en) Ship fuel saving system using energy efficiency optimization for realizing ship operation instruction optimization, method thereof, and recording medium storing computer program by the method
Wang et al. A Three-Dimensional Dijkstra's algorithm for multi-objective ship voyage optimization
EP3330171B1 (en) Apparatus for predicting a power consumption of a maritime vessel
JP4934756B1 (en) Ship optimum route calculation system, vessel operation support system, vessel optimum route calculation method, and vessel operation support method
US8935174B2 (en) Analyzing voyage efficiencies
JP4756331B2 (en) Environmental load reduction type navigation plan providing system
KR20180045440A (en) System for remotely monitering ship and supporting optimal operation of ship using multiple communication environment
JP2010223639A (en) Ocean current data assimilation method and assimilation system
JP2009286230A (en) Operation support system of marine vessel and operation support method of marine vessel
US20140336853A1 (en) Methods for automatically optimizing ship performance and devices thereof
CN104090595A (en) Ship navigational speed optimizing device and method based on main engine energy efficiency and navigation environment
Tillig et al. Systems modelling for energy-efficient shipping
JP2012086604A (en) Ship operation support system
US20180341729A1 (en) Systems and methods for vessel fuel utilization
KR20130135024A (en) Method for energy saving and safety sailing of ship by monitoring hydro-dynamic
KR20090091277A (en) Information recording medium on which a computer-readable program for ship's sailing order optimization system
JP2013134089A (en) Optimal sailing route calculating apparatus and optimal sailing route calculating method
WO2019004416A1 (en) Optimal route searching method and device
CN110503270B (en) Ship energy consumption and emission pre-evaluation system
Watson et al. Green steaming: A methodology for estimating carbon emissions avoided
Wang et al. Benchmark study of five optimization algorithms for weather routing
CN112088122A (en) Method, program, and system for evaluating actual sea propulsion performance of ship
Tomaselli et al. A decision-making tool for planning o&m activities of offshore wind farms using simulated actual decision drivers
Mannarini et al. VISIR-1. b: Ocean surface gravity waves and currents for energy-efficient navigation
KR101401469B1 (en) Optimal economic safety sailing system based on sea transportation network integrated management by it convergence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141128