JP2012086604A - Ship operation support system - Google Patents

Ship operation support system Download PDF

Info

Publication number
JP2012086604A
JP2012086604A JP2010233307A JP2010233307A JP2012086604A JP 2012086604 A JP2012086604 A JP 2012086604A JP 2010233307 A JP2010233307 A JP 2010233307A JP 2010233307 A JP2010233307 A JP 2010233307A JP 2012086604 A JP2012086604 A JP 2012086604A
Authority
JP
Japan
Prior art keywords
ship
data
performance
individual
performance data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010233307A
Other languages
Japanese (ja)
Other versions
JP5312425B2 (en
Inventor
Hideo Orihara
秀夫 折原
Hisafumi Yoshida
尚史 吉田
Keiichi Yamazaki
啓市 山崎
Kenji Takagishi
憲璽 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2010233307A priority Critical patent/JP5312425B2/en
Publication of JP2012086604A publication Critical patent/JP2012086604A/en
Application granted granted Critical
Publication of JP5312425B2 publication Critical patent/JP5312425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Navigation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ship operation support system capable of obtaining the individual ship performance data of high accuracy, and enhancing the optimum route evaluation.SOLUTION: The ship operation support system includes: a monitoring device 110 capable of preparing the encountered oceanographic and meteorological data on the oceanographic and meteorological conditions encountered by a ship during navigation, and the ship performance data on the ship performance in the oceanographic and meteorological condition; an individual ship performance preparing device 120 which extracts the encountered oceanographic and meteorological condition data and the ship performance data satisfying the preset condition in order to prepare the smooth water performance data indicating the performance of the ship on smooth water, and prepares and processes the smooth water performance data, corrects the individual ship performance input data on the individual ship performance preset for the ship, and prepares the individual ship performance data on the individual ship performance during the navigation; and an optimum route estimation device 140 for performing the processing of estimating the optimum route of the ship based on the individual ship performance data and the oceanographic and meteorological condition data.

Description

本発明は、船舶の運航(航行)を支援する船舶運航支援システムに関するものである。   The present invention relates to a ship operation support system that supports ship operation (navigation).

近年、地球温暖化の進展、船舶燃料価格の高騰などを背景として、船舶運航時の燃料消費量の低減、燃料消費に伴う二酸化炭素を主体とする地球温暖化ガスの排出低減などが強く求められている。   In recent years, against the backdrop of the progress of global warming and soaring ship fuel prices, there has been a strong demand for reducing fuel consumption during ship operations and reducing greenhouse gas emissions, mainly carbon dioxide, associated with fuel consumption. ing.

そこで、船舶運航時における燃料消費量を低減するために、船型を改良する、省エネルギー付加物による平水中性能(外乱(風、波など)がないとしたときの船舶の性能)を改善する、船舶を推進などする機関の熱効率改善、機関排熱回収など様々な改善などを行っている。このような船舶のハード面における改善のほかに、近年、例えば、波、風、潮流などの外乱影響をできる限り低減して航行するようにし、船舶の航海燃料の消費量低減を図る、いわゆる運航支援システムが各種提案されている(例えば特許文献1、2参照)。このようなシステムにおいては、例えば、船舶の個船性能データに基づいた演算によって、例えば燃料消費量が最も少ない航路を最適航路として推定する。   Therefore, in order to reduce fuel consumption during ship operation, improve the hull form, improve the performance of plain water by energy-saving additive (ship performance when there is no disturbance (wind, waves, etc.)), ship Various improvements such as improving the thermal efficiency of the engine that promotes the engine, and recovering the exhaust heat of the engine are being made. In addition to such improvements in ship hardware, in recent years, for example, so-called navigation that aims to reduce the consumption of voyage fuel by reducing the influence of disturbances such as waves, winds and tidal currents as much as possible. Various support systems have been proposed (see, for example, Patent Documents 1 and 2). In such a system, for example, the route with the smallest fuel consumption is estimated as the optimum route by, for example, calculation based on the ship performance data of the ship.

特開2006−193124号公報(図1)JP 2006-193124 A (FIG. 1) 特開2009−286230号公報(図1)JP 2009-286230 A (FIG. 1)

以上のようなシステムでは、例えば、最適航路の評価には、演算に用いる個船性能データが影響することになる。このため、個船性能データが表す個船性能と現実の個船性能との間でずれが生じていると、演算によって得られる最適航路は真の最適航路から大きく外れたものとなり、十分な燃料消費量の低減効果が得られない場合がある。   In the system as described above, for example, the performance of the individual ship used for calculation affects the evaluation of the optimum route. For this reason, if there is a discrepancy between the individual vessel performance represented by the individual vessel performance data and the actual individual vessel performance, the optimum route obtained by the calculation will be greatly deviated from the true optimum route, and there will be sufficient fuel. There may be cases where the effect of reducing consumption is not obtained.

例えば、従来、個船性能データとするデータは、主に船体の模型水槽試験、試運転結果、主機の搭載前陸上試験での結果を基に作成していた。しかし、このようなデータは、基本的に船舶を新造したときの試運転状態又は設計時の評価結果を示すものであるため、実際に航行している船舶の最適航路を評価計算する上で十分なものとはなっていない。その要因には以下のものが挙げられる。
(1)新造時の試運転状態又は設計時の評価結果では、船体表面汚損の影響、経年劣化の影響などが考慮されていない。
(2)実際の航海においては、積荷の積載などにより新造時の試運転又は設計時の評価結果とは異なる喫水状態であることが多い。
(3)個船性能データのうち、波浪中性能のデータに関しては、波浪中性能を推定する際に使用する海気象を模擬した波モデルを用いて作成しているが、実際の航海では、模擬した波モデルと異なる波に遭遇することがある。
(4)個船性能データを構成する各種の成分のうち、外乱に起因する横力によって生じる船体の斜航などについても、新造時の試運転又は設計時の評価結果において考慮していないものが多い。
For example, conventionally, data for individual ship performance data has been created mainly based on the model tank test of the hull, the results of the trial operation, and the results of the land test before the installation of the main engine. However, such data basically shows the test operation state when a ship is newly built or the evaluation result at the time of design, and is sufficient for evaluating and calculating the optimum route of the ship that is actually sailing. It is not a thing. The factors include the following.
(1) In the trial operation state at the time of new construction or the evaluation result at the time of design, the effects of hull surface contamination, aging deterioration, etc. are not considered.
(2) In actual voyages, the draft is often different from the test results at the time of new construction or the evaluation results at the time of design due to loading of cargo.
(3) Among the individual ship performance data, the wave performance data is created using a wave model that simulates the sea weather used to estimate the wave performance. You may encounter waves that are different from the wave model you did.
(4) Of the various components that make up the individual ship performance data, many of the components that are not taken into account in the trial operation at the time of new construction or the evaluation results at the time of design, such as the tilting of the hull caused by the lateral force caused by disturbance .

これらの点に関して、例えば上述した特許文献1、2では、船体汚染影響、経年劣化影響、また、試運転との喫水、排水量状態の違いなどを考慮し、運航時の個船性能の評価精度向上を目的とした手法を採っている。例えば、外乱が少ない平穏な遭遇海気象下での船体推進性能のモニタリングデータ(船速、推進器回転数、主機出力、燃料消費率など)を抽出する。そして、これらのデータが、外乱の影響を受けない平水中を航行した場合における、船舶のほぼ理想的な性能を表すものと仮定して、個船の平水中性能を再評価する。   With regard to these points, for example, in Patent Documents 1 and 2 described above, in consideration of hull contamination effects, aging deterioration effects, drafts from trial operation, differences in the amount of discharged water, etc., the evaluation accuracy of individual ship performance during operation is improved. The intended method is adopted. For example, hull propulsion performance monitoring data (ship speed, propeller speed, main engine output, fuel consumption rate, etc.) under calm encounter sea weather with little disturbance is extracted. Then, assuming that these data represent almost ideal performance of the ship when navigating in flat water that is not affected by disturbance, the performance of the individual ship's flat water is re-evaluated.

このような平水中性能評価においては、外乱の影響が小さい場合には、想定通り推進性能のモニタリングを実施した航行状態の船体汚染影響、経年劣化影響を含んだ平水中性能を評価することができる。しかしながら、実際に性能評価を行う場合に、上述のような平穏な遭遇海気象と判断するための条件設定は必ずしも容易ではない。例えば、引用文献1では、平穏な遭遇海気象を選定する条件として、波高や風浪階級が所定値以下の場合としている。具体例として、波高は1m以下、風浪階級は世界気象機関が定めるCode BET Scale 4以下であることを挙げている。   In such a performance evaluation of plain water, when the influence of disturbance is small, it is possible to evaluate the performance of flat water including the hull contamination effect and the aging effect in the navigation state where the propulsion performance was monitored as expected. . However, when performance is actually evaluated, it is not always easy to set conditions for determining the calm encounter sea weather as described above. For example, in Cited Document 1, as a condition for selecting a calm encounter sea weather, the wave height and the wind class are assumed to be a predetermined value or less. As a specific example, the wave height is 1 m or less, and the wind class is Code BET Scale 4 or less determined by the World Meteorological Organization.

また、風波の評価に用いる海気象情報は、気象庁など外部より入手した海気象予報データを使用するものとしている。しかし、平穏な遭遇海気象を選定する場合における海気象予報データの精度が必ずしも十分でない場合がある。特に波高が過小評価されている海気象予報データであった場合、抽出したモニタリングデータが示す値は、波による影響を大きく含んだものとなる。その結果、得られた平水中性能に係る精度が不十分となってしまうことがあった。   The sea weather information used for wind wave evaluation uses sea weather forecast data obtained from outside such as the Japan Meteorological Agency. However, the accuracy of the sea weather forecast data may not always be sufficient when selecting a calm encounter sea weather. In particular, in the case of sea weather forecast data in which the wave height is underestimated, the value indicated by the extracted monitoring data greatly includes the influence of the wave. As a result, the accuracy relating to the obtained performance in plain water may be insufficient.

そこで、本発明は上記のような問題点を解決し、高精度の個船性能データを得ることができ、また、最適航路の評価などを高め、船舶の燃料消費量の低減などをはかることができる船舶運航支援システムを提供することを目的とする。   Therefore, the present invention can solve the above problems, obtain highly accurate individual ship performance data, improve the evaluation of the optimum route, etc., and reduce the fuel consumption of the ship. The purpose is to provide a ship operation support system.

本発明に係る船舶運航支援システムは、船舶に搭載した計測手段による計測に基づいて、航行中の船舶が遭遇している海気象に係る遭遇海気象データ及び海気象における船舶の性能に係る船舶性能データを作成して記憶装置に記憶させるモニタリング装置と、船舶の平水中における性能を表す平水中性能データを作成するために、あらかじめ設定した条件を満たす遭遇海気象データ及び船舶性能データを抽出処理し、抽出した遭遇海気象データ及び船舶性能データに基づいて平水中性能データを作成処理し、遭遇海気象データ、船舶性能データ及び平水中性能データに基づいて、船舶に対してあらかじめ設定した個船性能に係る個船性能入力データを補正して、運航における個船性能に係る個船性能データを作成する個船性能作成装置と、個船性能データ及び航路上の海気象を予測した海気象予測データに基づいて、船舶の最適な航路を推定する処理を行う最適航路推定装置とを備えるものである。   The ship operation support system according to the present invention is based on the measurement by the measurement means mounted on the ship, and the ship performance related to the encounter sea weather data related to the sea weather encountered by the ship in operation and the ship performance in the sea weather. In order to create a monitoring device that creates data and stores it in the storage device, and in-water performance data that represents the performance of the ship in plain water, the encounter sea meteorological data and ship performance data that satisfy the preset conditions are extracted and processed. Based on the encounter sea meteorological data and ship performance data extracted, the water performance data is created and processed. Based on the encounter sea meteorological data, ship performance data and plain water performance data, the individual ship performance preset for the ship The individual ship performance creation device for correcting the individual ship performance input data related to Based on the performance data and the sea weather forecast data of the sea weather predicted on route, in which and a best route estimation apparatus which performs a process of estimating the optimum route of the ship.

本発明によれば、個船性能作成装置がモニタリング装置が作成した実際の航行における遭遇海気象データ及び船舶性能データに基づいて、平水中性能データ、個船性能データを作成処理するようにしたので、現実に近い個船性能データを作成することができる。そして、この個船性能データに基づいて、最適航路推定装置が最適航路を推定するようにしたので、例えば航海燃料消費量を最適化するための推定を行うことができ、航海燃料消費量のさらなる低減をはかることができる航路を推定することができる。このため、船舶による二酸化炭素の排出を削減することで地球温暖化の防止に寄与することができる。   According to the present invention, since the individual vessel performance creation device creates and processes the plain water performance data and the individual vessel performance data based on the encounter sea weather data and the vessel performance data in the actual navigation created by the monitoring device. Individual ship performance data close to reality can be created. Since the optimum route estimation device estimates the optimum route based on the individual vessel performance data, for example, an estimation for optimizing the voyage fuel consumption can be performed, and the voyage fuel consumption can be further increased. A route that can be reduced can be estimated. For this reason, it can contribute to prevention of global warming by reducing the discharge | emission of the carbon dioxide by a ship.

実施の形態1に係る船舶運航支援システムの構成を表す図である。It is a figure showing the structure of the ship operation assistance system which concerns on Embodiment 1. FIG. 最適航路推定装置140が推定した最適航路の結果例を表す図である。It is a figure showing the example of the result of the optimal route estimated by the optimal route estimation apparatus. 実施の形態2に係る船舶運航支援システムの構成を表す図である。It is a figure showing the structure of the ship operation assistance system which concerns on Embodiment 2. FIG.

実施の形態1.
図1は本発明の実施の形態1に係る運航支援装置を有する船舶運航支援システムの構成を表す図である。運航支援装置100は船舶に設置された装置である。本実施の形態における運航支援装置100は、モニタリング装置110、個船性能作成装置120、運航性能評価装置130、最適航路推定装置140、船側通信装置150、運航データ蓄積装置160、個船性能入力データ蓄積装置170、個船性能データ蓄積装置180及び最適航路評価データ蓄積装置190で構成する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing the configuration of a ship navigation support system having an operation support apparatus according to Embodiment 1 of the present invention. The operation support apparatus 100 is an apparatus installed on a ship. The operation support apparatus 100 according to the present embodiment includes a monitoring apparatus 110, an individual ship performance creation apparatus 120, an operation performance evaluation apparatus 130, an optimum route estimation apparatus 140, a ship side communication apparatus 150, an operation data storage apparatus 160, and individual ship performance input data. The storage device 170, the individual ship performance data storage device 180, and the optimum route evaluation data storage device 190 are configured.

モニタリング装置110は、船舶に設けられて物理量を計測するための計測器(センサ)、船舶を動作させる制御手段、GPS(Global Positioning System )などからの信号に基づいて、計測に係るデータを所定時間毎に作成する。そして、生成したデータを、運航データとして運航データ蓄積装置160に蓄積させる。また、一定時間毎に統計的データ解析処理を行う。本実施の形態において、モニタリング装置110が生成する運航データとしては、例えば、船舶の性能に関するデータ(以下、船舶性能データという)、遭遇する海気象に関するデータ(以下、遭遇海気象データという)、船舶の位置などを表すデータ(以下、位置情報データという)がある。   The monitoring device 110 is provided with a measuring instrument (sensor) for measuring a physical quantity provided on the ship, a control means for operating the ship, a signal from a GPS (Global Positioning System), and the like. Create each. The generated data is stored in the operation data storage device 160 as operation data. In addition, statistical data analysis processing is performed at regular time intervals. In the present embodiment, the operation data generated by the monitoring device 110 includes, for example, data on ship performance (hereinafter referred to as ship performance data), data on sea weather encountered (hereinafter referred to as encounter sea weather data), ship There is data (hereinafter referred to as position information data) representing the position of the.

船舶性能データは、例えば船舶の個船性能の評価、運航実績評価を行うためのデータである。例えば方位、対地船速、進路、対水船速、軸回線数、軸馬力、斜航角、舵角船体運動、加速度などをデータとする。また、遭遇海気象データは、運航時の船舶周囲の海気象を計測した物理量のデータであり、風速、風向、波パワースペクトル、波高、波周期、波向きなどをデータとする。そして、位置情報データは、運航時の船舶の位置などに関するデータであり、緯度、経度、時刻などをデータとする。   The ship performance data is data for performing, for example, evaluation of individual ship performance of a ship, and operation performance evaluation. For example, azimuth, ground speed, course, water speed, number of shaft lines, axial horsepower, skew angle, rudder angle hull motion, acceleration, etc. are used as data. The encounter sea meteorological data is physical quantity data obtained by measuring the sea weather around the ship at the time of operation, and includes wind speed, wind direction, wave power spectrum, wave height, wave period, wave direction, and the like. The position information data is data related to the position of the ship at the time of operation, and the latitude, longitude, time, and the like are used as data.

個船性能作成装置120は、運航データ蓄積装置160が蓄積する運航データ、個船性能入力データ蓄積装置170が蓄積する個船性能入力データに基づいて、実際の運航における平水中性能を表す平水中性能データを作成し、さらに個船性能データを作成処理する。個船性能作成装置120における処理の詳細については後述する。   The private ship performance creation device 120 is based on the operational data stored by the operational data storage device 160 and the private ship performance input data stored by the private boat performance input data storage device 170, and represents the plain water performance in actual operation. Create performance data and create and process individual ship performance data. Details of processing in the individual ship performance creation device 120 will be described later.

運航性能評価装置130は、個船性能データ蓄積装置180が蓄積する個船性能データに基づいて、船舶の平水中性能の時系列変化を解析処理し、平水中性能の経年劣化及び汚損影響を評価する処理を行う。また、船舶に搭載した積荷の状態毎に個船性能データを整理することにより、積荷の状態が運航性能に及ぼす影響を評価する処理を行う。   The operational performance evaluation device 130 analyzes and processes time-series changes in the performance of a ship's plain water based on the individual vessel performance data accumulated by the individual vessel performance data accumulation device 180, and evaluates the aging degradation and pollution effects of the flat water performance. Perform the process. In addition, by organizing the individual ship performance data for each state of the cargo loaded on the ship, a process for evaluating the influence of the state of the cargo on the operation performance is performed.

また、最適航路推定装置140は、個船性能データ蓄積装置180が蓄積する個船性能データ、外部機関装置300から提供され、陸上側装置200(陸上側通信装置210)を介して船側通信装置150に送られた海気象予報データ、運航データ蓄積装置160が蓄積する位置情報データなどに基づいて、運航の評価指標となるパラメータを最小化する目的地までの航路(最適航路)を探索、推定処理を行い、最適航路評価データを作成する。ここで最適航路の探索・推定処理では、船舶航行の安全性を確保するため、海気象予報データと個船性能データとに基づいて、航路上の遭遇海気象、船体運動等の推定値を算出し、これらの値が予め指定された閾値以下となるような制約条件を満足させることができるようにしている。海気象予報データは、例えば現在〜1週間先の、例えば航路周辺等における海気象に関するデータである。ここで、パラメータとしては、例えば航海時間、航海距離、航海燃料消費量などがある。また、最適航路推定装置140の演算に係るデータ、作成した最適航路評価データなどを最適航路評価データ蓄積装置190に蓄積させる。   Further, the optimum route estimation device 140 is provided by the individual ship performance data accumulated by the individual vessel performance data accumulation device 180 and the external engine device 300, and the ship side communication device 150 via the land side device 200 (land side communication device 210). Search and estimation processing for the route (optimal route) to the destination that minimizes the parameter that is the operation evaluation index, based on the sea weather forecast data sent to the sea, the location information data stored by the operation data storage device 160, etc. To create the optimum route evaluation data. Here, in the search / estimation process of the optimum route, in order to ensure the safety of vessel navigation, estimates of encounter sea weather, hull motion, etc. on the route are calculated based on the sea weather forecast data and individual vessel performance data. In addition, it is possible to satisfy a constraint that these values are equal to or less than a predetermined threshold value. The sea weather forecast data is data related to sea weather, for example, in the vicinity of the route, for example, from the present to one week ahead. Here, examples of the parameters include voyage time, voyage distance, and voyage fuel consumption. Further, the data related to the calculation of the optimum route estimation device 140, the created optimum route evaluation data, and the like are stored in the optimum route evaluation data storage device 190.

船側通信装置150は、例えば通信衛星400などを用いて、陸上側装置200(陸上側通信装置210)との間で各種データを含む信号を送受信するための通信を行う。運航データ蓄積装置160は、モニタリング装置110が生成した運航データを時系列に蓄積する。また、個船性能入力データ蓄積装置170は、あらかじめ定められた個船性能入力データを蓄積する。そして、個船性能データ蓄積装置180は、個船性能作成装置120が演算を行って作成した個船性能データを、例えば時系列に蓄積する。最適航路評価データ蓄積装置190は最適航路推定装置140が作成した最適航路評価データを蓄積する。   The ship-side communication device 150 performs communication for transmitting and receiving signals including various data with the land-side device 200 (land-side communication device 210) using the communication satellite 400, for example. The operation data storage device 160 stores operation data generated by the monitoring device 110 in time series. The individual ship performance input data storage device 170 accumulates predetermined individual ship performance input data. Then, the individual ship performance data storage device 180 stores the individual ship performance data created by the calculation by the individual ship performance creation device 120, for example, in time series. The optimum route evaluation data storage device 190 stores the optimum route evaluation data created by the optimum route estimation device 140.

一方、陸上側装置200は、船舶などと無線通信を行って処理を行う装置である。本実施の形態における陸上側装置200は、陸上側通信装置210、陸上データ蓄積装置220、陸上側処理装置230及び陸上側表示装置240で構成する。   On the other hand, the land-side device 200 is a device that performs processing by performing wireless communication with a ship or the like. The land-side device 200 in the present embodiment includes a land-side communication device 210, a land-data storage device 220, a land-side processing device 230, and a land-side display device 240.

陸上側通信装置210は、例えば通信衛星400などを用いて、運航支援装置100(船側通信装置150)との間で各種データを含む信号を送受信するための通信を行う。本実施の形態においては、例えば外部機関装置300において海気象予報データ蓄積装置310が蓄積する海気象予報データを含む信号を運航支援装置100に送る。また、運航支援装置100から送られた信号を受け、信号に含まれる運航データ、最適航路評価データ、個船性能データを陸上データ蓄積装置220に蓄積させる。陸上データ蓄積装置220は、例えば運航支援装置100が作成した運航データ、最適航路評価データ、個船性能データを蓄積する。蓄積したデータはデータベース化することで、例えば運航関係者がデータを利用することができる。また、利用に際し、最適航路評価データに基づく航路表示を行うための海図、運航関係者などが定めた航路及び大圏航路(外乱等を考慮しない場合の最短航路)などのデータを蓄積する。   The land-side communication device 210 performs communication for transmitting and receiving signals including various data to and from the operation support device 100 (ship-side communication device 150) using the communication satellite 400, for example. In the present embodiment, for example, a signal including sea weather forecast data stored in the sea weather forecast data storage device 310 in the external engine device 300 is sent to the operation support device 100. In addition, in response to the signal sent from the operation support device 100, the operation data, the optimum route evaluation data, and the individual vessel performance data included in the signal are stored in the land data storage device 220. The land data storage device 220 stores, for example, operation data, optimum route evaluation data, and individual ship performance data created by the operation support device 100. The accumulated data is made into a database, so that, for example, data can be used by operational personnel. In use, data such as a chart for displaying a route based on the optimum route evaluation data, a route determined by a person concerned with operation, a large-area route (the shortest route when disturbances are not considered), and the like are accumulated.

陸上側処理装置230は、陸上側装置200におけるデータの処理を行う。特に本実施の形態では、陸上側表示装置240に最適航路を表示させるためのデータ処理を行い、表示信号を送信する。陸上側表示装置240は、陸上側処理装置230からの表示信号に基づいて、例えば船舶の最適航路を表示させる。   The land-side processing device 230 performs data processing in the land-side device 200. In particular, in the present embodiment, data processing for displaying the optimum route on the land-side display device 240 is performed, and a display signal is transmitted. The landside display device 240 displays, for example, the optimum route of the ship based on the display signal from the landside processing device 230.

外部機関装置300は、海気象予報データを提供する装置である。海気象予報データ蓄積装置310は、例えば世界中における、所定時間後の海気象予報データを蓄積する。本実施の形態では、船舶の運航先までの進路などにおける海気象予報データを用いるものとする。   The external engine device 300 is a device that provides marine weather forecast data. The sea weather forecast data storage device 310 stores sea weather forecast data after a predetermined time in the world, for example. In the present embodiment, it is assumed that the sea weather forecast data in the course to the ship destination is used.

次に個船性能作成装置120における処理について説明する。上述したように、個船性能作成装置120は、船舶の運航状態に基づいて平水中性能データを作成し、さらに個船性能データを作成処理する。まず、平水中性能データの作成について説明する。   Next, processing in the individual ship performance creation device 120 will be described. As described above, the individual ship performance creation device 120 creates the performance data in the flat water based on the operational state of the ship, and further creates and processes the individual ship performance data. First, the creation of plain water performance data will be described.

平水中性能データは、基本的には平穏な海気象において得られるデータに基づいて作成する。平穏な海気象であるか否かについて、例えば外部機関装置300から提供される海気象予報データに基づいて判断することもできるが、例えば、波は海気象予報データのように、船舶に対して一方向、同じ高さで到来するとは限らないなど、実海域の海気象と異なることが多い。このため、本実施の形態では、レーダ波高計などのセンサ(計測機器)などによる実際の計測に基づいてモニタリング装置110が作成し、運航データ蓄積装置160に蓄積させている遭遇海気象データに基づいて判断を行うようにする。   Basically, the performance data of the flat water is created based on the data obtained in calm sea weather. Whether or not the sea weather is calm can be determined based on, for example, sea weather forecast data provided from the external engine device 300. For example, a wave is transmitted to a ship like sea weather forecast data. It is often different from sea weather in the actual sea area, such as not necessarily coming in the same direction and at the same height. For this reason, in the present embodiment, based on the meteorological meteorological data created by the monitoring device 110 based on actual measurement by a sensor (measuring instrument) such as a radar wave height meter and accumulated in the operation data accumulation device 160. Make a decision.

そして、例えば平水中性能データの作成に適切な条件をあらかじめ閾値などにより定めておき、条件を満たす遭遇海気象データ、その遭遇海気象データと対応する船舶性能データ(以下、遭遇海気象データなどという)を抽出する。条件としては遭遇海気象自体(波高、風速など)とすることができ、これにより平穏な遭遇海気象に基づくデータを抽出するようにする。   For example, conditions suitable for the creation of performance data of plain water are determined in advance by thresholds, etc., and meteorological sea meteorological data satisfying the conditions, ship performance data corresponding to the meteorological sea meteorological data (hereinafter referred to as meteorological sea meteorological data, etc.) ). The condition can be the encounter sea weather itself (wave height, wind speed, etc.), thereby extracting data based on the calm encounter sea weather.

また、各遭遇海気象は平穏と判断できる場合でも、船舶に対する外乱が複合的に生じた場合などに得られた船舶性能データには、平水中性能データを作成するには適切でないものが含まれる可能性がある。ここで、船舶の実海域における性能評価を行う際、通常、実海域運航時において、各外乱における抵抗成分と、ある船速で平水中を航行した場合に船体に作用する抵抗に相当する、いわゆる平水中抵抗成分とを重ね合わせることが可能であると仮定する。この仮定に基づき、これらすべての抵抗成分値を合計して船舶の全抵抗値を求め、その後、推進器作動状態の推定、船体と推進器との干渉影響の評価を行って主機出力、燃料消費量などの性能評価を行うためのパラメータを求めている。ここで、波浪中で船体に作用する抵抗は、平水中抵抗成分と波浪中抵抗増加成分との和で表され、特に波浪中抵抗増加成分は、遭遇波の波高、周期、船体との相対波向きの関数として表現され、さらに、波が船体によって反射される反射波成分と、船体運動に起因する運動成分に分けることができる。反射波成分は主として船首形状により定まり運動成分は、主として船体運動の大きさ(運動の振幅、遭遇波と運動との位相差)とにより定まる性質を有している。   In addition, even if it can be judged that the meteorological sea weather is calm, the ship performance data obtained when there are multiple disturbances to the ship includes data that is not appropriate for creating the performance data for plain water. there is a possibility. Here, when evaluating the performance of a ship in the actual sea area, it is usually equivalent to the resistance component in each disturbance and the resistance acting on the hull when navigating in flat water at a certain ship speed during actual sea operation. Assume that it is possible to superimpose the resistance component in plain water. Based on this assumption, all these resistance component values are summed to obtain the total resistance value of the ship, and then the propulsion unit operating state is estimated and the influence of interference between the hull and the propulsion unit is evaluated. The parameters for performance evaluation such as quantity are obtained. Here, the resistance acting on the hull in the waves is represented by the sum of the resistance component in plain water and the resistance increase component in the waves. In particular, the resistance increase component in the waves is the wave height, period, and relative wave to the hull. It is expressed as a function of the direction, and can be further divided into a reflected wave component in which the wave is reflected by the hull and a motion component resulting from the hull motion. The reflected wave component is mainly determined by the bow shape, and the motion component has a property mainly determined by the magnitude of the hull motion (motion amplitude, phase difference between the encounter wave and motion).

本実施の形態では、遭遇海気象自体を条件とするだけでなく、さらに遭遇海気象データと個船性能入力データとに基づいて、外乱に起因する船舶への抵抗成分(波浪中抵抗、風圧抵抗など)の値を(例えば因子毎に)算出するようにする。そして各外乱に係る抵抗成分値、外乱の合計の抵抗成分値などについて閾値を定めておき、閾値に基づく条件を満たし、また、あらかじめ定められた平水中抵抗成分の値に比べて十分に小さいと判断した遭遇海気象データなどを抽出する。   In the present embodiment, not only the conditions of the encounter sea weather itself, but also the resistance component to the ship due to the disturbance (resistance in waves, resistance to wind pressure) based on the encounter sea weather data and the individual ship performance input data. Etc.) (for example, for each factor). Then, a threshold value is set for the resistance component value related to each disturbance, the total resistance component value of the disturbance, etc., the condition based on the threshold is satisfied, and the resistance component value is sufficiently smaller than the predetermined value of the resistance component in plain water Extract the meteorological data of the sea you have determined.

また、例えば、外乱に起因する以外にも船舶の運航状態によっては平水中性能データを作成するには適切でないデータである可能性がある。このため、本実施の形態では、船舶性能データに基づいて、例えば船体運動、斜航角、舵角などがあらかじめ定められた閾値以下であるかどうかを条件とし、条件を満たす遭遇海気象データなどを抽出する。   Further, for example, there is a possibility that the data is not appropriate for creating the performance data in the plain water depending on the operational state of the ship other than due to disturbance. For this reason, in this embodiment, based on the ship performance data, for example, meteorological meteorological data that satisfies the condition, for example, whether or not the hull motion, the tilt angle, the rudder angle, etc. are below a predetermined threshold To extract.

例えば、個船性能作成装置120は、以上のような条件の組合わせに基づいて、平水中性能データの作成に適切な遭遇海気象データなどを抽出する。例えば、遭遇海気象自体を条件として、平穏な海気象ではないデータを除去した遭遇海気象データなどを抽出する。抽出したデータの中から、さらに船体運動、斜航角、舵角などの条件に基づいて遭遇海気象データなどを抽出する。そして、残ったデータに基づいて抵抗成分値を算出し、抵抗成分に係る条件を満たす遭遇海気象データなどを抽出する。抵抗成分に係る条件による抽出を手順の後の方で行うことで、抵抗成分値の演算に係る処理量を減らし、個船性能作成装置120の処理負荷低減、演算時間の短縮などをはかることができる。   For example, the individual ship performance creation device 120 extracts encounter sea weather data and the like suitable for creation of performance data in plain water based on a combination of the above conditions. For example, on the condition of the encounter sea weather itself, the encounter sea weather data from which data other than the calm sea weather is removed is extracted. From the extracted data, encounter sea meteorological data and the like are further extracted based on conditions such as hull motion, tilt angle and rudder angle. Then, the resistance component value is calculated based on the remaining data, and encounter sea weather data that satisfies the conditions related to the resistance component is extracted. By performing extraction based on the conditions related to the resistance component later in the procedure, it is possible to reduce the processing amount related to the calculation of the resistance component value, reduce the processing load of the individual ship performance creation device 120, shorten the calculation time, etc. it can.

次に算出した平水中性能データに基づき、あらためて平水中抵抗値を算出する。また、船舶性能データに基づいて、船舶に係る全抵抗値を算出(推定)する。そして、全抵抗値と平水中抵抗値との差を外乱に起因する抵抗成分値とする。外乱に起因する抵抗成分値と対応する遭遇海気象データとに基づいて、個船性能入力データを補正し、外乱抵抗成分を推定するための個船性能データを作成し、個船性能データ蓄積装置180に蓄積させる。   Next, the resistance value in plain water is calculated again based on the calculated performance data in plain water. Further, the total resistance value related to the ship is calculated (estimated) based on the ship performance data. Then, the difference between the total resistance value and the resistance value in plain water is set as the resistance component value caused by the disturbance. Based on the resistance component value caused by disturbance and the corresponding encounter sea weather data, the individual vessel performance input data is corrected, and individual vessel performance data for estimating the disturbance resistance component is created. Accumulate in 180.

また、運航データ蓄積装置160に蓄積している船体運動、加速度に係る船舶性能データと遭遇海気象データとに基づいて、船体運動、加速度に係る個船性能入力データを補正し、波浪中における船体運動に起因する外乱抵抗成分を推定するための個船性能データを作成し、個船性能データ蓄積装置180に蓄積させる。   Further, based on the ship performance data related to the hull motion and acceleration stored in the operation data storage device 160 and the encounter sea weather data, the individual ship performance input data related to the hull motion and acceleration is corrected, and the hull in the waves. Individual ship performance data for estimating the disturbance resistance component caused by the motion is created and stored in the individual ship performance data storage device 180.

次に、最適航路推定装置140が行う最適航路の探索、推定処理について説明する。ここで、本実施の形態においては、船舶が運航する海域について、緯度、経度方向にそれぞれ任意の間隔(例えば1.0度間隔)で格子状に区切った交点をノードとして設定しておくようにする。最適航路推定装置140は、海気象予報データ、個船性能データに基づいて、各ノード間(エッジ)のコスト(重み)の予測値を予測データとして作成する。作成する予測データは、例えば船速、燃料消費量、シーマージンなどに関するものがある。外部機関装置300から提供される海気象予報データが変更されると、最適航路推定装置140は再演算を行って予測データを更新するようにする。ここで、全エッジ分の予測データを作成などするようにしてもよいが、例えば船舶の後方など、進行することがない方向のエッジについては作成しないようにして演算量を低減することもできる。   Next, the optimum route search and estimation process performed by the optimum route estimation device 140 will be described. Here, in the present embodiment, as for the sea area operated by the ship, intersections divided in a grid pattern at arbitrary intervals (for example, 1.0 degree intervals) in the latitude and longitude directions are set as nodes. To do. The optimum route estimation device 140 creates a prediction value of cost (weight) between nodes (edges) as prediction data based on sea weather forecast data and individual ship performance data. The prediction data to be created includes, for example, ship speed, fuel consumption, sea margin, and the like. When the sea weather forecast data provided from the external engine device 300 is changed, the optimum route estimation device 140 recalculates and updates the prediction data. Here, prediction data for all edges may be created, but the amount of calculation can be reduced by not creating edges in a direction that does not travel, for example, behind a ship.

そして、作成した予測データに基づいて、最適経路(航路)を探索し、最適航路評価データを作成する。最適航路を探索するための最適経路探索アルゴリズムとしては、最短経路探索を行うのに有力なダイクストラ(Dijkstra)法などを用いて行うことができる。ダイクストラ法とは、ノード間を結ぶエッジに対して重みをつけ、その重みに基づく演算により、最小となる経路を探索する手法である。重みは、前述したように燃料消費量などに対して作成した予測データにより得られる。ここでは燃料消費量について重みを設定することで、燃料消費量を低減することができる最適航路の探索、推定を行い、最適航路評価データを作成し、最適航路評価データ蓄積装置190に蓄積させる。   Then, based on the created prediction data, an optimum route (route) is searched, and optimum route evaluation data is created. As an optimal route search algorithm for searching for an optimal route, a Dijkstra method that is effective for performing the shortest route search can be used. The Dijkstra method is a technique for assigning a weight to edges connecting nodes and searching for a minimum route by an operation based on the weight. The weight is obtained from the prediction data created for the fuel consumption as described above. Here, by setting a weight for the fuel consumption, the optimum route that can reduce the fuel consumption is searched and estimated, and the optimum route evaluation data is created and stored in the optimum route evaluation data storage device 190.

以上のように、実施の形態1の船舶運航支援システムによれば、モニタリング装置110が作成して運航データ蓄積装置160が蓄積する運航データ(特に遭遇海気象データ、船舶性能データ)及び個船性能入力データに基づいて、個船性能作成装置120が実際の運航における平水中性能データ、個船性能データを作成処理するようにしたので、実海域を運航する船舶において実測した遭遇海気象データと船舶性能データとにより個船性能入力データを補正し、現実に近い個船性能データを作成することができる。特に、本実施の形態では、抵抗成分値の演算を行い、平水中性能データを作成するのに適切な遭遇海気象データなどを抽出するようにしたので、例えば各海気象は平穏であると判断できるような場合であっても、複合することで平水中性能データ作成に適さない運航データを除去することができるため、より高精度な平水中性能データを作成することができる。   As described above, according to the ship operation support system of the first embodiment, the operation data (particularly encounter sea weather data, ship performance data) and individual ship performance created by the monitoring device 110 and stored by the operation data storage device 160 are described. Based on the input data, the individual ship performance creation device 120 creates and processes the plain water performance data and the individual ship performance data in the actual operation, so the encounter sea weather data and the ship actually measured in the ship operating in the actual sea area The individual vessel performance input data is corrected with the performance data, and the individual vessel performance data close to reality can be created. In particular, in the present embodiment, the resistance component value is calculated, and the encounter sea weather data suitable for creating the performance data of the plain water is extracted, so for example, it is determined that each sea weather is calm. Even if it is possible, since it is possible to remove the operation data that is not suitable for the creation of the performance data of the plain water by combining, it is possible to create the more accurate water performance data.

図2は、本実施の形態における最適航路推定装置140が推定した最適航路の結果例を表す図である。図2では、比較対象として従前の方法で推定した最適航路も示している。そして、個船性能作成装置120が作成した個船性能データに基づいて、最適航路推定装置140が最適航路を推定するようにしたので、図2に示すように、航海燃料消費量をパラメータとして推定を行った場合、航海燃料消費量のさらなる低減をはかることができる航路を推定することができる。このため、船舶による二酸化炭素の排出を削減することで地球温暖化の防止に寄与することができる。   FIG. 2 is a diagram illustrating an example of the result of the optimum route estimated by the optimum route estimation device 140 according to the present embodiment. FIG. 2 also shows an optimum route estimated by a conventional method as a comparison target. Since the optimum route estimation device 140 estimates the optimum route based on the individual vessel performance data created by the individual vessel performance creation device 120, as shown in FIG. 2, the voyage fuel consumption is estimated as a parameter. , It is possible to estimate a route that can further reduce the voyage fuel consumption. For this reason, it can contribute to prevention of global warming by reducing the discharge | emission of the carbon dioxide by a ship.

また、運航性能評価装置130が個船性能作成装置120が作成した個船性能データに基づいて、例えば平水中性能の時系列変化を解析して経年劣化及び汚損影響の評価処理、積荷の状態に基づいて個船性能データを分類して関係処理を行うようにすることで、処理により得られたデータ、個船性能データ等に基づいて、積荷状態や外乱影響、経年劣化や船体汚損影響を表す評価式、係数などを構築することができ、設計などにフィードバックして船舶の開発などに利用することができる。   Further, based on the individual vessel performance data created by the individual vessel performance creation device 120, the operational performance evaluation device 130 analyzes, for example, time series changes in the performance of plain water to evaluate the aging deterioration and pollution effect, By classifying the individual ship performance data based on the data, the relationship processing is performed, and based on the data obtained by the process, the individual ship performance data, etc., the load status, disturbance effect, aging deterioration and hull damage effect are expressed. Evaluation formulas, coefficients, etc. can be constructed, and can be fed back to design and used for ship development.

実施の形態2.
図3は本発明の実施の形態2に係る運航支援システムの構成を表す図である。上述の実施の形態1では、船舶側に搭載する運航支援装置100に最適航路推定装置140を備えるようにした。本実施の形態では、最適航路推定装置140の役割を陸上側装置200の陸上側処理装置230が行うようにしたものである。また、最適航路評価データ蓄積装置190は陸上データ蓄積装置220と一体となっているものとする。
Embodiment 2. FIG.
FIG. 3 is a diagram showing a configuration of an operation support system according to Embodiment 2 of the present invention. In the first embodiment described above, the optimum route estimation device 140 is provided in the operation support device 100 mounted on the ship side. In the present embodiment, the land-side processing device 230 of the land-side device 200 performs the role of the optimum route estimation device 140. Further, it is assumed that the optimum route evaluation data storage device 190 is integrated with the land data storage device 220.

運航支援装置100側においては、個船性能作成装置120が作成し、個船性能データ蓄積装置180が蓄積している個船性能データを含む信号を船側通信装置150から送信する。陸上側装置200側においては、通信衛星400を介して陸上側通信装置210において信号を受信する。最適航路推定装置140は、実施の形態1と同様に、個船性能データと外部機関装置300から提供された海気象予報データとに基づいて最適航路を推定する処理を行う。   On the side of the operation support device 100, the ship side communication device 150 transmits a signal including the individual vessel performance data created by the individual vessel performance creation device 120 and accumulated in the individual vessel performance data accumulation device 180. On the land side device 200 side, the land side communication device 210 receives a signal via the communication satellite 400. Similar to the first embodiment, the optimum route estimation device 140 performs processing for estimating the optimum route based on the individual vessel performance data and the sea weather forecast data provided from the external engine device 300.

陸上側装置200の陸上側処理装置230において、最適航路推定装置140と同様の処理を行うことにより、例えば陸上側にいる運航管理者が、船舶の乗船員側に最適航路を提示し、管理する船舶の運航を支援することができる。また、複数の船舶に係る最適航路の推定などを行うことで、集中管理などを行うことができる   By performing the same processing as the optimum route estimation device 140 in the landside processing device 230 of the landside device 200, for example, an operation manager on the landside presents and manages the optimum route to the crew of the ship. It can support the operation of ships. In addition, centralized management can be performed by estimating the optimum route for multiple ships.

ここでは個船性能作成装置120を船舶側に搭載するものとして説明したが、これに限定するものではない。例えば、モニタリング装置110を船舶側に備え、最適航路推定装置140、個船性能作成装置120の役割を陸上側装置200の陸上側処理装置230が行う(最適航路推定装置140、個船性能作成装置120を陸上側装置200に搭載する)ようにしてもよい。   Here, the individual ship performance creating apparatus 120 has been described as being mounted on the ship side, but the present invention is not limited to this. For example, the monitoring device 110 is provided on the ship side, and the land-side processing device 230 of the land-side device 200 performs the roles of the optimum route estimation device 140 and the individual vessel performance creation device 120 (optimum route estimation device 140, individual vessel performance creation device). 120 may be mounted on the land-side device 200).

100 運航支援装置
110 モニタリング装置
120 個船性能作成装置
130 運航性能評価装置
140 最適航路推定装置
150 船側通信装置
160 運航データ蓄積装置
170 個船性能入力データ蓄積装置
180 個船性能データ蓄積装置
190 最適航路評価データ蓄積装置
200 陸上側装置
210 陸上側通信装置
220 陸上データ蓄積装置
230 陸上側処理装置
240 陸上側表示装置
300 外部機関装置
310 海気象予報データ蓄積装置
400 通信衛星
DESCRIPTION OF SYMBOLS 100 Operation support apparatus 110 Monitoring apparatus 120 Private ship performance preparation apparatus 130 Operation performance evaluation apparatus 140 Optimal route estimation apparatus 150 Ship side communication apparatus 160 Operation data storage apparatus 170 Individual ship performance input data storage apparatus 180 Individual ship performance data storage apparatus 190 Optimal route Evaluation data storage device 200 Landside device 210 Landside communication device 220 Landside data storage device 230 Landside processing device 240 Landside display device 300 External engine device 310 Sea weather forecast data storage device 400 Communication satellite

Claims (6)

船舶に搭載した計測手段による計測に基づいて、航行中の前記船舶が遭遇している海気象に係る遭遇海気象データ及び該海気象における前記船舶の性能に係る船舶性能データを作成して記憶装置に記憶させるモニタリング装置と、
前記船舶の平水中における性能を表す平水中性能データを作成するために、あらかじめ設定した条件を満たす前記遭遇海気象データ及び前記船舶性能データを抽出処理し、抽出した前記遭遇海気象データ及び前記船舶性能データに基づいて前記平水中性能データを作成処理し、前記遭遇海気象データ、前記船舶性能データ及び前記平水中性能データに基づいて、前記船舶に対してあらかじめ設定した個船性能に係る個船性能入力データを補正して、運航における個船性能に係る個船性能データを作成する個船性能作成装置と、
前記個船性能データ及び航路上の海気象を予測した海気象予測データに基づいて、前記船舶の最適な航路を推定する処理を行う最適航路推定装置と
を備えることを特徴とする船舶運航支援システム。
Based on the measurement by the measuring means mounted on the ship, the storage device creates the encounter sea meteorological data related to the sea weather encountered by the ship in operation and the ship performance data related to the performance of the ship in the sea weather A monitoring device to be stored in
In order to create flat water performance data representing the performance of the ship in flat water, the encounter sea meteorological data and the ship performance data satisfying preset conditions are extracted, and the extracted encounter sea meteorological data and the ship are extracted. The flat water performance data is created based on the performance data, and the individual ship related to the individual ship performance set in advance for the ship based on the encounter sea weather data, the ship performance data, and the flat water performance data. A private ship performance creation device that corrects performance input data and creates private ship performance data related to private ship performance in operation;
A ship navigation support system comprising: an optimum route estimation device that performs processing for estimating an optimum route of the ship based on the individual ship performance data and sea weather prediction data obtained by predicting sea weather on the route. .
前記個船性能作成装置の抽出処理は、前記遭遇海気象を条件として第1段階の抽出を行い、船舶の航行状態を条件として第2段階の抽出を行い、前記遭遇海気象に基づく船舶に対する抵抗値を演算し、該抵抗値を条件として第3段階の抽出を行うことを特徴とする請求項1記載の船舶運航支援システム。   In the extraction process of the individual ship performance creation device, the first stage extraction is performed on the condition of the encounter sea weather, the second stage extraction is performed on the condition of the navigation of the ship, and the resistance to the ship based on the encounter sea weather is determined. The ship operation support system according to claim 1, wherein a value is calculated and a third stage of extraction is performed on the condition of the resistance value. 前記個船性能作成装置が作成した個船性能データを時系列に解析し、前記船舶の経年劣化又は汚損による影響を評価処理し、また、船舶の積荷の積載量に基づいて前記個船性能データを分類し、積載量との関係を評価処理する運航性能評価装置をさらに備えることを特徴とする請求項1又は2記載の船舶運航支援システム。   Analyzing the individual ship performance data created by the individual ship performance creation device in a time series, evaluating the effects of aging or fouling of the ship, and the ship performance data based on the load capacity of the ship's cargo The ship operation support system according to claim 1, further comprising an operation performance evaluation device that classifies the data and classifies the relationship with the load amount. 前記モニタリング装置、前記個船性能作成装置及び最適航路推定装置を前記船舶に搭載することを特徴とする請求項請求項1〜3のいずれかに記載の船舶運航支援システム。   The ship operation support system according to any one of claims 1 to 3, wherein the monitoring device, the individual ship performance creation device, and the optimum route estimation device are mounted on the ship. 前記モニタリング装置及び前記個船性能作成装置を前記船舶に搭載し、
前記最適航路推定装置を陸上に設置することを特徴とする請求項1〜3のいずれかに記載の船舶運航支援システム。
The monitoring device and the individual ship performance creation device are mounted on the ship,
The ship navigation support system according to any one of claims 1 to 3, wherein the optimum route estimation device is installed on land.
前記モニタリング装置を前記船舶に搭載し、
前記個船性能作成装置及び前記最適航路推定装置を陸上に設置することを特徴とする請求項1〜3のいずれかに記載の船舶運航支援システム。
The monitoring device is mounted on the ship,
The ship operation support system according to any one of claims 1 to 3, wherein the individual ship performance creation device and the optimum route estimation device are installed on land.
JP2010233307A 2010-10-18 2010-10-18 Ship operation support system Active JP5312425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233307A JP5312425B2 (en) 2010-10-18 2010-10-18 Ship operation support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233307A JP5312425B2 (en) 2010-10-18 2010-10-18 Ship operation support system

Publications (2)

Publication Number Publication Date
JP2012086604A true JP2012086604A (en) 2012-05-10
JP5312425B2 JP5312425B2 (en) 2013-10-09

Family

ID=46258711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233307A Active JP5312425B2 (en) 2010-10-18 2010-10-18 Ship operation support system

Country Status (1)

Country Link
JP (1) JP5312425B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119356A (en) * 2012-12-17 2014-06-30 Taisei Corp Marine navigation simulation device
JP2014125123A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Energy optimization and utilization system and energy optimization and utilization method
JP2014127045A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Operation supporting system, and operation supporting method
JP5543037B1 (en) * 2013-02-22 2014-07-09 日本郵船株式会社 Navigation analysis device, navigation analysis method, program, and recording medium
JP2014162257A (en) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd Operation plan support system, operation plan support method, and program
WO2014188584A1 (en) * 2013-05-24 2014-11-27 日本郵船株式会社 Ship managing device, ship managing system, and program
WO2014192531A1 (en) * 2013-05-31 2014-12-04 古野電気株式会社 Navigation assistance device, navigation assistance method, and program
JP2015083468A (en) * 2015-01-07 2015-04-30 日本郵船株式会社 Ship management device, ship management system, and program
WO2016059809A1 (en) * 2014-10-17 2016-04-21 三菱重工業株式会社 Ship propulsion performance prediction device and method, and ship operation assist system
JP2016060454A (en) * 2014-09-22 2016-04-25 三菱重工業株式会社 Ship operation schedule optimization system and ship operation schedule optimization method
JP2016120767A (en) * 2014-12-24 2016-07-07 三菱重工業株式会社 Ship equipment maintenance determination device
JP2016133992A (en) * 2015-01-20 2016-07-25 三井造船株式会社 Ship secular change estimation method, ship secular change estimation system, optimal sea route calculation system, and ship operation support system
CN107953347A (en) * 2017-12-29 2018-04-24 洛阳理工学院 A kind of level land and the dual-purpose Labour-saving car of step and the clean robot based on the Labour-saving car
KR101914857B1 (en) * 2017-02-27 2018-11-02 경북대학교 산학협력단 Underwater drone dead reckoning system
WO2019004362A1 (en) * 2017-06-30 2019-01-03 川崎重工業株式会社 Vessel operation assistance apparatus and vessel operation assistance program
JP2019014409A (en) * 2017-07-10 2019-01-31 川崎重工業株式会社 Monitoring system
JP2020104699A (en) * 2018-12-27 2020-07-09 川崎重工業株式会社 Vessel performance estimation device and vessel performance estimation program
US11998152B2 (en) 2018-07-30 2024-06-04 Lg Electronics Inc. Nozzle of cleaner and methods for controlling same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118689A (en) * 2001-10-15 2003-04-23 Mitsubishi Heavy Ind Ltd Operating condition monitoring device for ship
JP2006193124A (en) * 2005-01-17 2006-07-27 Mitsubishi Heavy Ind Ltd Operation management device for vessel, method therefor, and operation management system for vessel
JP2007047036A (en) * 2005-08-10 2007-02-22 Universal Shipbuilding Corp Support system for avoiding sail under heavy weather
JP2007057499A (en) * 2005-08-26 2007-03-08 Universal Shipbuilding Corp Optimal course search system
JP2007245935A (en) * 2006-03-16 2007-09-27 Japan Agengy For Marine-Earth Science & Technology Voyage schedule assistance device
JP2008145312A (en) * 2006-12-12 2008-06-26 Universal Shipbuilding Corp Optimum route search method
JP2009286230A (en) * 2008-05-28 2009-12-10 Mitsui Eng & Shipbuild Co Ltd Operation support system of marine vessel and operation support method of marine vessel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118689A (en) * 2001-10-15 2003-04-23 Mitsubishi Heavy Ind Ltd Operating condition monitoring device for ship
JP2006193124A (en) * 2005-01-17 2006-07-27 Mitsubishi Heavy Ind Ltd Operation management device for vessel, method therefor, and operation management system for vessel
JP2007047036A (en) * 2005-08-10 2007-02-22 Universal Shipbuilding Corp Support system for avoiding sail under heavy weather
JP2007057499A (en) * 2005-08-26 2007-03-08 Universal Shipbuilding Corp Optimal course search system
JP2007245935A (en) * 2006-03-16 2007-09-27 Japan Agengy For Marine-Earth Science & Technology Voyage schedule assistance device
JP2008145312A (en) * 2006-12-12 2008-06-26 Universal Shipbuilding Corp Optimum route search method
JP2009286230A (en) * 2008-05-28 2009-12-10 Mitsui Eng & Shipbuild Co Ltd Operation support system of marine vessel and operation support method of marine vessel

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119356A (en) * 2012-12-17 2014-06-30 Taisei Corp Marine navigation simulation device
JP2014125123A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Energy optimization and utilization system and energy optimization and utilization method
JP2014127045A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Operation supporting system, and operation supporting method
JP2014162257A (en) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd Operation plan support system, operation plan support method, and program
JP5543037B1 (en) * 2013-02-22 2014-07-09 日本郵船株式会社 Navigation analysis device, navigation analysis method, program, and recording medium
WO2014128915A1 (en) * 2013-02-22 2014-08-28 日本郵船株式会社 Navigational analysis device, navigational analysis method, program, and recording medium
WO2014188584A1 (en) * 2013-05-24 2014-11-27 日本郵船株式会社 Ship managing device, ship managing system, and program
JPWO2014188584A1 (en) * 2013-05-24 2017-02-23 日本郵船株式会社 Ship management device, ship management system and program
WO2014192531A1 (en) * 2013-05-31 2014-12-04 古野電気株式会社 Navigation assistance device, navigation assistance method, and program
JPWO2014192531A1 (en) * 2013-05-31 2017-02-23 古野電気株式会社 Navigation support device, navigation support method, and program
JP2016060454A (en) * 2014-09-22 2016-04-25 三菱重工業株式会社 Ship operation schedule optimization system and ship operation schedule optimization method
CN105722756A (en) * 2014-10-17 2016-06-29 三菱重工业株式会社 Ship propulsion performance prediction device and method, and ship operation assist system
JP2016078685A (en) * 2014-10-17 2016-05-16 三菱重工業株式会社 Ship propulsion performance estimation device, method of the same and ship navigation support system
WO2016059809A1 (en) * 2014-10-17 2016-04-21 三菱重工業株式会社 Ship propulsion performance prediction device and method, and ship operation assist system
CN105722756B (en) * 2014-10-17 2017-12-08 三菱重工业株式会社 The propulsive performance prediction meanss and its method of ship and the navigation accessory system of ship
JP2016120767A (en) * 2014-12-24 2016-07-07 三菱重工業株式会社 Ship equipment maintenance determination device
JP2015083468A (en) * 2015-01-07 2015-04-30 日本郵船株式会社 Ship management device, ship management system, and program
JP2016133992A (en) * 2015-01-20 2016-07-25 三井造船株式会社 Ship secular change estimation method, ship secular change estimation system, optimal sea route calculation system, and ship operation support system
KR101914857B1 (en) * 2017-02-27 2018-11-02 경북대학교 산학협력단 Underwater drone dead reckoning system
JPWO2019004362A1 (en) * 2017-06-30 2020-04-30 川崎重工業株式会社 Ship operation support device and operation support program
WO2019004362A1 (en) * 2017-06-30 2019-01-03 川崎重工業株式会社 Vessel operation assistance apparatus and vessel operation assistance program
JP2019014409A (en) * 2017-07-10 2019-01-31 川崎重工業株式会社 Monitoring system
CN107953347A (en) * 2017-12-29 2018-04-24 洛阳理工学院 A kind of level land and the dual-purpose Labour-saving car of step and the clean robot based on the Labour-saving car
US11998152B2 (en) 2018-07-30 2024-06-04 Lg Electronics Inc. Nozzle of cleaner and methods for controlling same
JP2020104699A (en) * 2018-12-27 2020-07-09 川崎重工業株式会社 Vessel performance estimation device and vessel performance estimation program
JP7189764B2 (en) 2018-12-27 2022-12-14 川崎重工業株式会社 Ship performance estimation device and ship performance estimation program

Also Published As

Publication number Publication date
JP5312425B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5312425B2 (en) Ship operation support system
JP4934756B1 (en) Ship optimum route calculation system, vessel operation support system, vessel optimum route calculation method, and vessel operation support method
JP4970346B2 (en) Ship operation support system and ship operation support method
EP2498056B1 (en) Maneuvering control method and maneuvering control system
JP5435418B2 (en) Ocean current data assimilation method and system
JP5420723B2 (en) Ship optimum route calculation system, vessel operation support system, vessel optimum route calculation method, and vessel operation support method
JP6867898B2 (en) Optimal route search method and equipment
JP7114228B2 (en) Ship performance analysis system
JP2013134089A (en) Optimal sailing route calculating apparatus and optimal sailing route calculating method
KR101661928B1 (en) Ship Energy Management Method and System
CN105539797A (en) Navigation method and system of wind power assisting navigation ship based on ECDIS
Prpić-Oršić et al. Influence of ship routes on fuel consumption and CO2 emission
CN106372750A (en) Sailing management method and system
WO2014128915A1 (en) Navigational analysis device, navigational analysis method, program, and recording medium
Coraddu et al. Integration of seakeeping and powering computational techniques with meteo-marine forecasting data for in-service ship energy assessment
JP6984874B2 (en) Voyage planning method and voyage planning system
KR20190135215A (en) System and method for calculating eeoi and computer-readable recording medium thereof
KR20200022293A (en) System and method for providing optimized vessel seaway and computer-readable recording medium thereof
KR20200004628A (en) System and method for providing optimized vessel seaway and computer-readable recording medium thereof
CN115979275B (en) Energy consumption optimal route planning method for full coverage of sea area
KR101307828B1 (en) Wave height measuring device for shipping
Eskild Development of a method for weather routing of ships
JP7189764B2 (en) Ship performance estimation device and ship performance estimation program
JPWO2019004362A1 (en) Ship operation support device and operation support program
KR20200127111A (en) System and method for providing performance of a vessel and computer-readable recording medium thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350