JP2013212218A - Centrifugal blood pump - Google Patents

Centrifugal blood pump Download PDF

Info

Publication number
JP2013212218A
JP2013212218A JP2012083186A JP2012083186A JP2013212218A JP 2013212218 A JP2013212218 A JP 2013212218A JP 2012083186 A JP2012083186 A JP 2012083186A JP 2012083186 A JP2012083186 A JP 2012083186A JP 2013212218 A JP2013212218 A JP 2013212218A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
impeller
casing
blood pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012083186A
Other languages
Japanese (ja)
Other versions
JP5828459B2 (en
Inventor
Akira Kosaka
亮 小阪
Takashi Yamane
隆志 山根
Kazuya Yasui
和哉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012083186A priority Critical patent/JP5828459B2/en
Publication of JP2013212218A publication Critical patent/JP2013212218A/en
Application granted granted Critical
Publication of JP5828459B2 publication Critical patent/JP5828459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • External Artificial Organs (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape of a kinetic pressure groove of a highly precise radial kinetic pressure bearing, which is used as a kinetic pressure groove of a radial kinetic pressure bearing of a centrifugal blood pump and used as an alternative to an existing spiral groove, can be easily machined or stamped in injection molding, and is manufactured while saving a manufacturing cost and time.SOLUTION: A centrifugal blood pump includes a casing equipped with an inflow port and an outflow port, and a vaned wheel for sending a liquid from the inflow port to the outflow port by rotation in the casing. In the pump, a kinetic pressure groove which is a radial kinetic pressure bearing for generating a kinetic pressure between the static shaft of the inner cylinder of the casing and the inner circumference of the rotating vane has a multirobe shape of the rotating surface shape, and the shaft direction shape is such that the groove portion is parallel to the rotating shaft.

Description

本発明は、人工心臓用、補助循環用及び心臓手術用の遠心型の血液ポンプに関するものであって、軸受の構造に特徴を有する。また、人工心臓用、補助循環用及び心臓手術用以外の、医療用ポンプ、あるいは、生物分野用ポンプ、産業用ポンプ等としても使用することができる。   The present invention relates to a centrifugal blood pump for artificial heart, auxiliary circulation, and cardiac surgery, and has a feature in the structure of a bearing. Further, it can be used as a medical pump, a biological pump, an industrial pump, or the like other than those for artificial heart, auxiliary circulation and cardiac surgery.

近年、医療技術等の進歩に伴い、人工心臓用、補助循環用及び心臓手術用のポンプとして遠心血液ポンプが用いられるようになってきた。
例えば、特許文献1に記載の遠心血液ポンプでは、接触軸受が血液の障害物となり流れが滞り血栓等が生じることを減じるために、球状の1個の接触軸受で支持するように接触軸受に工夫を施したものである。
しかしながら、接触軸受では、どうしてもその部分で血液の流れが滞り血栓等が生じることがさけられないことや、長期使用による接触軸受部分での摩耗粉の発生の可能性が残るため、非接触軸受を用いた遠心血液ポンプが、例えば特許文献2〜6等のように多数提案されている。
特許文献2では、スラスト方向(軸方向)軸受及びラジアル方向(半径方向)軸受に非接触軸受である流体力学的動圧軸受を採用しており、動圧軸受はスラスト方向及びラジアル方向いずれもスパイラル溝を用いている。
特許文献3では、スラスト方向軸受に非接触軸受である流体力学的スラスト軸受を用い、ラジアル方向は、モータ固定子と羽根車の磁気領域との間の磁気的な相互作用が半径方向の羽根車剛性を創出することで行っておりいわゆる非接触軸受である磁気軸受に当たる。なお、ケーシング内部に回転固定軸を有していない。
特許文献4では、スラスト方向の非接触軸受としては動圧溝による流体力学的スラスト軸受と複数の永久磁石の吸引力の組合せ、ラジアル方向の非接触軸受としては、上記特許文献3と同様に永久磁石の磁気的吸引力により支持剛性を高めることにより実現(いわゆる磁気軸受に当たる)している。
特許文献5は、本出願人等が先に出願したものであり、スラスト方向軸受及びラジアル方向軸受に非接触軸受である流体力学的動圧軸受を採用しているが、動圧軸受はいずれも螺旋状溝形状である。
特許文献6は、本出願人が先に出願したものであり、スラスト方向軸受及びラジアル方向軸受に非接触軸受である流体力学的動圧軸受を採用しているが、動圧軸受はいずれも螺旋状溝形状である。
In recent years, with the advancement of medical technology and the like, centrifugal blood pumps have been used as pumps for artificial heart, auxiliary circulation, and heart surgery.
For example, in the centrifugal blood pump described in Patent Document 1, the contact bearing is devised to be supported by a single spherical contact bearing in order to reduce that the contact bearing becomes an obstacle to blood and the flow is delayed and a thrombus is generated. Is given.
However, in the case of contact bearings, the flow of blood is inevitably stagnated in that part, and it is not possible to generate thrombus. Many centrifugal blood pumps used have been proposed, for example, as in Patent Documents 2-6.
In Patent Document 2, a hydrodynamic hydrodynamic bearing which is a non-contact bearing is adopted as a thrust direction (axial direction) bearing and a radial direction (radial direction) bearing, and the hydrodynamic bearing is spiral in both the thrust direction and the radial direction. A groove is used.
In Patent Document 3, a hydrodynamic thrust bearing, which is a non-contact bearing, is used as the thrust direction bearing, and in the radial direction, the magnetic interaction between the motor stator and the magnetic region of the impeller is a radial impeller. This is done by creating rigidity and corresponds to a magnetic bearing which is a so-called non-contact bearing. In addition, it does not have a rotation fixed shaft inside the casing.
In Patent Document 4, the non-contact bearing in the thrust direction is a combination of a hydrodynamic thrust bearing with a dynamic pressure groove and the attractive force of a plurality of permanent magnets, and the non-contact bearing in the radial direction is permanent as in Patent Document 3 above. This is realized by increasing the support rigidity by the magnetic attraction force of the magnet (it hits a so-called magnetic bearing).
Patent Document 5 was filed earlier by the present applicant and the like, and employs hydrodynamic hydrodynamic bearings that are non-contact bearings for thrust direction bearings and radial direction bearings. It is a spiral groove shape.
Patent Document 6 was filed earlier by the present applicant and employs hydrodynamic hydrodynamic bearings that are non-contact bearings for thrust direction bearings and radial direction bearings. The groove shape.

特開2004−144070号公報JP 2004-144070 A 特開2005−61543号公報JP 2005-61543 A 特表2010−525871号公報Special table 2010-525871 gazette 特開2010−209691号公報JP 2010-209691 A 特開2004−245303号公報JP 2004-245303 A 特開2009−254436号公報JP 2009-254436 A

上記したとおり、遠心血液ポンプの長期使用を実現させるため、非接触軸受である磁気軸受と動圧軸受を用いた遠心血液ポンプが開発されている。しかし、磁気軸受を用いたポンプでは、羽根車浮上用の変位センサと複雑なフィードバック用の電気回路が必要となるため、システムが複雑になってしまうばかりか、長期の信頼性を低下させていた。一方、動圧軸受を用いたポンプは、受動的な軸受を採用しているため、羽根車浮上用の変位センサや電気回路が必要なく、安全かつ長期の信頼性が高い。また、モータとドライバを結ぶ電気ケーブルの素線数も少ないため、断線のリスクも少ない。
これまで遠心血液ポンプのラジアル方向の安定化のために動圧軸受を設ける場合、螺旋溝の形状であるヘリンボーン動圧軸受が主に用いられている。しかし、螺旋溝形状では、軸受側面に動圧溝を形成する必要があるため、切削加工の場合は、軸受側面より切削加工を行う必要がある。金型による射出成形の場合は、金型は螺旋溝と同じ方向に回転させながら製品を引き抜く必要がある。そのため、製作コストの増加と溝形状の精度悪化と製作時間の増加が問題となっている。また、動圧溝による発生力を増加するためには、固定軸と回転軸の間の軸受隙間を狭くしたり、動圧溝のエッジと溝部を鋭くしたりすることで、動圧溝での局所圧を高くする方法がある。一般的に、ハードディスク等の産業用の動圧軸受では、軸受隙間は数μm程度である。しかし、作動流体に血液を使用する遠心血液ポンプにおいては、産業用の動圧軸受のような狭い軸受隙間や鋭いエッジと溝部での高剪断応力による赤血球の血球破壊や血栓形成が大きな問題となっている。
As described above, in order to realize long-term use of a centrifugal blood pump, a centrifugal blood pump using a magnetic bearing and a dynamic pressure bearing that are non-contact bearings has been developed. However, a pump using a magnetic bearing requires a displacement sensor for impeller levitation and a complicated electric circuit for feedback, which not only complicates the system but also reduces long-term reliability. . On the other hand, since the pump using a dynamic pressure bearing employs a passive bearing, a displacement sensor and an electric circuit for impeller levitation are not required, and the safety and long-term reliability are high. Moreover, since the number of strands of the electric cable connecting the motor and the driver is small, there is little risk of disconnection.
Conventionally, when a dynamic pressure bearing is provided to stabilize the centrifugal blood pump in the radial direction, a herringbone dynamic pressure bearing having a spiral groove shape has been mainly used. However, in the spiral groove shape, it is necessary to form a dynamic pressure groove on the side surface of the bearing, and in the case of cutting, it is necessary to perform cutting from the side surface of the bearing. In the case of injection molding using a mold, it is necessary to pull out the product while rotating the mold in the same direction as the spiral groove. Therefore, the increase in manufacturing cost, the deterioration of the groove shape accuracy, and the increase in manufacturing time are problems. In addition, in order to increase the force generated by the dynamic pressure groove, the bearing gap between the fixed shaft and the rotary shaft is narrowed, or the edge and groove portion of the dynamic pressure groove are sharpened. There is a way to increase the local pressure. Generally, in an industrial dynamic pressure bearing such as a hard disk, the bearing gap is about several μm. However, in centrifugal blood pumps that use blood as the working fluid, erythrocyte blood cell destruction and thrombus formation due to high shear stress in narrow bearing gaps and sharp edges and grooves, such as industrial dynamic pressure bearings, are major problems. ing.

上記課題を解決するために、本発明は、中心に流入口と径方向外側に流出口を有するケーシングと、ケーシング内部に回転自在に収容された羽根車と、ケーシング下部中心にはケーシング内方に凹んだ内筒を有し、該内筒は固定軸として、回転する羽根車を支え、ケーシングの内筒で囲まれた空間内でモータにより回転駆動される永久磁石と、羽根車内に内蔵された永久磁石とで、ケーシングの内筒の隔壁越しに磁気カップリングを形成した回転駆動装置と、羽根車上部に設けられ羽根車の回転により流入口からの液体を流出口に向けて送り出すベーンと、羽根車上下面とそれに対向するケーシング内面とで構成されたスラスト動圧軸受と、内筒とそれに対向する羽根車の内周面とで構成されたラジアル動圧軸受とを備えた遠心血液ポンプであって、前記羽根車上部はケーシングの内筒端面の上部空間内に張り出すと共に、前記ラジアル動圧軸受は、円筒外周面とこれに対向する羽根車の内周面の何れか一方に形成された動圧溝からなり、該動圧溝は、回転面内形状が多円弧形状であって、軸方向形状は溝部分が回転軸と平行であることを特徴とする。
また、本発明は、上記遠心血液ポンプにおいて、前記ラジアル動圧軸受の最少軸受隙間を10μm以上とすることにより、血液適合性を向上させたことを特徴とする。
また、本発明は、上記遠心血液ポンプにおいて、前記動圧溝の多円弧形状のエッジ部と溝部の少なくとも一方に、R加工又は面取り加工を施したことを特徴とする。
また、本発明は、上記遠心血液ポンプにおいて、前記ラジアル動圧軸受の動圧溝を形成する部分の材料に金属又は高分子材料を使用したことを特徴とする。
In order to solve the above problems, the present invention provides a casing having an inlet and a radially outer outlet in the center, an impeller rotatably accommodated in the casing, and a casing lower center in the casing inward. The inner cylinder has a recessed inner cylinder, and the inner cylinder supports a rotating impeller as a fixed shaft, and is built in the impeller and a permanent magnet that is rotated by a motor in a space surrounded by the inner cylinder of the casing. A rotary drive device in which a magnetic coupling is formed through a partition wall of an inner cylinder of a casing with a permanent magnet, a vane that is provided at the top of the impeller and sends out liquid from the inlet toward the outlet by rotation of the impeller; A centrifugal blood pump comprising a thrust dynamic pressure bearing composed of an impeller upper and lower surface and a casing inner surface facing the impeller, and a radial dynamic pressure bearing composed of an inner cylinder and an inner peripheral surface of the impeller facing the inner cylinder. The upper portion of the impeller projects into the upper space of the inner cylinder end surface of the casing, and the radial dynamic pressure bearing is formed on either the outer peripheral surface of the cylinder or the inner peripheral surface of the impeller facing the cylindrical outer peripheral surface. The dynamic pressure groove is characterized in that the in-plane shape is a multi-arc shape, and the axial shape is such that the groove portion is parallel to the rotation axis.
In the centrifugal blood pump, the present invention is characterized in that blood compatibility is improved by setting a minimum bearing clearance of the radial dynamic pressure bearing to 10 μm or more.
In the centrifugal blood pump, the present invention is characterized in that at least one of the multi-arc-shaped edge portion and the groove portion of the dynamic pressure groove is subjected to R processing or chamfering processing.
In the centrifugal blood pump, the present invention is characterized in that a metal or a polymer material is used as a material of a portion forming the dynamic pressure groove of the radial dynamic pressure bearing.

本発明によれば、羽根車浮上用の変位センサや電気回路が必要なく、安全かつ長期信頼性が高い遠心血液ポンプを提供することが出来る。血液ポンプの製作面に関しても、従来の螺旋溝を付加したラジアル方向の動圧溝を有する遠心血液ポンプと比べて、本発明では、ラジアル軸受の回転面内形状が多円弧形状であり、軸方向形状は溝部分が回転軸と平行であるため、底面方向のみの切削あるいは、金型による射出成形時の型抜きが容易にできるため、製作コストと製作時間を削減しながら高精度の軸受形状を提供することが出来る。
また、固定軸と回転軸の軸受隙間を10μm以上、好ましくは50μm以上に広げることにより、溶血や血栓形成などの血液適合性の問題を解決することができる。
さらに、軸受のエッジや溝部にR加工あるいは面取り加工を実施することで、急激な角や溝のない軸受部が形成できるため、高剪断部位による溶血や溝部での血栓形成が抑制できる。
また、本発明のラジアル動圧軸受式の遠心血液ポンプによれば、他の人工心臓で用いられている真円形状のジャーナル軸受(非接触軸受)と比べても、動圧軸受(非接触軸受)の発生力が大きいため、安定駆動を実現することが出来る。
ADVANTAGE OF THE INVENTION According to this invention, the displacement blood sensor and electric circuit for impeller levitation | floating are unnecessary, and the centrifugal blood pump with high safety | security and high long-term reliability can be provided. As for the production surface of the blood pump, compared with a centrifugal blood pump having a radial dynamic pressure groove with a conventional spiral groove, in the present invention, the radial in-plane shape of the radial bearing is a multi-arc shape, and the axial direction Since the groove part is parallel to the rotation axis, it is easy to cut only in the bottom direction or die-cut at the time of injection molding with a mold, so a highly accurate bearing shape can be achieved while reducing production cost and production time. Can be provided.
Further, by expanding the bearing gap between the fixed shaft and the rotating shaft to 10 μm or more, preferably 50 μm or more, it is possible to solve blood compatibility problems such as hemolysis and thrombus formation.
Furthermore, by carrying out R machining or chamfering on the edge or groove of the bearing, a bearing without a sharp corner or groove can be formed, so that hemolysis due to high shear sites and thrombus formation in the groove can be suppressed.
In addition, according to the centrifugal blood pump of the radial dynamic pressure bearing type of the present invention, the dynamic pressure bearing (non-contact bearing) is more effective than the circular journal bearing (non-contact bearing) used in other artificial hearts. ) Is large, stable driving can be realized.

本発明の遠心血液ポンプの一実施例の断面図。Sectional drawing of one Example of the centrifugal blood pump of this invention. 多円弧形状の動圧ラジアル軸受を説明する図であって、固定軸に付加された4円弧軸受の下面図(左:内周側が固定軸、右:外周側が固定軸)。It is a figure explaining a multi-arc-shaped dynamic pressure radial bearing, Comprising: The bottom view of the 4 arc bearing added to the fixed shaft (Left: inner peripheral side is fixed axis, right: outer peripheral side is fixed shaft). 多円弧形状の動圧ラジアル軸受を説明する図であって、回転軸に付加された4円弧軸受の下面図(左:内周側が固定軸、右:外周側が固定軸)。It is a figure explaining a multi-arc-shaped dynamic pressure radial bearing, Comprising: The bottom view of the 4 arc bearing added to the rotating shaft (Left: inner peripheral side is fixed axis, right: outer peripheral side is fixed axis). 多円弧形状の動圧ラジアル軸受を説明する図であって、固定軸に付加されたエッジにR加工を施された4円弧軸受の下面図。It is a figure explaining a multi-arc-shaped dynamic pressure radial bearing, Comprising: The bottom view of the 4-arc bearing by which R process was given to the edge added to the fixed shaft. 多円弧形状の動圧ラジアル軸受を説明する図であって、固定軸に付加された溝部にR加工を施された4円弧軸受の下面図。It is a figure explaining the dynamic pressure radial bearing of a multi-arc shape, Comprising: The bottom view of the 4-arc bearing which gave R process to the groove part added to the fixed shaft. 従来の固定軸に付加された真円のラジアル軸受(いわゆるジャーナル軸受)と本発明の多円弧形状動圧ラジアル軸受(4円弧の場合)の半径方向の軸受剛性の数値流体解析による比較例。The comparative example by the numerical fluid analysis of the radial bearing rigidity of the perfect circular radial bearing (what is called journal bearing) added to the conventional fixed shaft and the multi-arc shape dynamic pressure radial bearing (in the case of 4 arcs) of the present invention. 遠心血液ポンプ(ポンプタイプA〜F)における軸受隙間と溶血量を示す溶血指数の比較例。The comparative example of the hemolytic index which shows the bearing clearance gap and the amount of hemolysis in a centrifugal blood pump (pump types AF).

本発明は、中心に流入口と径方向外側に流出口を有するケーシング内に羽根車を回転自在に収納し、ケーシングの内筒で囲まれた空間内でモータにより回転駆動される永久磁石と、羽根車内に内蔵された永久磁石と有し、ケーシングの内筒の隔壁を介しての磁気カップリングにより羽根車を回転駆動し、羽根車上部に設けたベーンにより流入口からの液体を流出口に向けて送り出し、羽根車のスラスト方向軸受及びラジアル方向軸受に動圧軸受を用いた遠心血液ポンプであって、羽根車上部はケーシングの内筒端面の上部空間内に張り出すと共に、ラジアル方向の動圧軸受として、回転面内形状が多円弧形状であって、軸方向形状は溝部分が回転軸と平行であることを特徴とする。
ラジアル動圧軸受の溝部分が回転軸と平行であるので、ラジアル動圧軸受の製作が、円筒面の軸方向のみの切削あるいは、金型による射出成形時の型抜きが容易に(回転させながら抜いたり、無理抜きしたりする必要がない)できるため、製作コストと製作時間を削減しながら高精度の軸受形状を提供でき、動圧軸受の発生力も大きい。羽根車上部を中心に向けて張り出すために羽根車上面でのスラスト動圧軸受を大面積化できて動圧軸受の発生力が大きく、また、張り出し部があることで回転時の軸振れなども少なく安定した回転が得られる。
また、多円弧形状ラジアル動圧軸受部での固定軸と回転軸の最少隙間を10μm以上、好ましくは50μm以上にすることで、血液適合性が向上する。多円弧形状のエッジ部あるいは溝部の少なくとも一方にR加工又は面取り加工を施せば、さらに血液適合性を向上できる。
The present invention includes a permanent magnet that rotatably accommodates an impeller in a casing having an inlet and a radially outer outlet in the center, and is driven to rotate by a motor in a space surrounded by an inner cylinder of the casing; It has a permanent magnet built in the impeller, and the impeller is driven to rotate by magnetic coupling through the partition of the inner cylinder of the casing, and the liquid from the inlet is made into the outlet by the vane provided in the upper part of the impeller. The centrifugal blood pump uses a hydrodynamic bearing for the thrust direction bearing and radial direction bearing of the impeller, and the upper part of the impeller projects into the upper space of the inner cylinder end surface of the casing and moves in the radial direction. As a pressure bearing, the in-plane shape of the rotation surface is a multi-arc shape, and the axial shape is characterized in that the groove portion is parallel to the rotation axis.
Since the groove portion of the radial dynamic pressure bearing is parallel to the rotation axis, the radial dynamic pressure bearing can be easily manufactured by cutting only the axial direction of the cylindrical surface or die-cutting during injection molding with a mold (while rotating Therefore, it is possible to provide a highly accurate bearing shape while reducing the manufacturing cost and time, and the generated force of the hydrodynamic bearing is large. The thrust dynamic pressure bearing on the upper surface of the impeller can be expanded to extend toward the top of the impeller, and the generated force of the dynamic pressure bearing is large. Less stable rotation can be obtained.
In addition, blood compatibility is improved by setting the minimum gap between the fixed shaft and the rotating shaft in the multi-arc radial radial dynamic pressure bearing portion to 10 μm or more, preferably 50 μm or more. If R processing or chamfering is applied to at least one of the multi-arc shaped edge or groove, blood compatibility can be further improved.

本発明の遠心血液ポンプの一実施例の断面図を、図1に示す。ケーシングは中心に流入口と径方向外側に流出口を有し、ケーシング内部に羽根車を回転自在に収容する。ケーシング下部中心にはケーシング内方に凹んだ内筒を設け、該内筒は固定軸として、回転する羽根車を支える。羽根車の回転駆動は、ケーシングの内筒で囲まれた空間内でモータにより回転駆動される永久磁石(駆動磁石)と、羽根車内に内蔵された永久磁石(従動磁石)との、内筒の隔壁を介した磁気カップリングにより行われる。羽根車が回転すると羽根車上部に設けたベーンにより流入口からの血液を流出口に向けて送り出す。羽根車のスラスト方向軸受とラジアル方向の軸受はいずれも動圧軸受を用いた非接触軸受とする。ここまで説明した構成は、先に出願人が出願した上記特許文献6と変わらない。なお、説明をわかりやすくするために、図1で上方向を『上』、下方向を『下』で表現したが、例えば、人工心臓用の遠心血液ポンプであれば、人体の姿勢は変化するのであって、『上』『下』はあくまで便宜上用いたものである。
本発明の特徴的構成は、ラジアル方向の動圧軸受の構造に有り、羽根車の固定軸となるケーシングの内筒の外周面に設けた動圧溝が、回転面内形状が多円弧形状であって、軸方向形状は溝部分が回転軸と平行であることを特徴とする。言い換えれば、円筒の外周面形状は、軸方向に平行な溝を備えたスプライン軸状に形成されており、そのスプライン軸の横断面が多円弧形状となっているともいえる。このため、ラジアル動圧軸受の製作が、円筒面の軸方向のみの切削で加工できあるいは、金型による射出成形時の型抜きが容易にできるため、製作コストと製作時間を削減しながら高精度の軸受形状を提供でき、動圧軸受の発生力も大きい。なお、図1では、ケーシングの内筒側に動圧溝を形成した場合が示されているが、羽根車側の内周面に動圧溝を形成しても同様である。多円弧形状ラジアル動圧軸受については、後述の図2〜7の説明でも詳述する。
本発明の他の特徴的構成は、羽根車上部が、図1に示すようにケーシングの内筒端面の上部空間内に張り出している点であり、このため、羽根車上面に形成するスラスト動圧軸受の動圧溝を大面積に形成できて発生力が大きく、また、張り出し部があることで回転時の軸振れなども少なく安定した回転が得られる。また、張り出した分だけベーンが長くとれることも有利となる。なお、羽根車上下面に形成するスラスト動圧軸受は従来の動圧溝を使用しても問題はなく、例えば上記特許文献6と同じらせん形状等を用いればよい。また、図1では、スラスト動圧軸受の動圧溝は、羽根車の上下面側に形成したが、対向するケーシング側内面に形成しても良い。
A cross-sectional view of one embodiment of the centrifugal blood pump of the present invention is shown in FIG. The casing has an inflow port at the center and an outflow port on the radially outer side, and rotatably accommodates the impeller inside the casing. An inner cylinder recessed inward of the casing is provided at the center of the casing lower part, and the inner cylinder supports a rotating impeller as a fixed shaft. The rotational driving of the impeller is performed by the inner cylinder of a permanent magnet (driving magnet) that is rotationally driven by a motor in a space surrounded by the inner cylinder of the casing and a permanent magnet (driven magnet) built in the impeller. This is performed by magnetic coupling through a partition wall. When the impeller rotates, blood from the inflow port is sent out toward the outflow port by a vane provided at the upper part of the impeller. Both the thrust direction bearing and the radial direction bearing of the impeller are non-contact bearings using dynamic pressure bearings. The configuration described so far is the same as the above-mentioned Patent Document 6 filed by the applicant. In order to make the explanation easy to understand, the upper direction is expressed as “up” and the lower direction is expressed as “lower” in FIG. 1. For example, in the case of a centrifugal blood pump for an artificial heart, the posture of the human body changes. Therefore, “upper” and “lower” are used for convenience.
The characteristic configuration of the present invention is in the structure of the radial dynamic pressure bearing, and the dynamic pressure groove provided on the outer peripheral surface of the inner cylinder of the casing that is the fixed shaft of the impeller has a multi-circular shape in the rotational surface. The axial shape is characterized in that the groove portion is parallel to the rotation axis. In other words, it can be said that the outer peripheral surface shape of the cylinder is formed in a spline shaft shape having grooves parallel to the axial direction, and the cross section of the spline shaft has a multi-arc shape. For this reason, radial dynamic pressure bearings can be manufactured by cutting only in the axial direction of the cylindrical surface, or can be easily removed during injection molding with a mold, reducing production costs and production time. The bearing shape can be provided, and the generated force of the hydrodynamic bearing is large. Although FIG. 1 shows the case where the dynamic pressure groove is formed on the inner cylinder side of the casing, the same applies when the dynamic pressure groove is formed on the inner peripheral surface on the impeller side. The multi-arc radial dynamic pressure bearing will be described in detail in the description of FIGS.
Another characteristic configuration of the present invention is that the upper part of the impeller protrudes into the upper space of the inner cylinder end face of the casing as shown in FIG. 1, and for this reason, the thrust dynamic pressure formed on the upper face of the impeller The dynamic pressure groove of the bearing can be formed in a large area, and the generated force is large. Also, since there is an overhanging portion, stable rotation can be obtained with little shaft runout during rotation. It is also advantageous that the vane can be taken longer by the amount of overhang. The thrust dynamic pressure bearing formed on the upper and lower surfaces of the impeller has no problem even if a conventional dynamic pressure groove is used. For example, the same spiral shape as in Patent Document 6 may be used. In FIG. 1, the dynamic pressure grooves of the thrust dynamic pressure bearing are formed on the upper and lower surfaces of the impeller, but may be formed on the inner surfaces of the opposing casings.

図2及び図3は、本発明の多円弧形状(図では4円弧形状)のラジアル動圧軸受を説明した図であり、いずれも回転面内の軸と穴の形状を示したものである。なお、図示されていないが、軸方向形状は、溝部分が回転軸と平行となっているものであることは云うまでもない。また、図2及び図3は4円弧軸受の例を示しているが、円弧軸受の円弧数を2円弧、3円弧、5円弧と変えた場合でも同じである。
図2は、固定側に動圧溝を設けた例であり、左図は、軸が固定で穴が(図で反時計回りに)回転する場合であり、右図は穴が固定で軸が(図で時計回りに)回転する場合を示しており、本発明の図1で示したものは左図のものに該当する。
図3は、回転側に動圧溝を設けた例であり、左図は、穴が固定で軸が(図で時計回りに)回転する場合であり、右図は軸が固定で穴が(図で反時計回りに)回転する場合を示している。
2 and 3 are diagrams for explaining a radial dynamic pressure bearing having a multi-arc shape (four arc shapes in the figure) according to the present invention, both of which show the shape of the shaft and the hole in the rotation surface. Although not shown, it is needless to say that the axial shape is such that the groove portion is parallel to the rotation axis. 2 and 3 show an example of a four-arc bearing, but the same is true when the number of arcs of the arc-bearing is changed to two arcs, three arcs, and five arcs.
Fig. 2 shows an example in which a dynamic pressure groove is provided on the fixed side. The left figure shows the case where the shaft is fixed and the hole rotates (counterclockwise in the figure). The right figure shows the case where the hole is fixed and the shaft is fixed. The case of rotation (clockwise in the figure) is shown, and what is shown in FIG. 1 of the present invention corresponds to the left figure.
FIG. 3 is an example in which a dynamic pressure groove is provided on the rotation side, the left figure shows a case where the hole is fixed and the shaft rotates (clockwise in the figure), and the right figure shows a case where the shaft is fixed and the hole ( The case of rotating counterclockwise in the figure is shown.

図4は、本発明の多円弧形状(図では4円弧形状)のエッジ部にR加工を施した図であり、図5は本発明の多円弧形状(図では4円弧形状)の溝部にR加工を施した図である。
また、図4及び図5のR加工に代えて、面取り加工を施してもよい。
FIG. 4 is a view in which R processing is applied to the edge portion of the multi-arc shape (4 arc shape in the figure) of the present invention, and FIG. It is the figure which gave the process.
Moreover, it may replace with R process of FIG.4 and FIG.5, and a chamfering process may be given.

図6は、従来の固定軸に付加された真円のラジアル軸受(いわゆるジャーナル軸受)と本発明の多円弧形状動圧ラジアル軸受(4円弧形状の場合)の半径方向の軸受剛性の数値流体解析による比較例を示しており、縦軸に正規化した半径方向力、横軸に公転半径をとり、●が本発明の4円弧形状、◆が従来のジャーナル軸受を表す。図より、本発明の4円弧形状の動圧軸受の方が、従来の軸受よりも本発明の多円弧形状動圧溝による発生力が大きいことがわかる。   FIG. 6 shows a numerical fluid analysis of the bearing rigidity in the radial direction of a conventional radial bearing (so-called journal bearing) added to a fixed shaft and a multi-arc dynamic pressure radial bearing (in the case of four arcs) according to the present invention. The vertical axis represents normalized radial force, the horizontal axis represents the revolution radius, ● represents the four-arc shape of the present invention, and ◆ represents a conventional journal bearing. From the figure, it can be seen that the generated force by the multi-arc shaped dynamic pressure groove of the present invention is larger in the four-arc shaped dynamic pressure bearing of the present invention than the conventional bearing.

図7は、本発明の遠心血液ポンプ(ポンプタイプA〜F)における軸受隙間と溶血量を示す溶血指数の比較を示した図であり、血液ポンプとして問題ない溶血指数である0.01(g/100L)を破線で示したが、実用的には0.05(g/100L)程度以下であれば問題はない。なお、軸受隙間は最少軸受隙間で表す。各ポンプモデルA〜Fについて、溶血指数(g/100L)を網掛け棒グラフ、軸受隙間(μm)を黒棒グラフで示している。図7において、A〜Fに順に軸受隙間が大きくなっており、軸受隙間が大きくなるにつれて、溶血指数は小さくなっており、図から血液ポンプとして問題ない0.01(g/100L)以下となるのは、EタイプとFタイプの中間の略50μm以上の軸受隙間を構成すれば良いことがわかる。なお、実用的に問題のない0.05(g/100L)以下のときには、BタイプとCタイプの中間の略10μm以上の軸受隙間を構成すれば良いことがわかる。   FIG. 7 is a diagram showing a comparison of the hemolytic index indicating the bearing clearance and the amount of hemolysis in the centrifugal blood pump (pump types A to F) according to the present invention. / 100L) is indicated by a broken line, but there is no problem if it is practically about 0.05 (g / 100L) or less. The bearing gap is represented by the minimum bearing gap. For each pump model A to F, the hemolysis index (g / 100 L) is indicated by a shaded bar graph, and the bearing clearance (μm) is indicated by a black bar graph. In FIG. 7, the bearing gap increases in order from A to F. As the bearing gap increases, the hemolysis index decreases, and from the figure, it is 0.01 (g / 100 L) or less, which is no problem as a blood pump. It is understood that a bearing clearance of about 50 μm or more between E type and F type may be formed. It should be noted that when it is 0.05 (g / 100 L) or less, which has no practical problem, it is sufficient to form a bearing clearance of approximately 10 μm or more between the B type and the C type.

本発明の遠心血液ポンプは、人工心臓用、補助循環用及び心臓手術用として使用するものであるが、それ以外の医療用ポンプ、培養や薬液輸送用の生物分野のポンプ、摩耗分を発生しない産業用ポンプとしても使用することができる。   The centrifugal blood pump of the present invention is used for artificial heart, auxiliary circulation, and cardiac surgery, but other medical pumps, biological pumps for culturing and transporting chemicals, do not generate wear. It can also be used as an industrial pump.

Claims (4)

中心に流入口と径方向外側に流出口を有するケーシングと、ケーシング内部に回転自在に収容された羽根車と、ケーシング下部中心にはケーシング内方に凹んだ内筒を有し、該内筒は固定軸として、回転する羽根車を支え、ケーシングの内筒で囲まれた空間内でモータにより回転駆動される永久磁石と、羽根車内に内蔵された永久磁石とで、ケーシングの内筒の隔壁越しに磁気カップリングを形成した回転駆動装置と、羽根車上部に設けられ羽根車の回転により流入口からの液体を流出口に向けて送り出すベーンと、羽根車上下面とそれに対向するケーシング内面とで構成されたスラスト動圧軸受と、内筒とそれに対向する羽根車の内周面とで構成されたラジアル動圧軸受とを備えた遠心血液ポンプであって、
前記羽根車上部はケーシングの内筒端面の上部空間内に張り出すと共に、
前記ラジアル動圧軸受は、円筒外周面とこれに対向する羽根車の内周面の何れか一方に形成された動圧溝からなり、該動圧溝は、回転面内形状が多円弧形状であって、軸方向形状は溝部分が回転軸と平行であることを特徴とする遠心血液ポンプ。
A casing having an inlet at the center and an outlet at the radially outer side, an impeller rotatably accommodated inside the casing, an inner cylinder recessed inward of the casing at the center of the casing, As a fixed shaft, a permanent magnet that supports a rotating impeller and is driven to rotate by a motor in a space surrounded by the inner cylinder of the casing, and a permanent magnet built in the impeller, over the partition of the inner cylinder of the casing A rotary drive device having a magnetic coupling formed thereon, a vane provided at the top of the impeller for sending liquid from the inlet toward the outlet by rotation of the impeller, an upper and lower surfaces of the impeller, and an inner surface of the casing facing the vane A centrifugal blood pump comprising a configured thrust dynamic pressure bearing, and a radial dynamic pressure bearing composed of an inner cylinder and an inner peripheral surface of an impeller facing the inner cylinder,
The impeller upper part protrudes into the upper space of the inner cylinder end surface of the casing,
The radial dynamic pressure bearing is composed of a dynamic pressure groove formed on one of a cylindrical outer peripheral surface and an inner peripheral surface of an impeller opposed to the cylindrical outer peripheral surface. A centrifugal blood pump characterized in that an axial shape is such that a groove portion is parallel to a rotation axis.
前記ラジアル動圧軸受の最少軸受隙間を10μm以上とすることにより、血液適合性を向上させたことを特徴とする請求項1に記載の遠心血液ポンプ。   The centrifugal blood pump according to claim 1, wherein blood compatibility is improved by setting a minimum bearing clearance of the radial dynamic pressure bearing to 10 µm or more. 前記動圧溝の多円弧形状のエッジ部と溝部の少なくとも一方に、R加工又は面取り加工を施したことを特徴とする請求項2に記載の遠心血液ポンプ。   3. The centrifugal blood pump according to claim 2, wherein at least one of the multi-arc-shaped edge portion and the groove portion of the dynamic pressure groove is subjected to R processing or chamfering processing. 前記ラジアル動圧軸受の動圧溝を形成する部分の材料に金属又は高分子材料を使用したことを特徴とする請求項3に記載の遠心血液ポンプ。   The centrifugal blood pump according to claim 3, wherein a metal or a polymer material is used as a material of a portion forming the dynamic pressure groove of the radial dynamic pressure bearing.
JP2012083186A 2012-03-30 2012-03-30 Centrifugal blood pump Active JP5828459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083186A JP5828459B2 (en) 2012-03-30 2012-03-30 Centrifugal blood pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083186A JP5828459B2 (en) 2012-03-30 2012-03-30 Centrifugal blood pump

Publications (2)

Publication Number Publication Date
JP2013212218A true JP2013212218A (en) 2013-10-17
JP5828459B2 JP5828459B2 (en) 2015-12-09

Family

ID=49586079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083186A Active JP5828459B2 (en) 2012-03-30 2012-03-30 Centrifugal blood pump

Country Status (1)

Country Link
JP (1) JP5828459B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097916A1 (en) * 2013-12-27 2015-07-02 株式会社サンメディカル技術研究所 Blood pump and ventricular assist system
JP2015532146A (en) * 2012-10-12 2015-11-09 アビオメド オイローパ ゲーエムベーハー Centrifugal blood pump
US9759222B2 (en) * 2013-03-14 2017-09-12 Tc1 Llc Blood pump rotor bearings
JP2019516458A (en) * 2016-05-02 2019-06-20 ヴァドヴェイションズ,インコーポレイテッド Cardiac assist device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106632A (en) * 1991-10-14 1993-04-27 Ricoh Co Ltd Dynamic pressure fluid bearing and polygon scanner using it
JP2004011525A (en) * 2002-06-06 2004-01-15 Mitsubishi Heavy Ind Ltd Centrifugal pump
JP2005270345A (en) * 2004-03-24 2005-10-06 Terumo Corp Centrifugal type blood pump apparatus
JP2006200584A (en) * 2005-01-18 2006-08-03 Ntn Corp Dynamic pressure bearing device
JP2006325984A (en) * 2005-05-26 2006-12-07 Senko Medical Instr Mfg Co Ltd Centrifugal blood pump
JP2009197736A (en) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd Blood pump and pump unit
JP2009254436A (en) * 2008-04-14 2009-11-05 National Institute Of Advanced Industrial & Technology Artificial heart pump equipped with dynamic pressure bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106632A (en) * 1991-10-14 1993-04-27 Ricoh Co Ltd Dynamic pressure fluid bearing and polygon scanner using it
JP2004011525A (en) * 2002-06-06 2004-01-15 Mitsubishi Heavy Ind Ltd Centrifugal pump
JP2005270345A (en) * 2004-03-24 2005-10-06 Terumo Corp Centrifugal type blood pump apparatus
JP2006200584A (en) * 2005-01-18 2006-08-03 Ntn Corp Dynamic pressure bearing device
JP2006325984A (en) * 2005-05-26 2006-12-07 Senko Medical Instr Mfg Co Ltd Centrifugal blood pump
JP2009197736A (en) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd Blood pump and pump unit
JP2009254436A (en) * 2008-04-14 2009-11-05 National Institute Of Advanced Industrial & Technology Artificial heart pump equipped with dynamic pressure bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532146A (en) * 2012-10-12 2015-11-09 アビオメド オイローパ ゲーエムベーハー Centrifugal blood pump
JP2017164503A (en) * 2012-10-12 2017-09-21 アビオメド オイローパ ゲーエムベーハー Centrifugal blood pump
US11092158B2 (en) 2012-10-12 2021-08-17 Abiomed Europe Gmbh Centrifugal blood pump with hydrodynamic bearing
US9759222B2 (en) * 2013-03-14 2017-09-12 Tc1 Llc Blood pump rotor bearings
WO2015097916A1 (en) * 2013-12-27 2015-07-02 株式会社サンメディカル技術研究所 Blood pump and ventricular assist system
JP2019516458A (en) * 2016-05-02 2019-06-20 ヴァドヴェイションズ,インコーポレイテッド Cardiac assist device
US10918774B2 (en) 2016-05-02 2021-02-16 Vadovations, Inc. Heart assist device
JP7072523B2 (en) 2016-05-02 2022-05-20 ヴァドヴェイションズ,インコーポレイテッド Cardiac assist device
US11904155B2 (en) 2016-05-02 2024-02-20 Star Bp, Inc. Heart assist device

Also Published As

Publication number Publication date
JP5828459B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
US7416525B2 (en) Rotary blood pump
JP5794576B2 (en) Centrifugal blood pump
JP4681625B2 (en) Blood pump and pump unit
JP4340178B2 (en) Centrifugal blood pump device
JP4233475B2 (en) Centrifugal blood pump device
JP5828459B2 (en) Centrifugal blood pump
JP2004278375A (en) Axial flow pump
JP2009254436A (en) Artificial heart pump equipped with dynamic pressure bearing
JP2008183229A (en) Turbo type blood pump
JP4072721B2 (en) Artificial heart pump
JP2005287599A (en) Centrifugal type blood pump apparatus
JP2010209691A (en) Centrifugal pump device
JP5339565B2 (en) Fluid machinery
US7517153B2 (en) Fluid dynamic bearing system
JP4078245B2 (en) Artificial heart pump
JP4485379B2 (en) Bearing and blood pump
JP2016188590A (en) Centrifugal pump device
CN111375098B (en) Percutaneous blood pump and rotor limit structure thereof
JP5015985B2 (en) Centrifugal blood pump device
JP2016188591A (en) Centrifugal pump device
CN114001036B (en) Miniature hydraulic suspension mechanical pump and assembly method thereof
JP2016188593A (en) Centrifugal pump device
JP6452518B2 (en) Centrifugal pump device
JP4831975B2 (en) Small centrifugal pump and operation method of small centrifugal pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151013

R150 Certificate of patent or registration of utility model

Ref document number: 5828459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250