JP2013131662A - Insulating/heat dissipating substrate for power module and method for manufacturing the same - Google Patents

Insulating/heat dissipating substrate for power module and method for manufacturing the same Download PDF

Info

Publication number
JP2013131662A
JP2013131662A JP2011280784A JP2011280784A JP2013131662A JP 2013131662 A JP2013131662 A JP 2013131662A JP 2011280784 A JP2011280784 A JP 2011280784A JP 2011280784 A JP2011280784 A JP 2011280784A JP 2013131662 A JP2013131662 A JP 2013131662A
Authority
JP
Japan
Prior art keywords
insulating
heat dissipation
substrate
power module
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011280784A
Other languages
Japanese (ja)
Other versions
JP5877056B2 (en
Inventor
Akihiko Yamanoi
明彦 山野井
Kenji Takahashi
建二 高橋
Atsushi Hiraoka
篤志 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2011280784A priority Critical patent/JP5877056B2/en
Publication of JP2013131662A publication Critical patent/JP2013131662A/en
Application granted granted Critical
Publication of JP5877056B2 publication Critical patent/JP5877056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulating/heat dissipating substrate for a power module, which can suppress increase in contact thermal resistance between a metal layer, which is used as a circuit layer, a heat diffusion layer, and so on, and a high thermal conducting insulation particle.SOLUTION: An insulating/heat dissipating substrate P for a power module, which conducts heat from a semiconductor chip mounted on one surface side to a cooler installed on the other surface side, comprises at least: an insulating resin substrate 1 having a high thermal conducting insulation particle 4 at a part corresponding to a mounting area of the semiconductor chip; a thin conductor layer 7 stacked on front/back surfaces of the insulating resin substrate; and a thick conductor layer 8 stacked on the front/back surfaces via the thin conductor layer 7. The front surface of the insulating resin substrate positioned on the mounting area of the semiconductor chip and a surface of the high thermal conducting insulation particle exposed from the insulating resin substrate are formed flush with each other, and a thickness of the insulating resin substrate positioned on a non-mounting area of the semiconductor chip is formed so as to be thinner that of the insulating resin substrate positioned on the mounting area.

Description

本発明は、半導体素子からの発熱量が非常に大きいパワーモジュール用絶縁放熱基板に関し、特に、放熱性の向上及び薄型化を図ったパワーモジュール用絶縁放熱基板に関するものである。   The present invention relates to an insulated heat dissipation substrate for power modules that generates a very large amount of heat from a semiconductor element, and more particularly to an insulated heat dissipation substrate for power modules that is improved in heat dissipation and reduced in thickness.

高電圧・大電流での動作が可能なIGBTやMOSFET等の半導体チップを搭載してなるパワーモジュールは、当該半導体チップからの発熱量が非常に大きいため、従来より、冷却器(例えば、水冷式の冷却器)を取り付けて、素早く放熱できるような対策が採られてきた。
このようなパワーモジュールの一例(例えば、特許文献1参照)を、図10に示した概略断面図を用いて説明する。
A power module including a semiconductor chip such as an IGBT or MOSFET that can operate at a high voltage and a large current has a very large amount of heat generated from the semiconductor chip. In order to quickly dissipate heat, a measure has been taken.
An example of such a power module (see, for example, Patent Document 1) will be described using the schematic cross-sectional view shown in FIG.

当該パワーモジュールPMは、セラミックスからなる絶縁基板16の一方の面に回路層11a、他方の面に熱拡散層12aを備えた絶縁放熱基板Paと、当該回路層11a上にはんだ14を介して搭載された半導体チップ15と、当該熱拡散層12aの下面にはんだ14を介して接合された放熱体18と、当該放熱体18の下面に取付ねじ19によって取り付けられた冷却器20とを有する構成となっており、半導体チップ15からの発熱を、絶縁放熱基板Pa、放熱体18を伝って冷却器20に伝達し、最終的に当該冷却器20内の冷却水21によって外部に放散するという仕組みになっている。   The power module PM is mounted via an insulating heat dissipation board Pa provided with a circuit layer 11a on one surface of an insulating substrate 16 made of ceramics and a heat diffusion layer 12a on the other surface, and solder 14 on the circuit layer 11a. A structure having a semiconductor chip 15 formed, a heat radiator 18 joined to the lower surface of the heat diffusion layer 12a via a solder 14, and a cooler 20 attached to the lower surface of the heat radiator 18 by a mounting screw 19. The heat generated from the semiconductor chip 15 is transmitted to the cooler 20 through the insulating heat dissipation board Pa and the heat dissipating body 18, and finally dissipated to the outside by the cooling water 21 in the cooler 20. It has become.

因みに、各部材の具体例は以下の通りである。
即ち、『絶縁基板16』はAlN、Al23、Si34、SiC等、『回路層11a、熱拡散層12a、放熱体18』はCu、Al等、『低熱膨張材17』はインバー合金等である。
Incidentally, specific examples of each member are as follows.
That is, “insulating substrate 16” is AlN, Al 2 O 3 , Si 3 N 4 , SiC, etc., “circuit layer 11a, thermal diffusion layer 12a, radiator 18” is Cu, Al, etc., and “low thermal expansion material 17” is Invar alloy or the like.

このようなパワーモジュールPMは、近年、特に注目を集めている電気自動車やハイブリッド自動車に使用されるようになり、更なる高出力化と小型化が求められている。   In recent years, such power modules PM have come to be used in electric vehicles and hybrid vehicles that are attracting particular attention, and further higher output and smaller size are demanded.

そこで、前記要求に応えるための最も簡単な手段としては、単純にセラミックスからなる絶縁基板16の厚さを薄くすることが考えられる。なぜなら、絶縁基板16を薄型化すれば、パワーモジュールPM全体を小型化できるとともに、薄くした分、伝熱抵抗の低抵抗化を図れるからである。即ち、金属からなる回路層11aや熱拡散層12aよりも伝熱抵抗が高い絶縁基板(セラミックス基板)16が薄くなるため、半導体チップ15からの発熱を素早く冷却器20側に伝えることができる。   Therefore, as the simplest means for meeting the above requirements, it is conceivable to simply reduce the thickness of the insulating substrate 16 made of ceramics. This is because if the insulating substrate 16 is made thinner, the entire power module PM can be reduced in size, and the heat transfer resistance can be lowered by the thickness. That is, since the insulating substrate (ceramic substrate) 16 having a higher heat transfer resistance than the circuit layer 11a made of metal or the heat diffusion layer 12a becomes thin, heat generated from the semiconductor chip 15 can be quickly transmitted to the cooler 20 side.

しかし、セラミックスは薄くすると非常に割れやすくなるため、薄型化するにも限界があり(例えば、IGBTを搭載する1cm□以上の基板としてAlN基板を採用した場合、最低でも0.6〜0.7mm程度の厚さが必要である)、その結果、絶縁基板16として、熱伝導率の高いAlN(熱伝導率170W/mK)を使用したとしても、期待される程の放熱効果は得られないというものであった。   However, since ceramics are very fragile when they are thinned, there is a limit to thinning them. As a result, even if AlN (thermal conductivity 170 W / mK) having high thermal conductivity is used as the insulating substrate 16, the heat dissipation effect as expected is not obtained. It was a thing.

従って、板厚を薄くしても割れにくい絶縁樹脂基板を絶縁基板として用い、当該絶縁樹脂基板の表裏に形成される回路層と熱拡散層との間を、「高熱伝導性」「絶縁性」「硬質性」に優れるセラミックス等からなる粒子(以後これを「高熱伝導絶縁粒子」と呼ぶことにする)で熱的に接続させるというのが、パワーモジュールの薄型化と伝熱抵抗の低抵抗化を図る手段として有効であると考えられ、既にこのような構成のものが特許文献2に開示されている(図11参照)。   Therefore, an insulating resin substrate that is hard to break even if the plate thickness is reduced is used as an insulating substrate, and the high heat conductivity and insulation between the circuit layer and the thermal diffusion layer formed on the front and back of the insulating resin substrate Thermal connection with particles made of ceramics with excellent "hardness" (hereinafter referred to as "high thermal conductivity insulating particles") is to make the power module thinner and lower heat transfer resistance. Such a configuration is already disclosed in Patent Document 2 (see FIG. 11).

図11は、パワーモジュールに用いられる絶縁放熱基板Pb(図10に示した「絶縁放熱基板Pa」に相当)の要部拡大断面図を示したものであり、その構成は、エポキシやポリイミドなどの熱硬化性樹脂からなる絶縁樹脂基板1cと、当該絶縁樹脂基板1cの表裏にそれぞれ積層された回路層11b、熱拡散層12b(「回路層11b」「熱拡散層12b」は、特許文献1と同様にCuやAl等からなる)と、当該絶縁樹脂基板1cよりも厚く、且つ、当該回路層11b、熱拡散層12bよりも硬い高熱伝導絶縁粒子4[ダイヤモンド、SiC、Si34、AlN、BN等の熱伝導率がAl23よりも高い50W/mK以上の粒子(好ましく150W/mK以上の粒子)]とを有するものである。そして、絶縁樹脂基板1cの表面A1及び裏面B1から突出する高熱伝導絶縁粒子4の突出部4dをそれぞれ回路層11b、熱拡散層12bに貫入させ、両者の接触熱抵抗を小さくする構造とすることによって(即ち、貫入させることにより、単に両者を接触させる構造よりも接触熱抵抗を小さくできる)、絶縁樹脂基板1cの熱伝導率の低さ(例えば、Al23などの高熱伝導フィラー入りのエポキシ樹脂の場合でも、熱伝導率は3W/mK程度である)を補い、以て、期待される放熱効果を得ようとするものである。 FIG. 11 shows an enlarged cross-sectional view of a main part of an insulating heat dissipation board Pb (corresponding to “insulating heat dissipation board Pa” shown in FIG. 10) used in the power module. An insulating resin substrate 1c made of a thermosetting resin, and a circuit layer 11b and a heat diffusion layer 12b ("circuit layer 11b" and "thermal diffusion layer 12b") laminated on the front and back of the insulating resin substrate 1c Similarly, it is made of Cu, Al, or the like) and high thermal conductive insulating particles 4 [diamond, SiC, Si 3 N 4 , AlN which are thicker than the insulating resin substrate 1c and harder than the circuit layer 11b and the thermal diffusion layer 12b. , Particles having a thermal conductivity of 50 W / mK or higher (preferably particles having a power of 150 W / mK or higher) higher than that of Al 2 O 3 . The protruding portions 4d of the high thermal conductive insulating particles 4 protruding from the front surface A1 and the rear surface B1 of the insulating resin substrate 1c are penetrated into the circuit layer 11b and the thermal diffusion layer 12b, respectively, so that the contact thermal resistance between them is reduced. (That is, the contact thermal resistance can be made smaller than the structure in which both are simply brought into contact with each other) by the low thermal conductivity of the insulating resin substrate 1c (for example, containing a high thermal conductive filler such as Al 2 O 3 ) (Even in the case of epoxy resin, the thermal conductivity is about 3 W / mK), so that an expected heat dissipation effect is obtained.

しかし、図11の構成においては、絶縁層全体(高熱伝導絶縁粒子4を含む絶縁樹脂基板1cに相当)の熱伝導率は高いものの、回路層11b及び熱拡散層12bと、当該高熱伝導絶縁粒子4との間に無視できないほどの大きな接触熱抵抗が存在するため、図10に示した絶縁放熱基板Paと同様に、期待される程の放熱効果は得られないというのが実情であった。   However, in the configuration of FIG. 11, although the thermal conductivity of the entire insulating layer (corresponding to the insulating resin substrate 1c including the high thermal conductive insulating particles 4) is high, the circuit layer 11b, the thermal diffusion layer 12b, and the high thermal conductive insulating particles Since there is a contact thermal resistance that cannot be ignored with respect to 4, the actual situation is that the expected heat dissipation effect cannot be obtained in the same manner as the insulating heat dissipation substrate Pa shown in FIG.

その理由は、回路層11b及び熱拡散層12bと、高熱伝導絶縁粒子4との接続構造に原因があった。
この原因について、回路層11bと高熱伝導絶縁粒子4との接触界面を示した図12を用いて説明する(熱拡散層12bについても同様の接続構造となるため、説明の便宜上、熱拡散層12bと高熱伝導絶縁粒子4との接続構造については説明を省略した)。
The reason was due to the connection structure between the circuit layer 11b and the thermal diffusion layer 12b and the high thermal conductive insulating particles 4.
The reason for this will be described with reference to FIG. 12 showing the contact interface between the circuit layer 11b and the high thermal conductive insulating particles 4 (the thermal diffusion layer 12b has a similar connection structure. And the connection structure between the high thermal conductive insulating particles 4 is omitted).

回路層11bと高熱伝導絶縁粒子4との貫入接続は、図12(a)に示したように、高熱伝導絶縁粒子4に対して、後に回路層11bとなる金属箔11ba(図に示した部分は、金属箔11baのマット面、即ち、アンカーパターン11bbを示したものである)を矢印の方向にプレス加工することによって行われるのであるが、当該金属箔11ba(回路層11b)と高熱伝導絶縁粒子4との接続構造は、図12(b)に示したように、表面状態が単なる凹凸形状23(大判の高熱伝導材を粒子状に粉砕したときの凹凸形状)のままの高熱伝導絶縁粒子4を、金属箔11ba(回路層11b)に貫入させるだけの構造であったため、両者間の接続強度は殆どないに等しいものであった。このような接続状態で、絶縁樹脂基板1cが半導体チップからの発熱により膨張する、即ち、回路層11bと高熱伝導絶縁粒子4との接触界面22(図12(b)参照)を押し広げてしまうため、回路層11bと高熱伝導絶縁粒子4との接触界面22に図12(c)に示したような剥離部25を発生させ、両者間の接触熱抵抗の増大を引き起こしていたのである。尚、図12(c)においては、剥離現象を分かりやすくするために、実際のものよりも誇張した状態を示した。また、符号24は、金属箔11baと高熱伝導絶縁粒子4との間にできた金属非充填部である。   As shown in FIG. 12A, the penetration connection between the circuit layer 11b and the high thermal conductive insulating particle 4 is performed on the metal foil 11ba (the portion shown in the figure) that will later become the circuit layer 11b with respect to the high thermal conductive insulating particle 4. Is performed by pressing the mat surface of the metal foil 11ba (that is, the anchor pattern 11bb) in the direction of the arrow, and the metal foil 11ba (circuit layer 11b) and the high thermal conductive insulation. As shown in FIG. 12 (b), the connection structure with the particles 4 is a high heat conductive insulating particle whose surface state is simply a concavo-convex shape 23 (a concavo-convex shape when a large high heat conductive material is pulverized into particles). 4 has a structure that only penetrates the metal foil 11ba (circuit layer 11b), and therefore, the connection strength between the two is almost the same. In such a connection state, the insulating resin substrate 1c expands due to heat generated from the semiconductor chip, that is, the contact interface 22 (see FIG. 12B) between the circuit layer 11b and the high thermal conductive insulating particles 4 is expanded. For this reason, the peeling portion 25 as shown in FIG. 12C is generated at the contact interface 22 between the circuit layer 11b and the high thermal conductive insulating particles 4 to increase the contact thermal resistance between them. FIG. 12C shows a state exaggerated from the actual one in order to make the peeling phenomenon easier to understand. Reference numeral 24 denotes a metal unfilled portion formed between the metal foil 11ba and the high thermal conductive insulating particles 4.

因みに、特許文献2には、回路層11b及び熱拡散層12bと、高熱伝導絶縁粒子4との接続性を向上させるために、当該高熱伝導絶縁粒子4の表面に、CuめっきやNiめっきを施すという手段が示されているが、金属同士を熱圧着してもそれほど高い接続強度は得られず、そもそも絶縁樹脂よりもめっきの密着性が低いセラミックス等からなる高熱伝導絶縁粒子4の表面状態が、上記でも説明したように、単なる凹凸形状23のままであるため、当該高熱伝導絶縁粒子4とめっきとの接触状態は極めて不安定なものとなり、結局、回路層11b及び熱拡散層12bと、高熱伝導絶縁粒子4との接続強度を満足のいく強度とするには至らなかった。   Incidentally, in Patent Document 2, in order to improve the connectivity between the circuit layer 11b and the thermal diffusion layer 12b and the high thermal conductive insulating particles 4, the surface of the high thermal conductive insulating particles 4 is subjected to Cu plating or Ni plating. However, the surface state of the highly thermally conductive insulating particles 4 made of ceramics or the like, which is less adhesive than the insulating resin in the first place, is not obtained even if the metals are thermocompression bonded. As described above, since the concavo-convex shape 23 remains, the contact state between the high thermal conductive insulating particles 4 and the plating becomes extremely unstable, and eventually the circuit layer 11b and the thermal diffusion layer 12b, The connection strength with the high thermal conductive insulating particles 4 could not be made satisfactory.

特開2004−153075号公報JP 2004-153075 A 特開2005−236266号公報JP 2005-236266 A

本発明は、パワーモジュール用絶縁放熱基板の絶縁基板として絶縁樹脂基板を用いた場合においても、金属層(回路層や熱拡散層等として使用される金属層)と高熱伝導絶縁粒子との間の接触熱抵抗の増大を抑制できるパワーモジュール用絶縁放熱基板を提供することを課題とする。   Even when an insulating resin substrate is used as an insulating substrate of an insulating heat dissipation substrate for a power module, the present invention is provided between a metal layer (a metal layer used as a circuit layer, a heat diffusion layer, etc.) and a high thermal conductive insulating particle. It is an object to provide an insulating heat dissipation substrate for a power module that can suppress an increase in contact thermal resistance.

本発明は、一方の面側に搭載される半導体チップからの発熱を、他方の面側に設置される冷却器へと伝熱させるパワーモジュール用絶縁放熱基板であって、少なくとも、半導体チップの搭載エリアに対応する部位に高熱伝導絶縁粒子を有する絶縁樹脂基板と、当該絶縁樹脂基板の表裏面に積層された薄膜導体層と、当該薄膜導体層を介して積層された厚導体層とを有し、且つ、当該半導体チップの搭載エリアに位置する絶縁樹脂基板の表面と、当該半導体チップの搭載エリアに位置する絶縁樹脂基板の表面から露出した高熱伝導絶縁粒子の表面とが面一に形成されているとともに、当該半導体チップの非搭載エリアに位置する当該絶縁樹脂基板の厚さが、当該半導体チップの搭載エリアに位置する当該絶縁樹脂基板の厚さよりも薄く形成されていることを特徴とするパワーモジュール用絶縁放熱基板により上記課題を解決したものである。   The present invention is an insulating heat dissipation substrate for a power module that transfers heat generated from a semiconductor chip mounted on one surface side to a cooler installed on the other surface side, and at least mounting the semiconductor chip An insulating resin substrate having high thermal conductive insulating particles in a portion corresponding to the area; a thin film conductor layer laminated on the front and back surfaces of the insulating resin substrate; and a thick conductor layer laminated via the thin film conductor layer In addition, the surface of the insulating resin substrate located in the mounting area of the semiconductor chip and the surface of the high thermal conductive insulating particles exposed from the surface of the insulating resin substrate located in the mounting area of the semiconductor chip are formed flush with each other. In addition, the thickness of the insulating resin substrate located in the non-mounting area of the semiconductor chip is thinner than the thickness of the insulating resin substrate located in the mounting area of the semiconductor chip. The power module insulated radiating substrate, characterized in that there is obtained by solving the above problems.

また本発明は、一方の面側に搭載される半導体チップからの発熱を、他方の面側に設置される冷却器へと伝熱させるパワーモジュール用絶縁放熱基板の製造方法であって、少なくとも、半硬化状態の絶縁接着剤層における当該半導体チップの搭載エリアに対応する部位に抜き部を設ける第一の工程と、当該抜き部を備えた絶縁接着剤層の一方の面に第一の金属箔を配置する第二の工程と、当該絶縁接着剤層に設けられた抜き部内に、当該絶縁接着剤層よりも厚みのある高熱伝導絶縁粒子を充填する第三の工程と、当該絶縁接着剤層の他方の面に第二の金属箔を配置する第四の工程と、当該絶縁接着剤層に設けられた抜き部に対応する部分に開口部を備えたスペーサー治具を当該第一の金属箔及び第二の金属箔の上に配置した後、加熱・加圧処理を行う第五の工程と、当該加熱・加圧処理により盛り上がった突出部を、当該スペーサー治具の開口部から外れた部分に位置する金属箔の露出側表面と面一となるように研磨する第六の工程と、当該突出部が研磨された中間積層体の表裏面に薄膜導体層と厚導体層とを順次積層する第七の工程とを有することを特徴とするパワーモジュール用絶縁放熱基板の製造方法により上記課題を解決したものである。   Further, the present invention is a method for manufacturing an insulated heat dissipation substrate for a power module that transfers heat generated from a semiconductor chip mounted on one surface side to a cooler installed on the other surface side, A first step of providing a cutout at a portion corresponding to the mounting area of the semiconductor chip in the semi-cured insulating adhesive layer, and a first metal foil on one surface of the insulating adhesive layer having the cutout A third step of filling the heat-insulating insulating particles having a thickness larger than that of the insulating adhesive layer into the extracted portion provided in the insulating adhesive layer, and the insulating adhesive layer. A fourth step of disposing the second metal foil on the other surface of the first metal foil, and a spacer jig provided with an opening in a portion corresponding to the punched portion provided in the insulating adhesive layer. And after placing on the second metal foil, Polishing the protruding part raised by the heating / pressurizing process to be flush with the exposed side surface of the metal foil located in the part removed from the opening of the spacer jig An insulated heat dissipation substrate for a power module, comprising a sixth step and a seventh step of sequentially laminating a thin film conductor layer and a thick conductor layer on the front and back surfaces of the intermediate laminate having the protrusions polished. The above-mentioned problem is solved by this manufacturing method.

本発明によれば、半導体チップからの発熱が絶縁放熱基板に流入した場合においても、高熱伝導絶縁粒子と導体層との間の接触熱抵抗を常温時とほぼ同じ状態に維持することができ、以て、半導体チップから発せられた熱を素早く冷却器側へ逃がすことができる。   According to the present invention, even when heat generated from the semiconductor chip flows into the insulating heat dissipation substrate, the contact thermal resistance between the high thermal conductive insulating particles and the conductor layer can be maintained in substantially the same state as at normal temperature, Thus, the heat generated from the semiconductor chip can be quickly released to the cooler side.

本発明パワーモジュール用絶縁放熱基板の構成を説明するための概略断面図。The schematic sectional drawing for demonstrating the structure of the insulated heat dissipation board | substrate for this invention power module. 本発明パワーモジュール用絶縁放熱基板を得るための概略断面製造工程図。The schematic cross-section manufacturing-process figure for obtaining the insulated heat dissipation board | substrate for this invention power module. 本発明パワーモジュール用絶縁放熱基板に用いられる高熱伝導絶縁粒子の表面状態を説明するための概略断面図。The schematic sectional drawing for demonstrating the surface state of the high heat conductive insulating particle used for the insulated heat dissipation board | substrate for this invention power module. 図2(g)の工程で形成される薄膜導体層と絶縁樹脂基板に充填された高熱伝導絶縁粒子との接続状態を説明するための概略断面図。The schematic sectional drawing for demonstrating the connection state of the thin-film conductor layer formed at the process of FIG.2 (g), and the high heat conductive insulating particle with which the insulating resin board | substrate was filled. 本発明パワーモジュール用絶縁放熱基板の他の製造工程を説明するための概略断面図。The schematic sectional drawing for demonstrating the other manufacturing process of the insulated heat dissipation board | substrate for this invention power module. 本発明パワーモジュール用絶縁放熱基板の更に別の製造工程を説明するための概略断面図。The schematic sectional drawing for demonstrating another manufacturing process of the insulated heat dissipation board | substrate for this invention power module. 本発明パワーモジュール用絶縁放熱基板の他の構成のものを得るための概略断面製造工程図。The schematic cross-section manufacturing-process figure for obtaining the thing of the other structure of the insulated heat dissipation board for this invention power module. 図1のパワーモジュール用絶縁放熱基板の回路層と熱拡散層をサブトラクティブ法で形成した場合の要部拡大断面図。The principal part expanded sectional view at the time of forming the circuit layer and heat-diffusion layer of the insulation thermal radiation board | substrate for power modules of FIG. 1 with a subtractive method. 図1のパワーモジュール用絶縁放熱基板の回路層と熱拡散層をセミアディティブ法で形成した場合の要部拡大断面図。The principal part expanded sectional view at the time of forming the circuit layer and heat-diffusion layer of the insulation thermal radiation board | substrate for power modules of FIG. 1 with a semi-additive method. 従来のパワーモジュールの構成を説明するための概略断面図。The schematic sectional drawing for demonstrating the structure of the conventional power module. 従来のパワーモジュールに用いられる絶縁放熱基板の問題点を解決する従来のパワーモジュール用絶縁放熱基板の構成を説明するための概略断面図。The schematic sectional drawing for demonstrating the structure of the conventional insulated heat dissipation board for power modules which solves the problem of the insulated heat dissipation board used for the conventional power module. 図11のパワーモジュール用絶縁放熱基板の問題点を説明するための要部拡大断面図。The principal part expanded sectional view for demonstrating the problem of the insulation thermal radiation board | substrate for power modules of FIG. 絶縁接着剤層の厚さの2倍程度の厚さを有する高熱伝導絶縁粒子を充填する場合に開口部を有しない金属箔を配置し、尚且つスペーサー治具を用いないで積層した際に発生する問題点を説明するための概略断面図。Occurs when a metal foil without an opening is placed and stacked without using a spacer jig when filling high thermal conductivity insulating particles having a thickness about twice the thickness of the insulating adhesive layer The schematic sectional drawing for demonstrating the problem to do.

本発明の第一の実施の形態を図1を用いて説明する。尚、従来技術と同じ部位には同じ符号を付すようにした。   A first embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol was attached | subjected to the same site | part as the prior art.

図1は、本発明パワーモジュール用絶縁放熱基板(以降これを単に「絶縁放熱基板」と表記する)Pの概略断面図を示したもので、当該絶縁放熱基板Pは、半導体チップの搭載エリア(即ち、図1中、「高熱伝導絶縁粒子4の充填エリア9」に相当。以下、「半導体チップの搭載エリア」を説明の便宜上、「高熱伝導絶縁粒子4の充填エリア9」として説明する。)に対応する部位に高熱伝導絶縁粒子4を有するとともに、半導体チップの非搭載エリア(即ち、図1中、「高熱伝導絶縁粒子4の非充填エリア10」に相当。以下、「半導体チップの非搭載エリア」を説明の便宜上、「高熱伝導絶縁粒子4の非充填エリア10」として説明する。)に対応する表裏面に金属箔3を有する絶縁樹脂基板1と、当該絶縁樹脂基板1の表裏面に順次積層された薄膜導体層7及び厚導体層8とからなる回路層11及び熱拡散層12とを有し、且つ、当該絶縁樹脂基板1の表面1dと、当該絶縁樹脂基板1の表面1dから露出した金属箔3の表面3cと、当該絶縁樹脂基板1の表面1dから露出した高熱伝導絶縁粒子4の表面4eとが面一に形成されている(図2(f)参照)とともに、当該高熱伝導絶縁粒子4の非充填エリア10に位置する金属層3,3間における絶縁樹脂基板1の厚さT2が、当該高熱伝導絶縁粒子4の充填エリア9に位置する薄膜導体層7,7間における絶縁樹脂基板1の厚さT1よりも薄く形成されて構成されている。   FIG. 1 is a schematic cross-sectional view of an insulating heat dissipation substrate for power module of the present invention (hereinafter simply referred to as “insulated heat dissipation substrate”) P. The insulating heat dissipation substrate P has a semiconductor chip mounting area ( 1 corresponds to “filling area 9 of high thermal conductive insulating particles 4.” Hereinafter, the “semiconductor chip mounting area” will be described as “filling area 9 of high thermal conductive insulating particles 4” for convenience of explanation.) And the semiconductor chip non-mounting area (ie, “non-filling area 10 of the high heat conductive insulating particle 4” in FIG. 1). For convenience of explanation, the “area” will be described as “the non-filled area 10 of the high thermal conductive insulating particles 4”.) And the insulating resin substrate 1 having the metal foil 3 on the front and back surfaces, and the front and back surfaces of the insulating resin substrate 1. Sequential product The circuit layer 11 and the heat diffusion layer 12 including the thin film conductor layer 7 and the thick conductor layer 8 are exposed, and are exposed from the surface 1d of the insulating resin substrate 1 and the surface 1d of the insulating resin substrate 1 The surface 3c of the metal foil 3 and the surface 4e of the high thermal conductive insulating particle 4 exposed from the surface 1d of the insulating resin substrate 1 are formed flush with each other (see FIG. 2 (f)), and the high thermal conductive insulation The thickness T2 of the insulating resin substrate 1 between the metal layers 3 and 3 located in the unfilled area 10 of the particles 4 is equal to the insulating resin between the thin film conductor layers 7 and 7 located in the filled area 9 of the high thermal conductive insulating particles 4. The substrate 1 is formed to be thinner than the thickness T1.

続いて、図1に示した絶縁放熱基板Pの製造方法を図2を用いて説明する。   Then, the manufacturing method of the insulation heat dissipation board P shown in FIG. 1 is demonstrated using FIG.

まず、図2(a)に示したように、ガラス繊維などの補強基材2にエポキシ樹脂などの熱硬化性樹脂を含浸させた半硬化状態の絶縁接着剤層1a(例えば「プリプレグ」)を用意し、次いで、打抜き加工やルーター加工等により高熱伝導絶縁粒子4の充填エリア9(図1参照)に対応する部位(即ち、半導体チップ搭載エリアに対応する部位)に抜き部2aを形成する(図2(b)参照)。   First, as shown in FIG. 2A, a semi-cured insulating adhesive layer 1a (for example, “prepreg”) in which a reinforcing base material 2 such as glass fiber is impregnated with a thermosetting resin such as an epoxy resin is used. Next, the punched portion 2a is formed in a portion corresponding to the filling area 9 (see FIG. 1) of the high thermal conductive insulating particles 4 (that is, a portion corresponding to the semiconductor chip mounting area) by punching processing or router processing (see FIG. 1). (Refer FIG.2 (b)).

ここで、絶縁接着剤層1aとして、補強基材2入りのものを用いて説明したが、パワーモジュールが大型でなく、反りの懸念が無い場合には、補強基材2が入っていない絶縁接着剤層1aを用いることも可能であり、例えば、エポキシ、ポリイミド、ポリアミド、ポリアミドイミド、ポリエチレン、液晶ポリマー、アクリル、ポリカーボネート、シリコーン等の樹脂をフィルム状にしたものを用いることもできる(中でも、耐熱性、応力緩和性に優れる液晶ポリマーを用いるのが好ましい)。
尚、図には示していないが、絶縁接着剤層1a中に、高熱伝導絶縁粒子4と同質材料で、且つ、当該高熱伝導絶縁粒子4よりも径が小さいフィラーを、絶縁樹脂基板1(当該絶縁接着剤層1aが硬化された状態のもの)の応力緩和性に影響が出ない範囲で充填するのが、高熱伝導絶縁粒子4を含む絶縁樹脂基板1の全熱抵抗を下げる(即ち、熱伝導率を上げる)上で好ましい。
Here, the insulating adhesive layer 1a has been described using the one containing the reinforcing base material 2. However, when the power module is not large and there is no concern about warping, the insulating adhesive does not contain the reinforcing base material 2. It is also possible to use the agent layer 1a, and for example, it is also possible to use a film of resin such as epoxy, polyimide, polyamide, polyamideimide, polyethylene, liquid crystal polymer, acrylic, polycarbonate, silicone, etc. It is preferable to use a liquid crystal polymer having excellent properties and stress relaxation properties).
Although not shown in the figure, a filler that is the same material as the high thermal conductive insulating particles 4 and has a smaller diameter than the high thermal conductive insulating particles 4 is added to the insulating resin substrate 1 (the relevant one). Filling the insulating adhesive layer 1a in a range where the stress relaxation property of the insulating adhesive layer 1a is not affected decreases the total thermal resistance of the insulating resin substrate 1 including the high thermal conductive insulating particles 4 (that is, heat (In order to increase conductivity).

次に、図2(c)に示したように、抜き部2aが形成された絶縁接着剤層1aの一方の側に金属箔3(例えば「銅箔」)を配置した後、当該抜き部2a内に高熱伝導絶縁粒子4を充填し、次いで、図2(d)に示したように、絶縁接着剤層1aの他方の側に金属箔3を配置した後、高熱伝導絶縁粒子4の充填エリア9に対応する部分に開口部5aを備えたスペーサー治具5を介して加熱・加圧処理(以降これを「積層プレス」と表記する)を施すことによって、絶縁接着剤層1aから流れ出した樹脂1b(図中の矢印参照)で高熱伝導絶縁粒子4を埋め込むとともに当該樹脂1bを含む絶縁接着剤層1aを硬化して絶縁樹脂基板1とする(図2(e)参照)。
尚、上記図2(c)〜図2(e)の工程は、図5(a)、(b)に示したように、積層される金属箔3として、高熱伝導絶縁粒子4の充填エリア9に対応する部位に開口部3aを有するものを配置し、当該金属箔3上に離型性を有するクッション材13とスペーサー治具5を介して積層プレスを行うようにしてもよい。因みに、この構成の場合には、後に行なわれる突出部を除去する研磨工程の際に、予め当該突出部に位置する金属箔が除去されているため、図2(c)〜図2(e)の工程で製造するよりも、研磨処理を容易に行うことができる。而して、この構成の場合、高熱伝導絶縁粒子4の充填エリア9に対応する部位には金属箔3が存在しない構成となるが(図5(b)参照)、当該金属箔3を積層するそもそもの理由が、高熱伝導絶縁粒子4の非充填エリア10に位置する絶縁樹脂基板1の厚さを薄くする、あるいは後に行なわれる研磨工程の切削停止ラインの指標とするために積層するものなので、当該高熱伝導絶縁粒子4の非充填エリア10に形成されていれば、その機能的役割を十分に果たすことができる。
Next, as shown in FIG. 2C, after the metal foil 3 (for example, “copper foil”) is disposed on one side of the insulating adhesive layer 1a on which the punched portion 2a is formed, the punched portion 2a is formed. After filling the inside with the high thermal conductive insulating particles 4 and then disposing the metal foil 3 on the other side of the insulating adhesive layer 1a as shown in FIG. Resin that has flowed out of the insulating adhesive layer 1a by applying heat / pressure treatment (hereinafter referred to as "lamination press") through a spacer jig 5 having an opening 5a in a portion corresponding to 9 The high thermal conductive insulating particles 4 are embedded in 1b (see the arrow in the figure), and the insulating adhesive layer 1a containing the resin 1b is cured to form the insulating resin substrate 1 (see FIG. 2 (e)).
2C to 2E, as shown in FIGS. 5A and 5B, as the metal foil 3 to be laminated, the filling area 9 of the high thermal conductive insulating particles 4 is used. It is also possible to arrange a member having an opening 3a at a portion corresponding to the above and perform a lamination press on the metal foil 3 via a cushioning material 13 having releasability and a spacer jig 5. Incidentally, in the case of this configuration, since the metal foil located on the protrusion is removed in advance during the polishing step for removing the protrusion performed later, FIG. 2 (c) to FIG. 2 (e). The polishing process can be performed more easily than the manufacturing process in this step. Thus, in the case of this configuration, the metal foil 3 does not exist in the portion corresponding to the filling area 9 of the high thermal conductive insulating particles 4 (see FIG. 5B), but the metal foil 3 is laminated. In the first place, the insulating resin substrate 1 located in the non-filled area 10 of the high thermal conductive insulating particles 4 is laminated to reduce the thickness, or to be used as an index of a cutting stop line in a polishing process performed later, If it is formed in the non-filled area 10 of the high thermal conductive insulating particle 4, its functional role can be sufficiently fulfilled.

ここで、当該高熱伝導絶縁粒子4の材料としては、絶縁性と比較的高い熱伝導率を兼ね備えたセラミックス、例えば、Al23(熱伝導率:20W/mk)、SiC、SiN(熱伝導率:70W/mk)、AlN(熱伝導率:170W/mk)等が挙げられ、適宜必要とする放熱性能に応じて選択使用することができる。 Here, as the material of the high thermal conductivity insulating particles 4, ceramics having both insulating properties and relatively high thermal conductivity, for example, Al 2 O 3 (thermal conductivity: 20 W / mk), SiC, SiN (thermal conductivity) Rate: 70 W / mk), AlN (thermal conductivity: 170 W / mk), and the like, and can be selected and used depending on the heat dissipation performance required as appropriate.

また、当該高熱伝導絶縁粒子4のサイズとしては、当該高熱伝導絶縁粒子4の非充填エリア10(図1参照)に位置する金属箔3の表面から突出した部分を、図2(e)に示される研磨ライン6に沿って研磨した際に露出する程度の大きさであれば特に限定する必要はないが、積層プレスの際に樹脂のボイド(充填された高熱伝導絶縁粒子4間に発生する樹脂の未充填部)を発生させることなく、研磨後の高熱伝導絶縁粒子4の露出面積を稼げる(例えば、高熱伝導絶縁粒子4の充填エリア9に対して50%以上の露出面積)という点で、当該絶縁接着剤層1aの厚さの2倍程度の厚さのものを充填するのが好ましい。   Moreover, as the size of the high heat conductive insulating particles 4, a portion protruding from the surface of the metal foil 3 located in the non-filling area 10 (see FIG. 1) of the high heat conductive insulating particles 4 is shown in FIG. 2 (e). There is no particular limitation as long as the size is such that it is exposed when polished along the polishing line 6. However, a resin void (resin generated between the filled high thermal conductive insulating particles 4 during the lamination press) is not necessary. In this respect, the exposed area of the high thermal conductive insulating particles 4 after polishing can be earned (for example, an exposed area of 50% or more with respect to the filled area 9 of the high thermal conductive insulating particles 4) without generating It is preferable to fill the insulating adhesive layer 1a with a thickness of about twice the thickness.

次に、図2(e)に示した研磨ライン6よりも外側に位置する突出部に対して研磨処理(例えば、バフ研磨等)を行うことによって、高熱伝導絶縁粒子4の充填エリア9(図1参照)に位置する絶縁樹脂基板1の表面1dと、当該絶縁樹脂基板1の表面1dから露出した高熱伝導絶縁粒子4の表面4eと、当該絶縁樹脂基板1の表面1dから露出した金属箔3の表面3cとを面一にし(図2(f)に示した「中間積層体SP」参照)、次いで、デスミア処理で当該中間積層体SPの表裏面をクリーニングした後、無電解めっき処理やスパッタリングなどにより析出した薄膜導体層7(例えば、厚さ0.5〜1.0μm程度の銅薄膜)を介して厚導体層8(例えば、厚さ150〜300μm程度の電解銅めっき膜、或いは当該厚さの厚銅板を金属結合したものなど)を積層する(図2(g)参照)。   Next, by performing a polishing process (for example, buffing or the like) on the protruding portion located outside the polishing line 6 shown in FIG. 2 (e), the filling area 9 (see FIG. 1), the surface 1 d of the insulating resin substrate 1, the surface 4 e of the high thermal conductive insulating particles 4 exposed from the surface 1 d of the insulating resin substrate 1, and the metal foil 3 exposed from the surface 1 d of the insulating resin substrate 1. Next, the front and back surfaces of the intermediate laminate SP are cleaned by a desmear process, and then electroless plating treatment or sputtering is performed. A thick conductor layer 8 (for example, an electrolytic copper-plated film having a thickness of about 150 to 300 μm or the thickness is interposed through a thin film conductor layer 7 (for example, a copper thin film having a thickness of about 0.5 to 1.0 μm) deposited by Thick copper plate with metal And the like) are stacked (see FIG. 2G).

ここで、上記説明においては、薄膜導体層7として「銅薄膜」を析出する例を示したが、当該銅薄膜よりも結晶粒径が小さい「ニッケル薄膜」を析出すれば、当該銅箔膜よりも緻密な膜を析出できるため、初期接触熱抵抗をより小さくすることができる(即ち、半導体チップから発せられた熱をより素早く冷却器側へ逃がすことができる。)。
尚、当該ニッケル薄膜を無電解めっき処理で析出させる場合、ニッケル−リンめっき、ニッケル−ホウ素めっき等、何れのニッケルめっきを析出させても構わないが、中でも熱伝導率が最も高いニッケル−ホウ素めっきを選択するのがより初期接触熱抵抗を小さくできる点で好ましい。
Here, in the above description, an example in which a “copper thin film” is deposited as the thin film conductor layer 7 is shown. However, if a “nickel thin film” having a crystal grain size smaller than that of the copper thin film is deposited, the copper foil film Since a dense film can be deposited, the initial contact thermal resistance can be further reduced (that is, heat generated from the semiconductor chip can be released to the cooler side more quickly).
When the nickel thin film is deposited by electroless plating, any nickel plating such as nickel-phosphorous plating or nickel-boron plating may be deposited. It is preferable that the initial contact thermal resistance can be further reduced.

また、高熱伝導絶縁粒子4と薄膜導体層7との接続構造として、バフ研磨等の研磨面に無電解めっき等を析出させる構成を説明したが(もちろん、この状態においても両者間の接続強度はある程度確保されている)、当該薄膜導体層7を析出させる前に(即ち、デスミア処理を行なった後)、高熱伝導絶縁粒子4の露出面4eに、図3(c)に示したような鉤状の凹部4aを設けておくのが両者間の接続強度をより強固にする(即ち、両者間の接触熱抵抗の上昇を抑制する)上で好ましい。即ち、当該鉤状の凹部4aに、薄膜導体層7が噛み合わせ状に食い込む形で接続されるため、半導体チップからの熱により、絶縁樹脂基板1が膨張した場合においても両者間の接続状態を強固に維持することができる(当該鉤状の凹部4aに薄膜導体層7が食い込む状態を示した図4(a)、(b)の要部拡大断面図参照)。
因みに、上記図2(c)の工程の段階で、予め高熱伝導絶縁粒子4(図3(a)に示した未処理の「高熱伝導絶縁粒子4」参照)の表面に、図3(b)に示したような鉤状の凹部4aが形成されたものを充填すれば、絶縁樹脂基板1との密着性も併せて向上させることができる(図4(a)、(b)参照)。
尚、当該「鉤状の凹部」4aは、例えば高熱伝導絶縁粒子4の表面を水酸化ナトリウムや弗酸などで処理することによって形成され、その内部において開口部4bの開口エリアから外れた抉れ部4cを有している(図3(c)参照)。
In addition, as a connection structure between the high thermal conductive insulating particles 4 and the thin film conductor layer 7, a configuration in which electroless plating or the like is deposited on a polished surface such as buff polishing has been described (of course, even in this state, the connection strength between the two is Before the thin film conductor layer 7 is deposited (that is, after the desmear treatment is performed), the exposed surface 4e of the high thermal conductive insulating particles 4 has a soot as shown in FIG. It is preferable to provide a concave portion 4a in order to further strengthen the connection strength between the two (that is, to suppress an increase in contact thermal resistance between the two). That is, since the thin-film conductor layer 7 is connected to the bowl-shaped recess 4a so as to engage with each other, even when the insulating resin substrate 1 expands due to heat from the semiconductor chip, the connection state between the two is maintained. It can be maintained firmly (see the enlarged cross-sectional view of the main part in FIGS. 4A and 4B showing the state where the thin-film conductor layer 7 bites into the bowl-shaped recess 4a).
Incidentally, at the stage of the process of FIG. 2C, the surface of the high thermal conductivity insulating particle 4 (see the untreated “high thermal conductivity insulating particle 4” shown in FIG. 3A) in advance is placed on the surface of FIG. If the one having the recesses 4a formed as shown in FIG. 2 is filled, the adhesion to the insulating resin substrate 1 can be improved (see FIGS. 4A and 4B).
Note that the “ridge-shaped recess” 4a is formed by, for example, treating the surface of the high thermal conductive insulating particle 4 with sodium hydroxide, hydrofluoric acid, or the like, and inside the opening, the void is removed from the opening area of the opening 4b. It has a portion 4c (see FIG. 3C).

そして最後に、一般的なサブトラクティブ法により回路層11及び熱拡散層12を形成することによって、図1に示した絶縁放熱基板Pを得る。   Finally, the circuit layer 11 and the thermal diffusion layer 12 are formed by a general subtractive method to obtain the insulated heat dissipation substrate P shown in FIG.

本実施の形態における注目すべき点は、高熱伝導絶縁粒子4と回路層11及び熱拡散層12の接続構造として、無電解めっき膜やスパッタ膜などの薄膜導体層7を介して接続する構造とするとともに、高熱伝導絶縁粒子4の非充填エリア10に位置する絶縁樹脂基板1の厚さT2を、高熱伝導絶縁粒子4の充填エリア9に位置する絶縁樹脂基板1の厚さT1よりも薄くした点にある。   What should be noted in the present embodiment is that the high heat conductive insulating particles 4 are connected to the circuit layer 11 and the heat diffusion layer 12 through a thin film conductor layer 7 such as an electroless plating film or a sputtered film. In addition, the thickness T2 of the insulating resin substrate 1 located in the unfilled area 10 of the high thermal conductive insulating particles 4 is made thinner than the thickness T1 of the insulating resin substrate 1 located in the filled area 9 of the high thermal conductive insulating particles 4. In the point.

これにより、高熱伝導絶縁粒子を回路層及び熱拡散層内に貫入させて接続する従来の接続構造と比較して、両者間の接触熱抵抗の上昇を抑制することができ、また、高熱伝導絶縁粒子4の非充填エリア10に位置する絶縁樹脂基板1の厚さT2を、当該高熱伝導絶縁粒子4の充填エリア9に位置する絶縁樹脂基板1の厚さT1よりも薄くしたため、半導体チップから発せられた熱が絶縁放熱基板に流入した際に発生する絶縁樹脂基板の熱膨張量を抑制でき(即ち、高熱伝導絶縁粒子4と、回路層11及び熱拡散層12とを引き剥がす方向に働く応力を緩和できる)、以て、両者の接触熱抵抗の上昇をより抑制することができる。   As a result, it is possible to suppress an increase in contact thermal resistance between the two in comparison with the conventional connection structure in which the high thermal conductive insulating particles are penetrated into the circuit layer and the thermal diffusion layer and connected. Since the thickness T2 of the insulating resin substrate 1 located in the unfilled area 10 of the particles 4 is made thinner than the thickness T1 of the insulating resin substrate 1 located in the filled area 9 of the high thermal conductive insulating particles 4, the semiconductor chip emits The amount of thermal expansion of the insulating resin substrate generated when the generated heat flows into the insulating heat dissipation substrate can be suppressed (that is, the stress acting in the direction of peeling the high thermal conductive insulating particles 4, the circuit layer 11 and the heat diffusion layer 12) Therefore, it is possible to further suppress an increase in contact thermal resistance between the two.

更に、高熱伝導絶縁粒子4の非充填エリア10に位置する絶縁樹脂基板1の表裏面に形成された金属箔3,3間の距離が短くなるため(即ち、回路層11と熱拡散層12間の距離が短くなる)、当該部分の絶縁樹脂基板1の厚さを高熱伝導絶縁粒子4の充填エリア9に位置する絶縁樹脂基板1と同じ厚さとした場合と比較して、放熱性の底上が可能となる(半導体チップから発生する熱は、半導体チップの搭載直下だけでなくその周辺にも及ぶため、更なる放熱効果が期待できる)。   Furthermore, the distance between the metal foils 3 and 3 formed on the front and back surfaces of the insulating resin substrate 1 located in the unfilled area 10 of the high thermal conductive insulating particles 4 is shortened (that is, between the circuit layer 11 and the heat diffusion layer 12). Compared with the case where the thickness of the insulating resin substrate 1 in this portion is the same as that of the insulating resin substrate 1 located in the filling area 9 of the high thermal conductive insulating particles 4, the heat dissipation bottom is improved. (Since the heat generated from the semiconductor chip extends not only directly under the mounting of the semiconductor chip but also around it, a further heat dissipation effect can be expected).

また、積層プレス工程(図2(d)〜(e)の工程)の際に、高熱伝導絶縁粒子4の充填エリアに対応する部分に開口部5aを備えたスペーサー治具5を介して積層するようにしたことも注目すべき点である。   Moreover, in the lamination press process (process of FIG.2 (d)-(e)), it laminates | stacks via the spacer jig | tool 5 provided with the opening part 5a in the part corresponding to the filling area of the high heat conductive insulating particle 4. FIG. This is also a notable point.

即ち、上記でも説明したように、充填する高熱伝導絶縁粒子4のサイズとして、絶縁接着剤層1aの厚さの2倍程度の厚さのものを充填する場合、図13(a)に示したように、当該スペーサー治具5を介さずにクッション材13のみを用いて積層すると、図13(b)に示したように、充填された高熱伝導絶縁粒子4の隙間に金属箔3が追従して絶縁接着剤層1aから流出する樹脂が当該高熱伝導絶縁粒子4の周囲に回り込まなくなってしまい(即ち、流出する樹脂を金属箔3が堰き止めてしまう)、その結果、後に行なわれる研磨工程で除去できないほどの溝部26が形成されたり当該高熱伝導絶縁粒子4間にボイド27(ここで云う「ボイド」とは、樹脂の未充填部のことを云う)が発生したりするなどの不具合があったのだが、スペーサ治具5を介して積層することで、このような不具合を容易に解消できるのである。   That is, as described above, when the size of the high thermal conductive insulating particles 4 to be filled is about 2 times the thickness of the insulating adhesive layer 1a, the size is shown in FIG. As described above, when the lamination is performed using only the cushion material 13 without using the spacer jig 5, the metal foil 3 follows the gap between the filled high thermal conductive insulating particles 4 as shown in FIG. As a result, the resin flowing out from the insulating adhesive layer 1a does not wrap around the high thermal conductive insulating particles 4 (that is, the metal foil 3 blocks the flowing resin), and as a result, a polishing process performed later. There are problems such as formation of groove portions 26 that cannot be removed, and voids 27 (herein, “voids” refer to unfilled portions of the resin) between the high thermal conductive insulating particles 4. However, By stacking through the support jig 5 is of such a problem can be easily solved.

尚、図13に示した金属箔3として、図5に示したものと同様の開口部3aを有するものを積層すれば、表面に凹凸が形成されるものの、絶縁接着剤層1aから流出する樹脂1bを完全に堰き止めてしまうことがないため、スペーサー治具5を介さないで積層することも可能である(図6参照)。
この場合、通常の積層プレス工程には不要なスペーサー治具5を必要としないため、当該積層プレス工程を簡略化することができる。しかし、図13(b)に示したのと同様に、研磨では除去しきれないほどの溝部が完全に発生しないとはいいきれないため、やはり、スペーサー治具5を介して積層するのが品質的に好ましいといえる。
In addition, if the metal foil 3 shown in FIG. 13 having the same opening 3a as shown in FIG. 5 is laminated, unevenness is formed on the surface, but the resin flowing out from the insulating adhesive layer 1a. Since 1b is not completely dammed, it is also possible to laminate without interposing the spacer jig 5 (see FIG. 6).
In this case, an unnecessary spacer jig 5 is not required for a normal laminating press process, so that the laminating press process can be simplified. However, as shown in FIG. 13B, since it cannot be said that a groove portion that cannot be completely removed by polishing is not completely generated, it is a quality to be laminated through the spacer jig 5 again. It can be said that it is preferable.

次に、本発明の第二の実施の形態を図7(d)を用いて説明する。
図7(d)に示した絶縁放熱基板PPは、高熱伝導絶縁粒子4の非充填エリア10に金属箔3が形成されていない以外は、図1に示した絶縁放熱基板Pと同じであり、また、その製造工程も、図2(f)の絶縁樹脂基板1(図7(a)に相当)の表面に形成されている金属箔3をエッチング除去する工程が追加された以外は、図2に示した製造工程と同じである(図7(a)〜図7(d)に示した概略断面製造工程図参照)。
従って、基本的な作用効果は第一の実施の形態と同じであるため、ここでは第一の実施の形態と比較した場合の特徴についてのみ説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.
The insulated heat dissipation substrate PP shown in FIG. 7D is the same as the insulated heat dissipation substrate P shown in FIG. 1 except that the metal foil 3 is not formed in the unfilled area 10 of the high thermal conductive insulating particles 4. The manufacturing process is the same as that shown in FIG. 2 except that a step of etching and removing the metal foil 3 formed on the surface of the insulating resin substrate 1 (corresponding to FIG. 7A) in FIG. (See the schematic cross-sectional manufacturing process diagrams shown in FIGS. 7A to 7D).
Accordingly, the basic operational effects are the same as those of the first embodiment, and therefore only the features in comparison with the first embodiment will be described here.

まず第一に、回路層11及び熱拡散層12をサブトラクティブ法で形成する場合に、予め高熱伝導絶縁粒子4の非充填エリア10に形成されている金属箔3を除去するため、当該部分に位置する回路層11及び熱拡散層12の表面に、当該金属箔3を除去した分の凹み部31が発生してしまうが(図7(c)、(d)参照)、エッチング処理後の回路層11及び熱拡散層12のエッチング界面に形成される抉れ部を小さくでき、以て、絶縁放熱基板PPを第一の実施の形態の絶縁放熱基板Pよりも小型化できるというメリットがある。   First, when the circuit layer 11 and the thermal diffusion layer 12 are formed by the subtractive method, the metal foil 3 previously formed in the unfilled area 10 of the high thermal conductive insulating particles 4 is removed, Although the recessed part 31 for the said metal foil 3 removal will generate | occur | produce on the surface of the circuit layer 11 and the thermal-diffusion layer 12 which are located (refer FIG.7 (c), (d)), the circuit after an etching process There is an advantage in that the crease formed at the etching interface between the layer 11 and the thermal diffusion layer 12 can be reduced, and the insulating heat dissipation board PP can be made smaller than the insulating heat dissipation board P of the first embodiment.

即ち、第一の実施の形態の場合には、図8(a)に示したように、エッチングレジストパターン28から露出している部分をエッチング除去する際に、内部に残存する金属箔3も併せてエッチング除去しなければならないため、その分、エッチング処理時間を長くしなければならない。そのため、図8(b)に示したように、回路層11と熱拡散層12のエッチング界面に形成される抉れ部29が大きくなってしまうことから、当該回路層11と熱拡散層12の必須面積を確保するために、絶縁放熱基板のサイズを金属箔3のエッチング量を考慮して、少し大き目のサイズに設定する必要があるのだが、第二の実施の形態ではこのような考慮を必要としないため、第一の実施の形態のものよりも小型化が図れるのである。   That is, in the case of the first embodiment, as shown in FIG. 8A, when the portion exposed from the etching resist pattern 28 is removed by etching, the metal foil 3 remaining inside is also combined. Therefore, the etching process time must be lengthened accordingly. For this reason, as shown in FIG. 8B, since the bend portion 29 formed at the etching interface between the circuit layer 11 and the heat diffusion layer 12 becomes large, the circuit layer 11 and the heat diffusion layer 12 In order to secure the required area, it is necessary to set the size of the insulating heat dissipation substrate to a slightly larger size in consideration of the etching amount of the metal foil 3, but in the second embodiment, such consideration is taken into account. Since it is not necessary, it can be made smaller than that of the first embodiment.

第二に、回路層11及び熱拡散層12をセミアディティブ法で形成できるため、絶縁放熱基板をより小型化することができる。   Second, since the circuit layer 11 and the heat diffusion layer 12 can be formed by a semi-additive method, the insulating heat dissipation substrate can be further downsized.

即ち、第一の実施の形態の絶縁放熱基板Pをセミアディティブ法で形成しようとした場合、図9(a)に示したように、回路層11と熱拡散層12の主要部である厚導体層8の形成においては、めっきレジストパターン30の非形成部に電解めっき(例えば「電解銅めっき」)を析出させる構成となるため、所望とする寸法で形成することができる。
しかし、図9(b)に示したように、めっきレジストパターン30を剥離した後、厚導体層8から露出する薄膜導体層7(例えば厚さ0.5〜1.0μmの銅薄膜)と金属箔3(例えば厚さ12〜18μmの銅箔)とをエッチング除去した際に、上記サブトラクティブ法の場合で説明したのと同様に、回路層11と熱拡散層12のエッチング界面に形成される抉れ部29aが大きくなってしまい、加えて、金属箔3をエッチング除去する分、厚導体層8の表面も厚めに除去されて薄くなってしまうため(図9(c)参照)、第一の実施の形態の絶縁放熱基板Pの構成においては、セミアディティブ法での製造方法が不可能であるのだが、第二の実施の形態の絶縁放熱基板PPの構成においては、電解めっきのシード層たる薄膜導体層7だけを除去する通常のセミアディティブ法による製造方法が可能であるため、第一の実施の形態の絶縁放熱基板Pよりも小型化できるのである。
That is, when the insulating heat dissipation substrate P of the first embodiment is formed by the semi-additive method, as shown in FIG. 9A, the thick conductor which is the main part of the circuit layer 11 and the heat diffusion layer 12 is used. In the formation of the layer 8, since it is configured such that electrolytic plating (for example, “electrolytic copper plating”) is deposited on a portion where the plating resist pattern 30 is not formed, the layer 8 can be formed with a desired size.
However, as shown in FIG. 9B, after the plating resist pattern 30 is peeled off, the thin film conductor layer 7 exposed from the thick conductor layer 8 (for example, a copper thin film having a thickness of 0.5 to 1.0 μm) and metal When the foil 3 (for example, a copper foil having a thickness of 12 to 18 μm) is removed by etching, it is formed at the etching interface between the circuit layer 11 and the thermal diffusion layer 12 as described in the case of the subtractive method. In addition, since the wrinkled portion 29a becomes large, and the surface of the thick conductor layer 8 is also removed thickly by the etching and removal of the metal foil 3 (see FIG. 9C), the first In the configuration of the insulating heat dissipation substrate P of the second embodiment, the manufacturing method by the semi-additive method is impossible, but in the configuration of the insulating heat dissipation substrate PP of the second embodiment, the seed layer of electrolytic plating Except for thin film conductor layer 7 Since the manufacturing method by the usual semi-additive method to be left is possible, it can be made smaller than the insulating heat dissipation substrate P of the first embodiment.

以上、第二の実施の形態の特徴について説明したが、第一の実施の形態においては、図4に示したように、アンカーパターン3bを有する金属箔3を介して薄膜導体層7が形成されるため、絶縁樹脂基板1に対する回路層11と熱拡散層12の密着強度を、薄膜導体層7を絶縁樹脂基板1に直接析出させる第二の実施の形態のものよりも高くすることができるので、半導体チップの発熱温度が高く、絶縁樹脂基板1と回路層11及び熱拡散層12との密着性を重視する場合には第一の実施の形態のものを選択する、あるいは、半導体チップからの発熱温度がそれほど高くなく、絶縁樹脂基板1と回路層11及び熱拡散層12との密着性を向上させるよりも回路層11及び熱拡散層12の寸法精度や絶縁放熱基板の小型化を重視したい場合には第二の実施の形態のものを選択するなど、用途に応じて選択すればよい。   Although the features of the second embodiment have been described above, in the first embodiment, as shown in FIG. 4, the thin film conductor layer 7 is formed via the metal foil 3 having the anchor pattern 3b. Therefore, the adhesion strength of the circuit layer 11 and the thermal diffusion layer 12 to the insulating resin substrate 1 can be made higher than that of the second embodiment in which the thin film conductor layer 7 is directly deposited on the insulating resin substrate 1. In the case where the heat generation temperature of the semiconductor chip is high and importance is attached to the adhesion between the insulating resin substrate 1 and the circuit layer 11 and the heat diffusion layer 12, the one of the first embodiment is selected, or from the semiconductor chip The exothermic temperature is not so high, and we want to emphasize the dimensional accuracy of the circuit layer 11 and the thermal diffusion layer 12 and the miniaturization of the insulating heat dissipation substrate rather than improving the adhesion between the insulating resin substrate 1 and the circuit layer 11 and the thermal diffusion layer 12. in case of Including selecting the one of the two embodiments, may be selected depending on the application.

本発明を説明するに当たって、高熱伝導絶縁粒子と、回路層及び熱拡散層との間の接触熱抵抗の増大を抑制する手段として、高熱伝導絶縁粒子に無電解めっき処理やスパッタリング等により析出した薄膜導体層を介して厚導体層を積層するとともに、高熱伝導絶縁粒子の非充填エリアに位置する絶縁樹脂基板の厚さを高熱伝導絶縁粒子の充填エリアに位置する絶縁樹脂基板の厚さよりも薄くする例を説明してきたが、絶縁樹脂基板に用いる絶縁樹脂として、横方向の線膨張係数よりも縦方向の線膨張係数が小さい異方性線膨張樹脂を用いれば、絶縁放熱基板の放熱信頼性をより向上させることができる。   In describing the present invention, as a means for suppressing an increase in contact thermal resistance between the high thermal conductive insulating particles and the circuit layer and the thermal diffusion layer, a thin film deposited on the high thermal conductive insulating particles by electroless plating or sputtering. A thick conductor layer is laminated via the conductor layer, and the thickness of the insulating resin substrate located in the non-filling area of the high thermal conductive insulating particles is made thinner than the thickness of the insulating resin substrate located in the filling area of the high thermal conductive insulating particles. Although the example has been explained, if an anisotropic linear expansion resin having a smaller linear expansion coefficient in the vertical direction than that in the horizontal direction is used as the insulating resin for the insulating resin substrate, the heat radiation reliability of the insulating heat dissipation board can be improved. It can be improved further.

また、高熱伝導絶縁粒子を埋め込む手段として、積層プレスの際に絶縁接着剤層から流れ出る樹脂のみで充填する例を挙げたが、予め(即ち、積層プレス前)、当該高熱伝導絶縁粒子の充填エリアに、細かく粉砕した未硬化の熱硬化性樹脂からなる樹脂粉を補助的に入れるようにすれば、樹脂不足によるボイドなどの不具合を確実になくすことができる。   Further, as an example of embedding the high thermal conductive insulating particles, an example in which only the resin flowing out from the insulating adhesive layer is filled at the time of the lamination press has been described. In addition, if resin powder made of uncured thermosetting resin finely pulverized is added as an auxiliary, defects such as voids due to insufficient resin can be reliably eliminated.

尚、高熱伝導絶縁粒子として、破砕品をイメージした多角形のものを用いて説明してきたが、当該高熱伝導絶縁粒子としては、一定の塊状のものであればどのような形状でもよく、例えば、球状や柱状など、予め成形されたものを用いることももちろん可能である。   In addition, although the high heat conductive insulating particles have been described using polygonal particles that image a crushed product, the high heat conductive insulating particles may have any shape as long as they are in a certain lump shape, for example, Of course, it is possible to use a pre-molded material such as a spherical shape or a column shape.

1、1c:絶縁樹脂基板
1a:絶縁接着剤層
1b:樹脂
1d:絶縁樹脂基板の表面
2:補強繊維
2a:抜き部
3:金属箔
3a:開口部(金属箔の開口部)
3b:アンカーパターン
3c:絶縁樹脂基板から露出した金属箔の表面
4:高熱伝導絶縁粒子
4a:鉤状の凹部
4b:開口部(鉤状の凹部の開口部)
4c:抉れ部
4d:突出部
4e:絶縁樹脂基板から露出した高熱伝導絶縁粒子の表面
5:スペーサー治具
5a:開口部(スペーサー治具の開口部)
6:研磨ライン
7:薄膜導体層
8:厚導体層
9:充填エリア
10:非充填エリア
11、11a、11b:回路層
11ba:金属箔
11bb:アンカーパターン
12、12a、12b:熱拡散層
13:クッション材
14:はんだ
15:半導体チップ
16:絶縁基板
17:低熱膨張材
18:放熱体
19:取付ねじ
20:冷却器
21:冷却水
22:接触界面
23:単なる凹凸形状
24:金属非充填部
25:剥離部
26:溝部
27:ボイド
28:エッチングレジストパターン
29、29a:抉れ部
30:めっきレジストパターン
31:凹み部
P、PP、Pa、Pb、:パワーモジュール用絶縁放熱基板
SP:中間積層体
PM:パワーモジュール
A、B:金属箔の露出側表面
A1:絶縁樹脂基板の表面
B1:絶縁樹脂基板の裏面
T1:充填エリアの絶縁樹脂基板厚
T2:非充填エリアの絶縁樹脂基板厚
1, 1c: Insulating resin substrate 1a: Insulating adhesive layer 1b: Resin 1d: Surface of insulating resin substrate 2: Reinforcing fiber 2a: Extracted portion 3: Metal foil 3a: Opening (opening of metal foil)
3b: Anchor pattern 3c: Surface of metal foil exposed from insulating resin substrate 4: High heat conductive insulating particles 4a: Wrinkled recess 4b: Opening (opening of wrinkled recess)
4c: Dripping portion 4d: Protruding portion 4e: Surface of the high thermal conductive insulating particle exposed from the insulating resin substrate 5: Spacer jig 5a: Opening portion (opening portion of the spacer jig)
6: Polishing line 7: Thin film conductor layer 8: Thick conductor layer 9: Filled area 10: Unfilled areas 11, 11a, 11b: Circuit layer 11ba: Metal foil 11bb: Anchor pattern 12, 12a, 12b: Thermal diffusion layer 13: Cushion material 14: Solder 15: Semiconductor chip 16: Insulating substrate 17: Low thermal expansion material 18: Heat radiator 19: Mounting screw 20: Cooler 21: Cooling water 22: Contact interface 23: Simple uneven shape 24: Metal unfilled portion 25 : Peeling part 26: Groove part 27: Void 28: Etching resist pattern 29, 29 a: Bending part 30: Plating resist pattern 31: Indented part P, PP, Pa, Pb,: Insulating heat dissipation board SP for power module: Intermediate laminate PM: Power module A, B: Exposed side surface of metal foil A1: Front surface of insulating resin substrate B1: Back surface of insulating resin substrate T1: Insulation of filling area Fat substrate thickness T2: insulating resin substrate thickness of unfilled areas

Claims (18)

一方の面側に搭載される半導体チップからの発熱を、他方の面側に設置される冷却器へと伝熱させるパワーモジュール用絶縁放熱基板であって、少なくとも、半導体チップの搭載エリアに対応する部位に高熱伝導絶縁粒子を有する絶縁樹脂基板と、当該絶縁樹脂基板の表裏面に積層された薄膜導体層と、当該薄膜導体層を介して積層された厚導体層とを有し、且つ、当該半導体チップの搭載エリアに位置する絶縁樹脂基板の表面と、当該半導体チップの搭載エリアに位置する絶縁樹脂基板の表面から露出した高熱伝導絶縁粒子の表面とが面一に形成されているとともに、当該半導体チップの非搭載エリアに位置する当該絶縁樹脂基板の厚さが、当該半導体チップの搭載エリアに位置する当該絶縁樹脂基板の厚さよりも薄く形成されていることを特徴とするパワーモジュール用絶縁放熱基板。   An insulating heat dissipation substrate for a power module that transfers heat generated from a semiconductor chip mounted on one surface side to a cooler installed on the other surface side, at least corresponding to the mounting area of the semiconductor chip An insulating resin substrate having high thermal conductive insulating particles at a site, a thin film conductor layer laminated on the front and back surfaces of the insulating resin substrate, a thick conductor layer laminated via the thin film conductor layer, and The surface of the insulating resin substrate located in the mounting area of the semiconductor chip and the surface of the high thermal conductive insulating particles exposed from the surface of the insulating resin substrate located in the mounting area of the semiconductor chip are formed flush with each other. The thickness of the insulating resin substrate located in the non-mounting area of the semiconductor chip is formed thinner than the thickness of the insulating resin substrate located in the mounting area of the semiconductor chip. It insulated radiating substrate for a power module characterized. 当該半導体チップの非搭載エリアに位置する絶縁樹脂基板と薄膜導体層との間に、当該半導体チップの搭載エリアに位置する絶縁樹脂基板の表面と面一の表面を有する金属箔を備えていることを特徴とする請求項1に記載のパワーモジュール用絶縁放熱基板。   A metal foil having a surface flush with the surface of the insulating resin substrate located in the mounting area of the semiconductor chip is provided between the insulating resin substrate located in the non-mounting area of the semiconductor chip and the thin film conductor layer. The insulating heat dissipation substrate for a power module according to claim 1. 当該高熱伝導絶縁粒子が、少なくとも絶縁樹脂基板からの露出面に鉤状の凹部を備えており、当該薄膜導体層の一部が、当該鉤状の凹部に噛み合わせ状に食い込んでいることを特徴とする請求項1又は2に記載のパワーモジュール用絶縁放熱基板。   The high thermal conductive insulating particle has a bowl-shaped recess at least on an exposed surface from the insulating resin substrate, and a part of the thin film conductor layer bites into the bowl-shaped recess. The insulating heat dissipation substrate for a power module according to claim 1 or 2. 当該絶縁樹脂基板が、当該高熱伝導絶縁粒子と同質材料で、且つ、当該高熱伝導絶縁粒子よりも径の小さいフィラーを含有していることを特徴とする請求項1〜3の何れか1項に記載のパワーモジュール用絶縁放熱基板。 The insulating resin substrate contains the same material as the high thermal conductive insulating particles and contains a filler having a diameter smaller than that of the high thermal conductive insulating particles. The insulated heat dissipation board for power modules as described. 当該薄膜導体層が、無電解Niめっきからなることを特徴とする請求項1〜4の何れか1項に記載のパワーモジュール用絶縁放熱基板。   The insulated heat dissipation substrate for a power module according to any one of claims 1 to 4, wherein the thin film conductor layer is made of electroless Ni plating. 当該絶縁樹脂基板が、横方向の線膨張係数よりも縦方向の線膨張係数が小さい異方性線膨張樹脂からなることを特徴とする請求項1〜5の何れか1項に記載のパワーモジュール用絶縁放熱基板。   The power module according to any one of claims 1 to 5, wherein the insulating resin substrate is made of an anisotropic linear expansion resin having a smaller linear expansion coefficient in the vertical direction than the linear expansion coefficient in the horizontal direction. Insulating heat dissipation board. 当該絶縁樹脂基板が、内部に補強用の長繊維を含んでいることを特徴とする請求項1〜6の何れか1項に記載のパワーモジュール用絶縁放熱基板。   The insulating heat dissipation substrate for a power module according to any one of claims 1 to 6, wherein the insulating resin substrate includes reinforcing long fibers therein. 一方の面側に搭載される半導体チップからの発熱を、他方の面側に設置される冷却器へと伝熱させるパワーモジュール用絶縁放熱基板の製造方法であって、少なくとも、半硬化状態の絶縁接着剤層における当該半導体チップの搭載エリアに対応する部位に抜き部を設ける第一の工程と、当該抜き部を備えた絶縁接着剤層の一方の面に第一の金属箔を配置する第二の工程と、当該絶縁接着剤層に設けられた抜き部内に、当該絶縁接着剤層よりも厚みのある高熱伝導絶縁粒子を充填する第三の工程と、当該絶縁接着剤層の他方の面に第二の金属箔を配置する第四の工程と、当該絶縁接着剤層に設けられた抜き部に対応する部分に開口部を備えたスペーサー治具を当該第一の金属箔及び第二の金属箔の上に配置した後、加熱・加圧処理を行う第五の工程と、当該加熱・加圧処理により盛り上がった突出部を、当該スペーサー治具の開口部から外れた部分に位置する金属箔の露出側表面と面一となるように研磨する第六の工程と、当該突出部が研磨された中間積層体の表裏面に薄膜導体層と厚導体層とを順次積層する第七の工程とを有することを特徴とするパワーモジュール用絶縁放熱基板の製造方法。   A method of manufacturing an insulating heat dissipation substrate for a power module that transfers heat generated from a semiconductor chip mounted on one surface side to a cooler installed on the other surface side, and at least a semi-cured insulation A first step of providing a cutout in a portion of the adhesive layer corresponding to the mounting area of the semiconductor chip, and a second of disposing a first metal foil on one surface of the insulating adhesive layer provided with the cutout A third step of filling the heat-insulating insulating particles having a thickness larger than that of the insulating adhesive layer into the extracted portion provided in the insulating adhesive layer, and the other surface of the insulating adhesive layer. A fourth step of disposing the second metal foil, and a spacer jig having an opening in a portion corresponding to the punched portion provided in the insulating adhesive layer, the first metal foil and the second metal After placing on the foil, the fifth is to heat and pressurize And a sixth step of polishing the protruding portion raised by the heating / pressurizing process so as to be flush with the exposed surface of the metal foil located in a portion off the opening of the spacer jig, And a seventh step of sequentially laminating a thin-film conductor layer and a thick conductor layer on the front and back surfaces of the intermediate laminate with the protrusions polished, and a method for producing an insulated heat dissipation substrate for a power module. 当該第二、第四の工程で配置される金属箔が、半導体チップの搭載エリアに対応する部位に開口部を有するものであり、且つ、第五の工程で行われる加熱・加圧処理が、第一、第二の金属箔とスペーサー治具との間に離型性を有するクッション材を介して行なわれることを特徴とする請求項8に記載のパワーモジュール用絶縁放熱基板の製造方法。   The metal foil arranged in the second and fourth steps has an opening at a portion corresponding to the mounting area of the semiconductor chip, and the heating / pressurizing treatment performed in the fifth step is performed. 9. The method for manufacturing an insulating heat dissipation substrate for a power module according to claim 8, wherein a cushioning material having releasability is provided between the first and second metal foils and the spacer jig. 請求項9に記載のパワーモジュール用絶縁放熱基板の製造方法において、加熱・加圧処理が、スペーサー治具を介さないで行なわれることを特徴とするパワーモジュール用絶縁放熱基板の製造方法。   10. The method for manufacturing an insulated heat dissipation substrate for power modules according to claim 9, wherein the heating / pressurizing process is performed without using a spacer jig. 当該第六、第七の工程の間に、金属箔を除去する工程を追加することを特徴とする請求項8〜10の何れか1項に記載のパワーモジュール用絶縁放熱基板の製造方法。   The method for manufacturing an insulating heat dissipation substrate for a power module according to any one of claims 8 to 10, wherein a step of removing the metal foil is added between the sixth and seventh steps. 当該第六、第七の工程の間に、当該第六の工程の研磨により露出した高熱伝導絶縁粒子の露出面に鉤状の凹部を形成する工程を追加することを特徴とする請求項8〜11の何れか1項に記載のパワーモジュール用絶縁放熱基板の製造方法。   The process of forming a bowl-shaped recessed part in the exposed surface of the high heat conductive insulating particle exposed by the polishing of the sixth process is added between the sixth and seventh processes. 11. A method for manufacturing an insulating heat dissipation substrate for a power module according to any one of 11. 当該第三の工程で充填する高熱伝導粒子が、表面に鉤状の凹部を備えていることを特徴とする請求項8〜12の何れか1項に記載のパワーモジュール用絶縁放熱基板の製造方法。   The method for producing an insulated heat dissipation substrate for a power module according to any one of claims 8 to 12, wherein the highly thermally conductive particles filled in the third step have a bowl-shaped recess on the surface. . 当該絶縁接着剤層が、当該高熱伝導絶縁粒子と同質材料で、且つ、当該高熱伝導絶縁粒子より径の小さいフィラーを含有しているものを用いることを特徴とする請求項8〜13の何れか1項に記載のパワーモジュール用絶縁放熱基板の製造方法。   The insulating adhesive layer is made of the same material as the high thermal conductive insulating particles and contains a filler having a diameter smaller than that of the high thermal conductive insulating particles. The manufacturing method of the insulated heat dissipation board | substrate for power modules of Claim 1. 当該第七の工程により積層される薄膜導体層が、無電解ニッケルめっき処理により析出されたニッケル膜からなることを特徴とする請求項8〜14の何れか1項に記載のパワーモジュール用絶縁放熱基板の製造方法。   The insulated heat dissipation for a power module according to any one of claims 8 to 14, wherein the thin film conductor layer laminated in the seventh step is made of a nickel film deposited by electroless nickel plating. A method for manufacturing a substrate. 当該絶縁接着剤層が、横方向の線膨張係数よりも縦方向の線膨張係数が小さい異方性線膨張樹脂からなることを特徴とする請求項8〜15の何れか1項に記載のパワーモジュール用絶縁放熱基板の製造方法。   The power according to any one of claims 8 to 15, wherein the insulating adhesive layer is made of an anisotropic linear expansion resin having a linear expansion coefficient in the vertical direction smaller than that in the horizontal direction. A method of manufacturing an insulating heat dissipation board for modules. 当該絶縁接着剤層が、内部に補強用の長繊維を含んだものであることを特徴とする請求項8〜16の何れか1項に記載のパワーモジュール用絶縁放熱基板の製造方法。   The method for producing an insulating heat dissipation substrate for a power module according to any one of claims 8 to 16, wherein the insulating adhesive layer contains reinforcing long fibers therein. 当該第三、第四の工程の間に、高熱伝導絶縁粒子が充填された絶縁接着剤層の抜き部に、細かく粉砕した未硬化の熱硬化性樹脂からなる樹脂粉を入れる工程を追加することを特徴とする請求項8〜17の何れか1項に記載のパワーモジュール用絶縁放熱基板製造方法。   Between the third and fourth steps, adding a step of putting resin powder made of finely pulverized uncured thermosetting resin into the extracted part of the insulating adhesive layer filled with high thermal conductive insulating particles The method for manufacturing an insulating heat dissipation substrate for a power module according to any one of claims 8 to 17.
JP2011280784A 2011-12-22 2011-12-22 Insulated heat dissipation board for power module and manufacturing method thereof Active JP5877056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280784A JP5877056B2 (en) 2011-12-22 2011-12-22 Insulated heat dissipation board for power module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280784A JP5877056B2 (en) 2011-12-22 2011-12-22 Insulated heat dissipation board for power module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013131662A true JP2013131662A (en) 2013-07-04
JP5877056B2 JP5877056B2 (en) 2016-03-02

Family

ID=48908989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280784A Active JP5877056B2 (en) 2011-12-22 2011-12-22 Insulated heat dissipation board for power module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5877056B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232469A1 (en) * 2016-04-14 2017-10-18 Hamilton Sundstrand Corporation Embedding diamond and other ceramic media into metal substrates to form thermal interface materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782893A (en) * 1986-09-15 1988-11-08 Trique Concepts, Inc. Electrically insulating thermally conductive pad for mounting electronic components
JP2003133467A (en) * 2001-10-24 2003-05-09 Kyocera Corp Package for containing semiconductor element and semiconductor device
JP2006270062A (en) * 2005-02-22 2006-10-05 Mitsubishi Materials Corp Insulating heat-transfer structure and substrate for power module
WO2007010615A1 (en) * 2005-07-22 2007-01-25 Mitsubishi Denki Kabushiki Kaisha Heat conducting sheet, method for manufacturing such heat conducting sheet, and power module using heat conducting sheet
WO2009011077A1 (en) * 2007-07-17 2009-01-22 Mitsubishi Electric Corporation Semiconductor device and process for producing the same
US20110044004A1 (en) * 2009-08-18 2011-02-24 Garosshen Thomas J Heat transfer apparatus having a thermal interface material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782893A (en) * 1986-09-15 1988-11-08 Trique Concepts, Inc. Electrically insulating thermally conductive pad for mounting electronic components
JP2003133467A (en) * 2001-10-24 2003-05-09 Kyocera Corp Package for containing semiconductor element and semiconductor device
JP2006270062A (en) * 2005-02-22 2006-10-05 Mitsubishi Materials Corp Insulating heat-transfer structure and substrate for power module
WO2007010615A1 (en) * 2005-07-22 2007-01-25 Mitsubishi Denki Kabushiki Kaisha Heat conducting sheet, method for manufacturing such heat conducting sheet, and power module using heat conducting sheet
WO2009011077A1 (en) * 2007-07-17 2009-01-22 Mitsubishi Electric Corporation Semiconductor device and process for producing the same
US20110044004A1 (en) * 2009-08-18 2011-02-24 Garosshen Thomas J Heat transfer apparatus having a thermal interface material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232469A1 (en) * 2016-04-14 2017-10-18 Hamilton Sundstrand Corporation Embedding diamond and other ceramic media into metal substrates to form thermal interface materials
US10074589B2 (en) 2016-04-14 2018-09-11 Hamilton Sundstrand Corporation Embedding diamond and other ceramic media into metal substrates to form thermal interface materials

Also Published As

Publication number Publication date
JP5877056B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
US20180323361A1 (en) Thermoelectric device embedded in a printed circuit board
JP2006332449A (en) Multilayer printed wiring board and method for manufacturing the same
JP2012235036A (en) Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same
JP2014165486A (en) Power device module and manufacturing method thereof
TWI435666B (en) Radiant heat circuit board and method for manufacturing the same
US20110272179A1 (en) Printed Circuit Board with Embossed Hollow Heatsink Pad
JP3779721B1 (en) Manufacturing method of laminated circuit board
CN111132476A (en) Preparation method of double-sided circuit radiating substrate
JP5778971B2 (en) Insulated heat dissipation board for power modules
JP2008251671A (en) Heat dissipating substrate, manufacturing method therefor, and electronic component module
JP4631785B2 (en) Metal base circuit board, manufacturing method thereof, mounted component, and module
JP5877056B2 (en) Insulated heat dissipation board for power module and manufacturing method thereof
JP2006324542A (en) Printed wiring board and its manufacturing method
CN111148353B (en) Preparation method of circuit board with copper-based heat sink
JP2007019425A (en) Printed wiring board and its manufacturing method
JP4444309B2 (en) Heat dissipation substrate and manufacturing method thereof
JP2006294749A (en) High heat dissipation circuit board and its manufacturing method
KR20080030366A (en) Multi-layered and combined pcb with aluminum for thermal-conduction
JP4111187B2 (en) Manufacturing method of component unit
JP5623364B2 (en) Wiring board, mounting structure, and electronic device
JP2009043881A (en) Heat dissipation wiring board and manufacturing method thereof
JP2009289853A (en) Method for manufacturing wiring board and method for manufacturing mounting structure
JP4325329B2 (en) Heat dissipation package
CN107667419B (en) Method for producing a circuit carrier
JP2014099574A (en) Lead frame heat releasing substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5877056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250