JP4325329B2 - Heat dissipation package - Google Patents

Heat dissipation package Download PDF

Info

Publication number
JP4325329B2
JP4325329B2 JP2003322651A JP2003322651A JP4325329B2 JP 4325329 B2 JP4325329 B2 JP 4325329B2 JP 2003322651 A JP2003322651 A JP 2003322651A JP 2003322651 A JP2003322651 A JP 2003322651A JP 4325329 B2 JP4325329 B2 JP 4325329B2
Authority
JP
Japan
Prior art keywords
circuit board
circuit
heat dissipation
board
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003322651A
Other languages
Japanese (ja)
Other versions
JP2005093582A (en
Inventor
美智博 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003322651A priority Critical patent/JP4325329B2/en
Publication of JP2005093582A publication Critical patent/JP2005093582A/en
Application granted granted Critical
Publication of JP4325329B2 publication Critical patent/JP4325329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、回路部品が実装された基板を放熱させる放熱実装体に関するものである。 The present invention relates to a heat radiating package that radiates heat from a substrate on which circuit components are mounted.

近年、電子機器の高性能化、小型化の要求に従い、回路部品の小型化・高密度化・高機能化が進展し、回路基板上に高密度に実装されている。これに伴い回路部品の温度が上昇しており、放熱が非常に重要となってきている。回路部品の放熱性を高める技術として、従来のアルミニウム板を切削加工したものを部品実装している回路基板に貼り付け、部品の天面から熱を拡散する方式が知られている。しかしこの方式では、複数の部品の天面にアルミニウム板を接触させるためにはアルミニウム板に複雑な加工をする必要があり、コストが高くなるという課題を残している。また、アルミニウム板が電気伝導体であり回路部品の導通部と接触しないようにし電気的な絶縁を取るために、アルミニウムの表面を絶縁処理したり、構造的に制約を設けて取り付けなければならず、設計的にもコスト的にも課題がある。   In recent years, according to the demand for higher performance and smaller size of electronic devices, circuit components have been miniaturized, densified, and highly functionalized, and are mounted on a circuit board at high density. Along with this, the temperature of circuit components has risen, and heat dissipation has become very important. As a technique for improving the heat dissipation of circuit components, there is known a method in which a conventional machined aluminum plate is attached to a circuit board on which components are mounted, and heat is diffused from the top surface of the components. However, in this method, in order to make the aluminum plate come into contact with the top surfaces of a plurality of components, it is necessary to perform complicated processing on the aluminum plate, and there remains a problem that the cost becomes high. In addition, the aluminum plate is an electrical conductor, so that it does not come into contact with the conductive parts of the circuit components and is electrically insulated, the aluminum surface must be insulated or structurally restricted. There are problems in terms of design and cost.

さらに図面を用いて説明する。図22は、従来の回路基板を示す概略側面図であり、一般的にはアルミニウム板を切削削除した放熱板301を回路基板104に熱伝導性接着剤を用いて貼り付け、回路部品105の天面から熱を拡散させる方式が知られている。しかし、この方式では複数の部品の天面にアルミニウム板を接触させるためには、アルミニウム板に複雑な切削加工をする必要がありコストが高く生産性が悪いという課題を有している。   Furthermore, it demonstrates using drawing. FIG. 22 is a schematic side view showing a conventional circuit board. Generally, a heat radiating plate 301 from which an aluminum plate is cut and removed is attached to the circuit board 104 using a heat conductive adhesive, and the top of the circuit component 105 is shown. A method of diffusing heat from the surface is known. However, in this method, in order to bring the aluminum plate into contact with the top surfaces of a plurality of parts, it is necessary to perform complicated cutting on the aluminum plate, which has a problem that the cost is high and the productivity is low.

なお、この出願の発明に関連する先行技術文献情報として次のものがある。
特開平11−46049号公報
As prior art document information related to the invention of this application, there is the following.
JP 11-46049 A

上述したような従来の金属板の貼り付け方法では、性能及びコストの面で両立させることが難しい。回路部品実装済み基板では、回路部品の実装密度が高密度になればなるほど部品から発生する熱を放熱させる必要が高くなるが、従来の金属板の貼り付け方法では複数の部品の天面に接触できるような放熱板を作るのはその加工方法が切削加工によるため、生産性が悪くコストが高くなってしまう。   In the conventional method of attaching a metal plate as described above, it is difficult to achieve both performance and cost. In a circuit component-mounted board, the higher the circuit component mounting density, the more it is necessary to dissipate the heat generated from the component, but the conventional method of attaching a metal plate contacts the top surface of multiple components. The heat sink that can be made is cut by the processing method, which results in poor productivity and high cost.

このため、一部の部品または部分的な接触で妥協することが多く、結果として充分な放熱をすることができず、回路部品実装済み基板の信頼性が低下するという課題を有している。   For this reason, there are many compromises due to some parts or partial contact, and as a result, sufficient heat dissipation cannot be performed, and the reliability of the circuit component mounted substrate is lowered.

本発明は、上記の課題を解決するためになされたものであり、低コストで放熱性の良い回路基板を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a low-cost and heat-radiating circuit board .

前記課題を解決するために本発明の放熱実装体は、回路基板と、少なくとも一面に凹部が形成された絶縁シートとからなり、回路基板からの熱伝導性を向上させるために接着剤によって回路基板に絶縁シートを固定させている。 In order to solve the above-mentioned problems, a heat dissipation package of the present invention comprises a circuit board and an insulating sheet having a recess formed on at least one surface, and an adhesive is used to improve the thermal conductivity from the circuit board. The insulation sheet is fixed to

これにより、放熱性の良い回路基板を提供することができるようになる。 Thereby, a circuit board with good heat dissipation can be provided.

本発明の請求項1に記載の発明は、回路部品が実装された回路基板と、この回路基板に略平行に設けた金属板と、前記回路基板と前記金属板との間に設けた絶縁シートとからなる放熱実装体であり、前記絶縁シートは少なくともその一面に予め前記回路部品の外形形状に対応した凹部を設けたうえで無機フィラーと熱硬化性樹脂組成物を硬化させることにより形成し、前記回路基板と前記絶縁シートとは接着剤により固定するとともに前記絶縁シート形成時の形状を維持したうえで前記凹部に前記回路部品とを当接させた放熱実装体であり、これにより、回路部品で発生した熱を効率良く基板に伝達することができるとともに、回路部品の温度上昇を効率良く抑制できるものである。 According to a first aspect of the present invention, there is provided a circuit board on which circuit components are mounted, a metal plate provided substantially parallel to the circuit board, and an insulating sheet provided between the circuit board and the metal plate. The insulating sheet is formed by curing the inorganic filler and the thermosetting resin composition after providing a recess corresponding to the outer shape of the circuit component in advance on at least one surface thereof, The circuit board and the insulating sheet are heat dissipating mounting bodies in which the circuit component is abutted with the recess while the shape at the time of forming the insulating sheet is maintained while being fixed with an adhesive, In addition to being able to efficiently transfer the heat generated in the circuit board to the substrate, the temperature rise of the circuit components can be efficiently suppressed.

また、本発明の請求項2に記載の発明は、回路部品が実装された第1の回路基板と、この第1の回路基板に略平行に設けた第2の回路基板と、前記第1の回路基板と前記第2の回路基板との間に設けた絶縁シートとからなる放熱実装体であり、前記絶縁シートは少なくともその一面に予め前記第1の回路部品の外形形状に対応した凹部を設けたうえで無機フィラーと熱硬化性樹脂組成物を硬化させることにより形成し、前記第1の回路基板と前記絶縁シートとは接着剤により固定するとともに前記絶縁シート形成時の形状を維持したうえで前記凹部に前記回路部品とを当接させた放熱実装体であり、これにより、絶縁シートと回路基板との熱膨張係数に差がある場合でも、放熱実装体作製時にこの熱膨張係数の差により発生する放熱実装体の反りを抑制することができる。このため回路基板に実装されている回路部品と放熱用基板とを精度良く容易に接触させることができ、回路部品で発生した熱を効率良く放熱板に伝達できるようになる。 According to a second aspect of the present invention, there is provided a first circuit board on which circuit components are mounted, a second circuit board provided substantially parallel to the first circuit board, and the first circuit board. A heat dissipation mounting body comprising a circuit board and an insulating sheet provided between the second circuit board, and the insulating sheet is provided with a recess corresponding to the outer shape of the first circuit component in advance on at least one surface thereof. In addition, an inorganic filler and a thermosetting resin composition are formed by curing, and the first circuit board and the insulating sheet are fixed with an adhesive and the shape at the time of forming the insulating sheet is maintained. It is a heat dissipation mounting body in which the circuit component is brought into contact with the concave portion, so that even when there is a difference in the thermal expansion coefficient between the insulating sheet and the circuit board, due to the difference in the thermal expansion coefficient during the manufacturing of the heat dissipation mounting body Generated heat Ri can be suppressed. For this reason, the circuit component mounted on the circuit board and the heat radiating board can be brought into contact with each other accurately and easily, and the heat generated in the circuit component can be efficiently transmitted to the heat radiating plate.

以上の説明から明らかなように、本発明によれば、回路基板の回路部品の天面形状に当接させた凹部を有する絶縁シートを回路基板に接着固定することにより、回路部品から発生した熱を効率良く放熱用基板に伝達して放熱させることができ、回路部品の温度上昇を効率良く抑制することができる。 As is apparent from the above description, according to the present invention, the heat generated from the circuit component is obtained by bonding and fixing the insulating sheet having the concave portion in contact with the top surface shape of the circuit component of the circuit substrate to the circuit substrate. Can be efficiently transmitted to the heat dissipation substrate to dissipate heat, and the temperature rise of the circuit components can be efficiently suppressed.

(実施の形態1)
以下、実施の形態1を用いて、本発明に記載の発明について説明する。
(Embodiment 1)
Hereinafter, with reference to the first embodiment will be described the invention described onset bright.

図1は、本発明に関連する実施の形態1における放熱用基板101Aを回路基板に実装した状態を示す断面図であり、また、図2は実施の形態1における放熱用基板101Aの製造方法を示す断面図である。 FIG. 1 is a cross-sectional view showing a state in which a heat dissipation substrate 101A according to the first embodiment related to the present invention is mounted on a circuit board, and FIG. 2 shows a method for manufacturing the heat dissipation substrate 101A according to the first embodiment. It is sectional drawing shown.

図1において、放熱用基板101Aは高熱伝導樹脂102と金属板103からなる。高熱伝導樹脂102は、熱硬化性樹脂に高濃度に無機材料からなる熱伝導性フィラーを添加して高熱伝導性を付与した樹脂である。高熱伝導樹脂102の金属板103と反対側の面は、回路基板104に実装した複数の回路部品105に基づく構造形状に対応した凹凸形状を有している。   In FIG. 1, the heat dissipation substrate 101 </ b> A includes a high thermal conductive resin 102 and a metal plate 103. The high thermal conductive resin 102 is a resin obtained by adding high thermal conductivity to a thermosetting resin by adding a thermal conductive filler made of an inorganic material at a high concentration. The surface of the high thermal conductive resin 102 opposite to the metal plate 103 has a concavo-convex shape corresponding to the structural shape based on the plurality of circuit components 105 mounted on the circuit board 104.

ここで、107は銅からなる配線パターンを示す。そして、回路部品105の少なくとも天面を放熱用基板101Aの凹部内天面に当接されるように放熱用基板101Aを回路基板104に熱伝導性接着剤を用いて装着している。このように放熱用基板101Aの凹部内天面を回路基板104上の回路部品105の天面を当接させて組み合わせることにより、回路基板104上に実装された回路部品105の発熱による熱量が、放熱用基板101A全体に速やかに効率良く伝達されるため、発熱した回路部品105が高温になるのを防ぐことができ、回路基板の信頼性を高めることができる。   Here, 107 indicates a wiring pattern made of copper. Then, the heat dissipation substrate 101A is mounted on the circuit board 104 using a heat conductive adhesive so that at least the top surface of the circuit component 105 is in contact with the top surface in the recess of the heat dissipation substrate 101A. In this way, by combining the top surface of the recess of the heat dissipation substrate 101A with the top surface of the circuit component 105 on the circuit board 104 in contact, the amount of heat generated by the heat generation of the circuit component 105 mounted on the circuit board 104 is Since it is quickly and efficiently transmitted to the entire heat dissipating board 101A, it is possible to prevent the heat generated circuit component 105 from becoming high temperature and to improve the reliability of the circuit board.

なお、図1では放熱用基板101Aの高熱伝導樹脂102と回路基板104の間に隙間があいているが、各回路部品105の高さのバラツキを少なくし、電気絶縁性の高い高熱伝導性接着剤を用いて、放熱用基板101Aの高熱伝導樹脂102と回路基板104の間の隙間を無くすればより効率良く回路部品105で発生する熱を放熱することができる。   In FIG. 1, there is a gap between the high thermal conductive resin 102 of the heat dissipation board 101A and the circuit board 104. However, the variation in the height of each circuit component 105 is reduced, and the high thermal conductive adhesive with high electrical insulation is provided. If the gap between the high thermal conductive resin 102 and the circuit board 104 of the heat radiating board 101A is eliminated by using the agent, the heat generated in the circuit component 105 can be radiated more efficiently.

次に図2を用いて、実施の形態1の放熱用基板101Aの製造方法を説明する。   Next, a method for manufacturing the heat dissipation substrate 101A of the first embodiment will be described with reference to FIG.

図2(A)において、無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなるシート状物110はPETフィルム121上に形成されている。シート110は無機フィラーを含む軟体の熱硬化性樹脂シートであり、70〜95重量部の無機材料からなる熱伝導性フィラーと熱硬化性樹脂組成物である。熱伝導性の無機フィラーとしては、Al23、MgO、SiO2、BNあるいはAlNから選ばれた少なくとも一種の無機フィラーであり、この実施の形態ではAl23を使用している。 In FIG. 2A, a sheet-like material 110 made of a mixture (uncured) of an inorganic filler and a thermosetting resin composition is formed on a PET film 121. The sheet 110 is a soft thermosetting resin sheet containing an inorganic filler, and is a heat conductive filler and a thermosetting resin composition made of 70 to 95 parts by weight of an inorganic material. The thermally conductive inorganic filler is at least one inorganic filler selected from Al 2 O 3 , MgO, SiO 2 , BN, or AlN. In this embodiment, Al 2 O 3 is used.

ここで、無機フィラーの粒径は0.1〜100μmが望ましく、この実施の形態では、平均粒径が3μmと12μmの2種類の混合を用いている。大小2種類の粒径の無機フィラーを用いることによって、大きな粒径の無機フィラーの隙間に小さな粒径の無機フィラーが充填されるため、高密度に無機フィラーを充填することができた。無機フィラーの充填量は、87重量%である。   Here, the particle size of the inorganic filler is desirably 0.1 to 100 μm, and in this embodiment, two types of mixtures having an average particle size of 3 μm and 12 μm are used. By using inorganic fillers having two kinds of large and small particle diameters, the inorganic fillers having small particle diameters are filled in the gaps between the inorganic fillers having large particle diameters, so that the inorganic fillers can be filled with high density. The filling amount of the inorganic filler is 87% by weight.

また、熱硬化性樹脂組成物は、液状の熱硬化性樹脂と熱可塑性樹脂パウダーとを成分として含み、この熱可塑性樹脂パウダーが液状の前記熱硬化性樹脂の液状成分を吸収して膨潤することにより固形状にさせることができる。熱硬化性樹脂としてはエポキシ樹脂、フェノール樹脂あるいはシアネート樹脂の少なくとも一つを含むものであり、この実施の形態ではビスフェノールA型液状エポキシ樹脂を用いている。   The thermosetting resin composition contains a liquid thermosetting resin and a thermoplastic resin powder as components, and the thermoplastic resin powder absorbs the liquid component of the liquid thermosetting resin and swells. Can be made solid. The thermosetting resin contains at least one of an epoxy resin, a phenol resin, or a cyanate resin. In this embodiment, a bisphenol A liquid epoxy resin is used.

また、熱硬化性樹脂には、硬化剤、硬化促進剤および難燃剤として臭素化エポキシ樹脂を添加している。液状エポキシ樹脂、硬化剤、硬化促進剤および臭素化エポキシ樹脂は約11重量%である。また、エポキシ樹脂の硬化温度以下でシートが半硬化状態で可撓性を持たせるために熱可塑性パウダーを約2%含有している。この樹脂を押出し成形法によりシート状に形成する。他にもシート状の形成にドクターブレード法、コーター法あるいは圧延法を用いて行うことも可能である。   Further, a brominated epoxy resin is added to the thermosetting resin as a curing agent, a curing accelerator and a flame retardant. The liquid epoxy resin, curing agent, curing accelerator and brominated epoxy resin are about 11% by weight. Further, in order to give flexibility in a semi-cured state of the sheet below the curing temperature of the epoxy resin, the sheet contains about 2% thermoplastic powder. This resin is formed into a sheet by an extrusion molding method. In addition, it is possible to form a sheet using a doctor blade method, a coater method, or a rolling method.

図2(B)に示すように、樹脂シート110のPETフィルム121がない面に金属板103を貼り付ける。樹脂シート110の樹脂表面は粘着性があるため、金属板103と樹脂シート110の界面に空気を噛み込まないように、注意して貼り付ける。この実施の形態では、PETフィルム側からシートの端面よりローラをかけながらシート110を金属板103に貼り付けた。金属板103としては、熱伝導の良いアルミニウムまたは銅を主成分とする金属板あるいは金属箔がよく、この実施の形態では比重の軽いアルミニウム板を用いた。   As shown in FIG. 2B, a metal plate 103 is attached to the surface of the resin sheet 110 where the PET film 121 is not present. Since the resin surface of the resin sheet 110 is sticky, it is affixed with care so that air does not get caught in the interface between the metal plate 103 and the resin sheet 110. In this embodiment, the sheet 110 is attached to the metal plate 103 while applying a roller from the end face of the sheet from the PET film side. As the metal plate 103, a metal plate or a metal foil mainly composed of aluminum or copper having good thermal conductivity is preferable. In this embodiment, an aluminum plate having a low specific gravity is used.

次に、図2(C)に示すように、PETフィルム121を樹脂シート110から剥離する。次に、図2(D)に示すように、金属板103に貼り付けた樹脂シート110を金型内にセットする。ここで、金型A201は、回路部品105を実装した回路基板104に基づく構造形状に対応した凹凸形状を有しており、この凹凸形状した面に樹脂シート110を押し当てて重ねられる。金属板103の周囲には金型B202があり、位置決めと厚さの制御を行う。金型C203は金型B202内に入り、この金型C203を次工程の(E)により押さえることによって樹脂を所望の形状に成形する。 Next, as shown in FIG. 2C, the PET film 121 is peeled from the resin sheet 110. Next, as shown in FIG. 2D, the resin sheet 110 attached to the metal plate 103 is set in a mold. Here, the mold A201 has a concavo-convex shape corresponding to the structural shape based on the circuit board 104 on which the circuit component 105 is mounted, and the resin sheet 110 is pressed against the surface having the concavo-convex shape and overlapped. A metal mold B202 is provided around the metal plate 103 and performs positioning and thickness control. The mold C203 enters the mold B202, and the resin is molded into a desired shape by pressing the mold C203 in the next step (E).

図2(C)までの工程は通常常温で行う。図2(D)では、金型A201、金型B202および金型C203はホットプレート等を用いた60〜80℃ぐらいに加熱している。これは、金型A201、金型B202および金型C203を次工程の(E)の熱プレスで成形に必要な温度100〜140℃まで上げるのに必要な時間を短縮し生産性を上げるためである。また、この60〜80℃という温度はこの樹脂の粘度が低くなる温度であり、この状態で次工程の(E)の熱プレスで樹脂を充分流動させ所望の形状を得やすくするためである。この実施の形態では70℃に3種類の金型を加熱した。   The steps up to FIG. 2C are usually performed at room temperature. In FIG. 2D, the mold A201, the mold B202, and the mold C203 are heated to about 60 to 80 ° C. using a hot plate or the like. This is to shorten the time required for raising the mold A201, the mold B202, and the mold C203 to the temperature required for molding to 100 to 140 ° C. by the hot press in the next step (E), thereby increasing the productivity. is there. The temperature of 60 to 80 ° C. is a temperature at which the viscosity of the resin is lowered. In this state, the resin is sufficiently fluidized by the hot press (E) in the next step to easily obtain a desired shape. In this embodiment, three types of molds were heated to 70 ° C.

図2(D)のようにセットした金型を、図2(E)に示すように一定温度に加熱した2つの熱盤204間にセットし加熱加圧して熱硬化性樹脂組成物を成形し、半硬化させる。熱盤の温度は100〜140℃がよく、この実施の形態では120℃で2分間加熱した。この温度では熱硬化性樹脂(この実施の形態ではエポキシ樹脂)は硬化しないが、熱可塑性樹脂パウダーの効果により熱硬化性樹脂組成物は形状を維持できる状態にまで硬度を上げることができる(半硬化樹脂111)。成形後、熱盤204から金型を取り出し冷却(この実施の形態では70℃)した後、金型から取り出した。   The mold set as shown in FIG. 2 (D) is set between two heating plates 204 heated to a constant temperature as shown in FIG. 2 (E) and heated and pressed to form a thermosetting resin composition. Semi-cured. The temperature of the hot platen is preferably 100 to 140 ° C. In this embodiment, the heating plate is heated at 120 ° C. for 2 minutes. At this temperature, the thermosetting resin (epoxy resin in this embodiment) is not cured, but due to the effect of the thermoplastic resin powder, the thermosetting resin composition can be increased in hardness to a state where the shape can be maintained (half Cured resin 111). After molding, the mold was removed from the hot platen 204, cooled (70 ° C. in this embodiment), and then removed from the mold.

次に、乾燥炉の中に入れ加熱して、エポキシ樹脂を本硬化させた(図2(F))。温度としては150〜230℃がよく、本実施の形態では170℃3時間実施した(本硬化樹脂112)。   Next, it was placed in a drying furnace and heated to fully cure the epoxy resin (FIG. 2F). The temperature is preferably 150 to 230 ° C., and in this embodiment, the temperature was 170 ° C. for 3 hours (the cured resin 112).

このようにして作製した放熱用基板101Aを図2(G)に示すように回路基板104に実装した回路部品105に接するように取り付ける。この時回路部品105で発生した熱を効果的に放熱用基板101Aに伝達させるために、高熱伝導性接着剤を用いて回路部品105と放熱用基板101Aを固定する。これにより、回路部品105で発生した熱を効率良く放熱用基板101Aに伝達でき、回路部品105の温度上昇を抑制でき、信頼性の高い回路部品実装基板が得られる。   The heat dissipating board 101A thus manufactured is attached so as to be in contact with the circuit component 105 mounted on the circuit board 104 as shown in FIG. At this time, in order to effectively transfer the heat generated in the circuit component 105 to the heat dissipation substrate 101A, the circuit component 105 and the heat dissipation substrate 101A are fixed using a high thermal conductive adhesive. Thereby, the heat generated in the circuit component 105 can be efficiently transferred to the heat dissipation substrate 101A, the temperature rise of the circuit component 105 can be suppressed, and a highly reliable circuit component mounting substrate can be obtained.

図3に本実施の形態の放熱用基板の別の製造方法を示す。   FIG. 3 shows another manufacturing method of the heat dissipation substrate of the present embodiment.

図3(A´)に示すように、無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなるシート状物110をPETフィルム121上に形成する。次にそれを、図3(D´)に示すように樹脂シート110側が金型A201に接するように金型内にセットする。この工程も含めて図3(F´)までの工程の製造条件は図2の場合と同じである。次に図3(E´)のように加熱加圧して成形した後取り出して、PETフィルム121を剥離後、図3(F´)のように乾燥炉内で加熱して樹脂を完全硬化させる。   As shown in FIG. 3 (A ′), a sheet-like material 110 made of a mixture (uncured) of an inorganic filler and a thermosetting resin composition is formed on a PET film 121. Next, it is set in the mold so that the resin sheet 110 side is in contact with the mold A201 as shown in FIG. The manufacturing conditions of this process up to FIG. 3 (F ′) including this process are the same as those in FIG. Next, after being molded by heating and pressing as shown in FIG. 3 (E ′), the PET film 121 is peeled off, and then the resin is completely cured by heating in a drying furnace as shown in FIG. 3 (F ′).

次に図3(H)に示すように、凹凸形状のない平らな面側に、放熱用の金属板103を熱伝導性接着剤を用いて気泡が残らないように貼り付ける。接着剤の種類によっては、図3(F´)の本硬化前に金属板103を貼り付けて本硬化させることによって、接着剤を硬化させる工程を省略させることもできる。   Next, as shown in FIG. 3H, a heat-dissipating metal plate 103 is attached to a flat surface without an uneven shape using a heat conductive adhesive so that no bubbles remain. Depending on the type of the adhesive, the step of curing the adhesive can be omitted by attaching the metal plate 103 before the main curing shown in FIG.

この実施の形態ではPETフィルム121がついたまま成形を行っているが、図3(D´)でシートを金型A201にセットした段階でPETフィルム121を剥離しても良い。   In this embodiment, molding is performed with the PET film 121 attached, but the PET film 121 may be peeled off at the stage where the sheet is set in the mold A201 in FIG.

また、図3(H)の工程において、熱伝導性接着剤の代わりに高熱伝導フィルム122を用いて金属板103と高熱伝導樹脂102を接着させても良い。この方法による放熱用基板101Bを図4に示す。   In the step of FIG. 3H, the metal plate 103 and the high thermal conductive resin 102 may be bonded using a high thermal conductive film 122 instead of the thermal conductive adhesive. A heat dissipation substrate 101B by this method is shown in FIG.

(実施の形態2)
以下、実施の形態2を用いて、本発明について説明する。
(Embodiment 2)
Hereinafter, with reference to the second embodiment will be described with the present onset bright.

図5は、本発明の実施の形態2における放熱用基板101Cを部品実装した回路基板に実装した状態を示す断面図であり、また、図6は実施の形態2における放熱用基板101Cの製造方法を示す断面図である。   FIG. 5 is a cross-sectional view showing a state where the heat dissipation substrate 101C according to the second embodiment of the present invention is mounted on a circuit board on which components are mounted, and FIG. 6 is a method for manufacturing the heat dissipation substrate 101C according to the second embodiment. FIG.

図5において、放熱用基板101Cは高熱伝導樹脂102と第2の回路基板115からなる。102は高熱伝導樹脂であり、熱硬化性樹脂に高濃度に無機材料からなる熱伝導性フィラーを添加して高熱伝導性を付与した樹脂である。この高熱伝導樹脂102の一方の面に第2の回路基板115が一体に形成されており、回路部品116が実装されている。この放熱用基板101Cが回路基板104の回路部品105に接するように取り付けられている。これにより、回路部品105で発生する熱を効率良く放熱させるだけでなく、より高密度設計できるため機器の小型化に貢献できるようになる。   In FIG. 5, the heat dissipation substrate 101 </ b> C includes a high thermal conductive resin 102 and a second circuit substrate 115. Reference numeral 102 denotes a high thermal conductive resin, which is a resin imparted with high thermal conductivity by adding a thermal conductive filler made of an inorganic material at a high concentration to the thermosetting resin. A second circuit board 115 is integrally formed on one surface of the high thermal conductive resin 102, and a circuit component 116 is mounted thereon. The heat dissipation substrate 101C is attached so as to be in contact with the circuit component 105 of the circuit substrate 104. As a result, not only the heat generated in the circuit component 105 can be efficiently radiated, but also a higher density design can be achieved, thereby contributing to downsizing of the device.

なお、本実施の形態では、第2の回路基板115として両面のプリント配線基板を用いた例を示しているが、第2の回路基板115として片面のプリント配線基板、多層のプリント配線基板、あるいは金属ベース基板等を用いても同様の効果が得られる。   In this embodiment, an example in which a double-sided printed wiring board is used as the second circuit board 115 is shown, but a single-sided printed wiring board, a multilayer printed wiring board, or The same effect can be obtained even when a metal base substrate or the like is used.

次に図6を用いて、実施の形態2の放熱用基板101Cの製造方法を説明する。   Next, a method for manufacturing the heat dissipation substrate 101C of the second embodiment will be described with reference to FIG.

図6(A)に示すように、PETフィルム121上に形成した無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなる樹脂シート110と、配線パターン107が形成された第2の回路基板115を用意する。これらを図6(B)に示すように積層する。この図6(B)以降の工程は、図2(B)以降に示されている実施の形態1の製造方法と同じである。最後に図6(G)に示すように、第2の回路基板115上に回路部品116を実装した放熱用基板101Cを回路基板104の回路部品105と当接するように取り付ける。   As shown in FIG. 6A, a second circuit in which a resin sheet 110 made of a mixture (uncured) of an inorganic filler and a thermosetting resin composition formed on a PET film 121 and a wiring pattern 107 is formed. A substrate 115 is prepared. These are stacked as shown in FIG. The processes after FIG. 6B are the same as the manufacturing method according to the first embodiment shown in FIG. Finally, as shown in FIG. 6G, the heat dissipation substrate 101C on which the circuit component 116 is mounted on the second circuit board 115 is attached so as to come into contact with the circuit component 105 of the circuit board 104.

また、この実施の形態2の放熱用基板101Cを作製するのに別の製造方法がある。製造方法は実施の形態1の2番目の製造方法と同じであり(図3を参照)、図3(H)において金属板103の代わりに第2の回路基板115を高熱伝導接着剤を用いて高熱伝導樹脂102に貼り付ける。この時、回路部品116を第2の回路基板115に実装した状態で高熱伝導樹脂102に貼り付ける方が、第2の回路基板115を高熱伝導樹脂102に貼り付け後実装するよりも、回路部品116を実装しやすい。しかし接着剤の種類によっては硬化させる温度が高いため、部品によっては熱ダメージを受ける場合があるため、第2の回路基板115と高熱伝導樹脂102を接着後回路部品を実装しても良い。   There is another manufacturing method for manufacturing the heat dissipation substrate 101C of the second embodiment. The manufacturing method is the same as the second manufacturing method of the first embodiment (see FIG. 3). In FIG. 3H, the second circuit board 115 is replaced with a high thermal conductive adhesive instead of the metal plate 103. Affixed to the high thermal conductive resin 102. At this time, when the circuit component 116 is mounted on the second circuit board 115 and attached to the high thermal conductive resin 102, the circuit component 116 is attached to the high thermal conductive resin 102 rather than the second circuit board 115 and then mounted. 116 is easy to mount. However, since the curing temperature is high depending on the type of the adhesive, and some components may be thermally damaged, the circuit component may be mounted after bonding the second circuit board 115 and the high thermal conductive resin 102.

次に、実施の形態2と類似の放熱用基板101Dを図7に示す。第2の回路基板115と高熱伝導樹脂102の間に、高熱伝導フィルム122を挿入した放熱用基板である。第2の回路基板115と高熱伝導樹脂102を接着剤で接着した場合、第2の回路基板115には配線パターン107があるため数十μmの凹凸がある。このため密着性が低下したり、また第2の回路基板115上の回路部品116で発生した熱が放熱板に有効的に伝達しなくなる可能性がある。このため、第2の回路基板115と高熱伝導樹脂102の間に密着性を向上させるために高熱伝導フィルム122を挿入している。   Next, a heat dissipation substrate 101D similar to that in Embodiment 2 is shown in FIG. This is a heat dissipation board in which a high thermal conductive film 122 is inserted between the second circuit board 115 and the high thermal conductive resin 102. When the second circuit board 115 and the high thermal conductive resin 102 are bonded with an adhesive, the second circuit board 115 has a wiring pattern 107 and has an unevenness of several tens of μm. For this reason, there is a possibility that the adhesiveness is lowered, and heat generated by the circuit component 116 on the second circuit board 115 may not be effectively transmitted to the heat sink. For this reason, the high thermal conductive film 122 is inserted between the second circuit board 115 and the high thermal conductive resin 102 in order to improve adhesion.

図8にこの放熱用基板101Dの製造方法を示す。製造方法は、実施の形態2の2番目の製造方法とほとんど同じであり、図8(E)に示すように第2の回路基板115を高熱伝導樹脂102に貼り合わせる時に、その間に熱伝導性フィルム122を挿入し、高熱伝導樹脂102と第2の回路基板115とを貼り合わせて一体化させる。   FIG. 8 shows a manufacturing method of the heat dissipation substrate 101D. The manufacturing method is almost the same as the second manufacturing method of the second embodiment, and when the second circuit board 115 is bonded to the high thermal conductive resin 102 as shown in FIG. The film 122 is inserted, and the high thermal conductive resin 102 and the second circuit board 115 are bonded and integrated.

次に実施の形態2の別の応用例の放熱用基板101Eを図9に示す。放熱用基板101Eは第2の回路基板115と高熱伝導樹脂102でできているが、第2の回路基板115の高熱伝導樹脂102側に回路部品117が実装されており、回路部品117が高熱伝導樹脂102中に埋設されている。こうすることにより、より部品の実装密度を上げることができるだけでなく、回路部品117で発生する熱を高熱伝導樹脂102により効率的に伝導できるため回路部品117の温度上昇を抑えることができる。   Next, a heat dissipation substrate 101E of another application example of Embodiment 2 is shown in FIG. The heat dissipation board 101E is made of the second circuit board 115 and the high thermal conductive resin 102, but the circuit component 117 is mounted on the high thermal conductive resin 102 side of the second circuit board 115, and the circuit component 117 has a high thermal conductivity. It is embedded in the resin 102. By doing so, not only can the mounting density of the components be increased, but also the heat generated in the circuit components 117 can be efficiently conducted by the high thermal conductive resin 102, so that the temperature rise of the circuit components 117 can be suppressed.

この放熱用基板101Eの製造方法の断面図を図10、図11に示す。図10(A)に示すように、PETフィルム121上に形成した無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなる樹脂シート110と、配線パターン107が形成されしかも高熱伝導樹脂102と接する面に回路部品117を実装した第2の回路基板115を用意する。これらを図10(B)に示すように樹脂シート110を第2の回路基板115の回路部品117を実装した面側に貼り付ける。これ以降の工程は図6と同じように作製して放熱用基板101Eを作製する。   Cross-sectional views of the method for manufacturing the heat dissipation substrate 101E are shown in FIGS. As shown in FIG. 10A, a resin sheet 110 made of a mixture (uncured) of an inorganic filler and a thermosetting resin composition formed on a PET film 121, a wiring pattern 107, and a high thermal conductive resin 102 are formed. A second circuit board 115 on which the circuit component 117 is mounted on the surface in contact with is prepared. As shown in FIG. 10B, the resin sheet 110 is attached to the surface side of the second circuit board 115 on which the circuit components 117 are mounted. Subsequent steps are fabricated in the same manner as in FIG. 6 to fabricate the heat dissipation substrate 101E.

次に実施の形態2の別の応用例の放熱用基板101Fを図12に示す。放熱用基板101E(図9参照)と異なる点は、第2の回路基板115と高熱伝導樹脂102の間に高熱伝導フィルム122が挿入されている。これは、放熱用基板101Eの製造工程の内、図10(B)のシート貼り合わせにおいて、回路部品117が厚いためうまく貼り合わせできず剥がれたり皺になる場合がある。このために高熱伝導フィルム122を第2の回路基板115と高熱伝導樹脂102の間に挟んでいる。   Next, FIG. 12 shows a heat dissipation board 101F of another application example of the second embodiment. A difference from the heat dissipation substrate 101 </ b> E (see FIG. 9) is that a high thermal conductive film 122 is inserted between the second circuit substrate 115 and the high thermal conductive resin 102. This is because, in the process of manufacturing the heat dissipation substrate 101E, in the sheet bonding shown in FIG. 10B, the circuit component 117 is thick, so that it cannot be bonded well and may peel off or become wrinkles. For this purpose, the high thermal conductive film 122 is sandwiched between the second circuit board 115 and the high thermal conductive resin 102.

この放熱用基板101Fの製造方法の断面図を図13、図14に示す。図13(A)に示すように、PETフィルム121上に形成した無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなる樹脂シート110と、配線パターン107が形成されしかも高熱伝導樹脂102と接する面に回路部品117を実装した第2の回路基板115と、回路部品117に対応する位置の樹脂を除去した高熱伝導フィルム122を用意する。   Cross-sectional views of the method for manufacturing the heat dissipation substrate 101F are shown in FIGS. As shown in FIG. 13A, a resin sheet 110 made of a mixture (uncured) of an inorganic filler and a thermosetting resin composition formed on a PET film 121, a wiring pattern 107, and a high thermal conductive resin 102 are formed. The second circuit board 115 on which the circuit component 117 is mounted on the surface in contact with the substrate and the high thermal conductive film 122 from which the resin at the position corresponding to the circuit component 117 is removed are prepared.

次に、図13(B)に示すように、高熱伝導フィルム122の開口部に第2の回路基板115に実装された回路部品117を入れて、第2の回路基板115と高熱伝導フィルム122を貼り付け、それを樹脂シート110に貼り付ける。図13(C)以降の工程は、図10(C)以降と同じである。   Next, as shown in FIG. 13B, the circuit component 117 mounted on the second circuit board 115 is put into the opening of the high thermal conductive film 122, and the second circuit board 115 and the high thermal conductive film 122 are attached. Affixing is applied to the resin sheet 110. The processes after FIG. 13C are the same as those after FIG.

(実施の形態3)
以下、実施の形態3を用いて、本発明について説明する。
(Embodiment 3)
Hereinafter, with reference to the third embodiment will be described with the present onset bright.

図15は、本発明の実施の形態3における放熱用基板101Gを部品実装した回路基板に実装した状態を示す断面図であり、また、図16は実施の形態3における放熱用基板101Gの製造方法を示す断面図である。   FIG. 15 is a cross-sectional view illustrating a state where the heat dissipation board 101G according to the third embodiment of the present invention is mounted on a circuit board on which components are mounted, and FIG. 16 is a method for manufacturing the heat dissipation board 101G according to the third embodiment. FIG.

この放熱用基板101Gの主平面の両側は、各回路基板104、115に実装された回路部品105、117の少なくとも天面を放熱用基板101Gの凹部内天面に当接されるように放熱用基板101Gを回路基板104と115に熱伝導性接着剤を用いて装着している。一般的には、回路基板104はメイン基板であり、回路基板115はサブ基板であり、サブ基板115を放熱用基板101Gに装着した後、メイン基板104に取り付けられる。   Both sides of the main plane of the heat dissipation board 101G are for heat dissipation so that at least the top surfaces of the circuit components 105, 117 mounted on the circuit boards 104, 115 are brought into contact with the top surfaces in the recesses of the heat dissipation board 101G. The board 101G is mounted on the circuit boards 104 and 115 using a heat conductive adhesive. In general, the circuit board 104 is a main board and the circuit board 115 is a sub board. The sub board 115 is attached to the heat radiating board 101G and then attached to the main board 104.

次に、この放熱用基板の製造方法を図16を用いて説明する。図16(A)に示すPETフィルム121上に形成した無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなる樹脂シート110を、図16(B)に示すように、樹脂シート110のPETフィルム121のない面が金型A201側にくるようにセットした後、PETフィルム121を剥離する。剥離後、回路基板115に回路部品117を実装した状態の凹凸形状に対応した構造を持つ金型C203Aを樹脂シート上にセットする。   Next, the manufacturing method of this heat dissipation board | substrate is demonstrated using FIG. A resin sheet 110 made of a mixture (uncured) of an inorganic filler and a thermosetting resin composition formed on the PET film 121 shown in FIG. After setting so that the surface without the PET film 121 is on the mold A201 side, the PET film 121 is peeled off. After peeling, a mold C203A having a structure corresponding to the uneven shape in a state where the circuit component 117 is mounted on the circuit board 115 is set on the resin sheet.

成形(図16(C))から本硬化(図16(D))までの工程は、今までの他の放熱用基板と同じように行う。本硬化後、回路部品116、117を実装した回路基板115を回路部品117の天面が放熱用基板101Gの凹部内面に接するように高熱伝導性接着剤を用いて装着する。これを、メイン基板である回路基板104の回路部品105に接するように装着する。   The steps from the molding (FIG. 16C) to the main curing (FIG. 16D) are performed in the same manner as other heat dissipation substrates. After the main curing, the circuit board 115 on which the circuit components 116 and 117 are mounted is mounted using a high thermal conductive adhesive so that the top surface of the circuit component 117 is in contact with the inner surface of the recess of the heat dissipation substrate 101G. This is mounted so as to be in contact with the circuit component 105 of the circuit board 104 which is the main board.

(実施の形態4)
以下、実施の形態4を用いて、本発明について説明する。
(Embodiment 4)
Hereinafter, with reference to the fourth embodiment will be described with the present onset bright.

図17は、本発明の実施の形態4における放熱用基板101Hを部品実装した回路基板に実装した状態を示す断面図であり、また、図18、図19は実施の形態4における放熱用基板101Hの製造方法を示す断面図である。   FIG. 17 is a cross-sectional view showing a state where the heat dissipation board 101H according to the fourth embodiment of the present invention is mounted on a circuit board on which components are mounted, and FIGS. 18 and 19 show the heat dissipation board 101H according to the fourth embodiment. It is sectional drawing which shows this manufacturing method.

実施の形態2および3では、高熱伝導樹脂102の回路基板104とは逆側の面には回路基板115が取り付けられている。しかしながら、回路基板115と回路基板104とは電気的には接続されていない。本発明の実施の形態4は、回路基板115と回路基板104を電気的に接続し、より機器の高密度化、小型化を図るものである。本実施の形態では、導電性の金属ピン131を用いて電気的に接続している。各回路基板104、115と金属ピン131は、はんだ132により接合している。   In the second and third embodiments, the circuit board 115 is attached to the surface of the high thermal conductive resin 102 opposite to the circuit board 104. However, the circuit board 115 and the circuit board 104 are not electrically connected. In the fourth embodiment of the present invention, the circuit board 115 and the circuit board 104 are electrically connected to further increase the density and size of the device. In the present embodiment, electrical connection is made using conductive metal pins 131. The circuit boards 104 and 115 and the metal pins 131 are joined by solder 132.

図17では、実施の形態の放熱用基板101の場合を示しているが、実施の形態2および3で示した他の放熱用基板101Dから101Gでも同じように回路基板115と回路基板104を金属ピンで接続しても良い。 In Figure 17, shows the case of a heat radiating substrate 101 H of the fourth embodiment, the circuit board 115 in the usual manner on the 101G from other radiating substrate 101D shown in the second and third embodiments and the circuit board 104 May be connected with a metal pin.

次に図18を用いて放熱用基板101Hの製造方法を説明する。   Next, a manufacturing method of the heat dissipation substrate 101H will be described with reference to FIG.

図18(A)に示すように、PETフィルム121上に形成した無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなる樹脂シート110と、配線パターン107が形成された第2の回路基板115を用意する。ここで、回路基板104と回路基板115を接続するための金属ピン131を挿入するために、樹脂シート110に金属ピン131を挿入する位置に貫通穴134を形成する。貫通穴134の大きさは、金型積層時(図18(D))に樹脂シート110を積層しやすいように大きめにあけるほうが良い。   As shown in FIG. 18A, a second circuit in which a resin sheet 110 made of a mixture (uncured) of an inorganic filler and a thermosetting resin composition formed on a PET film 121 and a wiring pattern 107 is formed. A substrate 115 is prepared. Here, in order to insert the metal pin 131 for connecting the circuit board 104 and the circuit board 115, a through hole 134 is formed at a position where the metal pin 131 is inserted into the resin sheet 110. The size of the through hole 134 is preferably larger so that the resin sheets 110 can be easily stacked when the molds are stacked (FIG. 18D).

本実施の形態ではPETフィルム121にも同時に貫通穴を形成した。また、回路基板にも予め金属ピン131を挿入する位置に貫通穴135を形成する。この時の貫通穴135の大きさは、ピン205より大きくし過ぎると成形時(図18(E))に樹脂が貫通穴135を通して回路基板115の表面に溢れ出すため、あまり大きくできない。   In the present embodiment, through holes are also formed in the PET film 121 at the same time. A through hole 135 is also formed in the circuit board at a position where the metal pin 131 is inserted in advance. If the size of the through-hole 135 at this time is too large than the pin 205, the resin overflows to the surface of the circuit board 115 through the through-hole 135 during molding (FIG. 18E) and cannot be made too large.

本実施の形態ではピン205の直径より0.05mm大きくした。この図では、貫通穴内は銅めっきがなく非導通状態であるが、貫通穴内を銅めっきを行いパターンのエッチング時に貫通穴内をエッチングせず導通のスルーホールを形成しても良い。こうすれば、回路基板115の高熱伝導樹脂102と接する側の面の配線パターン107と金属ピン131を容易に電気的に接続することができる。   In the present embodiment, it is 0.05 mm larger than the diameter of the pin 205. In this figure, there is no copper plating in the through hole and it is in a non-conductive state. However, the through hole may be plated with copper to form a conductive through hole without etching the through hole during pattern etching. In this way, the wiring pattern 107 on the surface in contact with the high thermal conductive resin 102 of the circuit board 115 and the metal pin 131 can be easily electrically connected.

次に、回路基板115と樹脂シート110を位置合わせしながら図18(B)に示すように貼り合わせた。PETフィルム121を剥離し(図18(C))、それを金型内にセットした(図18(D))。金型A201に貫通穴を形成するためのピン205が取り付けられている。また、金型C203Bには、ピン205が当たらないように逃がしが設けられている。図ではこの逃がしは貫通していないが、逃がし内の清掃を考えると貫通させても良い。このピン205は本実施の形態では金型A201に取り付けられているが、金型C203Bに取り付け金型A201に逃がしを設けても良い。   Next, the circuit board 115 and the resin sheet 110 were bonded together as shown in FIG. The PET film 121 was peeled off (FIG. 18C) and set in a mold (FIG. 18D). A pin 205 for forming a through hole is attached to the mold A201. The mold C203B is provided with a relief so that the pin 205 does not hit. Although the relief does not penetrate in the figure, it may be penetrated in consideration of cleaning in the relief. In this embodiment, the pin 205 is attached to the mold A201. However, the attachment mold A201 may be provided with a relief on the mold C203B.

この後、図18(E)に示すように加熱加圧して成形した後、金型から取り出し、本硬化を行う(図19(F))。最後に、放熱用基板101Hを回路基板105を実装した回路基板104に取り付け、貫通穴133に金属ピン131を挿入後はんだ132により、回路基板104、115と金属ピン131を電気的に接続させる。または、金属ピン131を先に回路基板104に取り付けはんだ接続した後、放熱用基板101Hを取り付けはんだ接続を行う。あるいは、金属ピン131を先に放熱用基板Hの回路基板115に取り付けはんだ接続した後、回路基板104に取り付けはんだ接続を行っても良い。   Thereafter, as shown in FIG. 18 (E), it is molded by heating and pressurization, and then taken out from the mold and subjected to main curing (FIG. 19 (F)). Finally, the heat dissipation board 101H is attached to the circuit board 104 on which the circuit board 105 is mounted, and after inserting the metal pins 131 into the through holes 133, the circuit boards 104 and 115 and the metal pins 131 are electrically connected by the solder 132. Alternatively, after the metal pins 131 are first attached to the circuit board 104 and soldered, the heat dissipation board 101H is attached and soldered. Alternatively, the metal pins 131 may be first attached to the circuit board 115 of the heat dissipation board H and soldered, and then attached to the circuit board 104 and soldered.

また、図面では回路基板104の貫通穴133には、銅めっきがなく非導通であるが銅めっきを行い導通状態でも良い。このようにすれば回路基板104の放熱用基板101H側の配線パターン107と金属ピン131を容易に電気的接続を行うことができる。   Further, in the drawing, the through hole 133 of the circuit board 104 is non-conductive without copper plating, but may be conductive by copper plating. In this way, the wiring pattern 107 on the heat dissipation board 101H side of the circuit board 104 and the metal pin 131 can be easily electrically connected.

本発明の実施の形態1から4において、図では金属板103や回路基板115と同じ大きさで樹脂シート110を描いているが、成形時の圧力によって樹脂は流動し金型内一杯に広がるため、樹脂シート110の準備段階では樹脂シート110の大きさは金属板103や回路基板115より小さくしても良い。   In the first to fourth embodiments of the present invention, the resin sheet 110 is drawn with the same size as the metal plate 103 and the circuit board 115 in the figure, but the resin flows and spreads in the mold due to pressure during molding. In the preparation stage of the resin sheet 110, the size of the resin sheet 110 may be smaller than that of the metal plate 103 or the circuit board 115.

また、本発明の実施の形態1から4において、放熱用基板として図では金属板103や回路基板115と同じ大きさで高熱伝導樹脂102を描いているが、仕様によっては高熱伝導樹脂102より金属板103や回路基板115を小さくしても良い。また逆になっても良い。   Further, in the first to fourth embodiments of the present invention, as the heat dissipation substrate, the high thermal conductive resin 102 is drawn in the figure with the same size as the metal plate 103 and the circuit board 115. The plate 103 and the circuit board 115 may be made small. It may also be reversed.

(実施の形態5)
以下、実施の形態5を用いて、本発明について説明する。
(Embodiment 5)
Hereinafter, with reference to the fifth embodiment will be described with the present onset bright.

図20は、本発明の実施の形態5における放熱用基板101Iを部品実装した回路基板に実装した状態を示す断面図であり、また、図21は実施の形態5における放熱用基板101Iの製造方法を示す断面図である。   20 is a cross-sectional view showing a state where the heat dissipation board 101I according to the fifth embodiment of the present invention is mounted on a circuit board on which components are mounted, and FIG. 21 is a manufacturing method of the heat dissipation board 101I according to the fifth embodiment. FIG.

放熱用基板101Iは、図20に示すように高熱伝導樹脂102の回路基板104側の面以外の面に導電性の金属膜141が形成されている。こうすることによって放熱だけでなく回路部品から発生する放射ノイズを抑制することができるようになる。図20では高熱伝導樹脂102を用いているが、高熱伝導樹脂102の代わりに、実施の形態1の放熱用基板101Aあるいは101Bを用いると、より放熱性の良いノイズ対策を行うことができる。   As shown in FIG. 20, the heat dissipation substrate 101I has a conductive metal film 141 formed on a surface other than the surface of the high thermal conductive resin 102 on the circuit substrate 104 side. By doing so, not only heat dissipation but also radiation noise generated from circuit components can be suppressed. In FIG. 20, the high thermal conductive resin 102 is used. However, if the heat dissipation substrate 101 </ b> A or 101 </ b> B of the first embodiment is used instead of the high thermal conductive resin 102, noise countermeasures with better heat dissipation can be performed.

次に、この放熱用基板101Iの製造方法について、図21を用いて説明する。図21(D)の本硬化樹脂112の形成までは、実施の形態1の2番目の製造方法を示す図3の(F´)までと同じである。この本硬化樹脂112の回路基板104側の面以外の面に、めっき、蒸着や化学的、物理的堆積等により、導電性の金属膜141を形成する。   Next, a method for manufacturing the heat dissipation substrate 101I will be described with reference to FIG. Up to the formation of the main cured resin 112 in FIG. 21D is the same as that up to (F ′) in FIG. 3 showing the second manufacturing method of the first embodiment. A conductive metal film 141 is formed on a surface other than the surface of the main cured resin 112 on the circuit board 104 side by plating, vapor deposition, chemical or physical deposition, or the like.

本発明の実施の形態1から5において、高熱伝導樹脂102の回路基板104側の面の凹凸形状は、樹脂シート110を成形するときの金型A201に施してある回路基板104に実装する回路部品105の凹凸形状に対応した構造物により形成する。この金型A201の代わりに、回路部品105を実装した回路基板104を用いて、この回路基板104上に樹脂シート110をセットし加熱加圧して成形し一体化しても良い。   In the first to fifth embodiments of the present invention, the uneven shape of the surface of the high thermal conductive resin 102 on the circuit board 104 side is a circuit component mounted on the circuit board 104 applied to the mold A201 when the resin sheet 110 is molded. A structure corresponding to the uneven shape 105 is formed. Instead of the mold A201, the circuit board 104 on which the circuit component 105 is mounted may be used, and the resin sheet 110 may be set on the circuit board 104 and molded by heating and pressing to be integrated.

この場合は、回路部品105の凹凸形状に対応した金型A201を準備する必要がないし、回路部品105の高さバラツキの影響や、実装時の回路部品105の位置ズレや高さのバラツキがなく、また、高熱伝導樹脂が回路部品105や回路基板104に隙間無く充填されるため効率良く回路部品105で発生した熱を放熱用基板101Iに伝達することができる。また、放熱用基板101Iと回路基板を接着するときの高熱伝導接着剤が不要になる。   In this case, it is not necessary to prepare the mold A201 corresponding to the uneven shape of the circuit component 105, and there is no influence of the height variation of the circuit component 105, and the positional deviation and height variation of the circuit component 105 during mounting. In addition, since the high thermal conductive resin is filled in the circuit component 105 and the circuit board 104 without gaps, the heat generated in the circuit component 105 can be efficiently transferred to the heat dissipation board 101I. In addition, a high thermal conductive adhesive is not required when bonding the heat dissipation substrate 101I and the circuit board.

本発明にかかわる放熱実装体とその製造方法は、回路基板に実装した回路部品の天面形状に対応した絶縁シートを有する放熱実装体を低コストで生産性良く製造することができるとともに、絶縁シートを各回路部品の天面に精度良く確実に接触させることができるため、回路部品から発生した熱を効率良く放熱用基板に伝達して放熱させることができ、回路部品の温度上昇を効率良く抑制することができる効果を有し、電源回路等の大電流が流れ回路部品の温度が上がる電気回路に有用である。 The heat dissipating mounting body and the manufacturing method thereof according to the present invention can manufacture a heat dissipating mounting body having an insulating sheet corresponding to the top surface shape of a circuit component mounted on a circuit board at low cost and with high productivity. Can be brought into contact with the top surface of each circuit component accurately and reliably, heat generated from the circuit component can be efficiently transferred to the heat dissipation board to dissipate it, and the temperature rise of the circuit component can be suppressed efficiently. This is useful for an electric circuit such as a power supply circuit in which a large current flows and the temperature of the circuit component rises.

本発明の実施の形態1における放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which mounted the component in the heat dissipation board in Embodiment 1 of this invention 本発明の実施の形態1における放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation in Embodiment 1 of this invention 本発明の実施の形態1における放熱用基板の別の製造方法を示す工程断面図Process sectional drawing which shows another manufacturing method of the board | substrate for thermal radiation in Embodiment 1 of this invention 本発明の実施の形態1を応用した放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which mounted the heat dissipation board | substrate which applied Embodiment 1 of this invention as components 本発明の実施の形態2における放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which mounted the component in the heat dissipation board in Embodiment 2 of this invention 本発明実施の形態2における放熱用基板の製造方法を示す工程断面図Sectional views illustrating a method of manufacturing the radiating substrate in a second embodiment of the present invention 本発明の実施の形態2と類似の放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which carried the components mounting board | substrate similar to Embodiment 2 of this invention 本発明の実施の形態2の放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation of Embodiment 2 of this invention 本発明の実施の形態2を応用した放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which mounted the component for the board | substrate for heat radiation which applied Embodiment 2 of this invention 本発明の実施の形態2を応用した放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation which applied Embodiment 2 of this invention 本発明の実施の形態2を応用した放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation which applied Embodiment 2 of this invention 本発明の実施の形態2を応用した放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which mounted the component for the board | substrate for heat radiation which applied Embodiment 2 of this invention 本発明の実施の形態2を応用した放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation which applied Embodiment 2 of this invention 本発明の実施の形態2を応用した放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation which applied Embodiment 2 of this invention 本発明の実施の形態3における放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which mounted the component in the heat dissipation board in Embodiment 3 of this invention 本発明の実施の形態3における放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation in Embodiment 3 of this invention 本発明の実施の形態4における放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which mounted the component in the heat dissipation board in Embodiment 4 of this invention 本発明の実施の形態4における放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation in Embodiment 4 of this invention 本発明の実施の形態4における放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation in Embodiment 4 of this invention 本発明の実施の形態5における放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which carried the components the heat dissipation board in Embodiment 5 of this invention 本発明の実施の形態5における放熱用基板の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the board | substrate for thermal radiation in Embodiment 5 of this invention 従来の放熱用基板を部品実装した回路基板に実装した状態を示す断面図Sectional drawing which shows the state mounted in the circuit board which carried the component mounting of the conventional heat dissipation board

101A、101B、101C、101D、101E、101F、101G 放熱用基板
102 高熱伝導樹脂
103 金属板
104 回路基板
105 回路部品
106 回路部品
107 配線パターン
110 無機フィラーと熱硬化性樹脂組成物の混合物(未硬化)からなるシート状物
111 半硬化樹脂
112 本硬化樹脂
115 第2の回路基板
116 回路部品
117 回路部品
121 PETフィルム
122 高熱伝導フィルム
131 金属ピン
132 はんだ
133 貫通穴
134 貫通穴
135 貫通穴
141 導電性膜
201 金型A
202 金型B
203、203A、203B 金型C
204 熱盤
205 ピン
301 アルミニウム放熱板
101A, 101B, 101C, 101D, 101E, 101F, 101G Heat dissipation substrate 102 High thermal conductive resin 103 Metal plate 104 Circuit board 105 Circuit component 106 Circuit component 107 Wiring pattern 110 Mixture of inorganic filler and thermosetting resin composition (uncured) ) 111 semi-cured resin 112 main cured resin 115 second circuit board 116 circuit component 117 circuit component 121 PET film 122 high thermal conductive film 131 metal pin 132 solder 133 through hole 134 through hole 135 through hole 141 conductive Membrane 201 Mold A
202 Mold B
203, 203A, 203B Mold C
204 Heating plate 205 Pin 301 Aluminum heat sink

Claims (2)

回路部品が実装された回路基板と、A circuit board on which circuit components are mounted;
この回路基板に略平行に設けた金属板と、A metal plate provided substantially parallel to the circuit board;
前記回路基板と前記金属板との間に設けた絶縁シートとからなる放熱実装体であり、A heat dissipating mounting body composed of an insulating sheet provided between the circuit board and the metal plate,
前記絶縁シートは少なくともその一面に予め前記回路部品の外形形状に対応した凹部を設けたうえで無機フィラーと熱硬化性樹脂組成物を硬化させることにより形成し、The insulating sheet is formed by curing the inorganic filler and the thermosetting resin composition on at least one surface thereof after providing a recess corresponding to the outer shape of the circuit component in advance.
前記回路基板と前記絶縁シートとは接着剤により固定するとともに前記絶縁シート形成時の形状を維持したうえで前記凹部に前記回路部品とを当接させた放熱実装体。The circuit board and the insulating sheet are fixed by an adhesive and maintain the shape when the insulating sheet is formed, and the circuit component is brought into contact with the concave portion.
回路部品が実装された第1の回路基板と、A first circuit board on which circuit components are mounted;
この第1の回路基板に略平行に設けた第2の回路基板と、A second circuit board provided substantially parallel to the first circuit board;
前記第1の回路基板と前記第2の回路基板との間に設けた絶縁シートとからなる放熱実装体であり、A heat dissipating mounting body comprising an insulating sheet provided between the first circuit board and the second circuit board;
前記絶縁シートは少なくともその一面に予め前記第1の回路部品の外形形状に対応した凹部を設けたうえで無機フィラーと熱硬化性樹脂組成物を硬化させることにより形成し、The insulating sheet is formed by curing the inorganic filler and the thermosetting resin composition after providing a recess corresponding to the outer shape of the first circuit component in advance on at least one surface thereof,
前記第1の回路基板と前記絶縁シートとは接着剤により固定するとともに前記絶縁シート形成時の形状を維持したうえで前記凹部に前記回路部品とを当接させた放熱実装体。The first circuit board and the insulating sheet are fixed by an adhesive and maintain the shape at the time of forming the insulating sheet, and the heat-dissipating package has the circuit component in contact with the recess.
JP2003322651A 2003-09-16 2003-09-16 Heat dissipation package Expired - Fee Related JP4325329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322651A JP4325329B2 (en) 2003-09-16 2003-09-16 Heat dissipation package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322651A JP4325329B2 (en) 2003-09-16 2003-09-16 Heat dissipation package

Publications (2)

Publication Number Publication Date
JP2005093582A JP2005093582A (en) 2005-04-07
JP4325329B2 true JP4325329B2 (en) 2009-09-02

Family

ID=34453934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322651A Expired - Fee Related JP4325329B2 (en) 2003-09-16 2003-09-16 Heat dissipation package

Country Status (1)

Country Link
JP (1) JP4325329B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057221B2 (en) 2007-08-24 2012-10-24 中村製作所株式会社 Metal base printed circuit board with heat radiating portion and manufacturing method thereof
JP2015080059A (en) * 2013-10-16 2015-04-23 株式会社リコー Heat conductive component, heat conductive structure, electronic component module, and electronic apparatus
JP6623474B2 (en) * 2016-03-28 2019-12-25 北川工業株式会社 Heat conductive member, method for manufacturing heat conductive member, and heat conductive structure
CN113490368B (en) 2021-07-07 2023-03-21 台达电子企业管理(上海)有限公司 Power supply device and high-power lighting system

Also Published As

Publication number Publication date
JP2005093582A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP2002033558A (en) Circuit board and its manufacturing method
JP2014165486A (en) Power device module and manufacturing method thereof
JP5885630B2 (en) Printed board
JP2001177006A (en) Heat conducting substrate and manufacturing method thereof
CN111132476A (en) Preparation method of double-sided circuit radiating substrate
WO2003083940A1 (en) Method of manufacturing heat conductive substrate
JP6031642B2 (en) Power module and manufacturing method thereof
JP2007019516A (en) Method of manufacturing wiring board with built-in electronic component
JP2004104115A (en) Power module and its manufacturing method
CN111148353B (en) Preparation method of circuit board with copper-based heat sink
JP4325329B2 (en) Heat dissipation package
JP2010245563A (en) Component unit
JP4444309B2 (en) Heat dissipation substrate and manufacturing method thereof
JP4114629B2 (en) Component built-in circuit board and manufacturing method thereof
JP6969891B2 (en) Manufacturing method of printed wiring board
JP4348893B2 (en) Method for manufacturing thermally conductive substrate
JP2007015325A (en) Molding method for thermally conductive substrate
JP2006156721A (en) Component unit
JP4075549B2 (en) Heat dissipation substrate and manufacturing method thereof
JP2001177022A (en) Heat conduction board and method of manufacturing the same
JP2004140171A (en) Multilayer printed board, heat radiation structure thereof, and method of manufacturing the same
JP4096711B2 (en) Circuit board manufacturing method
JP3985663B2 (en) Heat dissipation substrate and manufacturing method thereof
JP4023257B2 (en) Manufacturing method of heat dissipation substrate
JP4636092B2 (en) Parts unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees