JP2013110510A - Radio communication device, radio communication method, and radio communication program - Google Patents

Radio communication device, radio communication method, and radio communication program Download PDF

Info

Publication number
JP2013110510A
JP2013110510A JP2011252711A JP2011252711A JP2013110510A JP 2013110510 A JP2013110510 A JP 2013110510A JP 2011252711 A JP2011252711 A JP 2011252711A JP 2011252711 A JP2011252711 A JP 2011252711A JP 2013110510 A JP2013110510 A JP 2013110510A
Authority
JP
Japan
Prior art keywords
signal
transmission
unit
reception
propagation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011252711A
Other languages
Japanese (ja)
Other versions
JP5658127B2 (en
Inventor
Yosuke Fujino
洋輔 藤野
Yoshitaka Shimizu
芳孝 清水
Tatsuya Shimizu
達也 清水
Shuichi Yoshino
修一 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011252711A priority Critical patent/JP5658127B2/en
Publication of JP2013110510A publication Critical patent/JP2013110510A/en
Application granted granted Critical
Publication of JP5658127B2 publication Critical patent/JP5658127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transceivers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid a deterioration in estimation accuracy and achieve a stable and high degree of signal separation in a radio communication device separating a transmission signal and a reception signal.SOLUTION: A radio communication device separates a transmission signal and a reception signal, and comprises: an antenna for transmitting and receiving a signal; transmission means for transmitting a transmission signal via the antenna; propagation path estimation means for estimating the phase amplitude response of a signal having sneaked from a transmission side into a reception side in a propagation path estimation section; replica generation means for generating a wraparound signal replica on the basis of the estimated phase amplitude response and the transmission signal; subtraction means for subtracting the wraparound signal replica from a reception signal received via the antenna; and receiving means for performing reception processing of the reception signal after the subtraction. The radio communication device further comprises: auto-correlation calculation means for calculating the worst value of an auto-correlation characteristic of the transmission signal within a prescribed delay time; and propagation path estimation section determination means for determining that a section where the worst value of the auto-correlation characteristic is equal to or less than a threshold value is to be the propagation path estimation section.

Description

本発明は、送受信信号の分離を実現する無線通信装置、無線通信方法及び無線通信プログラムに関する。   The present invention relates to a wireless communication device, a wireless communication method, and a wireless communication program that realize separation of transmission and reception signals.

一般に無線通信装置では、送信と受信が同時に動作すると、送信信号の受信側への回り込みにより、受信機のLNA(Low Noise Amplifier)の飽和や帯域外漏洩成分の受信帯域内漏れ込みによる受信感度劣化を引き起こす。そのため、1つの無線装置に1方式のみを実装する一般的な無線システムでは、複信方式に応じて時間または周波数を物理的に分離する素子を用いて送受信信号の分離を行っている。   In general, in wireless communication devices, when transmission and reception operate simultaneously, reception sensitivity deteriorates due to saturation of the receiver's LNA (Low Noise Amplifier) and leakage of out-of-band leakage components into the reception band due to the sneaking of the transmission signal to the reception side. cause. Therefore, in a general wireless system in which only one system is implemented in one wireless device, transmission / reception signals are separated using an element that physically separates time or frequency according to a duplex system.

複信方式がFDD(Frequency Division Duplex)の場合、上り回線と下り回線に対し、異なる周波数帯が固定的に割り当てられるため、主にデュプレクサやバンドパスフィルタを用いて送受信信号を分離している。複信方式がTDD(Time Division Duplex)の場合、上り回線と下り回線に対し、異なる時間スロットを割り当てられるため、送受信機はRFスイッチを介してアンテナと接続することによって、送信信号が受信機に回り込まないようにしている。   When the duplex method is FDD (Frequency Division Duplex), since different frequency bands are fixedly assigned to the uplink and downlink, the transmission / reception signals are mainly separated using a duplexer or a bandpass filter. When the duplex method is TDD (Time Division Duplex), different time slots are assigned to the uplink and downlink, so the transmitter / receiver is connected to the antenna via the RF switch, so that the transmission signal is sent to the receiver. I try not to run around.

しかしながら、1つの無線装置上に複数の無線方式をソフトウェアで実装するソフトウェア無線装置では、複信方式および周波数の異なる様々な無線方式が動作するため、固定的な時間、周波数で送受信信号を分離するデュプレクサやRFスイッチを用いることができない。そのため、ソフトウェア無線装置では、デュプレクサやRFスイッチを用いずに送受信信号を分離する手法が求められる。   However, in a software radio apparatus that implements a plurality of radio systems on software on one radio apparatus, a duplex system and various radio systems with different frequencies operate. Therefore, transmission and reception signals are separated at a fixed time and frequency. A duplexer or RF switch cannot be used. For this reason, software radio apparatuses are required to have a technique for separating transmitted and received signals without using a duplexer or an RF switch.

図5は、受信側に回り込んだ回り込み信号レプリカを減算する事で送信信号と受信信号の分離を行うことでRFスイッチやデュプレクサを用いずに送受信信号の分離を実現する従来の無線通信装置(例えば、非特許文献1参照)の構成を示す図である。この無線通信装置は、変調部501、送信部502、分配器503、送受共用回路504、アンテナ505、レプリカ生成部506、減算部507、受信部508、伝搬路推定部509、復調部510から構成されている。   FIG. 5 shows a conventional wireless communication apparatus that realizes separation of a transmission / reception signal without using an RF switch or a duplexer by subtracting a sneak signal replica that wraps around the reception side to separate the transmission signal and the reception signal. For example, it is a figure which shows the structure of nonpatent literature 1). This wireless communication apparatus includes a modulation unit 501, a transmission unit 502, a distributor 503, a transmission / reception shared circuit 504, an antenna 505, a replica generation unit 506, a subtraction unit 507, a reception unit 508, a propagation path estimation unit 509, and a demodulation unit 510. Has been.

図5に示す無線通信装置は、変調部501において変調を行い、デジタル送信信号を生成し、送信部502においてアナログ信号への変換および周波数変換を行う。分配器503により周波数変換された送信信号を2つに分配し、一方を送受共用回路504、他方をレプリカ生成部506へ出力する。送受共用回路504は、分配器503から供給された送信信号をアンテナ505に出力すると共に、アンテナ505で受信した受信信号を減算部507に出力する。レプリカ生成部506は伝搬路推定部509で推定された回り込み信号の伝搬路情報を基に回り込み信号レプリカを生成する。減算部507は、送受共用回路504の出力信号からレプリカ生成部506の出力信号を減算する。受信部508は受信した信号を周波数変換およびデジタル信号への変換を行う。伝搬路推定部509は受信部508の出信号に基づき伝搬路を推定する。復調部510は、受信部508の出力信号の復調を行う。   In the wireless communication apparatus illustrated in FIG. 5, modulation is performed by the modulation unit 501 to generate a digital transmission signal, and conversion to an analog signal and frequency conversion are performed by the transmission unit 502. The transmission signal frequency-converted by the distributor 503 is distributed into two, and one is output to the transmission / reception shared circuit 504 and the other is output to the replica generation unit 506. The shared transmission / reception circuit 504 outputs the transmission signal supplied from the distributor 503 to the antenna 505 and outputs the reception signal received by the antenna 505 to the subtraction unit 507. The replica generation unit 506 generates a wraparound signal replica based on the propagation path information of the wraparound signal estimated by the propagation path estimation unit 509. The subtraction unit 507 subtracts the output signal of the replica generation unit 506 from the output signal of the transmission / reception shared circuit 504. The receiving unit 508 performs frequency conversion and conversion to a digital signal on the received signal. A propagation path estimation unit 509 estimates a propagation path based on the output signal of the reception unit 508. The demodulator 510 demodulates the output signal from the receiver 508.

次に、図5に示す無線通信装置の動作について詳細に説明する。なお、説明を簡単にするため、以下の説明においては時間0からLまでを伝搬路推定期間とし、伝搬路推定期間には信号レプリカの生成を行わないものとする。   Next, the operation of the wireless communication apparatus shown in FIG. 5 will be described in detail. In order to simplify the description, in the following description, it is assumed that the time from 0 to L is a propagation path estimation period, and no signal replica is generated during the propagation path estimation period.

送信部502は(1)式に従って周波数変換を行う。ここで、x(t)は変調部501の出力信号である。

Figure 2013110510
The transmission unit 502 performs frequency conversion according to equation (1). Here, x 1 (t) is an output signal of the modulation unit 501.
Figure 2013110510

分配器503は(2)式に従って、送信部502の出力信号y(t)を分配する。ここでは分配器503の分配比率を1:1とした。

Figure 2013110510
The distributor 503 distributes the output signal y 1 (t) of the transmission unit 502 according to the equation (2). Here, the distribution ratio of the distributor 503 is set to 1: 1.
Figure 2013110510

送受共用回路504は、(3)式に従って、分配器503から供給された送信信号をアンテナ505に出力すると共に、アンテナ505で受信した受信信号を減算部507に出力する。ここで、Rは分配器504から入力され、減算部507へ漏れ込む信号の複素振幅応答、Nはアンテナ505から送信され、近くの物体に反射して、再度アンテナ505で受信した信号の数、τは当該信号の遅延時間、hは当該信号の位相振幅応答、y(t)はアンテナ505で受信した本来の受信信号である。なお、送受共用回路504には、一般にサーキュレータやハイブリッドが用いられ、いずれの場合も漏れ込み量Rは−20〜−30[dB]程度である。

Figure 2013110510
The transmission / reception shared circuit 504 outputs the transmission signal supplied from the distributor 503 to the antenna 505 and outputs the reception signal received by the antenna 505 to the subtraction unit 507 according to the equation (3). Here, R is a complex amplitude response of a signal that is input from distributor 504 and leaks into subtractor 507, N is the number of signals that are transmitted from antenna 505, reflected from nearby objects, and received again by antenna 505, τ n is the delay time of the signal, h n is the phase amplitude response of the signal, and y 0 (t) is the original received signal received by the antenna 505. Note that a circulator or a hybrid is generally used for the transmission / reception shared circuit 504, and the leakage amount R is about -20 to -30 [dB] in any case.
Figure 2013110510

レプリカ生成部506は、(4)式に従って回り込み信号レプリカy(t)を生成する。ここで、〜R(〜は、後に続く文字の頭に付く、以下同様)、〜τ、〜h、Mはそれぞれ分配器504から入力され、信号の減算部507へ漏れ込む信号の複素振幅応答の推定値、アンテナ505から送信され、近くの物体に反射して、再度アンテナ505で受信した回り込み信号の遅延時間の推定値、当該信号の位相振幅応答の推定値、レプリカ生成部506で生成する回り込み信号の数である。これらの推定方法については後述する。

Figure 2013110510
The replica generation unit 506 generates a sneak signal replica y 4 (t) according to the equation (4). Here, to R (~ is the subsequent stick character's head, hereinafter the same), ~τ m, ~h m, M are inputted from the respective distributor 504, the signal leaking to the signal of the subtraction unit 507 complex Estimated value of amplitude response, estimated value of delay time of sneak signal transmitted from antenna 505, reflected by nearby object, and received again by antenna 505, estimated value of phase amplitude response of the signal, replica generation section 506 This is the number of sneak signals to be generated. These estimation methods will be described later.
Figure 2013110510

減算部507は(5)式に従って送受共用回路504の出力信号からレプリカ生成部506の出力信号を減算する。

Figure 2013110510
The subtraction unit 507 subtracts the output signal of the replica generation unit 506 from the output signal of the transmission / reception shared circuit 504 according to the equation (5).
Figure 2013110510

受信部508は(6)式に従って周波数変換を行う。

Figure 2013110510
The receiving unit 508 performs frequency conversion according to equation (6).
Figure 2013110510

伝搬路推定部509は(7)式に従って相関値D(τ)を計算する。

Figure 2013110510
ここでTは相関値計算区間である。なお、伝搬路推定時、すなわち0≦t≦Lの間は回り込み信号レプリカy(t)=0であるため、伝搬路推定で用いる周波数変換後の信号z(t)、相関値D(τ)はそれぞれ(8)式、(9)式の通りである。
Figure 2013110510
Figure 2013110510
The propagation path estimation unit 509 calculates the correlation value D (τ) according to the equation (7).
Figure 2013110510
Here, T is a correlation value calculation section. Note that, during propagation path estimation, that is, during 0 ≦ t ≦ L, the sneak signal replica y 4 (t) = 0, so that the signal z 1 (t) after frequency conversion used in propagation path estimation and the correlation value D ( τ) is as shown in equations (8) and (9), respectively.
Figure 2013110510
Figure 2013110510

伝搬路推定部509は、さらに相関値D(τ)のピークの位置をM+1個検索し、2番目以降の位置を(〜τ)〜(〜τ)とする。また、当該ピークの値をそれぞれ〜R=D(0)、〜h=D(〜τ)とする。なお、一般に相関値D(τ)には誤応答や雑音成分が含まれるため、ピークの位置検索の際に閾値を設ける事が多い。 The propagation path estimation unit 509 further searches for M + 1 peak positions of the correlation value D (τ), and sets the second and subsequent positions as (˜τ 1 ) to (˜τ N ). Further, the value of the peak, respectively ~R = D (0), and ~h m = D (~τ m) . In general, since the correlation value D (τ) includes an erroneous response and a noise component, a threshold value is often provided when searching for the peak position.

次に、x(t)の自己相関特性が理想的である場合の伝搬路推定結果について説明する。理想的な自己相関特性とは(10)式で規定される。

Figure 2013110510
このとき、相関値D(τ)は遅延時間τが一致した回り込み信号のみが抽出され、図6に示すようにD(τ)はτ=0,τ・・・τのN+1個のピークを持ち、それぞれの値はRおよびhとなる。したがって、生成する回り込み信号の数Mが回り込み信号の総数Nと同じかそれ以上であり、x(t)の自己相関特性が理想的であれば、Rおよびhは誤差なく推定できる。そして、受信部507への入力信号y(t)は、(11)式となり、回り込み信号成分をゼロにすることができ、デュプレクサやRFスイッチを用いずに送受信信号の分離を実現することができる。
Figure 2013110510
Next, a propagation path estimation result when the autocorrelation characteristic of x 1 (t) is ideal will be described. The ideal autocorrelation characteristic is defined by equation (10).
Figure 2013110510
At this time, only the sneak signal having the same delay time τ is extracted as the correlation value D (τ), and D (τ) is N + 1 peaks of τ = 0, τ 1 ... Τ N as shown in FIG. the Have, each value is R and h m. Accordingly, it is equal to or greater than the total number N of the number M wraparound signals generated echo signal, if the ideal autocorrelation properties of x 1 (t), R and h m can no error estimation. Then, the input signal y 5 (t) to the receiving unit 507 is expressed by equation (11), and the sneak signal component can be made zero, so that transmission / reception signal separation can be realized without using a duplexer or an RF switch. it can.
Figure 2013110510

米澤,山崎,石津,千葉,”地上波デジタル放送 SFN 方式における中継局回り込み波除去,” 映像情報メディア学会技術報告 23(73),11−16,1999−11−18Yonezawa, Yamazaki, Ishizu, Chiba, “Removal of sneak around relay station in digital terrestrial broadcasting SFN system,” ITE Technical Report 23 (73), 11-16, 1999-11-18

上述したように、自己相関特性が理想的であれば正しく伝搬路を推定でき、送信信号と受信信号の分離を実現できる。しかしながら、伝搬路を推定する際に利用する送信信号は通信を行うための信号であるため、一般に自己相関特性が悪い。そのため、従来の無線通信装置では、推定精度が劣化し、所定の信号分離度が得られない。図7に自己相関値がΔτでαとなる、すなわち(12)式のような自己相関特性の場合の相関値D(τ)の一例を示す。

Figure 2013110510
As described above, if the autocorrelation characteristics are ideal, the propagation path can be correctly estimated, and the transmission signal and the reception signal can be separated. However, since the transmission signal used for estimating the propagation path is a signal for performing communication, the autocorrelation characteristic is generally poor. Therefore, in the conventional wireless communication device, the estimation accuracy is deteriorated and a predetermined signal separation degree cannot be obtained. FIG. 7 shows an example of the correlation value D (τ) in the case where the autocorrelation value becomes α at Δτ, that is, the autocorrelation characteristic as shown in the equation (12).
Figure 2013110510

図7より明らかなように、自己相関特性が理想的でない場合(すなわち、自己相関特性が悪い場合)、本来のピークとは違う位置に誤応答ピークが出現し、誤った位置で伝搬路を推定しまうという問題がある。   As is clear from FIG. 7, when the autocorrelation characteristic is not ideal (that is, when the autocorrelation characteristic is bad), an erroneous response peak appears at a position different from the original peak, and the propagation path is estimated at the wrong position. There is a problem of end.

本発明は、このような事情に鑑みてなされたもので、受信側に漏れこんだ回り込み信号レプリカを減算する事で送信信号と受信信号の分離を行う無線通信装置において、推定精度の劣化を回避し、安定して高い信号分離度を実現することができる無線通信装置、無線通信方法及び無線通信プログラムを提供することを目的とする。   The present invention has been made in view of such circumstances, and avoids deterioration in estimation accuracy in a wireless communication apparatus that separates a transmission signal and a reception signal by subtracting a sneak signal replica leaking into the reception side. An object of the present invention is to provide a wireless communication device, a wireless communication method, and a wireless communication program that can stably realize a high degree of signal separation.

本発明は、信号を送受信するアンテナと、送信信号を前記アンテナを介して送信する送信手段と、伝搬路推定区間における送信側から受信側に回り込んだ信号の位相振幅応答を推定する伝搬路推定手段と、推定した前記位相振幅応答と前記送信信号に基づき回り込み信号レプリカを生成するレプリカ生成手段と、前記アンテナを介して受信した受信信号から前記回り込み信号レプリカを減算する減算手段と、減算後の前記受信信号について受信処理を行う受信手段とを備え、送受信信号を分離する無線通信装置であって、前記送信信号の所定の遅延時間内の自己相関特性の最悪値を計算する自己相関計算手段と、前記自己相関特性の最悪値が閾値以下となる区間を、前記伝搬路推定区間として決定する伝搬路推定区間決定手段とをさらに備えることを特徴とする。   The present invention relates to an antenna for transmitting and receiving a signal, a transmission means for transmitting a transmission signal via the antenna, and a propagation path estimation for estimating a phase amplitude response of a signal that wraps around from a transmission side to a reception side in a propagation path estimation section. Means, replica generating means for generating a sneak signal replica based on the estimated phase amplitude response and the transmission signal, subtracting means for subtracting the sneak signal replica from the received signal received via the antenna, and A wireless communication apparatus that separates transmission / reception signals, and includes: , Further comprising: a propagation path estimation section determining means for determining a section where the worst value of the autocorrelation characteristic is equal to or less than a threshold as the propagation path estimation section. It is characterized in.

本発明は、前記遅延時間をT、前記閾値をβ、前記送信信号の搬送波周波数をfc、前記アンテナのゲインをGとし、前記遅延時間Tを、(15)式により決定することを特徴とする。   The present invention is characterized in that the delay time is T, the threshold is β, the carrier frequency of the transmission signal is fc, the gain of the antenna is G, and the delay time T is determined by equation (15). .

本発明は、前記レプリカ生成手段及び前記減算手段をそれぞれ2つずつ備え、前記受信処理を行う前の信号と、前記受信処理を行った後の信号とのそれぞれの信号に対して、前記レプリカ生成手段と前記減算手段の一組ずつを用いて前記送受信信号を分離することを特徴とする。   The present invention includes two each of the replica generation means and the subtraction means, and generates the replica for each of the signal before the reception process and the signal after the reception process. The transmission / reception signal is separated using a pair of means and a subtraction means.

本発明は、所定のトレーニング信号を生成するトレーニング信号生成手段と、前記トレーニング信号の前記アンテナからの送信を抑圧する可変アッテネータと、前記トレーニング信号を基に前記受信手段の非線形特性を推定する非線形特性推定手段と、推定した前記非線形特性を基に前記受信手段の非線形特性の補正を行う非線形補正手段とをさらに備え、前記トレーニング信号生成手段は、前記送信手段が線形動作し、かつ前記受信手段が非線形動作する振幅の前記トレーニング信号を生成し、前記非線形特性推定手段は、前記受信手段の非線形特性を推定することを特徴とする。   The present invention provides a training signal generating means for generating a predetermined training signal, a variable attenuator for suppressing transmission of the training signal from the antenna, and a nonlinear characteristic for estimating a nonlinear characteristic of the receiving means based on the training signal. An estimation unit; and a nonlinear correction unit configured to correct the nonlinear characteristic of the reception unit based on the estimated nonlinear characteristic. The training signal generation unit includes a linear operation of the transmission unit, and the reception unit includes: The training signal having a non-linear operation amplitude is generated, and the non-linear characteristic estimating unit estimates the non-linear characteristic of the receiving unit.

本発明は、前記トレーニング信号の前記受信手段への回り込みを制限する第2の可変アッテネータと、前記トレーニング信号を基に前記送信手段の非線形特性を推定する第2の非線形特性推定手段と、推定した前記非線形特性に基づき前記送信手段の非線形特性の補正を行う第2の非線形補正手段とをさらに備え、前記トレーニング信号生成手段は、前記送信手段が非線形動作する大きな振幅の前記トレーニング信号を生成し、前記第2の可変アッテネータは、前記受信手段が飽和しない値を設定し、前記第2の非線形特性推定手段は、前記送信手段の非線形特性を推定することを特徴とする。   According to the present invention, a second variable attenuator for restricting a wraparound of the training signal to the receiving unit, a second nonlinear characteristic estimating unit for estimating a nonlinear characteristic of the transmitting unit based on the training signal, and an estimation A second non-linear correction unit that corrects the non-linear characteristic of the transmission unit based on the non-linear characteristic, and the training signal generation unit generates the training signal having a large amplitude at which the transmission unit performs a non-linear operation, The second variable attenuator sets a value at which the receiving unit does not saturate, and the second nonlinear characteristic estimating unit estimates the nonlinear characteristic of the transmitting unit.

本発明は、信号を送受信するアンテナと、送信信号を前記アンテナを介して送信する送信手段と、伝搬路推定区間における送信側から受信側に回り込んだ信号の位相振幅応答を推定する伝搬路推定手段と、推定した前記位相振幅応答と前記送信信号に基づき回り込み信号レプリカを生成するレプリカ生成手段と、前記アンテナを介して受信した受信信号から前記回り込み信号レプリカを減算する減算手段と、減算後の前記受信信号について受信処理を行う受信手段とを備え、送受信信号を分離する無線通信装置における無線通信方法であって、前記送信信号の所定の遅延時間内の自己相関特性の最悪値を計算する自己相関計算ステップと、前記自己相関特性の最悪値が閾値以下となる区間を、前記伝搬路推定区間として決定する伝搬路推定区間決定ステップとを有することを特徴とする。   The present invention relates to an antenna for transmitting and receiving a signal, a transmission means for transmitting a transmission signal via the antenna, and a propagation path estimation for estimating a phase amplitude response of a signal that wraps around from a transmission side to a reception side in a propagation path estimation section Means, replica generating means for generating a sneak signal replica based on the estimated phase amplitude response and the transmission signal, subtracting means for subtracting the sneak signal replica from the received signal received via the antenna, and A wireless communication method in a wireless communication apparatus for separating a transmission / reception signal, comprising: a reception unit configured to perform reception processing on the reception signal, wherein the self-correlation characteristic within a predetermined delay time of the transmission signal A correlation calculation step, and a channel estimation section that determines a section in which the worst value of the autocorrelation characteristic is equal to or less than a threshold as the channel estimation section And having a determining step.

本発明は、信号を送受信するアンテナと、送信信号を前記アンテナを介して送信する送信手段と、伝搬路推定区間における送信側から受信側に回り込んだ信号の位相振幅応答を推定する伝搬路推定手段と、推定した前記位相振幅応答と前記送信信号に基づき回り込み信号レプリカを生成するレプリカ生成手段と、前記アンテナを介して受信した受信信号から前記回り込み信号レプリカを減算する減算手段と、減算後の前記受信信号について受信処理を行う受信手段とを備え、送受信信号を分離する無線通信装置上のコンピュータに、前記送信信号の所定の遅延時間内の自己相関特性の最悪値を計算する自己相関計算ステップと、前記自己相関特性の最悪値が閾値以下となる区間を、前記伝搬路推定区間として決定する伝搬路推定区間決定ステップとを行わせることを特徴とする。   The present invention relates to an antenna for transmitting and receiving a signal, a transmission means for transmitting a transmission signal via the antenna, and a propagation path estimation for estimating a phase amplitude response of a signal that wraps around from a transmission side to a reception side in a propagation path estimation section. Means, replica generating means for generating a sneak signal replica based on the estimated phase amplitude response and the transmission signal, subtracting means for subtracting the sneak signal replica from the received signal received via the antenna, and An autocorrelation calculating step of calculating a worst value of an autocorrelation characteristic within a predetermined delay time of the transmission signal in a computer on a radio communication apparatus that separates transmission / reception signals, and receiving means that performs reception processing on the reception signal And a channel estimation section determination step for determining a section where the worst value of the autocorrelation characteristic is equal to or less than a threshold as the channel estimation section. Characterized in that to perform the flop.

本発明によれば、自己相関特性を考慮して伝搬路推定区間を決定する事で、伝搬路推定時の誤応答を一定レベル以下に抑える事ができるため、推定精度の劣化を回避し、安定して高い信号分離度を実現することができるという効果が得られる。
また、回り込み信号レプリカの生成をアナログ部とデジタル部で分担することで、装置コストを抑えながら高い信号分離度を実現することができる。
また、受信部の非線形特性の補正を行うことで、受信部が非線形動作する高い入力レベルでも動作可能となり、アナログ部で生成、減算する信号レプリカ数を減少させることができるため、装置コストの低減を実現することができる。
また、送信部の非線形特性の補正を行うことで、送信部を非線形動作させることができるようになるため、装置コストの低減を実現することができる。
According to the present invention, by determining the propagation path estimation section in consideration of the autocorrelation characteristics, the erroneous response at the time of propagation path estimation can be suppressed to a certain level or less. Thus, an effect that a high degree of signal separation can be realized is obtained.
In addition, by sharing the generation of the wraparound signal replica between the analog unit and the digital unit, it is possible to realize a high signal separation degree while suppressing the apparatus cost.
In addition, by correcting the nonlinear characteristics of the receiver, it becomes possible to operate even at high input levels where the receiver operates nonlinearly, and the number of signal replicas generated and subtracted by the analog unit can be reduced, reducing the device cost. Can be realized.
Further, by correcting the nonlinear characteristic of the transmission unit, the transmission unit can be operated in a non-linear manner, so that the apparatus cost can be reduced.

本発明の第1の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 1st Embodiment of this invention. 本発明の第2の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd Embodiment of this invention. 本発明の第3の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 3rd Embodiment of this invention. 本発明の第4の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 4th Embodiment of this invention. 従来技術による無線通信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio | wireless communication apparatus by a prior art. 従来のマルチユーザ受信装置および本発明に係るマルチユーザ受信装置のシミュレーション結果であって、信号分離回路の出力信号y(t)のSINRの相補累積確率を示す図である。It is a simulation result of the conventional multiuser receiving apparatus and the multiuser receiving apparatus according to the present invention, and is a diagram showing the complementary cumulative probability of SINR of the output signal y m (t) of the signal separation circuit. 従来のマルチユーザ受信装置および本発明に係るマルチユーザ受信装置のシミュレーション結果であって、信号分離回路の出力信号y(t)のSINRの相補累積確率を示す図である。It is a simulation result of the conventional multiuser receiving apparatus and the multiuser receiving apparatus according to the present invention, and is a diagram showing the complementary cumulative probability of SINR of the output signal y m (t) of the signal separation circuit.

<第1の実施形態>
以下、図面を参照して、本発明の第1の実施形態による無線通信装置を説明する。図1は同実施形態の構成を示すブロック図である。図1に示すように無線通信装置は、変調部101、送信部102、分配器103、送受共用回路104、アンテナ105、レプリカ生成部106、減算部107、受信部108、伝搬路推定部109、復調部110、自己相関計算部111、伝搬路推定区間決定部112から構成される。
<First Embodiment>
Hereinafter, a wireless communication apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment. As shown in FIG. 1, the wireless communication apparatus includes a modulation unit 101, a transmission unit 102, a distributor 103, a transmission / reception shared circuit 104, an antenna 105, a replica generation unit 106, a subtraction unit 107, a reception unit 108, a propagation path estimation unit 109, It comprises a demodulator 110, an autocorrelation calculator 111, and a propagation path estimation interval determiner 112.

次に、図1を参照して、図1に示す無線通信装置の動作について説明する。無線通信装置は、送信するべき信号を変調部101により変調を行い、デジタル送信信号を生成し、送信部102によりアナログ信号への変換および周波数変換を行う。そして、分配器103で周波数変換された送信信号を2つに分配し、一方を送受共用回路104、他方をレプリカ生成部106へ出力する。送受共用回路104は、分配器103から供給された送信信号をアンテナ105に出力して送信を行うと共に、アンテナ105で受信した受信信号を減算部107に出力する。   Next, the operation of the wireless communication apparatus shown in FIG. 1 will be described with reference to FIG. The wireless communication apparatus modulates a signal to be transmitted by the modulation unit 101, generates a digital transmission signal, and performs conversion to an analog signal and frequency conversion by the transmission unit 102. Then, the transmission signal frequency-converted by the distributor 103 is distributed into two, and one is output to the transmission / reception shared circuit 104 and the other is output to the replica generation unit 106. The shared transmission / reception circuit 104 outputs the transmission signal supplied from the distributor 103 to the antenna 105 for transmission, and outputs the reception signal received by the antenna 105 to the subtraction unit 107.

レプリカ生成部106は伝搬路推定部109で推定された伝搬路情報を基に回り込み信号レプリカを生成する。減算部107は、送受共用回路104の出力信号からレプリカ生成部の出力信号を減算する。受信部108は受信した信号を周波数変換およびデジタル信号への変換を行う。受信部108の出力信号は、伝搬路推定部109において伝搬路を推定すると共に、復調部110により復調を行う。自己相関検出部111は、変調部101が出力した送信信号の自己相関を計算し、伝搬路推定区間決定部112は自己相関計算部111で計算した自己相関の値を基に伝搬路推定を行う区間を決定する。   The replica generation unit 106 generates a wraparound signal replica based on the propagation path information estimated by the propagation path estimation unit 109. The subtraction unit 107 subtracts the output signal of the replica generation unit from the output signal of the shared transmission / reception circuit 104. The receiving unit 108 performs frequency conversion and digital signal conversion on the received signal. The output signal of the reception unit 108 is estimated by the propagation path estimation unit 109 and demodulated by the demodulation unit 110. The autocorrelation detection unit 111 calculates the autocorrelation of the transmission signal output from the modulation unit 101, and the propagation path estimation interval determination unit 112 performs propagation path estimation based on the autocorrelation value calculated by the autocorrelation calculation unit 111. Determine the interval.

次に、数式を用いて自己相関計算部111、伝搬路推定区間決定部112の詳細な動作について説明する。なお、図1に示す変調部101、送信部102、分配器103、送受共用回路104、レプリカ生成部106、減算部107、受信部108、伝搬路推定部109及び復調部110は、それぞれ図5に示す変調部501、送信部502、分配器503、送受共用回路504、レプリカ生成部506、減算部507、受信部508、伝搬路推定部509及び復調部510と同様の動作であるため、ここでは詳細な説明を省略する。   Next, detailed operations of the autocorrelation calculation unit 111 and the propagation path estimation interval determination unit 112 will be described using mathematical expressions. The modulation unit 101, transmission unit 102, distributor 103, transmission / reception shared circuit 104, replica generation unit 106, subtraction unit 107, reception unit 108, propagation path estimation unit 109, and demodulation unit 110 shown in FIG. Are similar to those of the modulation unit 501, the transmission unit 502, the distributor 503, the transmission / reception shared circuit 504, the replica generation unit 506, the subtraction unit 507, the reception unit 508, the propagation path estimation unit 509, and the demodulation unit 510 shown in FIG. Then, detailed description is abbreviate | omitted.

自己相関検出部111は(13)式に従って相関値計算区間T内の自己相関特性の最悪値を計算する。

Figure 2013110510
The autocorrelation detection unit 111 calculates the worst value of the autocorrelation characteristics in the correlation value calculation section T according to the equation (13).
Figure 2013110510

伝搬路推定区間決定部112は、自己相関計算部111において計算した相関値が(14)式を満たす時間tを検出し、t〜t+Lを伝搬路推定区間として設定する。すなわち、自己相関特性において、本来のピークとは違う位置に誤応答ピークが出現する場合には、Cmaxの値が大きくなり、自己相関特性が悪いことを示す。この値が一定値以下であることを基準として、それ以外の期間では伝搬路推定を行わないことによって、誤応答による伝搬路推定精度の劣化を回避することができる。ここで、βは伝搬路推定部109における相関値D(τ)のピーク位置検索の際の閾値と同じ値であり、達成したい送受の信号分離度に応じて決定する。このように伝搬路推定区間を決定することで、伝搬路推定時の誤応答の最大値をβ以下に抑える事ができる。

Figure 2013110510
The propagation path estimation interval determination unit 112 detects a time t 0 when the correlation value calculated by the autocorrelation calculation unit 111 satisfies the expression (14), and sets t 0 to t 0 + L as the propagation path estimation interval. That is, in the autocorrelation characteristic, when an erroneous response peak appears at a position different from the original peak, the value of Cmax increases, indicating that the autocorrelation characteristic is poor. Based on the fact that this value is a certain value or less, by not performing channel estimation during other periods, it is possible to avoid degradation in channel estimation accuracy due to erroneous responses. Here, β is the same value as the threshold value used when searching for the peak position of the correlation value D (τ) in the propagation path estimation unit 109, and is determined according to the signal separation of transmission / reception to be achieved. By determining the propagation path estimation section in this way, the maximum value of erroneous response at the time of propagation path estimation can be suppressed to β or less.
Figure 2013110510

また、伝搬路推定部109で用いられる相関値計算区間Tは(15)式に基づき設定する。(15)式のように設定すると、相関値計算区間Tが長すぎることによる誤応答の発生を抑えつつ、相関値計算区間Tが短い事による回り込み波の見逃しを回避する事ができる。

Figure 2013110510
The correlation value calculation section T used in the propagation path estimation unit 109 is set based on the equation (15). By setting as shown in the equation (15), it is possible to avoid the occurrence of a sneak wave due to the short correlation value calculation section T while suppressing the occurrence of an erroneous response due to the correlation value calculation section T being too long.
Figure 2013110510

その理由は以下のとおりである。アンテナ105から送信され、距離dの物体に反射して、再度アンテナ105で受信した信号の減衰量Qは、アンテナと物体との間が見通せる最も伝搬状態が良好な場合(送信信号の回り込みという意味では最悪の場合)、フリスの公式を用いて(16)式で示される。

Figure 2013110510
The reason is as follows. The attenuation Q of the signal transmitted from the antenna 105, reflected by the object of the distance d, and received by the antenna 105 again is the best propagation state that can be seen between the antenna and the object (meaning the sneak in the transmitted signal) In the worst case, it is expressed by the equation (16) using the Friis formula.
Figure 2013110510

ここで、cは光速である。また、距離dを往復するのにかかる時間Δtは(17)式の通りである。

Figure 2013110510
Here, c is the speed of light. Further, the time Δt required to reciprocate the distance d is as shown in equation (17).
Figure 2013110510

(16)式を(17)式に代入すると、(18)式となる。

Figure 2013110510
Substituting equation (16) into equation (17) yields equation (18).
Figure 2013110510

相関値計算区間Tの外で応答を検出しないためには、減衰量Qは最悪でも閾値β以下にする必要があるため、Q=βと置くと、(15)式が導かれる。   In order not to detect a response outside the correlation value calculation section T, the attenuation amount Q needs to be equal to or less than the threshold value β at the worst. Therefore, when Q = β is established, Equation (15) is derived.

以上詳細に説明したように、自己相関特性を考慮して伝搬路推定区間を決定する事で、伝搬路推定時に誤応答が閾値β以下となるため、推定精度の劣化を回避し、安定して高い信号分離度を実現することができる。   As explained in detail above, by determining the propagation path estimation section in consideration of the autocorrelation characteristics, the error response becomes less than the threshold value β during propagation path estimation. High signal separation can be achieved.

<第2の実施形態>
次に、本発明の第2の実施形態による無線通信装置を説明する。図2は、本発明の第2の実施形態における無線通信装置の構成を示すブロック図である。図2に示す無線通信装置は、変調部101、送信部102、分配器103、送受共用回路104、アンテナ105、レプリカ生成部106、減算部107、受信部108、伝搬路推定部109、復調部110、自己相関計算部111、伝搬路推定区間決定部112、第2のレプリカ生成部201、第2の減算部202から構成される。
<Second Embodiment>
Next, a radio communication apparatus according to the second embodiment of the present invention will be described. FIG. 2 is a block diagram showing a configuration of the wireless communication apparatus according to the second embodiment of the present invention. 2 includes a modulation unit 101, a transmission unit 102, a distributor 103, a transmission / reception shared circuit 104, an antenna 105, a replica generation unit 106, a subtraction unit 107, a reception unit 108, a propagation path estimation unit 109, and a demodulation unit. 110, an autocorrelation calculation unit 111, a propagation path estimation interval determination unit 112, a second replica generation unit 201, and a second subtraction unit 202.

次に、図2を参照して、図2に示す無線通信装置の動作を説明する。図2に示す無線通信装置は、変調部101で変調を行い、デジタル送信信号を生成し、送信部102でアナログ信号への変換および周波数変換を行う。そして、分配器103で周波数変換された送信信号を2つに分配し、一方を送受共用回路104、他方をレプリカ生成部106へ出力する。送受共用回路104は、分配器から供給された送信信号をアンテナ105に出力すると共に、アンテナ105で受信した受信信号を減算部107に出力する。レプリカ生成部106は伝搬路推定部109で推定された伝搬路情報を基に回り込み信号レプリカを生成する。   Next, the operation of the wireless communication apparatus shown in FIG. 2 will be described with reference to FIG. The radio communication apparatus shown in FIG. 2 performs modulation by the modulation unit 101 to generate a digital transmission signal, and the transmission unit 102 performs conversion to an analog signal and frequency conversion. Then, the transmission signal frequency-converted by the distributor 103 is distributed into two, and one is output to the transmission / reception shared circuit 104 and the other is output to the replica generation unit 106. The transmission / reception shared circuit 104 outputs the transmission signal supplied from the distributor to the antenna 105 and outputs the reception signal received by the antenna 105 to the subtraction unit 107. The replica generation unit 106 generates a wraparound signal replica based on the propagation path information estimated by the propagation path estimation unit 109.

減算部107は、送受共用回路104の出力信号からレプリカ生成部106の出力信号を減算する。受信部108は受信した信号を周波数変換およびデジタル信号への変換を行い、伝搬路推定部109で伝搬路を推定する。第2のレプリカ生成部201は、伝搬路推定部109で推定した回り込み信号のうち、レプリカ生成部106で生成しなかった回り込み信号のレプリカを生成する。第2の減算部202は、受信部108の出力信号から第2のレプリカ生成部201の出力信号を減算する。復調部110は第2の減算部202の出力信号を基に復調を行う。自己相関検出部111は、変調部101が出力した送信信号の自己相関を計算し、伝搬路推定区間決定部112は自己相関計算部111で計算した自己相関の値を基に伝搬路推定を行う区間を決定する。   The subtraction unit 107 subtracts the output signal of the replica generation unit 106 from the output signal of the shared transmission / reception circuit 104. The receiving unit 108 performs frequency conversion and conversion to a digital signal on the received signal, and the propagation path estimation unit 109 estimates the propagation path. The second replica generation unit 201 generates a replica of the sneak signal that was not generated by the replica generation unit 106 among the sneak signals estimated by the propagation path estimation unit 109. The second subtraction unit 202 subtracts the output signal of the second replica generation unit 201 from the output signal of the reception unit 108. The demodulator 110 performs demodulation based on the output signal of the second subtractor 202. The autocorrelation detection unit 111 calculates the autocorrelation of the transmission signal output from the modulation unit 101, and the propagation path estimation interval determination unit 112 performs propagation path estimation based on the autocorrelation value calculated by the autocorrelation calculation unit 111. Determine the interval.

図2に示す無線通信装置が図1に示す無線通信装置と異なる点は、伝搬路推定部109で推定した回り込み信号のレプリカ生成を第2のレプリカ生成部201、レプリカ生成部106で分担する点である。第2のレプリカ生成部201、第2の減算部202の動作は、それぞれ前述したレプリカ生成部106、減算部107と同一である。   The wireless communication device shown in FIG. 2 is different from the wireless communication device shown in FIG. 1 in that the replica generation of the sneak signal estimated by the propagation path estimation unit 109 is shared by the second replica generation unit 201 and the replica generation unit 106. It is. The operations of the second replica generation unit 201 and the second subtraction unit 202 are the same as those of the replica generation unit 106 and the subtraction unit 107 described above, respectively.

前述したレプリカ生成部106は、アナログ信号を扱うため、生成する回り込み信号レプリカ1つに対して1組の位相器、遅延線、可変アッテネータなどのアナログ素子群により構成される。そのため、生成する回り込み信号レプリカの数Mに比例してコストが増加する。また、それらの素子の製造誤差等により生成した回り込み信号レプリカの精度は低いため、送受の信号分離度を一定以上高くすることができない。   Since the replica generation unit 106 described above handles an analog signal, the replica generation unit 106 includes an analog element group such as a set of phase shifters, delay lines, and variable attenuators for each generated sneak signal replica. Therefore, the cost increases in proportion to the number M of sneak signal replicas to be generated. In addition, since the accuracy of the sneak signal replica generated due to manufacturing errors of these elements is low, the signal separation of transmission and reception cannot be increased beyond a certain level.

一方で、デジタル変換後の信号を扱う第2のレプリカ生成部201は、デジタル回路で構成されるため、生成する回り込み信号レプリカの数が増えてもコストが低く、回り込み信号レプリカの生成精度も非常に高い。しかしながら、受信部108が飽和してしまうと、正しく動作させることができない。   On the other hand, since the second replica generation unit 201 that handles a signal after digital conversion is configured with a digital circuit, the cost is low even when the number of sneak signal replicas to be generated increases, and the sneak signal replica generation accuracy is also very high. Very expensive. However, if the receiving unit 108 is saturated, it cannot be operated correctly.

そこで、図2に示す無線通信装置では、(7)式の第1項に示す共用回路から回り込む信号のような信号レベルが非常に大きな回り込み信号についてはレプリカ生成部106で回り込み信号レプリカを生成し、減算部107で抑圧し、(7)式の第2項に示すアンテナ105から送信され、近隣の物体に反射して、再度アンテナ105で受信した信号のように数は多いが1つ1つのレベルは低い回り込み信号については第2のレプリカ生成部201で回り込み信号レプリカを生成し、第2の減算部202で抑圧することにより、装置コストを抑えながら高い信号分離度を実現することができる。   Therefore, in the wireless communication apparatus shown in FIG. 2, a sneak signal replica is generated by the replica generation unit 106 for a sneak signal having a very large signal level such as a signal sneaking from the shared circuit shown in the first term of the equation (7). The signal is suppressed by the subtracting unit 107, transmitted from the antenna 105 shown in the second term of the equation (7), reflected on a nearby object, and received again by the antenna 105, but there are many numbers one by one. With respect to a sneak signal having a low level, a sneak signal replica is generated by the second replica generation unit 201 and is suppressed by the second subtraction unit 202, whereby a high signal separation degree can be realized while suppressing the apparatus cost.

<第3の実施形態>
次に、本発明の第3の実施形態による無線通信装置を説明する。図3は、本発明の第3の実施形態における無線通信装置の構成を示すロック図である。図3に示す無線通信装置は、変調部101、送信部102、分配器103、送受共用回路104、アンテナ105、レプリカ生成部106、減算部107、受信部108、伝搬路推定部109、復調部110、自己相関計算部111、伝搬路推定区間決定部112、第2のレプリカ生成部201、第2の減算部202、トレーニング信号生成部301、可変アッテネータ302、非線形特性推定部303、非線形特性補正部304から構成される。
<Third Embodiment>
Next, a wireless communication apparatus according to the third embodiment of the present invention is described. FIG. 3 is a lock diagram showing the configuration of the wireless communication apparatus according to the third embodiment of the present invention. 3 includes a modulation unit 101, a transmission unit 102, a distributor 103, a transmission / reception shared circuit 104, an antenna 105, a replica generation unit 106, a subtraction unit 107, a reception unit 108, a propagation path estimation unit 109, and a demodulation unit. 110, autocorrelation calculation unit 111, propagation path estimation interval determination unit 112, second replica generation unit 201, second subtraction unit 202, training signal generation unit 301, variable attenuator 302, nonlinear characteristic estimation unit 303, nonlinear characteristic correction Part 304.

次に、図3を参照して、図3に示す無線通信装置の動作を説明する。図3に示す無線通信装置は、変調部101およびトレーニング信号生成部301で変調を行い、デジタル送信信号を生成し、送信部102でアナログ信号への変換および周波数変換を行う。そして、分配器103で周波数変換された送信信号を2つに分配し、一方を送受共用回路104、他方をレプリカ生成部106へ出力する。送受共用回路104は、分配器から供給された送信信号をアンテナ105に出力すると共に、アンテナ105で受信した受信信号を減算部107に出力する。送受共用回路104とアンテナ105の間には、可変アッテネータ302が接続され、入力された信号を設定した値だけ減衰させる。レプリカ生成部106は伝搬路推定部109で推定された伝搬路情報を基に回り込み信号レプリカを生成する。   Next, the operation of the wireless communication apparatus shown in FIG. 3 will be described with reference to FIG. In the wireless communication apparatus shown in FIG. 3, modulation is performed by the modulation unit 101 and the training signal generation unit 301, a digital transmission signal is generated, and conversion to an analog signal and frequency conversion are performed by the transmission unit 102. Then, the transmission signal frequency-converted by the distributor 103 is distributed into two, and one is output to the transmission / reception shared circuit 104 and the other is output to the replica generation unit 106. The transmission / reception shared circuit 104 outputs the transmission signal supplied from the distributor to the antenna 105 and outputs the reception signal received by the antenna 105 to the subtraction unit 107. A variable attenuator 302 is connected between the transmission / reception shared circuit 104 and the antenna 105 to attenuate the input signal by a set value. The replica generation unit 106 generates a wraparound signal replica based on the propagation path information estimated by the propagation path estimation unit 109.

減算部107は、送受共用回路104の出力信号からレプリカ生成部106の出力信号を減算する。受信部108は受信した信号を周波数変換およびデジタル信号への変換を行う。非線形特性推定部303は、受信部108の出力信号を用いて非線形特性を推定し、非線形特性補正部304により非線形特性の補正を行う。第2のレプリカ生成部201は、伝搬路推定部109で推定した回り込み信号のうち、レプリカ生成部106で生成しなかった回り込み信号のレプリカを生成する。第2の減算部202は、非線形特性補正部304の出力信号から第2のレプリカ生成部201の出力信号を減算する。復調部110は第2の減算部202の出力信号を基に復調を行う。自己相関検出部111は、変調部101が出力した送信信号の自己相関を計算し、伝搬路推定区間決定部112は自己相関検出部111で計算した自己相関の値を基に伝搬路推定を行う区間を決定する。   The subtraction unit 107 subtracts the output signal of the replica generation unit 106 from the output signal of the shared transmission / reception circuit 104. The receiving unit 108 performs frequency conversion and digital signal conversion on the received signal. The nonlinear characteristic estimation unit 303 estimates the nonlinear characteristic using the output signal of the receiving unit 108, and the nonlinear characteristic correction unit 304 corrects the nonlinear characteristic. The second replica generation unit 201 generates a replica of the sneak signal that was not generated by the replica generation unit 106 among the sneak signals estimated by the propagation path estimation unit 109. The second subtraction unit 202 subtracts the output signal of the second replica generation unit 201 from the output signal of the nonlinear characteristic correction unit 304. The demodulator 110 performs demodulation based on the output signal of the second subtractor 202. The autocorrelation detection unit 111 calculates the autocorrelation of the transmission signal output from the modulation unit 101, and the propagation path estimation interval determination unit 112 performs propagation path estimation based on the autocorrelation value calculated by the autocorrelation detection unit 111. Determine the interval.

図3に示す無線通信装置が、図2に示す無線通信装置と異なる点は、トレーニング信号生成部301、可変アッテネータ302、非線形特性推定部303、非線形特性補正部304を用いて、受信部108の非線形特性を推定、補正する点である。なお、非線形特性を推定する期間はトレーニング信号生成部301、それ以外の期間は変調部101でデジタル送信信号が生成される。トレーニング信号生成部301で生成されるトレーニング信号には、十分に小さなレベルから受信部108が非線形動作するが飽和しないレベルまでが網羅される信号を用いる。   The wireless communication device shown in FIG. 3 differs from the wireless communication device shown in FIG. 2 in that the training signal generator 301, the variable attenuator 302, the nonlinear characteristic estimation unit 303, and the nonlinear characteristic correction unit 304 are used. The point is to estimate and correct the nonlinear characteristic. Note that a digital transmission signal is generated by the training signal generation unit 301 during a period in which the nonlinear characteristic is estimated, and by the modulation unit 101 during other periods. As the training signal generated by the training signal generation unit 301, a signal that covers a range from a sufficiently small level to a level at which the reception unit 108 operates nonlinearly but does not saturate is used.

また、可変アッテネータ302の減衰量は非線形特性を推定する期間は十分に大きな値に、それ以外の期間は0に設定する。このようにアンテナ105に接続された可変アッテネータ302の減衰量を十分に大きな値に設定することで、アンテナからの送信が抑圧されるため、非線形特性を推定する期間はトレーニング信号生成部301で非線形特性推定に適した任意のトレーニング信号を生成し、それを利用して簡易かつ高精度に非線形特性を推定することができる。   The attenuation amount of the variable attenuator 302 is set to a sufficiently large value during the period for estimating the non-linear characteristics, and set to 0 during the other periods. Since the transmission from the antenna is suppressed by setting the attenuation amount of the variable attenuator 302 connected to the antenna 105 to a sufficiently large value in this way, the training signal generation unit 301 performs nonlinearity during the period for estimating the nonlinear characteristics. An arbitrary training signal suitable for characteristic estimation can be generated, and the nonlinear characteristic can be estimated easily and with high accuracy using the training signal.

また、このとき、可変アッテネータ302によりアンテナからトレーニング信号以外の不要信号の受信も抑圧されるため、非線形特性を高精度に推定することができる。また、非線形特性推定部303における非線形特性の推定および非線形特性補正部304における非線形特性の補正には多項式近似法、ルックアップテーブルを用いた方法など、公知の手法を用いることができる。   At this time, since the variable attenuator 302 also suppresses the reception of unnecessary signals other than the training signal from the antenna, the nonlinear characteristic can be estimated with high accuracy. In addition, a known method such as a polynomial approximation method or a method using a lookup table can be used for the estimation of the nonlinear characteristic in the nonlinear characteristic estimation unit 303 and the correction of the nonlinear characteristic in the nonlinear characteristic correction unit 304.

第2のレプリカ生成部201、第2の減算部202は、受信部108が線形動作領域あれば、残留した回り込み信号を完全に抑圧することができる。そのため、図2に示す無線通信装置では、第2のレプリカ生成部201、第2の減算部202により、回り込み信号を受信部108が線形動作するレベルまで下げる必要がある。そのため、第2のレプリカ生成部201の生成する回り込み信号レプリカの数や精度を一定以上に高める必要があり、第2のレプリカ生成部201のコストを一定以上下げる事ができない。   The second replica generation unit 201 and the second subtraction unit 202 can completely suppress the remaining sneak signal if the reception unit 108 is in the linear operation region. Therefore, in the wireless communication apparatus illustrated in FIG. 2, it is necessary to lower the sneak signal to a level at which the reception unit 108 operates linearly by the second replica generation unit 201 and the second subtraction unit 202. Therefore, it is necessary to increase the number and precision of the sneak signal replicas generated by the second replica generation unit 201 to a certain level or more, and the cost of the second replica generation unit 201 cannot be decreased to a certain level or more.

そこで、図3に示す無線通信装置では、任意信号を生成可能なトレーニング信号生成部301、アンテナ105からの信号の送信、受信を抑圧する可変アッテネータ302を用いて非線形補正特性推定部303で受信部108の非線形特性を高精度に推定し、非線形特性補正部304で補正することで、第2のレプリカ生成部201の生成する回り込み信号レプリカの数や要求精度を下げる。これにより、図2に示す無線通信装置と比べ、さらに装置コストを抑えながら高い信号分離度を実現することができる。   Therefore, in the wireless communication apparatus shown in FIG. 3, the nonlinear correction characteristic estimation unit 303 uses a training signal generation unit 301 that can generate an arbitrary signal and a variable attenuator 302 that suppresses transmission and reception of signals from the antenna 105. The non-linear characteristic 108 is estimated with high accuracy, and is corrected by the non-linear characteristic correcting unit 304, thereby reducing the number of sneak signal replicas generated by the second replica generating unit 201 and the required accuracy. Thereby, compared with the radio | wireless communication apparatus shown in FIG. 2, a high signal-separation degree is further realizable, suppressing apparatus cost.

<第4の実施形態>
次に、本発明の第4の実施形態による無線通信装置を説明する。図4は、本発明の第4の実施形態における無線通信装置の構成を示すブロック図である。図4に示す無線通信装置は、変調部101、送信部102、分配器103、送受共用回路104、アンテナ105、レプリカ生成部106、減算部107、受信部108、伝搬路推定部109、復調部110、自己相関計算部111、伝搬路推定区間決定部112、第2のレプリカ生成部201、第2の減算部202、トレーニング信号生成部301、可変アッテネータ302、非線形特性推定部303、非線形特性補正部304、第2の可変アッテネータ401、第2の非線形特性推定部402、第2の非線形特性補正部403から構成される。
<Fourth Embodiment>
Next, a wireless communication apparatus according to the fourth embodiment of the present invention is described. FIG. 4 is a block diagram showing a configuration of a wireless communication apparatus according to the fourth embodiment of the present invention. 4 includes a modulation unit 101, a transmission unit 102, a distributor 103, a transmission / reception shared circuit 104, an antenna 105, a replica generation unit 106, a subtraction unit 107, a reception unit 108, a propagation path estimation unit 109, and a demodulation unit. 110, autocorrelation calculation unit 111, propagation path estimation interval determination unit 112, second replica generation unit 201, second subtraction unit 202, training signal generation unit 301, variable attenuator 302, nonlinear characteristic estimation unit 303, nonlinear characteristic correction Unit 304, second variable attenuator 401, second nonlinear characteristic estimation unit 402, and second nonlinear characteristic correction unit 403.

次に、図4を参照して、図4に示す無線通信装置の動作を説明する。図4に示す無線通信装置は、変調部101およびトレーニング信号生成部301で変調を行い、デジタル送信信号を生成し、送信部102でアナログ信号への変換および周波数変換を行う。第2の非線形特性推定部402は、受信部108の出力信号を用いて送信部102の非線形特性を推定し、第2の非線形特性補正部403により送信部102の非線形特性の補正を行う。そして、分配器103で周波数変換された送信信号を2つに分配し、一方を送受共用回路104、他方をレプリカ生成部106へ出力する。送受共用回路104は、分配器103から供給された送信信号をアンテナ105に出力すると共に、アンテナ105で受信した受信信号を減算部107に出力する。送受共用回路104とアンテナ105の間には、可変アッテネータ302が接続され、入力された信号を設定した値だけ減衰させる。   Next, the operation of the wireless communication apparatus shown in FIG. 4 will be described with reference to FIG. In the wireless communication apparatus shown in FIG. 4, modulation is performed by the modulation unit 101 and the training signal generation unit 301 to generate a digital transmission signal, and conversion to an analog signal and frequency conversion are performed by the transmission unit 102. The second nonlinear characteristic estimation unit 402 estimates the nonlinear characteristic of the transmission unit 102 using the output signal of the reception unit 108, and the second nonlinear characteristic correction unit 403 corrects the nonlinear characteristic of the transmission unit 102. Then, the transmission signal frequency-converted by the distributor 103 is distributed into two, and one is output to the transmission / reception shared circuit 104 and the other is output to the replica generation unit 106. The shared transmission / reception circuit 104 outputs the transmission signal supplied from the distributor 103 to the antenna 105 and outputs the reception signal received by the antenna 105 to the subtraction unit 107. A variable attenuator 302 is connected between the transmission / reception shared circuit 104 and the antenna 105 to attenuate the input signal by a set value.

送受共用回路104と減算部107の間には、第2の可変アッテネータ302が接続され、入力された信号を設定した値だけ減衰させる。レプリカ生成部106は伝搬路推定部109で推定された伝搬路情報を基に回り込み信号レプリカを生成する。減算部107は、送受共用回路104の出力信号からレプリカ生成部106の出力信号を減算する。受信部108は受信した信号を周波数変換およびデジタル信号への変換を行う。非線形特性推定部303は、受信部108の出力信号を用いて非線形特性を推定し、非線形特性補正部304により受信部108の出力信号の非線形特性の補正を行う。   A second variable attenuator 302 is connected between the transmission / reception shared circuit 104 and the subtraction unit 107, and attenuates the input signal by a set value. The replica generation unit 106 generates a wraparound signal replica based on the propagation path information estimated by the propagation path estimation unit 109. The subtraction unit 107 subtracts the output signal of the replica generation unit 106 from the output signal of the shared transmission / reception circuit 104. The receiving unit 108 performs frequency conversion and digital signal conversion on the received signal. The nonlinear characteristic estimation unit 303 estimates the nonlinear characteristic using the output signal of the receiving unit 108, and the nonlinear characteristic correction unit 304 corrects the nonlinear characteristic of the output signal of the receiving unit 108.

第2のレプリカ生成部201は、伝搬路推定部109で推定した回り込み信号のうち、レプリカ生成部106で生成しなかった回り込み信号のレプリカを生成する。第2の減算部202は、非線形特性補正部304の出力信号から第2のレプリカ生成部の出力信号を減算する。復調部110は第2の減算部202の出力信号を基に復調を行う。自己相関検出部111は、変調部101が出力した送信信号の自己相関を計算し、伝搬路推定区間決定部112は自己相関検出部111で計算した自己相関の値を基に伝搬路推定を行う区間を決定する。   The second replica generation unit 201 generates a replica of the sneak signal that was not generated by the replica generation unit 106 among the sneak signals estimated by the propagation path estimation unit 109. The second subtraction unit 202 subtracts the output signal of the second replica generation unit from the output signal of the nonlinear characteristic correction unit 304. The demodulator 110 performs demodulation based on the output signal of the second subtractor 202. The autocorrelation detection unit 111 calculates the autocorrelation of the transmission signal output from the modulation unit 101, and the propagation path estimation interval determination unit 112 performs propagation path estimation based on the autocorrelation value calculated by the autocorrelation detection unit 111. Determine the interval.

図4に示す無線通信装置が、図3に示す無線通信装置と異なる点は、第2の可変アッテネータ401、第2の非線形特性推定部402、第2の非線形特性補正部403を用いて、送信部102の非線形特性を推定、補正する点である。なお、送信部102の非線形特性を推定する期間はトレーニング信号生成部301、それ以外の期間は変調部101でデジタル送信信号が生成される。トレーニング信号生成部301で生成されるトレーニング信号には、十分に小さなレベルから送信部102が非線形動作するが飽和はしないレベルまでが網羅される信号を用いる。また、第2の可変アッテネータ401の減衰量は非線形特性を推定する期間は、受信部108が飽和しない値に、それ以外の期間は0に設定する。   The wireless communication device shown in FIG. 4 is different from the wireless communication device shown in FIG. 3 in that the second variable attenuator 401, the second nonlinear characteristic estimation unit 402, and the second nonlinear characteristic correction unit 403 are used for transmission. The nonlinear characteristic of the unit 102 is estimated and corrected. Note that a digital transmission signal is generated by the training signal generation unit 301 during a period in which the nonlinear characteristic of the transmission unit 102 is estimated, and by the modulation unit 101 during other periods. As the training signal generated by the training signal generation unit 301, a signal that covers from a sufficiently small level to a level at which the transmission unit 102 performs non-linear operation but does not saturate is used. The attenuation amount of the second variable attenuator 401 is set to a value that does not saturate the receiving unit 108 during the period in which the nonlinear characteristic is estimated, and is set to 0 during other periods.

図3に示す無線通信装置では、非線形特性補正部304により受信部108の非線形特性を補正することで、受信部108が非線形動作する高い受信レベルにおいても残留した回り込み信号を完全に抑圧することができる。しかしながら、送信部102が非線形動作すると、第2のレプリカ生成部201で生成した回り込み信号レプリカが、実際に受信部108で受信した回り込み信号と異なるため、回り込み信号を完全に抑圧することができない。そのため、図3に示す無線通信装置では、線形動作する送信部102を用いる必要があり、そのコストを一定以上下げる事ができない。   In the wireless communication apparatus shown in FIG. 3, the non-linear characteristic of the receiving unit 108 is corrected by the non-linear characteristic correcting unit 304, so that the remaining sneak signal can be completely suppressed even at a high reception level where the receiving unit 108 operates in a non-linear manner. it can. However, when the transmission unit 102 operates in a non-linear manner, the sneak signal replica generated by the second replica generation unit 201 is different from the sneak signal actually received by the reception unit 108, and thus the sneak signal cannot be completely suppressed. Therefore, in the wireless communication apparatus shown in FIG. 3, it is necessary to use the transmission unit 102 that performs linear operation, and the cost cannot be reduced beyond a certain level.

そこで、図4に示す無線通信装置では、受信部108が飽和動作しないように受信レベルを調整する第2の可変アッテネータ401を用いて第2の非線形推定部402で送信部102の非線形特性を高精度に推定し、第2の非線形補正部403で補正することで、送信部102が非線形動作しても、回り込み信号を完全に抑圧することができるようにした。これにより、図3に示す無線通信装置と比べ、さらに装置コストを抑える事ができる。   Therefore, in the wireless communication apparatus shown in FIG. 4, the second nonlinear estimator 402 uses the second variable attenuator 401 that adjusts the reception level so that the receiver 108 does not saturate, and the nonlinear characteristic of the transmitter 102 is increased. By estimating the accuracy and correcting by the second nonlinear correction unit 403, the sneak signal can be completely suppressed even if the transmission unit 102 operates nonlinearly. Thereby, compared with the radio | wireless communication apparatus shown in FIG. 3, apparatus cost can be suppressed further.

以上説明したように、送受信を同時に行う無線通信装置では、送信信号が受信回路に回り込むことによって干渉が生じる問題がある。従来技術では、送信信号から干渉信号のレプリカを生成して、受信信号からこの干渉信号のレプリカを減算することによって、回り込み干渉を除去していた。しかし、この技術では、送信信号の自己相関が悪い場合に、伝搬路推定の際の相関検出において誤検出することがあるため、干渉除去の精度が低いという問題がある。前述した無線通信装置では、送信信号の自己相関を算出し、自己相関が悪くない期間に限って伝搬路推定の相関検出を行うようにした。また、相互相関検出の処理期間を、近隣の物体からの反射波の伝搬損失が閾値βを上回る可能性のある期間に限定することで、所定の信号分離度の達成に必要な反射波の推定見逃しを回避しつつ、誤応答の発生を抑えるようにした。この構成により、送信信号の自己相関が悪い場合に生じる誤検出を回避し、干渉除去の精度を改善することが可能になる。   As described above, in a wireless communication apparatus that performs transmission and reception simultaneously, there is a problem in that interference occurs when a transmission signal wraps around a reception circuit. In the prior art, a wraparound interference is removed by generating a replica of an interference signal from a transmission signal and subtracting the replica of the interference signal from a reception signal. However, in this technique, when the autocorrelation of the transmission signal is bad, there is a problem that the accuracy of interference removal is low because a false detection may occur in the correlation detection at the time of propagation path estimation. In the wireless communication apparatus described above, the autocorrelation of the transmission signal is calculated, and the correlation detection of the propagation path estimation is performed only during the period when the autocorrelation is not bad. In addition, by limiting the processing period of cross-correlation detection to a period in which the propagation loss of reflected waves from nearby objects may exceed the threshold β, the estimation of reflected waves necessary to achieve a predetermined signal separation degree The occurrence of false responses was suppressed while avoiding oversight. With this configuration, it is possible to avoid erroneous detection that occurs when the autocorrelation of the transmission signal is bad and to improve the accuracy of interference removal.

なお、図1における処理部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより無線通信処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。   Note that a program for realizing the function of the processing unit in FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute wireless communication processing. You may go. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.

また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。   The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

以上、図面を参照して本発明の実施の形態を説明してきたが、上記実施の形態は本発明の例示に過ぎず、本発明が上記実施の形態に限定されるものではないことは明らかである。したがって、本発明の精神及び範囲を逸脱しない範囲で構成要素の追加、省略、置換、その他の変更を行っても良い。   As mentioned above, although embodiment of this invention has been described with reference to drawings, the said embodiment is only the illustration of this invention, and it is clear that this invention is not limited to the said embodiment. is there. Accordingly, additions, omissions, substitutions, and other modifications of components may be made without departing from the spirit and scope of the present invention.

受信側に漏れこんだ回り込み信号レプリカを減算する事で送信信号と受信信号の分離を行う無線通信装置において、安定して高い信号分離度を実現することが不可欠な用途も適用できる。   In a wireless communication apparatus that separates a transmission signal and a reception signal by subtracting a sneak signal replica leaking into the reception side, it is also possible to apply a use in which it is indispensable to stably realize a high signal separation degree.

101・・・変調部、102・・・送信部、103・・・分配器、104・・・送受共用回路、105・・・アンテナ、106・・・レプリカ生成部、107・・・減算部、108・・・受信部、109・・・伝搬路推定部、110・・・復調部、111・・・自己相関計算部、112・・・伝搬路推定区間決定部、201・・・第2のレプリカ生成部、202・・・第2の減算部、301・・・トレーニング信号生成部、302・・・可変アッテネータ、303・・・非線形特性推定部、304・・・非線形特性補正部、401・・・第2の可変アッテネータ、402・・・第2の非線形特性推定部、403・・・第2の非線形特性補正部   DESCRIPTION OF SYMBOLS 101 ... Modulation part, 102 ... Transmission part, 103 ... Divider, 104 ... Transmission / reception shared circuit, 105 ... Antenna, 106 ... Replica generation part, 107 ... Subtraction part, 108: receiving unit, 109 ... propagation path estimation unit, 110 ... demodulation unit, 111 ... autocorrelation calculation unit, 112 ... propagation path estimation interval determination unit, 201 ... second Replica generating unit 202 ... second subtracting unit 301 ... training signal generating unit 302 ... variable attenuator 303 ... nonlinear characteristic estimating unit 304 ... nonlinear characteristic correcting unit 401 ..Second variable attenuator, 402... Second nonlinear characteristic estimation unit, 403... Second nonlinear characteristic correction unit

Claims (7)

信号を送受信するアンテナと、
送信信号を前記アンテナを介して送信する送信手段と、
伝搬路推定区間における送信側から受信側に回り込んだ信号の位相振幅応答を推定する伝搬路推定手段と、
推定した前記位相振幅応答と前記送信信号に基づき回り込み信号レプリカを生成するレプリカ生成手段と、
前記アンテナを介して受信した受信信号から前記回り込み信号レプリカを減算する減算手段と、
減算後の前記受信信号について受信処理を行う受信手段と
を備え、送受信信号を分離する無線通信装置であって、
前記送信信号の所定の遅延時間内の自己相関特性の最悪値を計算する自己相関計算手段と、
前記自己相関特性の最悪値が閾値以下となる区間を、前記伝搬路推定区間として決定する伝搬路推定区間決定手段と
をさらに備えることを特徴とする無線通信装置。
An antenna for transmitting and receiving signals;
Transmitting means for transmitting a transmission signal via the antenna;
Propagation path estimation means for estimating a phase amplitude response of a signal sneaking from the transmission side to the reception side in the propagation path estimation section;
Replica generating means for generating a wraparound signal replica based on the estimated phase amplitude response and the transmission signal;
Subtracting means for subtracting the sneak path replica from the received signal received via the antenna;
Receiving means for performing a reception process on the received signal after subtraction, and a wireless communication device that separates transmission and reception signals,
Autocorrelation calculating means for calculating a worst value of autocorrelation characteristics within a predetermined delay time of the transmission signal;
A wireless communication apparatus, further comprising: a propagation path estimation section determining unit that determines, as the propagation path estimation section, a section in which the worst value of the autocorrelation characteristic is equal to or less than a threshold value.
前記遅延時間をT、前記閾値をβ、前記送信信号の搬送波周波数をfc、前記アンテナのゲインをGとし、
前記遅延時間Tを、
Figure 2013110510
により決定することを特徴とする請求項1に記載の無線通信装置。
The delay time is T, the threshold is β, the carrier frequency of the transmission signal is fc, and the gain of the antenna is G.
The delay time T is
Figure 2013110510
The wireless communication device according to claim 1, wherein the wireless communication device is determined by the following.
前記レプリカ生成手段及び前記減算手段をそれぞれ2つずつ備え、
前記受信処理を行う前の信号と、前記受信処理を行った後の信号とのそれぞれの信号に対して、前記レプリカ生成手段と前記減算手段の一組ずつを用いて前記送受信信号を分離することを特徴とする請求項1または2に記載の無線通信装置。
Two each of the replica generation means and the subtraction means,
The transmission / reception signal is separated using a pair of the replica generation unit and the subtraction unit for each of the signal before the reception process and the signal after the reception process. The wireless communication apparatus according to claim 1, wherein the wireless communication apparatus is a wireless communication apparatus.
所定のトレーニング信号を生成するトレーニング信号生成手段と、
前記トレーニング信号の前記アンテナからの送信を抑圧する可変アッテネータと、
前記トレーニング信号を基に前記受信手段の非線形特性を推定する非線形特性推定手段と、
推定した前記非線形特性を基に前記受信手段の非線形特性の補正を行う非線形補正手段とをさらに備え、
前記トレーニング信号生成手段は、前記送信手段が線形動作し、かつ前記受信手段が非線形動作する振幅の前記トレーニング信号を生成し、前記非線形特性推定手段は、前記受信手段の非線形特性を推定することを特徴とする請求項3に記載の無線通信装置。
Training signal generating means for generating a predetermined training signal;
A variable attenuator for suppressing transmission of the training signal from the antenna;
Nonlinear characteristic estimating means for estimating nonlinear characteristics of the receiving means based on the training signal;
A non-linear correction means for correcting the non-linear characteristic of the receiving means based on the estimated non-linear characteristic;
The training signal generating means generates the training signal having an amplitude at which the transmitting means operates linearly and the receiving means operates nonlinearly, and the nonlinear characteristic estimating means estimates the nonlinear characteristics of the receiving means. The wireless communication apparatus according to claim 3, wherein:
前記トレーニング信号の前記受信手段への回り込みを制限する第2の可変アッテネータと、
前記トレーニング信号を基に前記送信手段の非線形特性を推定する第2の非線形特性推定手段と、
推定した前記非線形特性に基づき前記送信手段の非線形特性の補正を行う第2の非線形補正手段とをさらに備え、
前記トレーニング信号生成手段は、前記送信手段が非線形動作する大きな振幅の前記トレーニング信号を生成し、前記第2の可変アッテネータは、前記受信手段が飽和しない値を設定し、前記第2の非線形特性推定手段は、前記送信手段の非線形特性を推定することを特徴とする請求項4に記載の無線通信装置。
A second variable attenuator for restricting wraparound of the training signal to the receiving means;
Second nonlinear characteristic estimation means for estimating nonlinear characteristics of the transmission means based on the training signal;
Second nonlinear correction means for correcting the nonlinear characteristic of the transmission means based on the estimated nonlinear characteristic;
The training signal generating means generates the training signal having a large amplitude at which the transmitting means operates nonlinearly, the second variable attenuator sets a value at which the receiving means does not saturate, and the second nonlinear characteristic estimation The wireless communication apparatus according to claim 4, wherein the unit estimates a nonlinear characteristic of the transmission unit.
信号を送受信するアンテナと、
送信信号を前記アンテナを介して送信する送信手段と、
伝搬路推定区間における送信側から受信側に回り込んだ信号の位相振幅応答を推定する伝搬路推定手段と、
推定した前記位相振幅応答と前記送信信号に基づき回り込み信号レプリカを生成するレプリカ生成手段と、
前記アンテナを介して受信した受信信号から前記回り込み信号レプリカを減算する減算手段と、
減算後の前記受信信号について受信処理を行う受信手段と
を備え、送受信信号を分離する無線通信装置における無線通信方法であって、
前記送信信号の所定の遅延時間内の自己相関特性の最悪値を計算する自己相関計算ステップと、
前記自己相関特性の最悪値が閾値以下となる区間を、前記伝搬路推定区間として決定する伝搬路推定区間決定ステップと
を有することを特徴とする無線通信方法。
An antenna for transmitting and receiving signals;
Transmitting means for transmitting a transmission signal via the antenna;
Propagation path estimation means for estimating a phase amplitude response of a signal sneaking from the transmission side to the reception side in the propagation path estimation section;
Replica generating means for generating a wraparound signal replica based on the estimated phase amplitude response and the transmission signal;
Subtracting means for subtracting the sneak path replica from the received signal received via the antenna;
A wireless communication method in a wireless communication device for separating a transmission / reception signal, comprising: reception means for performing reception processing on the reception signal after subtraction;
An autocorrelation calculating step of calculating a worst value of autocorrelation characteristics within a predetermined delay time of the transmission signal;
A wireless communication method comprising: a propagation path estimation section determining step for determining a section where the worst value of the autocorrelation characteristic is equal to or less than a threshold as the propagation path estimation section.
信号を送受信するアンテナと、
送信信号を前記アンテナを介して送信する送信手段と、
伝搬路推定区間における送信側から受信側に回り込んだ信号の位相振幅応答を推定する伝搬路推定手段と、
推定した前記位相振幅応答と前記送信信号に基づき回り込み信号レプリカを生成するレプリカ生成手段と、
前記アンテナを介して受信した受信信号から前記回り込み信号レプリカを減算する減算手段と、
減算後の前記受信信号について受信処理を行う受信手段と
を備え、送受信信号を分離する無線通信装置上のコンピュータに、
前記送信信号の所定の遅延時間内の自己相関特性の最悪値を計算する自己相関計算ステップと、
前記自己相関特性の最悪値が閾値以下となる区間を、前記伝搬路推定区間として決定する伝搬路推定区間決定ステップと
を行わせることを特徴とする無線通信プログラム。
An antenna for transmitting and receiving signals;
Transmitting means for transmitting a transmission signal via the antenna;
Propagation path estimation means for estimating a phase amplitude response of a signal sneaking from the transmission side to the reception side in the propagation path estimation section;
Replica generating means for generating a wraparound signal replica based on the estimated phase amplitude response and the transmission signal;
Subtracting means for subtracting the sneak path replica from the received signal received via the antenna;
A reception unit that performs reception processing on the received signal after subtraction, and a computer on a wireless communication device that separates transmission and reception signals,
An autocorrelation calculating step of calculating a worst value of autocorrelation characteristics within a predetermined delay time of the transmission signal;
A radio communication program, comprising: performing a channel estimation section determining step of determining a section in which the worst value of the autocorrelation characteristic is equal to or less than a threshold as the channel estimation section.
JP2011252711A 2011-11-18 2011-11-18 Wireless communication apparatus, wireless communication method, and wireless communication program Active JP5658127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252711A JP5658127B2 (en) 2011-11-18 2011-11-18 Wireless communication apparatus, wireless communication method, and wireless communication program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252711A JP5658127B2 (en) 2011-11-18 2011-11-18 Wireless communication apparatus, wireless communication method, and wireless communication program

Publications (2)

Publication Number Publication Date
JP2013110510A true JP2013110510A (en) 2013-06-06
JP5658127B2 JP5658127B2 (en) 2015-01-21

Family

ID=48706892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252711A Active JP5658127B2 (en) 2011-11-18 2011-11-18 Wireless communication apparatus, wireless communication method, and wireless communication program

Country Status (1)

Country Link
JP (1) JP5658127B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028362A (en) * 2015-07-16 2017-02-02 日本電信電話株式会社 Transmission reception device
JP2018524941A (en) * 2015-07-15 2018-08-30 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Transceiver and method for reducing transceiver self-interference
JP2018530218A (en) * 2015-09-04 2018-10-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Interference phase estimation system and method
JP2019526944A (en) * 2016-07-16 2019-09-19 ゲンクスコム, インコーポレイテッドGenxcomm, Inc. Interference cancellation method and apparatus
US11444388B2 (en) 2019-12-12 2022-09-13 Panasonic Holdings Corporation Radio wave measurement device
US11469821B2 (en) 2015-12-13 2022-10-11 GenXComm, Inc. Interference cancellation methods and apparatus
US11539394B2 (en) 2019-10-29 2022-12-27 GenXComm, Inc. Self-interference mitigation in in-band full-duplex communication systems
US11796737B2 (en) 2020-08-10 2023-10-24 GenXComm, Inc. Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
US11838056B2 (en) 2021-10-25 2023-12-05 GenXComm, Inc. Hybrid photonic integrated circuits for ultra-low phase noise signal generators

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105535A (en) * 1985-11-01 1987-05-16 Nippon Telegr & Teleph Corp <Ntt> Echo canceller
JPS62147820A (en) * 1985-12-23 1987-07-01 Fujitsu Ltd Method of reception for fdm modem
JPS62235826A (en) * 1986-04-07 1987-10-16 Nec Corp Echo cancelling system
JPH01238326A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Adaptive filter device
JPH0653864A (en) * 1982-06-14 1994-02-25 Telecommun Radioelectr Teleph <Trt> Method and apparatus for reduction of focusing time of echo canceller
JPH07303069A (en) * 1994-05-07 1995-11-14 N T T Idou Tsuushinmou Kk Echo canceler learning method
US6272106B1 (en) * 1994-05-06 2001-08-07 Nit Mobile Communications Network, Inc. Method and device for detecting double-talk, and echo canceler
JP2005286796A (en) * 2004-03-30 2005-10-13 Matsushita Electric Works Ltd Loudspeaker call device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653864A (en) * 1982-06-14 1994-02-25 Telecommun Radioelectr Teleph <Trt> Method and apparatus for reduction of focusing time of echo canceller
JPS62105535A (en) * 1985-11-01 1987-05-16 Nippon Telegr & Teleph Corp <Ntt> Echo canceller
JPS62147820A (en) * 1985-12-23 1987-07-01 Fujitsu Ltd Method of reception for fdm modem
JPS62235826A (en) * 1986-04-07 1987-10-16 Nec Corp Echo cancelling system
JPH01238326A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Adaptive filter device
US6272106B1 (en) * 1994-05-06 2001-08-07 Nit Mobile Communications Network, Inc. Method and device for detecting double-talk, and echo canceler
JPH07303069A (en) * 1994-05-07 1995-11-14 N T T Idou Tsuushinmou Kk Echo canceler learning method
JP2005286796A (en) * 2004-03-30 2005-10-13 Matsushita Electric Works Ltd Loudspeaker call device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524941A (en) * 2015-07-15 2018-08-30 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Transceiver and method for reducing transceiver self-interference
US10291384B2 (en) 2015-07-15 2019-05-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Transceiver and method for reducing a self-interference of a transceiver
JP2017028362A (en) * 2015-07-16 2017-02-02 日本電信電話株式会社 Transmission reception device
JP2018530218A (en) * 2015-09-04 2018-10-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Interference phase estimation system and method
US11469821B2 (en) 2015-12-13 2022-10-11 GenXComm, Inc. Interference cancellation methods and apparatus
JP2019526944A (en) * 2016-07-16 2019-09-19 ゲンクスコム, インコーポレイテッドGenxcomm, Inc. Interference cancellation method and apparatus
JP7169877B2 (en) 2016-07-16 2022-11-11 ゲンクスコム, インコーポレイテッド Interference cancellation method and apparatus
US11539394B2 (en) 2019-10-29 2022-12-27 GenXComm, Inc. Self-interference mitigation in in-band full-duplex communication systems
US11444388B2 (en) 2019-12-12 2022-09-13 Panasonic Holdings Corporation Radio wave measurement device
US11796737B2 (en) 2020-08-10 2023-10-24 GenXComm, Inc. Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
US11838056B2 (en) 2021-10-25 2023-12-05 GenXComm, Inc. Hybrid photonic integrated circuits for ultra-low phase noise signal generators

Also Published As

Publication number Publication date
JP5658127B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5658127B2 (en) Wireless communication apparatus, wireless communication method, and wireless communication program
RU2664392C2 (en) Method and device for interference suppression
Kiayani et al. Adaptive nonlinear RF cancellation for improved isolation in simultaneous transmit–receive systems
KR102024652B1 (en) System and method for training signals for full duplex communication systems
US8644399B2 (en) Transmission apparatus, transmission method, reception apparatus, reception method, and transmission system
US9912358B2 (en) Method of and apparatus for transmit noise reduction at a receiver
AU5989601A (en) A receiver device for a mobile radio communication unit employing a speed estimator
US11428778B2 (en) System and method for performing spillover cancellation
TW201126973A (en) Removal of multiplicative errors in frequency domain channel estimation for wireless repeaters
US20100220797A1 (en) Communication apparatus
EP3427388B1 (en) Non-linear interference detection
JP2017028363A (en) Transmission reception device
JP6367159B2 (en) Transceiver
US8995341B2 (en) Pilot shifting
Waheed et al. Digital cancellation of passive intermodulation: Method, complexity and measurements
US9780820B2 (en) Method of filtering digital signal for maintaining data transmission rate in TDD or TDMA system and communication system adopting the same
US20160164700A1 (en) Method and apparatus for channel estimation using localized sinr in wireless communication systems
US8976840B2 (en) Radio receiver for detecting an additive white Gaussian noise channel
US9036719B2 (en) Secondary channel estimation
US9025523B2 (en) Primary channel estimation
KR20170116435A (en) Base station for removing transmitter noise in receiving band, and operation method thereof
CN104581759B (en) Method and device for measuring Received Signal Code Power (RSCP) of wireless access network system
CN115913278A (en) Full-duplex digital domain combined self-interference cancellation method and device and electronic equipment
US20230142639A1 (en) Estimating delays
Collins et al. Implementation and analysis of spectral subtraction in deterministic wide‐band anti‐jamming scenarios

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5658127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150