JP2013084663A - Bonded soi wafer manufacturing method - Google Patents

Bonded soi wafer manufacturing method Download PDF

Info

Publication number
JP2013084663A
JP2013084663A JP2011221872A JP2011221872A JP2013084663A JP 2013084663 A JP2013084663 A JP 2013084663A JP 2011221872 A JP2011221872 A JP 2011221872A JP 2011221872 A JP2011221872 A JP 2011221872A JP 2013084663 A JP2013084663 A JP 2013084663A
Authority
JP
Japan
Prior art keywords
wafer
soi
oxide film
soi wafer
natural oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011221872A
Other languages
Japanese (ja)
Other versions
JP5704039B2 (en
Inventor
Norihiro Kobayashi
徳弘 小林
Koji Aga
浩司 阿賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2011221872A priority Critical patent/JP5704039B2/en
Publication of JP2013084663A publication Critical patent/JP2013084663A/en
Application granted granted Critical
Publication of JP5704039B2 publication Critical patent/JP5704039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an SOI wafer having an SOI layer film thickness excellent in in-plane uniformity.SOLUTION: A bonded SOI wafer manufacturing method comprises: bonding a surface of a bond wafer on which an ion implantation layer is formed on the ion implanted side with a surface of a base wafer via an insulation film; subsequently detaching a part of the bond wafer at the ion implantation layer to form a bonded SOI wafer; and subsequently performing planarization. The bonded SOI wafer manufacturing method comprises: performing an RTA treatment on the bonded SOI wafer after the detachment in an atmosphere containing hydrogen gas so as to remove a natural oxide film on a peripheral part of an SOI layer surface and leave a natural oxide film on a central part; and performing the planarization on the bonded SOI wafer on which the natural oxide film is left on the central part such that an in-plane film thickness range of the SOI layer surface becomes 1.5 nm or under.

Description

本発明は、イオン注入剥離法を用いた貼り合わせSOIウェーハの製造方法に関する。   The present invention relates to a method for manufacturing a bonded SOI wafer using an ion implantation separation method.

最近、貼り合わせウェーハの製造方法として、イオン注入したボンドウェーハを貼り合わせた後に剥離して貼り合わせウェーハを製造する方法(イオン注入剥離法:スマートカット法(登録商標)とも呼ばれる技術)が新たに注目され始めている。このイオン注入剥離法は、二枚のウェーハの内、少なくとも一方に酸化膜を形成すると共に、一方のウェーハ(ボンドウェーハ)の上面から水素イオンや希ガスイオン等のガスイオンを注入し、該ウェーハ内部に微小気泡層(封入層)を形成させた後、該イオンを注入した方の面を直接あるいは酸化膜(絶縁膜)を介して他方のウェーハ(ベースウェーハ)と密着させ、その後熱処理(剥離熱処理)を加えて微小気泡層を劈開面として一方のウェーハ(ボンドウェーハ)を薄膜状に剥離し、さらに熱処理(結合熱処理)を加えて強固に結合してベースウェーハ上に薄膜を有する貼り合わせウェーハを作製する技術(特許文献1参照)である。この方法では、劈開面(剥離面)は良好な鏡面であり、薄膜、特にはSOI層の膜厚の均一性もある程度高いSOIウェーハが容易に得られている。   Recently, as a method of manufacturing bonded wafers, a method of manufacturing bonded wafers by bonding and bonding ion-implanted bond wafers (a technique called ion-implantation separation method: Smart Cut Method (registered trademark)) has been newly introduced. It has begun to attract attention. In this ion implantation separation method, an oxide film is formed on at least one of two wafers, and gas ions such as hydrogen ions and rare gas ions are implanted from the upper surface of one wafer (bond wafer). After a microbubble layer (encapsulation layer) is formed inside, the surface into which the ions are implanted is brought into close contact with the other wafer (base wafer) directly or through an oxide film (insulating film), and then heat treatment (peeling) A bonded wafer having a thin film on the base wafer by peeling off one wafer (bond wafer) into a thin film with a microbubble layer as a cleaved surface by applying a heat treatment, and further bonding by heat treatment (bonding heat treatment) This is a technique for manufacturing (see Patent Document 1). In this method, an SOI wafer having a good mirror surface as a cleavage plane (peeling surface) and a high degree of uniformity in the thickness of a thin film, particularly an SOI layer, can be easily obtained.

しかし、イオン注入剥離法により貼り合わせウェーハを作製する場合においては、剥離後の貼り合わせウェーハ表面にイオン注入によるダメージ層が存在し、また表面粗さが通常の製品レベルのシリコンウェーハの鏡面に比べて大きなものとなる。したがって、イオン注入剥離法では、このようなダメージ層、表面粗さを除去することが必要になる。   However, when a bonded wafer is manufactured by the ion implantation separation method, there is a damage layer due to ion implantation on the surface of the bonded wafer after separation, and the surface roughness is compared with a mirror surface of a normal product level silicon wafer. And big. Therefore, in the ion implantation separation method, it is necessary to remove such a damaged layer and surface roughness.

従来、このダメージ層等を除去するために、結合熱処理後の最終工程において、タッチポリッシュと呼ばれる研磨代の極めて少ない鏡面研磨(取り代:100nm程度)が行われていた。   Conventionally, in order to remove the damaged layer and the like, mirror polishing (removal allowance: about 100 nm) called “polishing polish” has been performed in the final step after the bonding heat treatment.

ところが、ベースウェーハ上の薄膜に機械加工的要素を含む研磨をしてしまうと、研磨の取り代が均一でないために、水素イオンなどの注入、剥離によってある程度達成された薄膜の膜厚均一性が悪化してしまうという問題が生じる。   However, if the thin film on the base wafer is polished including a machining element, the polishing allowance is not uniform. Therefore, the film thickness uniformity achieved to some extent by implantation and peeling of hydrogen ions and the like is achieved. The problem of getting worse arises.

このような問題点を解決する方法として、前記タッチポリッシュの代わりに高温熱処理を行って表面粗さを改善する平坦化処理が行われるようになってきている。   As a method for solving such a problem, a flattening process for improving the surface roughness by performing a high-temperature heat treatment instead of the touch polish has been performed.

例えば、特許文献2では、剥離熱処理後(または結合熱処理後)に、SOI層の表面を研磨することなく水素を含む還元性雰囲気下の熱処理(急速加熱・急速冷却熱処理(RTA処理))を加えることを提案している。さらに、特許文献3では、剥離熱処理後(又は結合熱処理後)に、酸化性雰囲気下の熱処理によりSOI層に酸化膜を形成した後に該酸化膜を除去し(犠牲酸化処理)、次に還元性雰囲気の熱処理(急速加熱・急速冷却熱処理(RTA処理))を加えることを提案している。   For example, in Patent Document 2, a heat treatment under a reducing atmosphere containing hydrogen (rapid heating / rapid cooling heat treatment (RTA treatment)) is performed after polishing heat treatment (or after bonding heat treatment) without polishing the surface of the SOI layer. Propose that. Further, in Patent Document 3, after the peeling heat treatment (or after the bonding heat treatment), an oxide film is formed on the SOI layer by heat treatment in an oxidizing atmosphere, and then the oxide film is removed (sacrificial oxidation treatment), and then reduced. It has been proposed to add atmospheric heat treatment (rapid heating / rapid cooling heat treatment (RTA treatment)).

また、特許文献4では、剥離後のSOIウェーハに、不活性ガス、水素ガス、あるいはこれらの混合ガス雰囲気下での平坦化熱処理の後に犠牲酸化処理を行うことにより、剥離面の平坦化とOSFの回避を同時に達成している。   In Patent Document 4, the SOI wafer after peeling is subjected to sacrificial oxidation treatment after planarization heat treatment in an inert gas, hydrogen gas, or mixed gas atmosphere thereof, thereby planarizing the peeled surface and OSF. Avoidance at the same time.

このように、タッチポリッシュの代わりに高温熱処理を行って表面粗さを改善する平坦化処理が行われるようになったことによって、現在では、直径300mmでSOI層の膜厚レンジ(面内の最大膜厚値から最小膜厚値を引いた値)が3nm以内の膜厚均一性を有するSOIウェーハが、イオン注入剥離法によって量産レベルで得られている。   As described above, a flattening process for improving the surface roughness by performing a high-temperature heat treatment instead of the touch polish is performed, and at present, the film thickness range of the SOI layer with a diameter of 300 mm (maximum in the plane). An SOI wafer having a film thickness uniformity of 3 nm or less (a value obtained by subtracting the minimum film thickness value from the film thickness value) is obtained at the mass production level by the ion implantation delamination method.

また、特許文献5には、剥離面の表面粗さ(短周期及び長周期)を低減するため、RTAとバッチ炉の2段熱処理を行うSOIウェーハの製造方法であり、剥離後に水素含有雰囲気下でRTA(1000℃〜融点以下、1〜300秒)で熱処理し、バッチ炉でArアニールを行うプロセスが記載されている。   Patent Document 5 discloses a method for manufacturing an SOI wafer in which two-stage heat treatment of RTA and a batch furnace is performed in order to reduce the surface roughness (short cycle and long cycle) of the peeling surface. Describes a process in which heat treatment is performed at RTA (1000 ° C. to melting point or less, 1 to 300 seconds) and Ar annealing is performed in a batch furnace.

さらに、特許文献6には、SOI層の凹状欠陥を低減するため、剥離後にオゾン洗浄し、水素含有雰囲気下でRTA(1100〜1250℃)で熱処理し、犠牲酸化処理、Arアニールをする貼り合わせウェーハの製造方法が記載されている。   Furthermore, in Patent Document 6, in order to reduce the concave defects in the SOI layer, bonding is performed by ozone cleaning after peeling, heat treatment at RTA (1100 to 1250 ° C.) in a hydrogen-containing atmosphere, sacrificial oxidation treatment, and Ar annealing. A method for manufacturing a wafer is described.

特開平5−211128号公報JP-A-5-211128 特開平11−307472号公報Japanese Patent Laid-Open No. 11-307472 特開2000−124092号公報Japanese Patent Application Laid-Open No. 2000-124092 WO2003/009386号公報WO2003 / 009386 Publication WO2001/28000号公報WO2001 / 8000 publication 特開2009−32972号公報JP 2009-32972 A

近年の半導体デバイスの低消費電力化、微細化、高機能化に伴い、SOI層の膜厚均一性は、従来の面内膜厚レンジ(面内の最大膜厚から最小膜厚を引いた値)が3nm程度では必ずしも十分とは言えなくなってきており、更なる面内膜厚レンジの改善が求められている。   With the recent low power consumption, miniaturization, and high functionality of semiconductor devices, the SOI layer thickness uniformity is the conventional in-plane film thickness range (the value obtained by subtracting the minimum film thickness from the maximum in-plane film thickness). ) Of about 3 nm is not necessarily sufficient, and further improvement of the in-plane film thickness range is required.

イオン注入剥離法によってSOIウェーハを製造する場合、前述の通りSOI層の剥離後の平坦化処理には様々な方法がある。代表的な工程として研磨(タッチポリッシュ)、犠牲酸化処理、熱処理、エッチング等が上げられる。   When an SOI wafer is manufactured by an ion implantation separation method, there are various methods for planarization after the SOI layer is peeled as described above. Typical processes include polishing (touch polishing), sacrificial oxidation treatment, heat treatment, etching, and the like.

また、例えばArアニールなど、減厚を目的としない工程として実施される場合のある不活性ガス雰囲気での高温長時間の熱処理であっても、実際にはある程度のSOI層が除去される工程になっている。特に、縦型熱処理炉でArアニールを行うと、ウェーハ周辺部のSOI膜厚が薄くなり、面内均一性を悪化させている。   In addition, even when heat treatment is performed at a high temperature for a long time in an inert gas atmosphere, which may be performed as a process that does not aim to reduce the thickness, such as Ar annealing, it is actually a process in which some SOI layer is removed. It has become. In particular, when Ar annealing is performed in a vertical heat treatment furnace, the SOI film thickness at the periphery of the wafer becomes thin, and the in-plane uniformity is deteriorated.

一方、研磨により平坦化を行うと、ダレと呼ばれるウェーハ周辺部のみ薄くなる現象と、ハネと呼ばれるウェーハ周辺部のみ厚くなる現象があり、SOI層の面内均一性を悪化させる原因となっている。さらに、犠牲酸化処理(熱酸化と酸化膜除去を行う処理)として、熱酸化を縦型炉で処理した場合も同様に、同心円形状の面内膜厚分布を持つ場合があり、SOI層の面内均一性を悪化させる原因となっている。   On the other hand, when flattening is performed by polishing, there is a phenomenon that only the peripheral part of the wafer called sagging is thinned, and a phenomenon that only the peripheral part of the wafer called sacrificial is thickened, which deteriorates the in-plane uniformity of the SOI layer. . In addition, as a sacrificial oxidation process (a process for performing thermal oxidation and oxide film removal), when the thermal oxidation is processed in a vertical furnace, there may be a case where a concentric in-plane film thickness distribution is present, and the surface of the SOI layer This is a cause of worsening the uniformity.

本発明は上記問題点に鑑みてなされたものであり、平坦化処理後のSOI層の膜厚の面内均一性が一層良好なSOIウェーハを製造する方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an SOI wafer in which the in-plane uniformity of the film thickness of the SOI layer after the planarization process is further improved.

本発明は、上記課題を解決するためになされたものであって、シリコン単結晶からなるボンドウェーハの表面から水素イオン、希ガスイオンの少なくとも一種類のガスイオンをイオン注入して前記ボンドウェーハ内部にイオン注入層を形成し、前記ボンドウェーハのイオン注入された側の表面とベースウェーハの表面とを絶縁膜を介して貼り合わせた後、前記ボンドウェーハの一部を前記イオン注入層で剥離して、前記ベースウェーハ上に前記ボンドウェーハの薄膜からなるSOI層を有する貼り合わせSOIウェーハを作製し、その後、前記剥離面を平坦化する平坦化処理を行う貼り合わせSOIウェーハの製造方法であって、
前記剥離後の貼り合わせSOIウェーハに対し、前記SOI層表面の周辺部の自然酸化膜が除去され、中央部の自然酸化膜が残存するように、水素ガスを含む雰囲気でRTA処理を行い、前記中央部に自然酸化膜が残存した貼り合わせSOIウェーハに対し、前記SOI層の面内膜厚レンジが1.5nm以下となるように前記平坦化処理を行うことを特徴とする貼り合わせSOIウェーハの製造方法を提供する。
The present invention has been made in order to solve the above-described problem, and at least one kind of gas ion of hydrogen ion or rare gas ion is ion-implanted from the surface of a bond wafer made of a silicon single crystal. An ion implantation layer is formed on the surface of the bond wafer and the surface of the base wafer and the surface of the base wafer are bonded together via an insulating film, and then a part of the bond wafer is peeled off by the ion implantation layer. A bonded SOI wafer manufacturing method in which a bonded SOI wafer having an SOI layer made of a thin film of the bond wafer is fabricated on the base wafer, and then a planarization process for planarizing the release surface is performed. ,
The bonded SOI wafer after peeling is subjected to an RTA process in an atmosphere containing hydrogen gas so that the natural oxide film at the periphery of the SOI layer surface is removed and the natural oxide film at the center remains. A bonded SOI wafer comprising: a bonded SOI wafer having a natural oxide film remaining in a central portion; wherein the planarization process is performed so that an in-plane film thickness range of the SOI layer is 1.5 nm or less. A manufacturing method is provided.

このような製造方法であれば、剥離後のSOI層の平坦化処理において、SOI層の膜厚の面内均一性の悪化を抑制し、SOI層の膜厚の面内均一性の良好な貼り合わせSOIウェーハを製造することができる。特に、SOI層の平坦化後の面内膜厚レンジが1.5nm以下となる貼り合わせSOIウェーハを製造することができる。   With such a manufacturing method, in the planarization process of the SOI layer after peeling, the deterioration of the in-plane uniformity of the SOI layer thickness is suppressed, and the in-plane uniformity of the SOI layer thickness is excellent. A bonded SOI wafer can be manufactured. In particular, a bonded SOI wafer having an in-plane film thickness range after planarization of the SOI layer of 1.5 nm or less can be manufactured.

また、前記平坦化処理として、研磨処理、犠牲酸化処理、及び不活性ガス雰囲気による熱処理のうち、少なくともいずれか一種類以上の処理を行うことができる。   As the planarization process, at least one of at least one of a polishing process, a sacrificial oxidation process, and a heat treatment in an inert gas atmosphere can be performed.

不活性ガス、例えばAr雰囲気による熱処理では縦型炉で行うことによりウェーハ周辺部の方が雰囲気ガスの流れが良いためウェーハ中心部と比較して膜厚が薄くなる傾向があり、研磨処理、例えばCMP(ケミカルメカニカルポリッシング)ではウェーハ周辺部のみ薄くなる場合(ダレ)があり、また犠牲酸化処理でも同心円形状の面内分布を持つ場合がある。しかしながら、本発明の貼り合わせSOIウェーハの製造方法であれば、SOI層表面の中央部に自然酸化膜が残存するようにRTA処理を行った後に、平坦化処理としてこれらの処理を行うので、SOI層の膜厚の面内均一性の良好な貼り合わせSOIウェーハを製造することができる。   In the heat treatment using an inert gas, for example, Ar atmosphere, since the atmosphere gas flow is better in the peripheral portion of the wafer by performing in a vertical furnace, the film thickness tends to be thinner than the central portion of the wafer. In CMP (Chemical Mechanical Polishing), only the periphery of the wafer may be thin (sag), and even in the sacrificial oxidation treatment, there may be a concentric in-plane distribution. However, in the method for manufacturing a bonded SOI wafer according to the present invention, since the RTA process is performed so that the natural oxide film remains in the central portion of the SOI layer surface, these processes are performed as a planarization process. A bonded SOI wafer with good in-plane uniformity of layer thickness can be manufactured.

さらに、前記RTA処理は1025〜1075℃の温度範囲で、1〜60秒の熱処理時間で行うことが好ましい。   Further, the RTA treatment is preferably performed in a temperature range of 1025 to 1075 ° C. and a heat treatment time of 1 to 60 seconds.

このような処理条件であればSOI層表面の周辺部の自然酸化膜が除去されやすく、かつ中央部の自然酸化膜は残存して全ての自然酸化膜が除去されることがない。   Under such processing conditions, the natural oxide film in the peripheral portion of the SOI layer surface is easily removed, and the natural oxide film in the central portion remains and the entire natural oxide film is not removed.

以上説明したように、本発明の貼り合わせSOIウェーハの製造方法であれば、剥離後のSOI層の平坦化処理において、SOI層の膜厚の面内均一性の悪化を抑制し、SOI層の膜厚の面内均一性の良好な貼り合わせSOIウェーハを製造することができる。特に、SOI層の平坦化後の面内膜厚レンジが1.5nm以下となる貼り合わせSOIウェーハを製造することができる。また、平坦化処理として、研磨処理、犠牲酸化処理、及び不活性ガス雰囲気による熱処理を行ったとしてもSOI層の膜厚の面内均一性の良好な貼り合わせSOIウェーハを製造することができる。   As described above, according to the method for manufacturing a bonded SOI wafer of the present invention, in the planarization process of the SOI layer after peeling, the deterioration of the in-plane uniformity of the thickness of the SOI layer is suppressed, and the SOI layer A bonded SOI wafer having excellent in-plane uniformity of film thickness can be manufactured. In particular, a bonded SOI wafer having an in-plane film thickness range after planarization of the SOI layer of 1.5 nm or less can be manufactured. In addition, even when polishing treatment, sacrificial oxidation treatment, and heat treatment in an inert gas atmosphere are performed as the planarization treatment, a bonded SOI wafer with excellent in-plane uniformity of the SOI layer thickness can be manufactured.

本発明の貼り合わせSOIウェーハの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the bonding SOI wafer of this invention. 実施例1、比較例3、及び4のSOI層の膜厚分布を示すグラフである。4 is a graph showing the film thickness distribution of SOI layers in Example 1, Comparative Example 3 and 4. 実施例2、比較例7、及び8のSOI層の膜厚分布を示すグラフである。It is a graph which shows the film thickness distribution of the SOI layer of Example 2, Comparative Examples 7 and 8. 実施例3、比較例11、及び12のSOI層の膜厚分布を示すグラフである。It is a graph which shows the film thickness distribution of the SOI layer of Example 3 and Comparative Examples 11 and 12.

以下、本発明を詳細に説明するが、本発明はこれに限定されるものではない。上述のように、剥離後のSOI層の平坦化処理において、SOI層の膜厚の面内均一性の悪化を抑制し、SOI層の膜厚の面内均一性の良好な貼り合わせSOIウェーハを製造できる方法が望まれていた。   Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto. As described above, in the planarization process of the SOI layer after peeling, the deterioration of in-plane uniformity of the SOI layer film thickness is suppressed, and a bonded SOI wafer with excellent in-plane uniformity of the SOI layer film thickness is obtained. A method that can be manufactured has been desired.

本発明者らは、上記問題点について鋭意検討を重ねた結果、平坦化処理の特徴(周辺部が薄くなる特徴)にあわせて、平坦化処理の前に水素ガス含有雰囲気によるRTA処理を適切な条件で加えておくことによって、SOI層の平坦化後の面内膜厚レンジが1.5nm以下の貼り合わせSOIウェーハを得ることができることを見出し、本発明を完成させた。以下、本発明をより詳細に説明する。   As a result of intensive studies on the above problems, the present inventors have appropriately performed an RTA process using a hydrogen gas-containing atmosphere prior to the planarization process in accordance with the characteristics of the planarization process (characteristics that the peripheral portion becomes thinner). By adding under conditions, it was found that a bonded SOI wafer having an in-plane film thickness range after planarization of the SOI layer of 1.5 nm or less could be obtained, and the present invention was completed. Hereinafter, the present invention will be described in more detail.

図1に本発明の貼り合わせSOIウェーハの製造方法を示す。図1に示すように、本発明では(a)シリコン単結晶からなるボンドウェーハ1の表面から水素イオン、希ガスイオンの少なくとも一種類のガスイオンをイオン注入して前記ボンドウェーハ1内部にイオン注入層4を形成し、(b)ボンドウェーハ1のイオン注入された側の表面とベースウェーハ2の表面とを絶縁膜3を介して貼り合わせた後、(c)ボンドウェーハ1の一部を前記イオン注入層4で剥離して、前記ベースウェーハ2上に前記ボンドウェーハ1の薄膜からなるSOI層6を有する貼り合わせSOIウェーハを作製し、その後、(d)剥離後の貼り合わせSOIウェーハに対し、SOI層6の表面の周辺部の自然酸化膜5が除去され、中央部の自然酸化膜5’が残存するように、水素ガスを含む雰囲気でRTA処理を行い、(e)中央部に自然酸化膜5’が残存した貼り合わせSOIウェーハに対し、平坦化後のSOI層6’の面内膜厚レンジが1.5nm以下となるように平坦化処理を行うことで均一な膜厚を有する貼り合わせSOIウェーハを製造することができる。   FIG. 1 shows a method for manufacturing a bonded SOI wafer according to the present invention. As shown in FIG. 1, in the present invention, (a) at least one kind of gas ion of hydrogen ion and rare gas ion is ion-implanted from the surface of a bond wafer 1 made of silicon single crystal, and ion implantation is performed inside the bond wafer 1. After the layer 4 is formed and (b) the ion-implanted surface of the bond wafer 1 and the surface of the base wafer 2 are bonded together via the insulating film 3, (c) a part of the bond wafer 1 is A bonded SOI wafer having a SOI layer 6 made of the thin film of the bond wafer 1 is produced on the base wafer 2 by peeling off with the ion implantation layer 4, and then (d) the bonded SOI wafer after peeling. Then, RTA treatment is performed in an atmosphere containing hydrogen gas so that the natural oxide film 5 in the peripheral portion of the surface of the SOI layer 6 is removed and the natural oxide film 5 ′ in the central portion remains. ) Uniformity by performing planarization treatment on the bonded SOI wafer with the natural oxide film 5 ′ remaining in the center so that the in-plane film thickness range of the planarized SOI layer 6 ′ is 1.5 nm or less. A bonded SOI wafer having a sufficient thickness can be manufactured.

なお、(c)工程から(d)工程へ移る間に自然と、SOI層6の表面に自然酸化膜5が形成される。また、(c)工程のあとにSC−1洗浄及び/又はSC−2洗浄を行ってもよく、これによっても自然酸化膜5を形成することができる。尚、図1では絶縁膜3をボンドウエーハ1に形成する例を示したが特に限定されず、ベースウエーハ2に形成しても、又は両方に形成してもよい。   Note that the natural oxide film 5 is naturally formed on the surface of the SOI layer 6 during the transition from the step (c) to the step (d). Further, after the step (c), SC-1 cleaning and / or SC-2 cleaning may be performed, and the natural oxide film 5 can be formed also by this. Although FIG. 1 shows an example in which the insulating film 3 is formed on the bond wafer 1, there is no particular limitation, and the insulating film 3 may be formed on the base wafer 2 or both.

水素を含むガスで1100℃以上の高温でRTA処理することにより、SOI層6の表面の自然酸化膜5が除去されマイグレーションにより平坦化がなされることが知られている。一方、1100℃よりも低い温度で水素を含むガスでRTA処理すると、熱処理時間に依存してSOI層6の表面の周辺部からほぼ一定の距離まで自然酸化膜5が除去される。これにより、ウェーハの中央部では自然酸化膜5’が除去されずに残存する場合がある。ウェーハ中央部に除去されずに残存する自然酸化膜5’の大きさは、熱処理温度と熱処理時間によって変化する。しかしながら、このように中央部に自然酸化膜が残存する表面状態のままではRTA処理によってウェーハ面内均一で良好な表面状態を得るということから反する。そのため、このような条件でRTA処理を完了してしまうことは一般には行われていなかった。   It is known that the natural oxide film 5 on the surface of the SOI layer 6 is removed and flattened by migration by performing RTA treatment with a gas containing hydrogen at a high temperature of 1100 ° C. or higher. On the other hand, when the RTA treatment is performed with a gas containing hydrogen at a temperature lower than 1100 ° C., the natural oxide film 5 is removed from the peripheral portion of the surface of the SOI layer 6 to a substantially constant distance depending on the heat treatment time. As a result, the natural oxide film 5 ′ may remain without being removed at the center of the wafer. The size of the natural oxide film 5 ′ that remains without being removed in the central portion of the wafer varies depending on the heat treatment temperature and the heat treatment time. However, this is contrary to the fact that the surface state in which the natural oxide film remains in the central portion can obtain a uniform and good surface state in the wafer surface by the RTA process. For this reason, the RTA process is not generally completed under such conditions.

具体的に、イオン注入剥離法によって剥離した直後のSOIウェーハ(SOI表面に自然酸化膜5が形成されている)を水素含有雰囲気下で1000℃、1050℃、1100℃、各30秒でRTA処理した後、それらのウェーハを犠牲酸化処理(酸化と酸化膜除去を行う処理)してSOI層6’の膜厚を測定してみた。その結果、1000℃でRTA処理したSOI層6’の膜厚は全体的に薄く、1100℃でRTA処理したSOI層6’の膜厚は1000℃でRTA処理した場合よりも厚く、1050℃でRTA処理したSOI層6’の膜厚は周辺部では1100℃でRTA処理したウェーハと同様に厚くなり、他の領域(中央部)については1000℃でRTA処理したウェーハと同様に薄くなった。尚、平坦化処理として犠牲酸化処理の代わりに研磨やArアニールを行った場合も同様の傾向があった。   Specifically, an RTA process is performed on an SOI wafer (with a natural oxide film 5 formed on the SOI surface) immediately after peeling by an ion implantation peeling method at 1000 ° C., 1050 ° C., 1100 ° C. for 30 seconds in a hydrogen-containing atmosphere. After that, these wafers were subjected to sacrificial oxidation treatment (treatment for performing oxidation and oxide film removal), and the thickness of the SOI layer 6 ′ was measured. As a result, the thickness of the SOI layer 6 ′ treated with the RTA at 1000 ° C. is generally thin, and the thickness of the SOI layer 6 ′ treated with the RTA at 1100 ° C. is thicker than that when the RTA treatment is performed at 1000 ° C. The film thickness of the RTA-treated SOI layer 6 ′ was thicker at the periphery as in the RTA-treated wafer at 1100 ° C., and the other region (center portion) was as thin as the wafer that was RTA-treated at 1000 ° C. The same tendency was observed when polishing or Ar annealing was performed instead of the sacrificial oxidation treatment as the planarization treatment.

このように、SOI層6’が全体的に薄くなるのは平坦化処理によるSOI層の減厚速度が速く、SOI層6’が厚くなるのは平坦化処理によるSOI層の減厚速度が遅くなることに起因するものである。   As described above, the thickness of the SOI layer 6 'becomes thinner as a whole because the reduction rate of the SOI layer by the planarization process is faster, and the thickness of the SOI layer 6' becomes slower because of the reduction of the thickness of the SOI layer due to the planarization process. It is caused by becoming.

さらに、RTA処理した直後のSOIウェーハを観察すると1000℃でRTA処理した場合では、ウェーハ剥離直後のヘイズと変化無く、全面で自然酸化膜5が残存し、TEM観察を行うとSOI層6’は剥離直後と同様に歪み層(イオン注入ダメージに起因)は残存していた。一方、1100℃でRTA処理した場合では、ウェーハ剥離直後と比較して自然酸化膜5が除去され全面でヘイズが改善し、TEM観察を行うと歪み層の結晶性は回復していた。また、1050℃でRTA処理したウェーハは、周辺部では自然酸化膜5が除去されヘイズが改善され、TEM観察を行うと周辺部では結晶性が回復し、中央部では剥離直後と同様にヘイズは改善されず自然酸化膜5’が残存し、TEM観察を行うと歪が残存していた。自然酸化膜5が除去された領域と結晶性が改善された領域は完全には一致しないが、重なる部分が多い。   Further, when the SOI wafer immediately after the RTA treatment is observed, when the RTA treatment is performed at 1000 ° C., the haze immediately after the wafer peeling is not changed and the natural oxide film 5 remains on the entire surface. The strained layer (due to ion implantation damage) remained as it was immediately after peeling. On the other hand, when the RTA treatment was performed at 1100 ° C., the natural oxide film 5 was removed and the haze was improved over the entire surface as compared with immediately after the wafer was peeled off, and the crystallinity of the strained layer was recovered when TEM observation was performed. Further, the RTA-treated wafer at 1050 ° C. has the natural oxide film 5 removed at the peripheral portion to improve the haze. When TEM observation is performed, the crystallinity is recovered at the peripheral portion, and the haze is the same as immediately after peeling at the central portion. The natural oxide film 5 ′ remained without being improved, and strain was left after TEM observation. The region where the natural oxide film 5 is removed and the region where the crystallinity is improved do not completely coincide, but there are many overlapping portions.

以上のことから、水素ガス含有雰囲気によるRTA処理で、SOI層6の表面の自然酸化膜5の除去が不完全な状態(周辺部で自然酸化膜5が除去され、中央部で自然酸化膜5’が残留した状態、言い換えると、周辺部で結晶性が回復し、中央部で歪み層が残留した状態)になる条件でRTA処理を行い、その後、平坦化処理を行うと結晶性が回復された領域(周辺部)の減厚速度は遅くなり、歪み層が残存する領域(中央部)では減厚速度は速くなることがわかった。   From the above, the RTA treatment in the atmosphere containing hydrogen gas is in an incomplete removal of the natural oxide film 5 on the surface of the SOI layer 6 (the natural oxide film 5 is removed at the peripheral portion and the natural oxide film 5 at the central portion). The crystallinity is recovered when the RTA treatment is performed under the condition that 'is left, in other words, the crystallinity is recovered in the peripheral portion and the strained layer remains in the central portion, and then the planarization is performed. It was found that the thickness reduction rate in the region (peripheral portion) was slow, and the thickness reduction rate was high in the region (center portion) where the strained layer remained.

この現象を利用し、平坦化処理の特徴(周辺部が薄くなる特徴)にあわせて、平坦化処理の前に水素ガス含有雰囲気によるRTA処理を適切な条件で加えておくことによって、SOI層6の平坦化処理において、SOI層6の膜厚の面内均一性の悪化を抑制し、SOI層6’の膜厚の面内均一性の良好な貼り合わせSOIウェーハを製造することができる。   By utilizing this phenomenon, an RTA process using a hydrogen gas-containing atmosphere is added under an appropriate condition before the planarization process in accordance with the characteristics of the planarization process (characteristic that the peripheral portion becomes thinner). In this planarization process, it is possible to suppress the deterioration of the in-plane uniformity of the film thickness of the SOI layer 6 and to manufacture a bonded SOI wafer having a good in-plane uniformity of the film thickness of the SOI layer 6 ′.

このようなRTA処理の条件(温度、熱処理時間)としては、SOI層6の表面の周辺部の自然酸化膜5が除去され、中央部の自然酸化膜5’が残存するようにするものであれば特に制限されない。このようなRTA処理の条件は、平坦化後のSOI層6’の面内膜厚レンジが1.5nm以下となるように、平坦化処理工程におけるSOI層6の除去量の面内分布特性に合わせて実験的に設定することができる。   Such RTA treatment conditions (temperature, heat treatment time) are such that the natural oxide film 5 at the periphery of the surface of the SOI layer 6 is removed and the natural oxide film 5 ′ at the center remains. There is no particular limitation. The conditions for such RTA treatment are in-plane distribution characteristics of the removal amount of the SOI layer 6 in the planarization treatment step so that the in-plane film thickness range of the planarized SOI layer 6 ′ is 1.5 nm or less. It can be set experimentally.

具体的には、1100℃以上の温度では短時間でSOI層6の全面の自然酸化膜5が除去されてしまい、1000℃以下の温度では自然酸化膜5が除去されにくい。そのため、RTA処理の条件としては、1025℃〜1075℃の温度範囲で、1〜60秒の熱処理時間で行うことが好ましい。   Specifically, the natural oxide film 5 on the entire surface of the SOI layer 6 is removed in a short time at a temperature of 1100 ° C. or higher, and the natural oxide film 5 is hardly removed at a temperature of 1000 ° C. or lower. Therefore, it is preferable that the RTA treatment is performed in a temperature range of 1025 ° C. to 1075 ° C. and a heat treatment time of 1 to 60 seconds.

本発明では、中央部に自然酸化膜5’が残存した貼り合わせSOIウェーハに対し、平坦化後のSOI層6’の面内膜厚レンジが1.5nm以下となるように平坦化処理を行う。このような平坦化処理の条件は、所定の条件でRTA処理されたSOIウエーハに対して平坦化処理工程を行った場合のSOI層6の除去量の面内分布特性を考慮しながら、実験的に設定することができる。   In the present invention, a planarization process is performed on the bonded SOI wafer in which the natural oxide film 5 ′ remains in the center so that the in-plane film thickness range of the planarized SOI layer 6 ′ is 1.5 nm or less. . Such planarization processing conditions are experimental, considering the in-plane distribution characteristics of the removal amount of the SOI layer 6 when the planarization processing step is performed on the SOI wafer subjected to the RTA processing under a predetermined condition. Can be set to

また、平坦化処理として、研磨処理、犠牲酸化処理、及び不活性ガス雰囲気による熱処理のうち、少なくともいずれか一種類以上の処理を行うことができる。平坦化処理は最終的に製造される貼り合わせSOIウエーハに併せて複数の処理を組み合わせて行うことができる。   As the planarization treatment, at least one of at least one of a polishing treatment, a sacrificial oxidation treatment, and a heat treatment in an inert gas atmosphere can be performed. The planarization treatment can be performed by combining a plurality of treatments in accordance with the finally manufactured bonded SOI wafer.

研磨処理、犠牲酸化処理、及び不活性ガス雰囲気による熱処理等の平坦化処理はSOI層6の面内均一性を損ねる。しかしながら、本発明のようにSOI層6の表面の中央部に自然酸化膜5’が残存するようにRTA処理を行った後に平坦化処理としてこれらの処理を行えば、平坦化後のSOI層6’の膜厚の面内均一性の良好な貼り合わせSOIウェーハを製造することができる。   Flattening treatment such as polishing treatment, sacrificial oxidation treatment, and heat treatment in an inert gas atmosphere impairs the in-plane uniformity of the SOI layer 6. However, if these processes are performed as a planarization process after the RTA process is performed so that the natural oxide film 5 ′ remains in the center of the surface of the SOI layer 6 as in the present invention, the planarized SOI layer 6 is obtained. A bonded SOI wafer with good in-plane uniformity of film thickness can be manufactured.

以下、本発明の実施例および比較例を挙げてさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although the Example and comparative example of this invention are given and demonstrated further in detail, this invention is not limited to the following Example.

[実施例1、比較例1〜4]
ボンドウェーハとして直径300mm、抵抗率10Ωcm、p型のシリコン単結晶ウェーハを用意し、ボンドウェーハに熱酸化により150nmの酸化膜を形成し、その酸化膜を通して、水素イオンを5.5×1016/cm、40keVの条件にてイオン注入を実施した。これらのウェーハを抵抗率10Ωcm、p型のシリコン単結晶ウェーハのベースウェーハと貼り合わせ、500℃で30分の剥離熱処理を行いSOIウェーハを製造した。
[Example 1, Comparative Examples 1 to 4]
A bond-type wafer having a diameter of 300 mm, a resistivity of 10 Ωcm, and a p-type silicon single crystal wafer is prepared. An oxide film of 150 nm is formed on the bond wafer by thermal oxidation, and hydrogen ions are transferred through the oxide film to 5.5 × 10 16 / Ion implantation was performed under conditions of cm 3 and 40 keV. These wafers were bonded to a base wafer of a p-type silicon single crystal wafer having a resistivity of 10 Ωcm and subjected to a peeling heat treatment at 500 ° C. for 30 minutes to produce an SOI wafer.

それらのSOIウェーハを洗浄し(SC−1洗浄及びSC−2洗浄。この際、SOI表面に厚さ1.6nmの自然酸化膜が形成される)、50%の濃度の水素ガス雰囲気中(Arガス50%)で1050℃で5、10、20秒のRTA処理を行った。SOIウェーハのSOI層表面の周辺部の自然酸化膜は除去され、中央部の自然酸化膜は残存していた。RTA処理装置はMattson社製 Mattson 3000を用いた。リファレンスとして全面自然酸化膜が除去されず歪み層が残存するSOIウェーハ(1000℃で30秒のRTA処理)と、全面自然酸化膜が除去され歪み層が結晶性を回復させたSOIウェーハ(1100℃で30秒のRTA処理)を用意した。   These SOI wafers are cleaned (SC-1 cleaning and SC-2 cleaning. At this time, a 1.6 nm-thick natural oxide film is formed on the SOI surface), and in a hydrogen gas atmosphere with a concentration of 50% (Ar RTA treatment was performed at 1050 ° C. for 5, 10, and 20 seconds at 50% gas. The natural oxide film in the peripheral part of the SOI layer surface of the SOI wafer was removed, and the natural oxide film in the central part remained. Mattson 3000 manufactured by Mattson was used as the RTA treatment apparatus. An SOI wafer (RTA treatment at 1000 ° C. for 30 seconds) in which the entire surface native oxide film is not removed as a reference, and an SOI wafer (1100 ° C.) in which the entire surface native oxide film is removed and the strain layer recovers crystallinity. 30 seconds of RTA processing).

その後、平坦化処理としてCMP(タッチポリッシュ)を行った。CMPはウェーハ周辺部の研磨速度が大きくなる(周辺ダレが形成される)ように研磨条件を設定した。取り代は100nmに設定した。   Thereafter, CMP (touch polishing) was performed as a planarization process. In CMP, polishing conditions were set so that the polishing rate at the peripheral portion of the wafer was increased (peripheral sagging was formed). The machining allowance was set to 100 nm.

(比較例1)
1000℃で30秒のRTA処理したSOIウェーハをCMPすると平均の取り代は120nmとなりウェーハ周辺部は中心部と比較しては約5nm薄くなる傾向があった。
(Comparative Example 1)
When an SOI wafer subjected to RTA treatment at 1000 ° C. for 30 seconds was subjected to CMP, the average machining allowance was 120 nm, and the peripheral portion of the wafer tended to be about 5 nm thinner than the central portion.

(比較例2)
1100℃で30秒のRTA処理したSOIウェーハをCMPすると平均取り代は98nmとなりウェーハ周辺部はウェーハ中心部と比較すると4nm薄くなる傾向があった。
(Comparative Example 2)
When an SOI wafer subjected to RTA treatment at 1100 ° C. for 30 seconds was subjected to CMP, the average machining allowance was 98 nm, and the wafer peripheral portion tended to be 4 nm thinner than the wafer central portion.

(比較例3)
1050℃で5秒のRTA処理したSOIウェーハをCMPすると平均取り代は112nmとなった。ウェーハの膜厚分布を見ると外周部10mm近傍に平均より4nm程度薄いリング状の領域が存在した。
(Comparative Example 3)
When an SOI wafer subjected to RTA treatment at 1050 ° C. for 5 seconds was subjected to CMP, the average machining allowance was 112 nm. Looking at the film thickness distribution of the wafer, a ring-shaped region thinner than the average by about 4 nm was present in the vicinity of the outer peripheral portion of 10 mm.

(実施例1)
1050℃で10秒のRTA処理したSOIウェーハをCMPすると平均取り代は110nmとなった。ウェーハの膜厚分布を見ると面内で1.5nm以内であり、特別薄い領域も厚い領域も無く、SOI層の膜厚均一性は良好であった。
Example 1
When an SOI wafer subjected to RTA treatment at 1050 ° C. for 10 seconds was subjected to CMP, the average machining allowance was 110 nm. Looking at the film thickness distribution of the wafer, it was within 1.5 nm in the plane, and there was no particularly thin or thick area, and the film thickness uniformity of the SOI layer was good.

(比較例4)
1050℃で20秒のRTA処理したSOIウェーハをCMPすると平均取り代は105nmとなった。ウェーハの膜厚分布を見ると外周部30mm近傍に平均より4nm程度厚いリング状の領域が存在した。
(Comparative Example 4)
When an SOI wafer subjected to RTA treatment at 1050 ° C. for 20 seconds was subjected to CMP, the average machining allowance was 105 nm. Looking at the film thickness distribution of the wafer, a ring-shaped region thicker than the average by about 4 nm was present in the vicinity of the outer peripheral portion of 30 mm.

実施例1のように、SOI層表面の周辺部の自然酸化膜が除去され、中央部の自然酸化膜が残存するようにRTA処理条件を適切に選ぶことにより、CMPを行っても膜厚均一性は小さくなることが分かった。また、CMPの特性に合わせてRTA条件を選ぶことが可能となる。図2は、実施例1、比較例3〜4のSOI膜厚分布を示したもので、ウェーハ中心部のSOI層の膜厚を0とした。このように、RTAの条件、平坦化処理の条件を組み合わせることで、膜厚レンジを1.5nm以下にできる。   As in Example 1, the native oxide film at the periphery of the SOI layer surface is removed, and the RTA processing conditions are appropriately selected so that the natural oxide film at the center remains, so that the film thickness is uniform even when CMP is performed. It was found that the sex became smaller. In addition, it is possible to select RTA conditions according to the characteristics of CMP. FIG. 2 shows the SOI film thickness distribution of Example 1 and Comparative Examples 3 to 4, and the film thickness of the SOI layer at the center of the wafer was set to zero. As described above, the film thickness range can be reduced to 1.5 nm or less by combining the RTA condition and the planarization condition.

[実施例2、比較例5〜8]
ボンドウェーハとして直径300mm、抵抗率10Ωcm、p型のシリコン単結晶ウェーハを用意し、ボンドウェーハに熱酸化により150nmの酸化膜を形成し、その酸化膜を通して、水素イオンを5.5×1016/cm、40keVの条件にてイオン注入を実施した。これらのウェーハを抵抗率10Ωcm、p型のシリコン単結晶ウェーハのベースウェーハと貼り合わせ、500℃で30分の剥離熱処理を行いSOIウェーハを製造した。
[Example 2, Comparative Examples 5 to 8]
A bond-type wafer having a diameter of 300 mm, a resistivity of 10 Ωcm, and a p-type silicon single crystal wafer is prepared. An oxide film of 150 nm is formed on the bond wafer by thermal oxidation, and hydrogen ions are transferred through the oxide film to 5.5 × 10 16 / Ion implantation was performed under conditions of cm 3 and 40 keV. These wafers were bonded to a base wafer of a p-type silicon single crystal wafer having a resistivity of 10 Ωcm and subjected to a peeling heat treatment at 500 ° C. for 30 minutes to produce an SOI wafer.

それらのSOIウェーハを洗浄し(SC−1洗浄及びSC−2洗浄。この際、SOI表面に厚さ1.6nmの自然酸化膜が形成される)、50%の濃度の水素ガス雰囲気中(Arガス50%)で1050℃で5、10、20秒のRTA処理を行った。SOIウェーハのSOI層表面の周辺部の自然酸化膜は除去され、中央部の自然酸化膜は残存していた。RTA処理装置はMattson社製 Mattson 3000を用いた。リファレンスとして自然酸化膜が除去されず歪み層が残存するSOIウェーハ(1000℃で30秒のRTA処理)と、自然酸化膜が除去され歪み層が結晶性を回復させたSOIウェーハ(1100℃で30秒のRTA処理)を用意した。   These SOI wafers are cleaned (SC-1 cleaning and SC-2 cleaning. At this time, a 1.6 nm-thick natural oxide film is formed on the SOI surface), and in a hydrogen gas atmosphere with a concentration of 50% (Ar RTA treatment was performed at 1050 ° C. for 5, 10, and 20 seconds at 50% gas. The natural oxide film in the peripheral part of the SOI layer surface of the SOI wafer was removed, and the natural oxide film in the central part remained. Mattson 3000 manufactured by Mattson was used as the RTA treatment apparatus. An SOI wafer (RTA treatment at 1000 ° C. for 30 seconds) where the natural oxide film is not removed as a reference and an SOI wafer (30 ° C. at 1100 ° C.) where the natural oxide film is removed and the strained layer recovers crystallinity. Second RTA processing).

その後、平坦化処理として、犠牲酸化処理を行った。酸化温度は900℃、酸化膜厚は200nmとした。RTA処理が1000℃で30秒と1100℃で30秒のリファレンスウェーハの酸化膜をHFで除去した後のSOI層の膜厚分布は特に特徴のある分布ではなく膜厚レンジは1.5nm程度であった。   Thereafter, sacrificial oxidation treatment was performed as a planarization treatment. The oxidation temperature was 900 ° C. and the oxide film thickness was 200 nm. The thickness distribution of the SOI layer after removing the oxide film of the reference wafer with RHF treatment at 1000 ° C. for 30 seconds and 1100 ° C. for 30 seconds with HF is not a particularly characteristic distribution, and the film thickness range is about 1.5 nm. there were.

一方、1050℃で5、10、20秒のRTA処理を行ったSOIウェーハの犠牲酸化処理後のSOI層の膜厚分布はウェーハ中央部に比べて周辺部が厚く、膜厚レンジは2nmを超えていた。   On the other hand, the thickness distribution of the SOI layer after sacrificial oxidation of an SOI wafer subjected to RTA treatment at 1050 ° C. for 5, 10 and 20 seconds is thicker at the periphery than the wafer center, and the film thickness range exceeds 2 nm. It was.

その後、さらに平坦化処理としてCMPを行った。CMPはウェーハ周辺部の研磨速度が大きくなる(周辺ダレが形成される)ように研磨条件を設定した。取り代は100nmに設定した。   Thereafter, CMP was further performed as a planarization process. In CMP, polishing conditions were set so that the polishing rate at the peripheral portion of the wafer was increased (peripheral sagging was formed). The machining allowance was set to 100 nm.

(比較例5)
1000℃で30秒の犠牲酸化処理した後のSOIウェーハをさらにCMPすると平均の取り代は120nmとなりウェーハ周辺部は中心部と比較しては約5nm薄くなる傾向があった。
(Comparative Example 5)
When the SOI wafer after the sacrificial oxidation treatment at 1000 ° C. for 30 seconds was further CMP, the average machining allowance was 120 nm, and the peripheral portion of the wafer tended to be about 5 nm thinner than the central portion.

(比較例6)
1100℃で30秒の犠牲酸化処理した後のSOIウェーハをさらにCMPすると平均取り代は98nmとなり、ウェーハ周辺部はウェーハ中心部と比較すると4.5nm薄くなる傾向があった。
(Comparative Example 6)
When the SOI wafer after the sacrificial oxidation treatment at 1100 ° C. for 30 seconds was further subjected to CMP, the average machining allowance was 98 nm, and the peripheral portion of the wafer tended to be 4.5 nm thinner than the central portion of the wafer.

(比較例7)
1050℃で5秒の犠牲酸化処理した後のSOIウェーハをさらにCMPすると平均取り代は114nmとなった。ウェーハの膜厚分布を見ると外周部10mm近傍に平均より3.5nm程度薄いリング状の領域が存在した。
(Comparative Example 7)
When the SOI wafer after the sacrificial oxidation treatment at 1050 ° C. for 5 seconds was further subjected to CMP, the average machining allowance was 114 nm. Looking at the film thickness distribution of the wafer, a ring-shaped region thinner than the average by about 3.5 nm was present in the vicinity of the outer peripheral portion of 10 mm.

(実施例2)
1050℃で10秒の犠牲酸化処理した後のSOIウェーハをさらにCMPすると平均取り代は111nmとなった。ウェーハの膜厚分布を見ると面内で1.5nm以内であり、特別薄い領域も厚い領域も無く、SOI層の膜厚均一性は良好であった。
(Example 2)
When the SOI wafer after the sacrificial oxidation treatment at 1050 ° C. for 10 seconds was further subjected to CMP, the average machining allowance was 111 nm. Looking at the film thickness distribution of the wafer, it was within 1.5 nm in the plane, and there was no particularly thin or thick area, and the film thickness uniformity of the SOI layer was good.

(比較例8)
1050℃で20秒の犠牲酸化処理した後のSOIウェーハをさらにCMPすると平均取り代は104nmとなった。ウェーハの膜厚分布を見ると外周部30mm近傍に平均より4.2nm程度厚いリング状の領域が存在した。
(Comparative Example 8)
When the SOI wafer after the sacrificial oxidation treatment at 1050 ° C. for 20 seconds was further subjected to CMP, the average machining allowance was 104 nm. Looking at the film thickness distribution of the wafer, a ring-shaped region thicker than the average by about 4.2 nm was present in the vicinity of the outer peripheral portion of 30 mm.

以上より、SOI層表面の周辺部の自然酸化膜が除去され、中央部の自然酸化膜が残存するようにRTA処理条件を選ぶことにより犠牲酸化処理とCMPを行っても膜厚均一性は小さくなることが分かった。また、犠牲酸化処理とCMPの特性の組み合わせでもRTA条件を適切に選ぶことにより均一性の良いSOIウェーハの製造が可能となることも分かった。図3は、実施例2、比較例7〜8のSOI膜厚分布を示したもので、ウェーハ中心部のSOI層の膜厚を0とした。   As described above, even if sacrificial oxidation treatment and CMP are performed by selecting the RTA treatment conditions so that the natural oxide film in the peripheral portion of the SOI layer surface is removed and the natural oxide film in the central portion remains, the film thickness uniformity is small. I found out that It has also been found that an SOI wafer with good uniformity can be manufactured by appropriately selecting the RTA conditions even in a combination of sacrificial oxidation treatment and CMP characteristics. FIG. 3 shows the SOI film thickness distribution of Example 2 and Comparative Examples 7 to 8. The film thickness of the SOI layer at the center of the wafer was set to zero.

[実施例3、比較例9〜12]
ボンドウェーハとして直径300mm、抵抗率10Ωcm、p型のシリコン単結晶ウェーハを用意し、ボンドウェーハに熱酸化により150nmの酸化膜を形成し、その酸化膜を通して、水素イオンを5.5×1016/cm、40keVの条件にてイオン注入を実施した。これらのウェーハを抵抗率10Ωcm、p型のシリコン単結晶ウェーハのベースウェーハと貼り合わせ、500℃で30分の剥離熱処理を行いSOIウェーハを製造した。
[Example 3, Comparative Examples 9-12]
A bond-type wafer having a diameter of 300 mm, a resistivity of 10 Ωcm, and a p-type silicon single crystal wafer is prepared. An oxide film of 150 nm is formed on the bond wafer by thermal oxidation, and hydrogen ions are transferred through the oxide film to 5.5 × 10 16 / Ion implantation was performed under conditions of cm 3 and 40 keV. These wafers were bonded to a base wafer of a p-type silicon single crystal wafer having a resistivity of 10 Ωcm and subjected to a peeling heat treatment at 500 ° C. for 30 minutes to produce an SOI wafer.

それらのSOIウェーハを洗浄し(SC−1洗浄及びSC−2洗浄。この際、SOI表面に厚さ1.6nmの自然酸化膜が形成される)、50%の濃度の水素ガス雰囲気中(Arガス50%)で1050℃で5、10、20秒のRTA処理を行った。SOIウェーハのSOI層表面の周辺部の自然酸化膜は除去され、中央部の自然酸化膜は残存していた。RTA処理装置はMattson社製 Mattson 3000を用いた。リファレンスとして自然酸化膜が除去されず歪み層が残存するSOIウェーハ(1000℃で30秒のRTA処理)と、自然酸化膜が除去され歪み層が結晶性を回復させたSOIウェーハ(1100℃で30秒のRTA処理)を用意した。   These SOI wafers are cleaned (SC-1 cleaning and SC-2 cleaning. At this time, a 1.6 nm-thick natural oxide film is formed on the SOI surface), and in a hydrogen gas atmosphere with a concentration of 50% (Ar RTA treatment was performed at 1050 ° C. for 5, 10, and 20 seconds at 50% gas. The natural oxide film in the peripheral part of the SOI layer surface of the SOI wafer was removed, and the natural oxide film in the central part remained. Mattson 3000 manufactured by Mattson was used as the RTA treatment apparatus. An SOI wafer (RTA treatment at 1000 ° C. for 30 seconds) where the natural oxide film is not removed as a reference and an SOI wafer (30 ° C. at 1100 ° C.) where the natural oxide film is removed and the strained layer recovers crystallinity. Second RTA processing).

その後、平坦化処理として、犠牲酸化処理を行った。酸化温度は900℃、酸化膜厚は200nmとした。RTA処理が1000℃で30秒と1100℃で30秒のリファレンスウェーハの酸化膜をHFで除去した後のSOI層の膜厚分布は特に特徴のある分布ではなく膜厚レンジは1.5nm程度であった。   Thereafter, sacrificial oxidation treatment was performed as a planarization treatment. The oxidation temperature was 900 ° C. and the oxide film thickness was 200 nm. The thickness distribution of the SOI layer after removing the oxide film of the reference wafer with RHF treatment at 1000 ° C. for 30 seconds and 1100 ° C. for 30 seconds with HF is not a particularly characteristic distribution, and the film thickness range is about 1.5 nm. there were.

一方、1050℃で5、10、20秒のRTA処理を行ったSOIウェーハの犠牲酸化処理後のSOI層の膜厚分布はウェーハ中央部に比べて周辺部が厚く、膜厚レンジは2nmを超えていた。   On the other hand, the thickness distribution of the SOI layer after sacrificial oxidation of an SOI wafer subjected to RTA treatment at 1050 ° C. for 5, 10 and 20 seconds is thicker at the periphery than the wafer center, and the film thickness range exceeds 2 nm. It was.

さらに、平坦化処理として、それらのSOIウェーハに対して1200℃、4時間のArアニール処理(Ar100%雰囲気)を行った。   Further, as a planarization treatment, Ar annealing treatment (Ar 100% atmosphere) was performed on these SOI wafers at 1200 ° C. for 4 hours.

Arアニールは高温でも短時間処理であれば熱処理後のSOI層面内膜厚分布の悪化は大きくはないが、長時間処理の場合、膜厚分布が大きくなり問題となる。   If annealing is performed at a high temperature for a short time, the film thickness distribution in the SOI layer after heat treatment will not be greatly deteriorated. However, if the annealing is performed for a long time, the film thickness distribution becomes large and becomes a problem.

(比較例9)
1000℃で30秒の犠牲酸化処理した後のSOIウェーハをさらにArアニールするとSOI層の膜厚は周辺部が中心部と比べ3nm薄くなる傾向があった。
(Comparative Example 9)
When the SOI wafer after the sacrificial oxidation treatment at 1000 ° C. for 30 seconds was further subjected to Ar annealing, the thickness of the SOI layer tended to be 3 nm thinner at the peripheral portion than at the central portion.

(比較例10)
1100℃で30秒の犠牲酸化処理した後のSOIウェーハをさらにArアニールするとSOI層の膜厚は周辺部が中心部と比べ3nm薄くなる傾向があった。
(Comparative Example 10)
When the SOI wafer after the sacrificial oxidation treatment at 1100 ° C. for 30 seconds was further subjected to Ar annealing, the thickness of the SOI layer tended to be 3 nm thinner at the peripheral portion than at the central portion.

(実施例3)
1050℃で5秒の犠牲酸化処理した後のSOIウェーハをさらにArアニールしたSOIウェーハでは面内均一性が1nm以下になり、リング状等の特別なパターンは見られず、SOI層の膜厚均一性は良好であった。
(比較例11)
(Example 3)
An SOI wafer obtained by further Ar-annealing an SOI wafer after sacrificial oxidation treatment at 1050 ° C. for 5 seconds has an in-plane uniformity of 1 nm or less, no special pattern such as a ring shape is seen, and the thickness of the SOI layer is uniform. The property was good.
(Comparative Example 11)

1050℃で10秒の犠牲酸化処理した後のSOIウェーハをさらにArアニールしたSOIウェーハの膜厚分布を見ると外周25mm近傍に平均より3nm程度厚いリング状の領域が存在した。   Looking at the film thickness distribution of the SOI wafer obtained by further Ar-annealing the SOI wafer after the sacrificial oxidation treatment at 1050 ° C. for 10 seconds, a ring-shaped region thicker than the average by about 3 nm was present in the vicinity of the outer periphery of 25 mm.

(比較例12)
1050℃で20秒の犠牲酸化処理した後のSOIウェーハをさらにArアニールしたSOIウェーハの膜厚分布を見ると外周35mm近傍に平均より3.5nm程度厚いリング状の領域が存在した。
(Comparative Example 12)
When the film thickness distribution of the SOI wafer obtained by further Ar-annealing the SOI wafer after the sacrificial oxidation treatment at 1050 ° C. for 20 seconds was seen, a ring-shaped region thicker than the average by about 3.5 nm was present in the vicinity of the outer periphery of 35 mm.

以上より、SOI層表面の周辺部の自然酸化膜が除去され、中央部の自然酸化膜が残存するようにRTA処理条件を選ぶことにより犠牲酸化処理とArアニールを行っても膜厚均一性は小さくなることが分かった。また、犠牲酸化処理とArアニールの特性の組み合わせでもRTA条件を適切に選ぶことにより均一性の良いSOIウェーハの製造が可能となることも分かった。図4は、実施例3、比較例11〜12のSOI膜厚分布を示したもので、ウェーハ中心部のSOI層の膜厚を0とした。   As described above, even if sacrificial oxidation treatment and Ar annealing are performed by selecting the RTA treatment conditions so that the natural oxide film in the peripheral portion of the SOI layer surface is removed and the natural oxide film in the central portion remains, the film thickness uniformity is It turned out to be smaller. It was also found that an SOI wafer with good uniformity can be manufactured by appropriately selecting the RTA conditions even in combination of the characteristics of sacrificial oxidation treatment and Ar annealing. FIG. 4 shows the SOI film thickness distribution of Example 3 and Comparative Examples 11 to 12, and the film thickness of the SOI layer at the center of the wafer was set to zero.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…ボンドウェーハ、 2…ベースウェーハ、 3…絶縁膜、 4…イオン注入層、 5…自然酸化膜、 5’…中央部の自然酸化膜、 6…SOI層、 6’…平坦化後のSOI層

DESCRIPTION OF SYMBOLS 1 ... Bond wafer, 2 ... Base wafer, 3 ... Insulating film, 4 ... Ion implantation layer, 5 ... Natural oxide film, 5 '... Natural oxide film of center part, 6 ... SOI layer, 6' ... SOI after planarization layer

Claims (3)

シリコン単結晶からなるボンドウェーハの表面から水素イオン、希ガスイオンの少なくとも一種類のガスイオンをイオン注入して前記ボンドウェーハ内部にイオン注入層を形成し、前記ボンドウェーハのイオン注入された側の表面とベースウェーハの表面とを絶縁膜を介して貼り合わせた後、前記ボンドウェーハの一部を前記イオン注入層で剥離して、前記ベースウェーハ上に前記ボンドウェーハの薄膜からなるSOI層を有する貼り合わせSOIウェーハを作製し、その後、前記剥離面を平坦化する平坦化処理を行う貼り合わせSOIウェーハの製造方法であって、
前記剥離後の貼り合わせSOIウェーハに対し、前記SOI層表面の周辺部の自然酸化膜が除去され、中央部の自然酸化膜が残存するように、水素ガスを含む雰囲気でRTA処理を行い、前記中央部に自然酸化膜が残存した貼り合わせSOIウェーハに対し、前記SOI層の面内膜厚レンジが1.5nm以下となるように前記平坦化処理を行うことを特徴とする貼り合わせSOIウェーハの製造方法。
At least one kind of gas ion of hydrogen ion and rare gas ion is ion-implanted from the surface of the bond wafer made of silicon single crystal to form an ion-implanted layer inside the bond wafer, and on the ion-implanted side of the bond wafer. After bonding the surface and the surface of the base wafer through an insulating film, a part of the bond wafer is peeled off by the ion implantation layer, and an SOI layer made of the bond wafer thin film is formed on the base wafer. A method for producing a bonded SOI wafer, in which a bonded SOI wafer is manufactured, and then a flattening process is performed to flatten the release surface.
The bonded SOI wafer after peeling is subjected to an RTA process in an atmosphere containing hydrogen gas so that the natural oxide film at the periphery of the SOI layer surface is removed and the natural oxide film at the center remains. A bonded SOI wafer comprising: a bonded SOI wafer having a natural oxide film remaining in a central portion; wherein the planarization process is performed so that an in-plane film thickness range of the SOI layer is 1.5 nm or less. Production method.
前記平坦化処理として、研磨処理、犠牲酸化処理、及び不活性ガス雰囲気による熱処理のうち、少なくともいずれか一種類以上の処理を行うことを特徴とする請求項1に記載の貼り合わせSOIウェーハの製造方法。   2. The bonded SOI wafer production according to claim 1, wherein at least one of a polishing process, a sacrificial oxidation process, and a heat treatment in an inert gas atmosphere is performed as the planarization process. Method. 前記RTA処理は1025〜1075℃の温度範囲で、1〜60秒の熱処理時間で行うことを特徴とする請求項1又は請求項2に記載の貼り合わせSOIウェーハの製造方法。

3. The method for manufacturing a bonded SOI wafer according to claim 1, wherein the RTA treatment is performed in a temperature range of 1025 to 1075 ° C. for a heat treatment time of 1 to 60 seconds.

JP2011221872A 2011-10-06 2011-10-06 Manufacturing method of bonded SOI wafer Active JP5704039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221872A JP5704039B2 (en) 2011-10-06 2011-10-06 Manufacturing method of bonded SOI wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221872A JP5704039B2 (en) 2011-10-06 2011-10-06 Manufacturing method of bonded SOI wafer

Publications (2)

Publication Number Publication Date
JP2013084663A true JP2013084663A (en) 2013-05-09
JP5704039B2 JP5704039B2 (en) 2015-04-22

Family

ID=48529594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221872A Active JP5704039B2 (en) 2011-10-06 2011-10-06 Manufacturing method of bonded SOI wafer

Country Status (1)

Country Link
JP (1) JP5704039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056386A1 (en) * 2013-10-17 2015-04-23 信越半導体株式会社 Bonded wafer manufacturing method
WO2016203677A1 (en) * 2015-06-15 2016-12-22 信越半導体株式会社 Method of manufacturing soi wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin film of semiconductor material
JPH11307472A (en) * 1998-04-23 1999-11-05 Shin Etsu Handotai Co Ltd Soi wafer and manufacture soi by hydrogen ion releasing method
JP2000124092A (en) * 1998-10-16 2000-04-28 Shin Etsu Handotai Co Ltd Manufacture of soi wafer by hydrogen-ion implantation stripping method and soi wafer manufactured thereby
JP2003509836A (en) * 1999-05-25 2003-03-11 ウィリアムス、リチャード・ケイ Trench semiconductor device with gate oxide layer having multiple thicknesses and method of manufacturing the same
JP2009032972A (en) * 2007-07-27 2009-02-12 Shin Etsu Handotai Co Ltd Method of manufacturing bonded wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin film of semiconductor material
JPH11307472A (en) * 1998-04-23 1999-11-05 Shin Etsu Handotai Co Ltd Soi wafer and manufacture soi by hydrogen ion releasing method
JP2000124092A (en) * 1998-10-16 2000-04-28 Shin Etsu Handotai Co Ltd Manufacture of soi wafer by hydrogen-ion implantation stripping method and soi wafer manufactured thereby
JP2003509836A (en) * 1999-05-25 2003-03-11 ウィリアムス、リチャード・ケイ Trench semiconductor device with gate oxide layer having multiple thicknesses and method of manufacturing the same
JP2009032972A (en) * 2007-07-27 2009-02-12 Shin Etsu Handotai Co Ltd Method of manufacturing bonded wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056386A1 (en) * 2013-10-17 2015-04-23 信越半導体株式会社 Bonded wafer manufacturing method
JP2015079868A (en) * 2013-10-17 2015-04-23 信越半導体株式会社 Bonded wafer manufacturing method
CN105531821A (en) * 2013-10-17 2016-04-27 信越半导体株式会社 Bonded wafer manufacturing method
US9865497B2 (en) 2013-10-17 2018-01-09 Shin-Etsu Handotai Co., Ltd. Method for manufacturing bonded wafer
WO2016203677A1 (en) * 2015-06-15 2016-12-22 信越半導体株式会社 Method of manufacturing soi wafer
CN107615445A (en) * 2015-06-15 2018-01-19 信越半导体株式会社 The manufacture method of silicon-on-insulator wafer
US10204824B2 (en) 2015-06-15 2019-02-12 Shin-Etsu Handotai Co., Ltd. Method for producing SOI wafer

Also Published As

Publication number Publication date
JP5704039B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP4828230B2 (en) Manufacturing method of SOI wafer
WO2013102968A1 (en) Method for manufacturing bonded silicon-on-insulator (soi) wafer
JP6107709B2 (en) Manufacturing method of bonded SOI wafer
KR101229760B1 (en) SOI Wafer Manufacturing Method and SOI Wafer Manufactured by Same
EP3104395B1 (en) Method for manufacturing laminated wafer
KR101066315B1 (en) Method of producing bonded wafer
TW200822199A (en) Method for producing bonded wafer
JP2007059704A (en) Method for manufacturing laminated board and laminated board
JPWO2005024925A1 (en) Manufacturing method of SOI wafer
EP3309820B1 (en) Method of manufacturing soi wafer
JP2009253237A (en) Bonded wafer manufacturing method
JP2008016534A (en) Manufacturing method of laminated wafer
JP2014120587A (en) Soi wafer manufacturing method
JP5704039B2 (en) Manufacturing method of bonded SOI wafer
TWI716627B (en) Method for manufacturing bonded SOI wafer
JP2010098167A (en) Method of manufacturing laminated wafer
WO2016059748A1 (en) Method for manufacturing bonded wafer
JP6500845B2 (en) Method of manufacturing bonded wafer
JP2008072049A (en) Method of manufacturing laminated wafer
JP2013055184A (en) Manufacturing method of laminated wafer
JP2006013179A (en) Method for manufacturing soi wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5704039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250