JP2013051744A - Wireless power supply system - Google Patents

Wireless power supply system Download PDF

Info

Publication number
JP2013051744A
JP2013051744A JP2011186730A JP2011186730A JP2013051744A JP 2013051744 A JP2013051744 A JP 2013051744A JP 2011186730 A JP2011186730 A JP 2011186730A JP 2011186730 A JP2011186730 A JP 2011186730A JP 2013051744 A JP2013051744 A JP 2013051744A
Authority
JP
Japan
Prior art keywords
vehicle
charging
coil
primary coil
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011186730A
Other languages
Japanese (ja)
Other versions
JP5691939B2 (en
Inventor
Hirofumi Kohama
浩文 小濱
Shinya Furukawa
信也 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011186730A priority Critical patent/JP5691939B2/en
Publication of JP2013051744A publication Critical patent/JP2013051744A/en
Application granted granted Critical
Publication of JP5691939B2 publication Critical patent/JP5691939B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power supply system which efficiently supplies electric energy for charging in a non contact manner.SOLUTION: A control coil 3 and a secondary coil for charging 4 are provided at a vehicle. Multiple primary coils are provided on a road surface of a charging area. When the vehicle is driven at the charging area, the control coil 3 and the secondary coil for the charging 4 of the vehicle 2 are positioned so as to overlap with the primary coils on the road surface. Battery authorization, charging information, and charging instructions are transmitted and received by communication means 7, 8, which enable road-vehicle communication conducted by electric waves through the control coil 3 and the primary coils. Then, a battery 6 of the vehicle 2 is charged through resonance magnetic coupling between the secondary coil for the charing 4 and the primary coils according to the charging information.

Description

本発明は、電気自動車に対しワイヤレスで効率よく給電を行うワイヤレス給電システムに関する。   The present invention relates to a wireless power supply system that efficiently and efficiently supplies power to an electric vehicle.

近年、電池に蓄えた電気エネルギーを利用しモータ駆動により走行する電気自動車の普及する兆しが目に見えて顕著になってきている。この電気自動車では充電可能なバッテリに電気エネルギーを蓄え、この電気エネルギーを利用し電動モータを駆動源として走行する。このような電気自動車においては、バッテリとしてリチウムイオン電池などの二次電池が用いられる。課題としては、内燃機関車と比べて、航続距離が短いこと、充電時間が長いこと、二次電池が高価であることが挙げられる。
そして、充電を行う形態としても、車両を停止した状態にして、充電器側の充電プラグを車両の充電口へ接続して行うのが一般的である。しかし、静止充電中は車両を運転できない。そこで、この課題(航続距離が短いこと、充電時間が長いこと)を解決するために、電動車両に搭載した二次電池を走行中に給電するワイヤレス給電システムが提案されている。このようなワイヤレス給電システムとしては、移動体が走行する降坂路近傍に磁界発生手段を設けると共に、前記移動体に誘導コイルを搭載し、前記移動体の前記降坂路走行時に前記磁界発生手段および前記誘導コイルによる電磁誘導によって前記移動体に電気エネルギーを供給するものがある(特許文献1参照)。
In recent years, signs of widespread use of electric vehicles that run by motor drive using electric energy stored in batteries have become visibly noticeable. In this electric vehicle, electric energy is stored in a rechargeable battery, and the electric motor is driven using an electric motor as a drive source. In such an electric vehicle, a secondary battery such as a lithium ion battery is used as a battery. Problems include short cruising distance, long charging time, and secondary batteries being expensive compared to internal combustion locomotives.
And also as a form which charges, it is common to make it the state which stopped the vehicle and to connect the charge plug by the side of a charger to the charge port of a vehicle. However, the vehicle cannot be driven during stationary charging. Therefore, in order to solve this problem (short cruising distance and long charging time), a wireless power feeding system that feeds power while driving a secondary battery mounted on an electric vehicle has been proposed. As such a wireless power feeding system, magnetic field generating means is provided in the vicinity of a downhill road on which the moving body travels, and an induction coil is mounted on the moving body, and the magnetic field generating means and the There is one that supplies electric energy to the moving body by electromagnetic induction using an induction coil (see Patent Document 1).

特開2001−177917号公報Japanese Patent Laid-Open No. 2001-177917

したがって、従来のワイヤレス給電システムでは、移動体が走行する降坂路近傍に設けられた磁界発生手段と、移動体に設けられた誘導コイルとの距離および位置関係を高い精度で制御しなければ効率のよいエネルギー供給が困難になるという課題があった。   Therefore, in the conventional wireless power feeding system, if the distance and the positional relationship between the magnetic field generating means provided near the downhill road where the moving body travels and the induction coil provided on the moving body are not controlled with high accuracy, it is efficient. There was a problem that a good energy supply would be difficult.

本発明は、このような事情に鑑みてなされたものであり、充電のための電気エネルギーを非接触で効率よく供給できるワイヤレス給電システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a wireless power feeding system that can efficiently supply electric energy for charging in a non-contact manner.

請求項1に記載の発明は、路面に設けられた一次コイルと、電力供給用高周波電源から前記一次コイルへ充電用高周波電流を給電する路面側高周波電流給電手段と、前記一次コイルと磁気結合し得るように車両に設けられている車両側コイルと、前記一次コイルと前記車両側コイルとの共鳴磁気結合を介して、前記充電用高周波電流をもとに前記車両側コイルに誘起する起電力により前記車両が搭載する電池を充電する充電手段と、前記電力供給用高周波電源による前記電池の充電のための制御情報を、前記一次コイルと前記車両側コイルとを介して電波により送受信する通信手段と、前記通信手段により送受信される前記制御情報をもとに前記路面側高周波電流給電手段による前記一次コイルへの高周波電流の給電を制御する路面側充電制御部と、前記制御情報をもとに前記充電手段による前記電池の充電を制御する車両側充電制御部とを備えたことを特徴とする。
ことを特徴とする。
The invention described in claim 1 includes a primary coil provided on a road surface, road-side high-frequency current power supply means for supplying a charging high-frequency current from a high-frequency power supply for power supply to the primary coil, and a magnetic coupling with the primary coil. By means of an electromotive force induced in the vehicle-side coil based on the high-frequency current for charging, via a resonance magnetic coupling between the vehicle-side coil provided in the vehicle and the primary coil and the vehicle-side coil. Charging means for charging a battery mounted on the vehicle; and communication means for transmitting and receiving control information for charging the battery by the high-frequency power supply for power supply via radio waves via the primary coil and the vehicle-side coil. The road surface side charging control for controlling the feeding of the high frequency current to the primary coil by the road surface side high frequency current feeding means based on the control information transmitted and received by the communication means. And parts, characterized in that said control information and a vehicle-side charging controller that controls charging of the battery by the charging means based on.
It is characterized by that.

請求項1記載の発明によれば、路面に設けられた一次コイルと車両に設けられた車両側コイルとの電波を介して通信手段により送受信される制御情報をもとに、路面側充電制御部により高周波電流給電手段による前記一次コイルへの高周波電流の給電が制御され、また車両側充電制御部により充電手段による電池の充電が制御されるため、充電のための電気エネルギーをワイヤレスで効率よく供給できる。   According to the first aspect of the present invention, the road surface side charge control unit is based on the control information transmitted and received by the communication means via the radio wave between the primary coil provided on the road surface and the vehicle side coil provided on the vehicle. The high-frequency current feeding means controls the feeding of the high-frequency current to the primary coil, and the vehicle-side charging control unit controls the charging of the battery by the charging means, so that electric energy for charging can be efficiently supplied wirelessly. it can.

請求項2記載の発明によれば、車両の走行位置を調整し、車両側コイルと一次コイルとが重なるように前記車両側コイルの位置合わせを行う車両側コイル位置調整手段を備えるように構成したので、充電のための電気エネルギーをワイヤレスで効率よく供給できる。   According to the second aspect of the present invention, the vehicle side coil position adjusting means for adjusting the traveling position of the vehicle and aligning the vehicle side coil so that the vehicle side coil and the primary coil overlap each other is provided. Therefore, electric energy for charging can be supplied wirelessly and efficiently.

請求項3記載の発明によれば、制御情報は、車両が搭載する電池の認証のための電池認証情報と、前記電池の充電状況を示すSOC情報、充電電流、充電電圧などの充電情報を含むように構成したので、一次コイルと車両側コイルとの電波を介して通信手段により送受信される前記制御情報をもとに前記一次コイルへ高周波電流が給電され、また前記制御情報に応じて前記電池が充電され、充電のための電気エネルギーをワイヤレスで効率よく供給できる。   According to the invention of claim 3, the control information includes battery authentication information for authentication of a battery mounted on the vehicle, and charging information such as SOC information indicating a charging state of the battery, a charging current, and a charging voltage. Since the high frequency current is supplied to the primary coil based on the control information transmitted / received by the communication means via the radio wave between the primary coil and the vehicle side coil, and the battery according to the control information. Is charged and can efficiently supply electric energy for charging wirelessly.

請求項4記載の発明によれば、電池の充電状況を示すSOC情報に応じた走行速度をオートクルージング機能に対し指示する車速指示手段を備えるように構成したので、充電のための電気エネルギーをワイヤレスで効率よく供給できる。   According to the fourth aspect of the present invention, since the vehicle speed instruction means for instructing the traveling speed according to the SOC information indicating the charging state of the battery to the auto cruising function is provided, the electric energy for charging is wirelessly provided. Can be supplied efficiently.

請求項5記載の発明によれば、車両側コイルは制御コイルと充電用二次コイルから構成され、充電手段は、一次コイルと充電用二次コイルとの共鳴磁気結合を介して、電力供給用高周波電源から一次コイルへ給電される充電用高周波電流をもとに充電用二次コイルに誘起する起電力により車両が搭載する電池を充電し、通信手段は、電力供給用高周波電源による電池の充電のための制御情報を、一次コイルと制御コイルの電波を介して送受信するように構成したので、一次コイルが設けられた路面を車両が走行すると、一次コイルと制御コイルを介して通信手段により送受信される制御情報をもとに、一次コイルへ給電される高周波電流により充電用二次コイルに誘起する起電力により電池が充電され、充電のための電気エネルギーをワイヤレスで効率よく供給できる。   According to the fifth aspect of the present invention, the vehicle side coil is composed of the control coil and the charging secondary coil, and the charging means is for supplying power via the resonant magnetic coupling between the primary coil and the charging secondary coil. The battery mounted on the vehicle is charged by the electromotive force induced in the secondary coil for charging based on the high frequency current for charging fed from the high frequency power source to the primary coil, and the communication means charges the battery with the high frequency power source for power supply. Since the control information for the vehicle is configured to be transmitted and received via radio waves of the primary coil and the control coil, when the vehicle travels on the road surface provided with the primary coil, it is transmitted and received by the communication means via the primary coil and the control coil. Based on the control information, the battery is charged by the electromotive force induced in the secondary coil for charging by the high-frequency current fed to the primary coil, and the electric energy for charging is wired. It can be efficiently supplied in the nest.

本発明の第1の実施の形態であるワイヤレス給電システムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the wireless electric power feeding system which is the 1st Embodiment of this invention. 本発明の第1の実施の形態であるワイヤレス給電システムの充電エリアの構成を示す説明図である。It is explanatory drawing which shows the structure of the charge area of the wireless electric power feeding system which is the 1st Embodiment of this invention. 本発明の第1の実施の形態であるワイヤレス給電システムの路面に設置された一次コイルLへ給電を行う道路側の構成を示す説明図である。It is explanatory drawing which shows the structure by the side of the road which supplies electric power to the primary coil L installed in the road surface of the wireless electric power feeding system which is the 1st Embodiment of this invention. 本発明の第1の実施の形態であるワイヤレス給電システムの路面に設置された一次コイルへ給電を行う路面側充電制御部とスイッチ回路の構成を示す説明図である。It is explanatory drawing which shows the structure of the road surface side charge control part which supplies electric power to the primary coil installed in the road surface of the wireless electric power feeding system which is the 1st Embodiment of this invention, and a switch circuit. 本発明の第1の実施の形態であるワイヤレス給電システムの車両側の回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure by the side of the vehicle of the wireless electric power feeding system which is the 1st Embodiment of this invention. 本発明の第1の実施の形態であるワイヤレス給電システムの路面に設置された一次コイル(C1)と車両側の制御コイルの位置関係と、その位置関係に応じた差動増幅回路決の出力との一例を示す説明図である。The positional relationship between the primary coil (C1) installed on the road surface of the wireless power feeding system according to the first embodiment of the present invention and the control coil on the vehicle side, and the output of the differential amplification circuit decision according to the positional relationship, It is explanatory drawing which shows an example. 本発明の第1の実施の形態であるワイヤレス給電システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the wireless electric power feeding system which is the 1st Embodiment of this invention. 本発明の第2の実施の形態であるワイヤレス給電システムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the wireless electric power feeding system which is the 2nd Embodiment of this invention. 本発明の第2の実施の形態であるワイヤレス給電システムの充電エリアの構成を示す説明図である。It is explanatory drawing which shows the structure of the charge area of the wireless electric power feeding system which is the 2nd Embodiment of this invention. 本発明の第2の実施の形態であるワイヤレス給電システムの車両側と道路側の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle side of the wireless electric power feeding system which is the 2nd Embodiment of this invention, and the road side. 本発明の第2の実施の形態であるワイヤレス給電システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the wireless electric power feeding system which is the 2nd Embodiment of this invention.

(第1の実施の形態)
以下、本発明の第1の実施の形態について説明する。図1は、この実施の形態であるワイヤレス給電システムの構成を示す概略構成図である。このワイヤレス給電システムは、道路側に設けられた路面側充電制御部1、路面GLに敷設された複数のコイルC1,C2,C3,C4,C5,C6から構成される一次コイルL、車両2の路面GLと対面するシャーシ裏面に配置された制御コイル3、前記シャーシ裏面に制御コイル3と一定距離離れて配置された充電用二次コイル4、車両2に搭載され、制御コイル3と充電用二次コイル4とを介して車両2が搭載するバッテリ6に対し非接触で効率よく充電を行う車両側充電制御部5を備えている。車両側充電制御部5は充電制御ECUを有しており、例えばステアリング制御ECUなどの他のECUと通信を行い、データの送受信が可能である。
車両側充電制御部5は、通信手段8、車両側コイル位置調整手段9、車速指示手段10を備えている。
通信手段8は、車両2が搭載するバッテリ6の認証のための電池認証情報、バッテリ6の充電状況を示すSOC情報、車両側充電制御ECUが演算した、指示充電電流、充電電圧などの充電情報を含む制御情報、そして車両位置合わせ情報を、前記一次コイルLと制御コイル3との間で電波を介して路車間通信する。この路車間通信により、電池認証と車両位置合わせ情報の確認後、前記一次コイルLと充電用二次コイル4の磁気結合(磁気共鳴)を介して、充電情報に基づいた電力を二次コイル4に給電する。
車両側コイル位置調整手段9は、前記一次コイルLと制御コイル3、前記一次コイルLと充電用二次コイル4が重なるように車両2の走行位置を電動パワーステアリングで調整し、前記車両側コイルの位置合わせを行う。
車速指示手段10は、バッテリ6の充電状況を示すSOC情報に応じた走行速度をオートクルージング機能に対し指示する機能を備える。
この実施の形態のワイヤレス給電システムでは、車両側充電制御部5により車両2が搭載する例えばリチウムイオン電池であるバッテリ6へ道路側に設けられた路面側充電制御部1から給電し充電を行う。
一次コイルLは、車両2が走行する本線道路の走行レーンの路面GLに敷設されている。一次コイルLは複数のコイルC1,C2,C3,C4,C5,C6が並列に接続されており、電力供給用高周波電源から所定の共鳴周波数(f4)の高周波電流が供給される。この実施の形態では、一次コイルLはそれぞれ所定の等間隔で本線道路の走行レーンの路面GLに敷設されている。
図2は、充電エリアの構成を示す説明図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described. FIG. 1 is a schematic configuration diagram showing a configuration of a wireless power feeding system according to this embodiment. This wireless power feeding system includes a road surface side charge control unit 1 provided on the road side, a primary coil L composed of a plurality of coils C1, C2, C3, C4, C5, C6 laid on the road surface GL, The control coil 3 disposed on the rear surface of the chassis facing the road surface GL, the secondary coil for charging 4 disposed at a certain distance from the control coil 3 on the rear surface of the chassis, and the vehicle 2 are mounted on the control coil 3 and the second charging coil. A vehicle-side charge control unit 5 that efficiently charges the battery 6 mounted on the vehicle 2 via the next coil 4 in a non-contact manner is provided. The vehicle-side charge control unit 5 has a charge control ECU, and can communicate with other ECUs such as a steering control ECU to transmit and receive data.
The vehicle-side charging control unit 5 includes a communication unit 8, a vehicle-side coil position adjusting unit 9, and a vehicle speed instruction unit 10.
The communication means 8 includes battery authentication information for authenticating the battery 6 mounted on the vehicle 2, SOC information indicating the charging status of the battery 6, charging information such as an instruction charging current and a charging voltage calculated by the vehicle-side charging control ECU. Control information including the vehicle position alignment information is communicated between the primary coil L and the control coil 3 between the road and vehicle via radio waves. By this road-to-vehicle communication, after the battery authentication and vehicle alignment information are confirmed, the electric power based on the charging information is supplied to the secondary coil 4 via the magnetic coupling (magnetic resonance) between the primary coil L and the charging secondary coil 4. Power to
The vehicle-side coil position adjusting means 9 adjusts the traveling position of the vehicle 2 with an electric power steering so that the primary coil L and the control coil 3 and the primary coil L and the charging secondary coil 4 overlap each other. Perform position alignment.
The vehicle speed instruction means 10 has a function of instructing the auto cruising function of the traveling speed according to the SOC information indicating the charging status of the battery 6.
In the wireless power supply system of this embodiment, the vehicle-side charging control unit 5 supplies power from the road-side charging control unit 1 provided on the road side to the battery 6 that is, for example, a lithium ion battery mounted on the vehicle 2 to perform charging.
The primary coil L is laid on the road surface GL of the travel lane of the main road on which the vehicle 2 travels. The primary coil L has a plurality of coils C1, C2, C3, C4, C5, and C6 connected in parallel, and a high-frequency current having a predetermined resonance frequency (f4) is supplied from a high-frequency power supply for power supply. In this embodiment, the primary coils L are laid on the road surface GL of the travel lane of the main road at predetermined equal intervals.
FIG. 2 is an explanatory diagram showing the configuration of the charging area.

路面側充電制御部1は道路側に設けられており、一次コイルLを介して車両側充電制御部5との間で行う電波通信により送受信する位置合わせ信号(周波数f1)、電池認証情報(周波数f2)、充電停止信号(周波数f3)、充電指示信号(周波数f3)、充電情報(周波数f3)をもとに、一次コイルLに対し所定周波数f4の高周波電流の供給を行う。充電停止信号、充電指示信号および充電情報は周波数f3を搬送波とするコード化された信号とする。
制御コイル3は、車両2の路面GLと対面するシャーシ裏面に配置されている。
一次コイルLと制御コイル3との間の電波通信を実現する通信手段8により、位置合わせ信号、電池認証情報、充電停止信号、充電指示信号、充電情報などの制御情報が路面側充電制御部1と車両側充電制御部5との間で送受信される。
充電用二次コイル4は、路面GLに敷設された一次コイルLとの間の磁気結合(磁気共鳴)により、前記一次コイルL側から充電用の所定周波数(f4)の高周波電流が供給される。また、車両側充電制御部5と路面側充電制御部1との間での所定周波数f3の充電停止信号、充電指示信号および充電情報の送受信を、充電用二次コイル4は前記一次コイルLとの間で電波通信により実現する。
車両側充電制御部5は、路面側充電制御部1との間で所定周波数f1による位置合わせ信号の送受信、所定周波数f2による電池認証情報の送受信、所定周波数f3による充電停止信号、充電指示信号および充電情報の送受信を行う。そして、電池認証後、車両2が一次コイルLが敷設された本線道路の走行レーンを走行しているときの車両2のステアリングの自動調整を行い、車両2の走行位置の調整を行い、制御コイル3と本線道路の走行レーンの路面GLに敷設された一次コイルLの位置合わせ、および充電用二次コイル4と路面GLに敷設された一次コイルLの位置合わせを行う。充電用二次コイル4と路面GLに敷設された一次コイルLとの間の位置合わせが行われ、車両2が一次コイルL上を走行している状態になると、前記一次コイルL側へ供給された充電用の所定周波数f4の高周波電流により、一次コイルLと充電用二次コイル4との間の磁気結合(磁気共鳴)を介して充電用二次コイル4に起電力が誘起され、車両2が搭載しているバッテリ6へ充電が行われる。
The road surface side charge control unit 1 is provided on the road side, and a positioning signal (frequency f1) transmitted and received by radio wave communication performed with the vehicle side charge control unit 5 through the primary coil L, battery authentication information (frequency f2) A high-frequency current having a predetermined frequency f4 is supplied to the primary coil L based on the charge stop signal (frequency f3), the charge instruction signal (frequency f3), and the charge information (frequency f3). The charge stop signal, the charge instruction signal, and the charge information are coded signals having the frequency f3 as a carrier wave.
The control coil 3 is disposed on the rear surface of the chassis facing the road surface GL of the vehicle 2.
Control information such as an alignment signal, battery authentication information, a charging stop signal, a charging instruction signal, and charging information is transmitted to the road surface side charging control unit 1 by the communication means 8 that realizes radio wave communication between the primary coil L and the control coil 3. Between the vehicle and the vehicle-side charge control unit 5.
The charging secondary coil 4 is supplied with a high-frequency current having a predetermined charging frequency (f4) from the primary coil L side by magnetic coupling (magnetic resonance) with the primary coil L laid on the road surface GL. . In addition, the secondary coil for charging 4 and the primary coil L are used to transmit and receive a charging stop signal, a charging instruction signal, and charging information at a predetermined frequency f3 between the vehicle side charging control unit 5 and the road surface side charging control unit 1. Realized by radio wave communication.
The vehicle-side charge control unit 5 transmits / receives a positioning signal with the predetermined frequency f1 to / from the road surface-side charge control unit 1, transmits / receives battery authentication information with the predetermined frequency f2, a charge stop signal with a predetermined frequency f3, a charge instruction signal, and Send and receive charging information. After the battery authentication, the vehicle 2 automatically adjusts the steering of the vehicle 2 when traveling on the main road lane where the primary coil L is laid, adjusts the travel position of the vehicle 2, and controls the coil. 3 and the positioning of the primary coil L laid on the road surface GL of the driving lane of the main road, and the positioning of the secondary coil 4 for charging and the primary coil L laid on the road surface GL. When the secondary coil 4 for charging and the primary coil L laid on the road surface GL are aligned and the vehicle 2 is running on the primary coil L, the secondary coil 4 is supplied to the primary coil L side. An electromotive force is induced in the charging secondary coil 4 by magnetic coupling (magnetic resonance) between the primary coil L and the charging secondary coil 4 by the high-frequency current having the predetermined frequency f4 for charging. Charging is performed on the battery 6 mounted on the.

図3は、この実施の形態であるワイヤレス給電システムの路面に設置された一次コイルLへ給電を行う道路側の構成を示す説明図である。図4は、この実施の形態であるワイヤレス給電システムの路面に設置された一次コイルLへ給電を行う路面側充電制御部1とスイッチ回路の構成を示す説明図である。この道路側の構成では、一次コイルLごとにスイッチ回路11,12,13,14,15,16,17が設けられている。このスイッチ回路の構成は、図4に示すように、路面側充電制御部1から出力される制御信号により状態が制御される常開接点111を備えている。そして、各スイッチ回路の常開接点111の一方の端子には電力供給用高周波電源が接続されている。常開接点111の他方の端子は並列接続された複数のコイルC1,C2,C3,C4,C5,C6の一方の端子に接続されている。また、常開接点111と接続されたコイルC1,C2,C3,C4,C5,C6の一方の端子は、さらに路面側充電制御部1のフィルタ回路101,102,103と接続されている。フィルタ回路101は、中心周波数f1のバンドパスフィルタである。フィルタ回路102は、中心周波数f2のバンドパスフィルタである。フィルタ回路103は、中心周波数f3のバンドパスフィルタであり、車両側充電制御部5から、車両前部の制御コイルと一次コイルLを介して周波数f3の搬送波により送信された充電情報、充電停止信号、充電開始指示信号を抽出してデコード回路104へ出力する。デコード回路104は、フィルタ回路103から出力される周波数f3の搬送波により送信された充電情報、充電停止信号、充電開始指示信号をデコードし抽出する。   FIG. 3 is an explanatory diagram showing a configuration on the road side that supplies power to the primary coil L installed on the road surface of the wireless power feeding system according to this embodiment. FIG. 4 is an explanatory diagram showing the configuration of the road surface side charge control unit 1 that supplies power to the primary coil L installed on the road surface of the wireless power feeding system according to this embodiment and the switch circuit. In this road side configuration, switch circuits 11, 12, 13, 14, 15, 16, and 17 are provided for each primary coil L. As shown in FIG. 4, the configuration of the switch circuit includes a normally open contact 111 whose state is controlled by a control signal output from the road surface side charge control unit 1. A high frequency power supply for power supply is connected to one terminal of the normally open contact 111 of each switch circuit. The other terminal of the normally open contact 111 is connected to one terminal of a plurality of coils C1, C2, C3, C4, C5, and C6 connected in parallel. One terminal of the coils C1, C2, C3, C4, C5, and C6 connected to the normally open contact 111 is further connected to the filter circuits 101, 102, and 103 of the road surface side charge control unit 1. The filter circuit 101 is a bandpass filter having a center frequency f1. The filter circuit 102 is a bandpass filter having a center frequency f2. The filter circuit 103 is a band-pass filter having a center frequency f3, and charging information and a charge stop signal transmitted from the vehicle-side charge control unit 5 via a carrier coil having a frequency f3 via a control coil and a primary coil L at the front of the vehicle. The charge start instruction signal is extracted and output to the decode circuit 104. The decode circuit 104 decodes and extracts the charge information, the charge stop signal, and the charge start instruction signal transmitted by the carrier wave having the frequency f3 output from the filter circuit 103.

図5は、この実施の形態のワイヤレス給電システムの車両側の回路構成を示す説明図である。図5に示す車両側の回路構成では、図1に示した制御コイル3は、所定の間隔を有した矩形状の二つの制御コイル31,32として車両2の路面GLと対面するシャーシ裏面に配置されている。この制御コイル31,32が所定の間隔を有して配置された形状は、路面の一次コイルLの形状と略同一となるように構成されている。
そして、制御コイル31には周波数f2の搬送波により送信される電池認証情報を制御コイル31へ出力する中心周波数がf2のバンドパスフィルタであるフィルタ回路201が接続されている。
また、車両側の充電用コイル4の位置を路面の一次コイルLに対し最適な位置に位置決めするためのフィルタ回路202,203、検波回路211,213、積分回路212,214、差動増幅回路215が設けられている。
フィルタ回路202は、中心周波数f1のバンドパスフィルタであり、制御コイル31に接続され、制御コイル31により受信された周波数f1の位置合わせ信号を抽出し検波回路211へ出力する。
フィルタ回路203は、中心周波数f1のバンドパスフィルタであり、制御コイル32に接続され、制御コイル32により受信された周波数f1の位置合わせ信号を抽出し検波回路213へ出力する。
検波回路211は、フィルタ回路202により抽出された位置合わせ信号を検波する。
検波回路213は、フィルタ回路203により抽出された位置合わせ信号を検波する。
積分回路212は、検波回路211により検波された位置合わせ信号を積分し、位置合わせ信号の受信レベルに応じた直流信号へ変換する。
積分回路214は、検波回路213により検波された位置合わせ信号を積分し、位置合わせ信号の受信レベルに応じた直流信号へ変換する。
差動増幅回路215は、積分回路212により変換された直流信号レベルと、積分回路214により変換された直流信号レベルとの差に応じた信号を出力する。差動増幅回路215の出力は充電制御ECUの車両側コイル位置調整手段9へ出力され、差動増幅回路215の出力に応じてパワーステアリングのモータを駆動し、車両2の走行位置を調整し、車両2が路面の一次コイルLの真上を走行し、路面の一次コイルLに対する車両側の制御コイル31,32の位置関係が路面の一次コイルLに対面して重なるように制御する。
図6は、車両2の進行方向が図面上、左方向から右方向へ走行しているとした場合の、路面の一次コイルLを構成するコイルC1と車両側の制御コイル31,32との位置関係と、その位置関係に応じた差動増幅回路215の出力との一例を示す説明図である。同図(a)は、路面の一次コイルLに対する車両側の制御コイル31,32の位置が路面の一次コイルLに対し左右のズレがない、つまり路面の一次コイルLに対する車両側の制御コイル31,32の位置関係が路面の一次コイルLに対面して重なる位置関係に自動調整された状態を示し、このときの差動増幅回路215の出力は負極側にも正極側にも振れていない“ゼロ”を示している。また同図(b)は、路面の一次コイルLに対する車両側の制御コイル31,32の位置が進行方向左側にずれている場合を示しており、このときの差動増幅回路215の出力は負極側に振れている。また同図(c)は、路面の一次コイルLに対する車両側の制御コイル31,32の位置が進行方向右側にずれている場合を示しており、このときの差動増幅回路215の出力は正極側に振れている場合を示している。
FIG. 5 is an explanatory diagram showing a circuit configuration on the vehicle side of the wireless power feeding system of this embodiment. In the circuit configuration on the vehicle side shown in FIG. 5, the control coil 3 shown in FIG. 1 is arranged on the rear surface of the chassis facing the road surface GL of the vehicle 2 as two rectangular control coils 31 and 32 having a predetermined interval. Has been. The shape in which the control coils 31 and 32 are arranged at a predetermined interval is configured to be substantially the same as the shape of the primary coil L on the road surface.
The control coil 31 is connected to a filter circuit 201 that is a bandpass filter having a center frequency f2 for outputting battery authentication information transmitted by a carrier wave having a frequency f2 to the control coil 31.
Further, filter circuits 202 and 203 for detecting the position of the charging coil 4 on the vehicle side relative to the primary coil L on the road surface, detection circuits 211 and 213, integration circuits 212 and 214, and differential amplification circuit 215. Is provided.
The filter circuit 202 is a bandpass filter having a center frequency f 1, is connected to the control coil 31, extracts the alignment signal of the frequency f 1 received by the control coil 31, and outputs it to the detection circuit 211.
The filter circuit 203 is a band-pass filter having a center frequency f1, is connected to the control coil 32, extracts the alignment signal of the frequency f1 received by the control coil 32, and outputs it to the detection circuit 213.
The detection circuit 211 detects the alignment signal extracted by the filter circuit 202.
The detection circuit 213 detects the alignment signal extracted by the filter circuit 203.
The integration circuit 212 integrates the alignment signal detected by the detection circuit 211 and converts it to a DC signal corresponding to the reception level of the alignment signal.
The integration circuit 214 integrates the alignment signal detected by the detection circuit 213 and converts it into a DC signal corresponding to the reception level of the alignment signal.
The differential amplifier circuit 215 outputs a signal corresponding to the difference between the DC signal level converted by the integrating circuit 212 and the DC signal level converted by the integrating circuit 214. The output of the differential amplifier circuit 215 is output to the vehicle side coil position adjusting means 9 of the charge control ECU, and the power steering motor is driven in accordance with the output of the differential amplifier circuit 215 to adjust the traveling position of the vehicle 2. The vehicle 2 travels directly above the primary coil L on the road surface, and the positional relationship of the control coils 31 and 32 on the vehicle side with respect to the primary coil L on the road surface is controlled so as to face the primary coil L and overlap.
FIG. 6 shows the positions of the coil C1 constituting the primary coil L of the road surface and the control coils 31 and 32 on the vehicle side when the traveling direction of the vehicle 2 is traveling from the left to the right in the drawing. It is explanatory drawing which shows an example of a relationship and the output of the differential amplifier circuit 215 according to the positional relationship. FIG. 4A shows that the positions of the vehicle-side control coils 31 and 32 with respect to the road surface primary coil L are not shifted from each other with respect to the road surface primary coil L, that is, the vehicle side control coil 31 with respect to the road surface primary coil L. , 32 is automatically adjusted to a positional relationship that overlaps the primary coil L of the road surface, and the output of the differential amplifier circuit 215 at this time is not swung to the negative side or the positive side. "Zero" is shown. FIG. 2B shows a case where the positions of the vehicle-side control coils 31 and 32 with respect to the primary coil L on the road surface are shifted to the left in the traveling direction, and the output of the differential amplifier circuit 215 at this time is negative. Swing to the side. FIG. 6C shows a case where the positions of the vehicle-side control coils 31 and 32 with respect to the primary coil L on the road surface are shifted to the right in the traveling direction. The output of the differential amplifier circuit 215 at this time is positive. The case where it is swinging to the side is shown.

次に動作について説明する。
充電制御情報と位置合わせ情報は、制御コイル31、32と一次コイルLの間で電波通信する。電力は、充電用二次コイル4と一次コイルLの間で共鳴磁気結合を介して伝送される。
図7は、この実施の形態のワイヤレス給電システムの動作を示すフローチャートであり、車両側充電制御部5の充電制御ECUと路面側充電制御部1との動作として示されている。
先ず、図1に示す車両2は通常の本線道路を走行している。このとき、自車両のバッテリ6に充電を行う場合、ドライバは自車両をそのまま通常の一次コイルLが敷設された本線道路を走行させる。このときドライバは自車両のバッテリの残容量を判断し、充電を指示する操作を行う。あるいは車両側において自車両のバッテリの残容量を判定し、充電を自動的に行うようにすることも可能である。
自車両制御部5は、自車両が通常の一次コイルLが敷設された本線道路を走行するようになると、制御コイル31、32と一次コイルLの間の電波通信が可能になることで、先ず電池認証処理を行う(ステップS1)。この電池認証処理では、車両側充電制御部5の充電制御ECUが電池ID情報を、フィルタ回路201を介して制御コイル31へ出力し、制御コイル31と路面の一次コイルLとを介して路面側充電制御部1へ送信する。路面側充電制御部1では前記一次コイルLに誘起した周波数f2による電池ID情報をフィルタ回路102を介して受信し、路面側充電制御部1では受信した電池ID情報をもとに電池認証、課金処理を行い、この認証結果、課金処理結果を制御コイル31と一次コイルLとの間の電波通信により車両側充電制御部5の充電制御ECUへ返信する(ステップS21)。
自車両制御部5では電池認証が完了したか否かを判定しており(ステップS2)、この電池認証が完了すると、自車両制御部5は、続いて、一次コイルLが敷設された本線道路の充電エリアの一次コイルL上を自車両が走行中であるか否かを判定する(ステップS3)。
自車両が充電エリアの一次コイルL上を走行中であるか否かの判定は、次のようにして行われる。この実施の形態では、路面側充電制御部1は位置合わせ信号を兼ねた充電エリアであることを示す周波数f1の高周波信号を充電エリアの一次コイルLへ常時出力している。このため、車両2が一次コイルLが敷設された本線道路の充電エリアを走行し、一次コイルL上を走行するようになると、一次コイルL上を車両側の制御コイル3が通過する期間、一次コイルLを構成するコイルC1,C2,C3,C4,C5,C6の順で制御コイル3と電波通信することにより、路面側充電制御部1から一次コイルLと制御コイル3とを介して車両側充電制御部5の充電制御ECUに、この周波数f1の位置合わせ信号を兼ねた高周波信号が送信される。それで車両2が充電エリアの一次コイルL上を走行中であると判定できる。
Next, the operation will be described.
Charging control information and alignment information are communicated between the control coils 31 and 32 and the primary coil L by radio waves. Electric power is transmitted between the secondary coil for charging 4 and the primary coil L via resonant magnetic coupling.
FIG. 7 is a flowchart showing the operation of the wireless power feeding system of this embodiment, and is shown as the operation of the charge control ECU of the vehicle side charge control unit 5 and the road surface side charge control unit 1.
First, the vehicle 2 shown in FIG. 1 is traveling on a normal main road. At this time, when charging the battery 6 of the host vehicle, the driver runs the host vehicle as it is on a main road on which the normal primary coil L is laid. At this time, the driver determines the remaining capacity of the battery of the host vehicle and performs an operation to instruct charging. Alternatively, it is possible to determine the remaining capacity of the battery of the host vehicle on the vehicle side and automatically perform charging.
When the own vehicle controller 5 runs on a main road on which the normal primary coil L is laid, the own vehicle control unit 5 first enables radio wave communication between the control coils 31 and 32 and the primary coil L. Battery authentication processing is performed (step S1). In this battery authentication process, the charge control ECU of the vehicle side charge control unit 5 outputs the battery ID information to the control coil 31 via the filter circuit 201, and the road surface side via the control coil 31 and the primary coil L of the road surface. It transmits to the charge control part 1. The road-side charge control unit 1 receives battery ID information at the frequency f2 induced in the primary coil L via the filter circuit 102, and the road-side charge control unit 1 performs battery authentication and charging based on the received battery ID information. Processing is performed, and the authentication result and the billing processing result are returned to the charge control ECU of the vehicle side charge control unit 5 by radio wave communication between the control coil 31 and the primary coil L (step S21).
The own vehicle control unit 5 determines whether or not the battery authentication is completed (step S2). When the battery authentication is completed, the own vehicle control unit 5 continues to the main road on which the primary coil L is laid. It is determined whether or not the host vehicle is traveling on the primary coil L of the charging area (step S3).
Whether or not the host vehicle is traveling on the primary coil L of the charging area is determined as follows. In this embodiment, the road surface side charge control part 1 always outputs the high frequency signal of the frequency f1 which shows that it is the charging area which served as the alignment signal to the primary coil L of the charging area. For this reason, when the vehicle 2 travels on the charging area of the main road where the primary coil L is laid, and travels on the primary coil L, the period during which the vehicle-side control coil 3 passes on the primary coil L, the primary By performing radio wave communication with the control coil 3 in the order of the coils C1, C2, C3, C4, C5, and C6 constituting the coil L, the vehicle side via the primary coil L and the control coil 3 from the road surface side charge control unit 1 A high-frequency signal that also serves as an alignment signal of the frequency f1 is transmitted to the charge control ECU of the charge control unit 5. Thus, it can be determined that the vehicle 2 is traveling on the primary coil L of the charging area.

車両側充電制御部5の充電制御ECUは、車両2が一次コイルL上を走行中であると判定すると、続けて車両2の制御コイル3および充電用二次コイル4の路面の一次コイルLに対する位置合わせ処理を行う(ステップS4)。この位置合わせ処理は、制御コイル31と前記路面の一次コイルLとが重なるときの位置関係に応じて制御コイル31に誘起される周波数f1の位置合わせ信号による起電力と、制御コイル32と前記路面の一次コイルLとが重なるときの位置関係に応じて制御コイル32に誘起される周波数f1の位置合わせ信号による起電力との差分が、図6に示すように制御コイル31および制御コイル32の前記路面の一次コイルLに対する平面的なズレに応じて正あるいは負の差分量となり、また制御コイル31および制御コイル32が前記路面の一次コイルLに対し平面的なズレがなく重なった状態では前記差分量はゼロになることから、車両2のパワーステアリング用のモータを前記差分量がゼロになる方向に制御することで車両2の走行位置を微調整し、車両側の制御コイル31,32が一次コイルLに重なるように、車両2が前記一次コイルL上を走行するように制御する。
一次コイルLに対し制御コイル31,32の位置がズレている状態は、図6(b)あるいは図6(c)として示されるが、図6(b)の状態は制御コイル31,32の一次コイルLに対する位置が進行方向左側にずれており、また図6(c)の状態は制御コイル31,32の一次コイルLに対する位置が進行方向右側にずれている状態を示す。この制御コイル31,32の一次コイルLに対するズレに応じて差動増幅回路215の出力は負極側あるいは正極側に振れ、またズレの量に応じたレベルとなる。制御コイル31,32の位置が一次コイルLに対し図6(a)に示すように左右のずれが生じていない状態になると、差動増幅回路215の出力はゼロとなる。車両側充電制御部5の充電制御ECUはこの差動増幅回路215の出力をもとに、この制御コイル31,32の一次コイルLに対する平面的な位置関係がズレのなくなる方向、つまり差動増幅回路215の出力がゼロとなる方向へパワーステアリング用のモータを制御し、車両2の走行位置を微調整する。この位置合わせ処理は、車両2の制御コイル31,32および充電用二次コイル4の路面の一次コイルLに対する位置合わせ処理が完了するまで行われる(ステップS5)。
この位置合わせ処理が完了すると、車両側充電制御部5の充電制御ECUは周波数f3の充電開始指示信号をフィルタ回路205を介して車両2の充電用二次コイル4へ出力する(ステップS6)。車両側充電制御部5の充電制御ECUから出力された充電開始指示信号は、充電用二次コイル4が一次コイルL上を通過する期間、充電用二次コイル4と前記一次コイルLとの電波通信により前記一次コイルLには周波数f3の高周波信号が誘導される。
When the charge control ECU of the vehicle-side charge control unit 5 determines that the vehicle 2 is traveling on the primary coil L, the control coil 3 of the vehicle 2 and the secondary coil 4 for charging are continuously applied to the primary coil L of the road surface. An alignment process is performed (step S4). This alignment process includes an electromotive force generated by an alignment signal having a frequency f1 induced in the control coil 31 according to a positional relationship when the control coil 31 and the primary coil L of the road overlap, and the control coil 32 and the road surface. As shown in FIG. 6, the difference between the control coil 31 and the control coil 32 differs from the electromotive force generated by the alignment signal of the frequency f1 induced in the control coil 32 in accordance with the positional relationship when the primary coil L overlaps. The difference is positive or negative depending on the planar deviation of the road surface relative to the primary coil L, and the control coil 31 and the control coil 32 overlap with the road surface primary coil L without any planar deviation. Since the amount becomes zero, the travel position of the vehicle 2 is controlled by controlling the power steering motor of the vehicle 2 in the direction in which the difference amount becomes zero. Fine adjustment, the control coils 31 of the vehicle side so as to overlap the primary coil L, is controlled so that the vehicle 2 travels on the primary coil L.
The state in which the positions of the control coils 31 and 32 are deviated from the primary coil L is shown as FIG. 6B or FIG. 6C, but the state in FIG. The position with respect to the coil L is shifted to the left in the traveling direction, and the state of FIG. 6C shows a state in which the positions of the control coils 31 and 32 with respect to the primary coil L are shifted to the right in the traveling direction. The output of the differential amplifier circuit 215 fluctuates to the negative electrode side or the positive electrode side according to the deviation from the primary coil L of the control coils 31 and 32, and becomes a level corresponding to the amount of deviation. When the positions of the control coils 31 and 32 are not shifted left and right with respect to the primary coil L as shown in FIG. 6A, the output of the differential amplifier circuit 215 becomes zero. Based on the output of the differential amplifier circuit 215, the charge control ECU of the vehicle side charge control unit 5 eliminates the deviation of the planar positional relationship with respect to the primary coil L of the control coils 31, 32, that is, differential amplification. The power steering motor is controlled in a direction in which the output of the circuit 215 becomes zero, and the traveling position of the vehicle 2 is finely adjusted. This alignment process is performed until the alignment process of the control coils 31 and 32 of the vehicle 2 and the primary coil L on the road surface of the charging secondary coil 4 is completed (step S5).
When this alignment process is completed, the charge control ECU of the vehicle side charge control unit 5 outputs a charge start instruction signal of frequency f3 to the secondary coil 4 for charging of the vehicle 2 via the filter circuit 205 (step S6). The charging start instruction signal output from the charging control ECU of the vehicle side charging control unit 5 is a radio wave between the charging secondary coil 4 and the primary coil L during the period when the charging secondary coil 4 passes over the primary coil L. A high frequency signal having a frequency f3 is induced in the primary coil L by communication.

路面側充電制御部1では、前記一次コイルLに誘導した周波数f3の高周波信号はフィルタ回路103を介して検出され、さらにデコード回路104によりデコードされて充電開始指示信号が抽出される。路面側充電制御部1は、一次コイルLにより検出した信号が周波数f3の充電開始指示信号であると判定すると(ステップS22、ステップS23)、続いて充電開始指示信号の受信完了について車両側充電制御部5の充電制御ECUへ通知する(ステップS24)。   In the road surface side charge control unit 1, the high frequency signal of the frequency f3 induced in the primary coil L is detected through the filter circuit 103, and further decoded by the decode circuit 104 to extract the charge start instruction signal. If the road surface side charge control part 1 determines with the signal detected by the primary coil L being the charge start instruction signal of the frequency f3 (step S22, step S23), vehicle side charge control about the completion of reception of a charge start instruction signal subsequently. The charge control ECU of unit 5 is notified (step S24).

車両側充電制御部5の充電制御ECUは、周波数f3の充電開始指示信号を充電用二次コイル4へ出力すると、続いて充電開始指示信号の受信完了について路面側充電制御部1から通知があったか否かを判定している(ステップS7)。路面側充電制御部1は、ステップS23において充電開始指示受信完了について車両側充電制御部5の充電制御ECUへ通知するため、車両側充電制御部5の充電制御ECUは、充電開始指示受信完了について通知ありと判定し、続いて自車両が搭載しているバッテリ6のSOC(State Of Charge)検出を行う(ステップS8)。
次に、車両側充電制御部5の車速指示手段10は、自車両のオートクルージング機能へステップS8で測定した自車両のSOCに応じた走行速度の指示を行う(ステップS9)。
そして、周波数f3の高周波信号を搬送波とする充電電流情報、充電電圧情報、検出したSOC情報などの充電情報を、フィルタ回路205を介して充電用二次コイル4へ出力する。この充電情報は、車両側の充電用二次コイル4と路面の一次コイルLとを介して路面側充電制御部1へ送信され、路面側充電制御部1ではフィルタ回路103とデコード回路104を介して充電情報を検出し、車両側充電制御部5から路面側充電制御部1への充電指示が行われる(ステップS10)。
車両側充電制御部5の充電制御ECUは、続いて路面側充電制御部1から充電情報の受信完了の返信があったか否かを判定する(ステップS11)。
When the charging control ECU of the vehicle side charging control unit 5 outputs the charging start instruction signal of the frequency f3 to the secondary coil 4 for charging, is there a notification from the road surface side charging control unit 1 about the completion of reception of the charging start instruction signal subsequently? It is determined whether or not (step S7). Since the road surface side charge control unit 1 notifies the charge control ECU of the vehicle side charge control unit 5 about the completion of reception of the charge start instruction in step S23, the charge control ECU of the vehicle side charge control unit 5 It is determined that there is a notification, and then SOC (State Of Charge) detection of the battery 6 mounted on the host vehicle is performed (step S8).
Next, the vehicle speed instruction means 10 of the vehicle-side charge control unit 5 instructs the traveling speed according to the SOC of the host vehicle measured in step S8 to the autocruising function of the host vehicle (step S9).
Then, charging information such as charging current information, charging voltage information, and detected SOC information using a high-frequency signal of frequency f3 as a carrier wave is output to charging secondary coil 4 via filter circuit 205. This charging information is transmitted to the road surface side charging control unit 1 via the vehicle side charging secondary coil 4 and the road surface primary coil L. The road surface side charging control unit 1 passes through the filter circuit 103 and the decoding circuit 104. The charging information is detected, and a charging instruction from the vehicle side charging control unit 5 to the road surface side charging control unit 1 is performed (step S10).
Subsequently, the charge control ECU of the vehicle-side charge control unit 5 determines whether or not there is a reply of completion of reception of the charge information from the road surface-side charge control unit 1 (step S11).

路面側充電制御部1では、車両側充電制御部5の充電制御ECUから送信された前記充電情報を検出し(ステップS26)、車両側充電制御部5の充電制御ECUから前記充電情報を受信すると(ステップS27)、車両側充電制御部5の充電制御ECUへ充電情報の受信完了について返信を行い(ステップS28)、図4に示す常開接点111を制御信号により閉成し、前記充電情報に応じた周波数f4の高周波電流を前記充電指示を受けたときの前記路面の一次コイルLへ、充電停止信号を受信するまで出力し(ステップS29、ステップS30、ステップS31)、前記路面の一次コイルLと磁気結合(磁気共鳴)した車両側の充電用二次コイル4を介して車両2のバッテリ6を充電する。   The road surface side charge control unit 1 detects the charge information transmitted from the charge control ECU of the vehicle side charge control unit 5 (step S26), and receives the charge information from the charge control ECU of the vehicle side charge control unit 5. (Step S27), a reply is sent to the charge control ECU of the vehicle side charge control unit 5 regarding the completion of reception of the charge information (Step S28), and the normally open contact 111 shown in FIG. A high-frequency current having a frequency f4 is output to the road surface primary coil L when receiving the charging instruction until a charge stop signal is received (step S29, step S30, step S31), and the road surface primary coil L is output. The battery 6 of the vehicle 2 is charged through the secondary coil 4 for charging on the vehicle side that is magnetically coupled (magnetic resonance) to the vehicle.

一方、車両側充電制御部5の充電制御ECUは、路面側充電制御部1へ送信した充電指示に応じて自車両が搭載しているバッテリ6へ充電が行われると、測定した電池電圧、充電電流、SOCなどをもとに充電が完了した状態か否かを判定し(ステップS12)、充電が完了していないと判定すると、ステップS3へ戻り、充電エリアの判定、位置合わせ処理、充電指示を繰り返し、時々刻々と変化する車両2の走行位置の位置合わせと、バッテリ6の充電情報に応じた充電を行う。一方、充電が完了したと判定すると、周波数f3の高周波信号を搬送波とする充電停止信号をフィルタ回路205を介して充電用二次コイル4へ出力する(ステップS13)。   On the other hand, the charging control ECU of the vehicle-side charging control unit 5 performs charging when the battery 6 mounted on the host vehicle is charged in accordance with the charging instruction transmitted to the road surface-side charging control unit 1. It is determined whether or not charging is complete based on current, SOC, etc. (step S12). If it is determined that charging is not complete, the process returns to step S3 to determine the charging area, alignment processing, and charging instruction. Are repeated, and the position of the traveling position of the vehicle 2 that changes from moment to moment is adjusted, and charging according to the charging information of the battery 6 is performed. On the other hand, if it is determined that the charging is completed, a charging stop signal having a high frequency signal of frequency f3 as a carrier wave is output to the charging secondary coil 4 via the filter circuit 205 (step S13).

路面側充電制御部1では、車両側充電制御部5の充電制御ECUから充電停止信号を受信すると(ステップS41、ステップS42)、図4に示す常開接点111を制御信号により開状態に制御し、前記路面の一次コイルLに対する周波数f4の高周波電流の供給を停止する(ステップS31)。   When the road surface charge control unit 1 receives a charge stop signal from the charge control ECU of the vehicle side charge control unit 5 (step S41, step S42), the normally open contact 111 shown in FIG. 4 is controlled to be opened by the control signal. Then, the supply of the high-frequency current having the frequency f4 to the primary coil L of the road surface is stopped (step S31).

充電エリア内でそれぞれ組にされた路面の一次コイルLは図2に示すように所定の間隔をあけて複数組、敷設されている。このため車両2が充電エリア内で組にされた路面の一次コイルL間を走行するとき、車両側の制御コイル31,32と路面の一次コイルLC1,C2,C3,C4,C5,C6との磁気結合(磁気共鳴)はなくなる。このため制御コイル31,32には周波数f1の高周波信号による起電力が一定レベル以上誘起されなくなる。この結果、車両側充電制御部5の充電制御ECUは、車両2は充電エリアの路面の一次コイルL上を走行していないと判定し(ステップS3)、周波数f3の高周波信号を搬送波とする充電停止信号を車両側の充電用二次コイル4へ出力する(ステップS14)。このとき車両2のシャーシ裏面の先端部に設けられている制御コイル31,32は路面の一次コイルLから外れた位置にあり、路面の一次コイルLとの電波通信は出来ない状態になっているが、車両側の充電用二次コイル4は路面の一次コイルL上にあり、車両側の充電用二次コイル4と路面の一次コイルLとは磁気結合(磁気共鳴)可能あるいは電波通信可能な状態にある。この結果、車両側の充電用二次コイル4と路面の一次コイルLとを介して前記充電停止信号は車両側充電制御部5の充電制御ECUから路面側充電制御部1へ送信される。   As shown in FIG. 2, a plurality of sets of primary coils L on the road surface each set in the charging area are laid at a predetermined interval. For this reason, when the vehicle 2 travels between the primary coils L of the road surface grouped in the charging area, the control coils 31 and 32 on the vehicle side and the primary coils LC1, C2, C3, C4, C5 and C6 of the road surface There is no magnetic coupling (magnetic resonance). For this reason, the electromotive force due to the high frequency signal having the frequency f1 is not induced in the control coils 31 and 32 above a certain level. As a result, the charge control ECU of the vehicle-side charge control unit 5 determines that the vehicle 2 is not traveling on the primary coil L on the road surface of the charge area (step S3), and charging using the high-frequency signal having the frequency f3 as a carrier wave. A stop signal is output to the secondary coil 4 for charging on the vehicle side (step S14). At this time, the control coils 31 and 32 provided at the front end portion of the rear surface of the chassis of the vehicle 2 are located away from the primary coil L on the road surface, and radio wave communication with the primary coil L on the road surface is not possible. However, the secondary coil 4 for charging on the vehicle side is on the primary coil L on the road surface, and the secondary coil 4 for charging on the vehicle side and the primary coil L on the road surface can be magnetically coupled (magnetic resonance) or capable of radio wave communication. Is in a state. As a result, the charge stop signal is transmitted from the charge control ECU of the vehicle side charge control unit 5 to the road surface side charge control unit 1 via the secondary coil 4 for charging on the vehicle side and the primary coil L of the road surface.

路面側充電制御部1では、一次コイルLに誘起した周波数f3の充電停止信号を検出し(ステップS41)、車両側充電制御部5の充電制御ECUから充電停止信号を受信したと判定すると(ステップS42)、図4に示す常開接点111を閉成された状態から開状態へ制御信号により切り替え、充電用の周波数f4の高周波電流の一次コイルLへの出力をオフする(ステップS31)。この結果、車両2が充電エリア内で組にされた路面の一次コイルL間を走行するようになると、その直後に路面側充電制御部1では、前記充電停止信号を検出した路面の一次コイルLの図4に示す常開接点111を制御信号により制御し、それまで閉状態に制御していた常開接点111を開状態に制御し、車両側に給電している一次コイルLと周波数f4の充電用高周波電源との接続を遮断し、一次コイルLに出力していた充電用の周波数f4の高周波電流をオフし、車両2が搭載しているバッテリ6の充電のための給電を停止する。
そして、車両2が再度、次の組にされた路面の一次コイルL上を走行するようになると、車両側充電制御部5の充電制御ECUは、ステップS1から電池認証処理、位置合わせ処理、充電指示などの処理を繰り返し、また路面側充電制御部1では、ステップS21から電池ID認証処理、課金処理、車両2が走行している前記路面の一次コイルLに対する充電用の高周波電流の出力制御を繰り返す。
When the road surface side charge control unit 1 detects the charge stop signal of the frequency f3 induced in the primary coil L (step S41) and determines that the charge stop signal is received from the charge control ECU of the vehicle side charge control unit 5 (step S41). S42), the normally open contact 111 shown in FIG. 4 is switched from the closed state to the open state by a control signal, and the output of the high-frequency current having the charging frequency f4 to the primary coil L is turned off (step S31). As a result, when the vehicle 2 travels between the primary coils L of the road surface grouped in the charging area, immediately after that, the road surface side charge control unit 1 detects the primary coil L of the road surface that has detected the charge stop signal. The normally-open contact 111 shown in FIG. 4 is controlled by a control signal, and the normally-open contact 111 that has been controlled to be closed until then is controlled to be open, and the primary coil L and the frequency f4 are fed to the vehicle side. The connection with the high frequency power supply for charging is cut off, the high frequency current of the charging frequency f4 output to the primary coil L is turned off, and the power supply for charging the battery 6 mounted on the vehicle 2 is stopped.
When the vehicle 2 travels again on the primary coil L of the road surface set to the next set, the charge control ECU of the vehicle-side charge control unit 5 starts the battery authentication process, the alignment process, and the charge from step S1. Processing such as instructions is repeated, and the road surface side charging control unit 1 performs battery ID authentication processing, charging processing, and output control of high frequency current for charging to the primary coil L of the road surface on which the vehicle 2 is traveling from step S21. repeat.

また、車両2が本線道路の充電エリア内を通過し、充電エリアから外れると、車両2は一次コイルL上から外れて走行するようになる。車両2が充電エリアから外れると、先ず車両2のシャーシ裏面の先端部に設けられている制御コイル31,32と路面の一次コイルLとの間の電波通信が遮断され、制御コイル31,32には周波数f1の高周波信号による起電力が一定レベル以上誘起されなくなる。この結果、車両側充電制御部5の充電制御ECUは、自車両は一次コイルL上を走行中でないと判定し(ステップS3)、周波数f3の高周波信号を搬送波とする充電停止信号を車両側の充電用二次コイル4へ出力する(ステップS14)。このとき車両2のシャーシ裏面の先端部に設けられている制御コイル31,32は路面の一次コイルLから外れた位置にあり、路面の一次コイルLとの間の電波通信は遮断された状態になっているが、車両側の充電用二次コイル4は路面の一次コイルL上にあり、車両側の充電用二次コイル4と路面の一次コイルLとは磁気結合(磁気共鳴)あるいは電波通信可能な状態にある。この結果、車両側の充電用二次コイル4と路面の一次コイルLとを介して前記充電停止信号は車両側充電制御部5の充電制御ECUから路面側充電制御部1へ送信される。   Further, when the vehicle 2 passes through the charging area of the main road and leaves the charging area, the vehicle 2 moves away from the primary coil L and travels. When the vehicle 2 is out of the charging area, first, radio wave communication between the control coils 31 and 32 provided at the front end of the rear surface of the vehicle 2 and the primary coil L on the road surface is cut off. Does not induce an electromotive force by a high frequency signal of frequency f1 above a certain level. As a result, the charge control ECU of the vehicle side charge control unit 5 determines that the host vehicle is not traveling on the primary coil L (step S3), and generates a charge stop signal using the high frequency signal of the frequency f3 as a carrier wave on the vehicle side. It outputs to the secondary coil 4 for charge (step S14). At this time, the control coils 31 and 32 provided at the front end portion of the rear surface of the chassis of the vehicle 2 are located away from the primary coil L on the road surface, and radio wave communication with the primary coil L on the road surface is cut off. However, the charging secondary coil 4 on the vehicle side is on the primary coil L on the road surface, and the secondary coil 4 for charging on the vehicle side and the primary coil L on the road surface are magnetically coupled (magnetic resonance) or radio wave communication. It is in a possible state. As a result, the charge stop signal is transmitted from the charge control ECU of the vehicle side charge control unit 5 to the road surface side charge control unit 1 via the secondary coil 4 for charging on the vehicle side and the primary coil L of the road surface.

路面側充電制御部1では、一次コイルLに誘起した周波数f3の充電停止信号を検出し(ステップS41)、車両側充電制御部5の充電制御ECUから充電停止信号を受信したと判定すると(ステップS42)、図4に示す常開接点111を閉成された状態から開状態へ制御信号により切り替え、充電用の周波数f4の高周波電流の一次コイルLへの出力をオフする(ステップS31)。この結果、車両2が充電エリアを外れ一次コイルL上から外れて走行するようになると、その直後に路面側充電制御部1では、それまで充電用の周波数f4の高周波電流を出力していた一次コイルLに対し、図4に示す常開接点111を制御信号により制御し、それまで閉状態に制御していた常開接点111を開状態に制御し、車両側に給電している一次コイルLと周波数f4の充電用高周波電源との接続を遮断する。   When the road surface side charge control unit 1 detects the charge stop signal of the frequency f3 induced in the primary coil L (step S41) and determines that the charge stop signal is received from the charge control ECU of the vehicle side charge control unit 5 (step S41). S42), the normally open contact 111 shown in FIG. 4 is switched from the closed state to the open state by a control signal, and the output of the high-frequency current having the charging frequency f4 to the primary coil L is turned off (step S31). As a result, when the vehicle 2 moves out of the charging area and deviates from the primary coil L, immediately after that, the road surface side charge control unit 1 outputs the high-frequency current of the charging frequency f4 until then. For the coil L, the normally open contact 111 shown in FIG. 4 is controlled by a control signal, and the normally open contact 111 that has been controlled to be closed is controlled to be opened, and the primary coil L that supplies power to the vehicle side is controlled. And the high frequency power supply for charging at frequency f4 are cut off.

以上説明したように、この実施の形態によれば、車両のシャーシ裏面に制御コイル31,32と充電用二次コイル4を設け、充電エリアの路面上には並列接続されたコイルC1,C2,C3,C4,C5,C6からなる一次コイルLを複数設けた。そして、制御コイル31,32のそれぞれと一次コイルLとの間の電波通信により先ず電池認証処理が行われ、電池認証が承認されると、次に制御コイル31,32に誘起される高周波信号による起電力のレベルが、それぞれ等しいレベルになるように車両2のパワーステアリングのモータが制御されることにより車両2の走行位置の微調整が行われ、車両2が充電エリアを走行中、車両2の制御コイル31,32と充電用二次コイル4とが路面の一次コイルLと重なる状態になるように位置合わせが行われる。さらに、この位置合わせが行われた状態で自車両のSOCに応じた自車両の走行速度制御、充電指示などの送受信が制御コイル31,32と一次コイルLとの間、あるいは充電用二次コイル4と一次コイルLとの間の電波通信を介して通信手段7,8により行われ、充電用二次コイル4と一次コイルLとの間の共鳴磁気結合により路面側充電制御部1から車両2が搭載するバッテリ6に対し充電が行われる。従って、走行中の車両2と路面側充電制御部1との間で、車両2の制御コイル31,32および充電用二次コイル4と、路面の一次コイルLとを介して通信を行いながら、車両2の路面側充電制御部1から走行中の車両2に対しワイヤレスで効率よく充電できる。   As described above, according to this embodiment, the control coils 31 and 32 and the charging secondary coil 4 are provided on the rear surface of the chassis of the vehicle, and the coils C1, C2, which are connected in parallel on the road surface of the charging area. A plurality of primary coils L made of C3, C4, C5 and C6 were provided. The battery authentication process is first performed by radio wave communication between each of the control coils 31 and 32 and the primary coil L. When the battery authentication is approved, the high frequency signal induced in the control coils 31 and 32 is used. The power steering motor of the vehicle 2 is controlled so that the electromotive force levels are equal to each other, so that the travel position of the vehicle 2 is finely adjusted. Positioning is performed so that the control coils 31 and 32 and the charging secondary coil 4 overlap with the primary coil L of the road surface. Further, in the state in which this alignment is performed, transmission / reception of the traveling speed control of the own vehicle according to the SOC of the own vehicle, the charging instruction, etc. is performed between the control coils 31 and 32 and the primary coil L or the secondary coil for charging. 4 and the primary coil L is performed by the communication means 7 and 8 via radio wave communication between the road surface side charge control unit 1 and the vehicle 2 by the resonance magnetic coupling between the secondary coil for charging 4 and the primary coil L. The battery 6 installed in is charged. Therefore, while communicating between the traveling vehicle 2 and the road surface side charge control unit 1 through the control coils 31 and 32 and the charging secondary coil 4 of the vehicle 2 and the primary coil L of the road surface, The road surface side charging control unit 1 of the vehicle 2 can efficiently charge the traveling vehicle 2 wirelessly.

(第2の実施の形態)
なお、以上説明した実施の形態では、車両2は制御コイル31,32と充電用二次コイル4の二種類のコイルを備えた構成であったが、制御コイル31,32と充電用二次コイル4とを一種類の車両側二次コイルとして構成し、この車両側二次コイルと路面の一次コイルLとの間の共鳴磁気結合を介して一次コイルLから非接触で給電を行うとともに電波通信により必要な各種情報を送受信する構成であってもよい。
図8は、この実施の形態のワイヤレス給電システムの構成を示す概略構成図である。図8において図1と同一または相当の部分については同一の符号を付し説明を省略する。このワイヤレス給電システムは、道路側に設けられた路面側充電制御部301、車両2の路面GLと対面するシャーシ裏面に配置され、車両2が充電エリアを走行すると、路面の一次コイルLと磁気結合する車両側二次コイル41,42を介してバッテリ6へ充電を行う車両側充電制御部305を備えている。車両側充電制御部305は充電制御ECUを有しており、例えばステアリング制御ECUなどの他のECUと通信を行い、データの送受信が可能である。
この実施の形態のワイヤレス給電システムでも、車両2が搭載する例えばリチウムイオン電池であるバッテリ6へ道路側に設けられた充電制御部301から充電を行う。
この実施の形態では、充電エリアの構成は、図9に示すように本線道路から分岐した分岐路として構成されている。そして、複数のコイルC1,C2,C3,C4,C5,C6からなる一次コイルLが所定の間隔を有して複数組、充電エリアの路面GLに敷設されている。
図9は、この実施の形態のワイヤレス給電システムの充電エリアの構成を示す説明図である。
図8に戻り、充電制御部301は、通信手段7,8により一次コイルLと車両側二次コイル41,42との電波通信により車両側充電制御部305との間で送受信する位置合わせ信号(f1)、電池認証情報(f2)、充電情報(f3)、充電エリア判定情報(f5)をもとに、一次コイルLに対し所定周波数f4の充電用の高周波電流の供給を行う。
一次コイルLに対し電力供給用高周波電源から所定周波数f4の充電用の高周波電流の供給を行う構成は、この実施の形態においても前記第1の実施の形態の図3、図4で説明した構成と同一であり、図3に示す路面に設置された一次コイルLへ給電を行う道路側の構成と、図4に示す路面に設置された一次コイルLへ給電を行う路面側充電制御部とスイッチ回路の構成は、この実施の形態に引用する。
なお、この実施の形態でも電池認証情報は周波数f2を搬送波とするコード化された信号とする。また、充電停止、充電指示および充電情報は周波数f3を搬送波とするコード化された信号とする。
車両側二次コイル41,42は、車両2の路面GLと対面するシャーシ裏面に配置されており、車両側充電制御部305は車両側二次コイル41,42と一次コイルLとの間の電波通信を実現する通信手段8,7により位置合わせ信号、電池認証情報、充電停止信号、充電指示信号、充電情報を充電制御部301との間で送受信する。また、電力供給用高周波電源がスイッチ回路11〜17により一次コイルLへ接続されることで、一次コイルLへ充電用の所定周波数(f4)の高周波電流が供給される。
車両側充電制御部305は、充電制御部301との間で所定周波数f1による位置合わせ信号の送受信、所定周波数f2を搬送波とする電池認証情報の送受信、所定周波数f3を搬送波とする充電停止信号、充電指示信号および充電情報の送受信を行う。そして、車両側コイル位置調整手段9が前記位置合わせ信号をもとに車両2が充電エリアを走行しているときの車両2のステアリングの自動調整を行い、車両2の走行位置の制御を行い、前記車両側二次コイル41,42と、路面GLに敷設された一次コイルLとの間の位置合わせを行う。
車両側二次コイル41,42と路面GLに敷設された一次コイルLとの間の位置合わせが行われ、車両側二次コイル41,42と一次コイルLとが重なる状態で車両2が充電エリアの一次コイルL上を走行すると、電力供給用高周波電源から充電用の所定周波数f4の高周波電流が一次コイルLへ供給され、一次コイルLと前記車両側二次コイル41,42との間の磁気結合(磁気共鳴)により車両側二次コイル41,42に起電力が励起され、車両2が搭載しているバッテリ6へ充電が行われる。
(Second Embodiment)
In the embodiment described above, the vehicle 2 is configured to include two types of coils, that is, the control coils 31 and 32 and the charging secondary coil 4. However, the control coils 31 and 32 and the charging secondary coil are provided. 4 is configured as one type of vehicle-side secondary coil, and power is supplied from the primary coil L in a non-contact manner through a resonant magnetic coupling between the vehicle-side secondary coil and the road surface primary coil L, and radio wave communication. May be configured to transmit and receive various necessary information.
FIG. 8 is a schematic configuration diagram showing the configuration of the wireless power feeding system of this embodiment. 8, parts that are the same as or equivalent to those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted. This wireless power supply system is disposed on the road surface side charging control unit 301 provided on the road side, on the rear surface of the chassis facing the road surface GL of the vehicle 2, and when the vehicle 2 travels in the charging area, it is magnetically coupled with the primary coil L of the road surface. The vehicle side charge control part 305 which charges the battery 6 via the vehicle side secondary coils 41 and 42 to be provided is provided. The vehicle-side charge control unit 305 has a charge control ECU, and can communicate with other ECUs such as a steering control ECU to transmit and receive data.
Also in the wireless power feeding system of this embodiment, charging is performed from the charging control unit 301 provided on the road side to the battery 6 that is mounted on the vehicle 2, for example, a lithium ion battery.
In this embodiment, the charging area is configured as a branch road branched from the main road as shown in FIG. A plurality of sets of primary coils L including a plurality of coils C1, C2, C3, C4, C5, and C6 are laid on the road surface GL of the charging area with a predetermined interval.
FIG. 9 is an explanatory diagram showing the configuration of the charging area of the wireless power feeding system of this embodiment.
Returning to FIG. 8, the charging control unit 301 transmits and receives a positioning signal (transmission / reception between the primary coil L and the vehicle side secondary coils 41 and 42 by the communication means 7 and 8 and the vehicle side charging control unit 305 ( f1) Based on the battery authentication information (f2), the charging information (f3), and the charging area determination information (f5), a high frequency current for charging at a predetermined frequency f4 is supplied to the primary coil L.
The configuration for supplying a high-frequency current for charging at a predetermined frequency f4 from the high-frequency power supply for power supply to the primary coil L is the configuration described in FIGS. 3 and 4 of the first embodiment also in this embodiment. The road side configuration for supplying power to the primary coil L installed on the road surface shown in FIG. 3 and the road surface side charge control unit and switch for supplying power to the primary coil L installed on the road surface shown in FIG. The circuit configuration is cited in this embodiment.
In this embodiment also, the battery authentication information is a coded signal having the frequency f2 as a carrier wave. The charge stop, charge instruction, and charge information are coded signals having the frequency f3 as a carrier wave.
The vehicle-side secondary coils 41 and 42 are disposed on the rear surface of the chassis facing the road surface GL of the vehicle 2, and the vehicle-side charge control unit 305 is a radio wave between the vehicle-side secondary coils 41 and 42 and the primary coil L. The communication means 8 and 7 for realizing communication transmit / receive a positioning signal, battery authentication information, a charging stop signal, a charging instruction signal, and charging information to / from the charging control unit 301. Further, the high-frequency power supply for power supply is connected to the primary coil L by the switch circuits 11 to 17, whereby a high-frequency current having a predetermined frequency (f 4) for charging is supplied to the primary coil L.
The vehicle-side charge control unit 305 transmits / receives an alignment signal with the predetermined frequency f1 to / from the charge control unit 301, transmits / receives battery authentication information with the predetermined frequency f2 as a carrier wave, a charge stop signal with the predetermined frequency f3 as a carrier wave, The charging instruction signal and charging information are transmitted and received. And the vehicle side coil position adjusting means 9 automatically adjusts the steering of the vehicle 2 when the vehicle 2 is traveling in the charging area based on the alignment signal, and controls the traveling position of the vehicle 2, The vehicle side secondary coils 41 and 42 are aligned with the primary coil L laid on the road surface GL.
Positioning between the vehicle side secondary coils 41 and 42 and the primary coil L laid on the road surface GL is performed, and the vehicle 2 is charged in the charging area with the vehicle side secondary coils 41 and 42 and the primary coil L overlapping. When the vehicle runs on the primary coil L, a high-frequency current having a predetermined frequency f4 for charging is supplied from the high-frequency power supply for power supply to the primary coil L, and the magnetism between the primary coil L and the vehicle-side secondary coils 41, 42 is supplied. The electromotive force is excited in the vehicle side secondary coils 41 and 42 by the coupling (magnetic resonance), and the battery 6 mounted on the vehicle 2 is charged.

図10は、この実施の形態であるワイヤレス給電システムの車両側と道路側の構成を示すブロック図である。道路側の構成では、一次コイルLごとにスイッチ回路11,12,13,14,15,16,17が設けられている。図10では、複数設けられている一次コイルLのうちの一つと路面側充電制御部301との回路構成を示しており、充電制御部301には路面の一次コイルLごとに図10に示す構成が設けられている。
スイッチ回路の構成は図4に示すように、各スイッチ回路は路面側充電制御部301から出力される制御信号により状態が制御される常開接点111を備えている。そして、各スイッチ回路の常開接点111の一方の端子には電力供給用高周波電源が接続されている。常開接点111の他方の端子は並列接続された一次コイルLを構成するコイルC1,C2,C3,C4,C5,C6の一方の端子に接続されている。常開接点111と接続されたコイルC1,C2,C3,C4,C5,C6の一方の端子は、充電制御部301のフィルタ回路432,433,434,435と接続されている。
フィルタ回路432は、中心周波数f1のバンドパスフィルタである。フィルタ回路433は、中心周波数f5のバンドパスフィルタである。フィルタ回路434は、中心周波数f3のバンドパスフィルタであり、電波通信により車両側二次コイルと一次コイルLを介して車両側充電制御部305から周波数f3の搬送波により送信された充電停止信号、充電開始指示信号および充電情報を検出しデコード回路436へ出力する。デコード回路436は、フィルタ回路434から出力される周波数f3の搬送波により送信された充電停止信号、充電開始指示信号および充電情報をデコードし抽出する。
FIG. 10 is a block diagram showing the configuration of the vehicle side and the road side of the wireless power feeding system according to this embodiment. In the configuration on the road side, switch circuits 11, 12, 13, 14, 15, 16, and 17 are provided for each primary coil L. FIG. 10 shows a circuit configuration of one of the plurality of primary coils L and the road surface side charge control unit 301, and the configuration shown in FIG. 10 for each primary coil L of the road surface is included in the charge control unit 301. Is provided.
As shown in FIG. 4, each switch circuit includes a normally open contact 111 whose state is controlled by a control signal output from the road surface side charge control unit 301. A high frequency power supply for power supply is connected to one terminal of the normally open contact 111 of each switch circuit. The other terminal of the normally open contact 111 is connected to one terminal of coils C1, C2, C3, C4, C5 and C6 constituting the primary coil L connected in parallel. One terminal of the coils C1, C2, C3, C4, C5, and C6 connected to the normally open contact 111 is connected to the filter circuits 432, 433, 434, and 435 of the charging control unit 301.
The filter circuit 432 is a bandpass filter having a center frequency f1. The filter circuit 433 is a bandpass filter having a center frequency f5. The filter circuit 434 is a band-pass filter having a center frequency f3, and a charge stop signal and a charge transmitted from the vehicle-side charge control unit 305 by a carrier wave having the frequency f3 via the vehicle-side secondary coil and the primary coil L through radio wave communication. A start instruction signal and charging information are detected and output to decoding circuit 436. The decode circuit 436 decodes and extracts the charge stop signal, the charge start instruction signal, and the charge information transmitted by the carrier wave having the frequency f3 output from the filter circuit 434.

図10に示す車両側の構成では、車両側二次コイル41,42の配置された形状は、路面の一次コイルLの形状と略同一となるように構成されている。そして、一方の車両側二次コイル41には周波数f2の搬送波により送信される電池認証情報が出力され、あるいは路面側充電制御部301から送信されてくる電池認証結果、課金処理結果を検出する中心周波数f2のバンドパスフィルタであるフィルタ回路414が接続されている。
また、車両側二次コイル41にはフィルタ回路411,413が接続されている。
フィルタ回路411は、中心周波数f4のバンドパスフィルタであり、磁気結合された車両側二次コイル41と一次コイルLを介して車両側充電制御部305の電力供給用高周波電源から供給された周波数f4の充電用の高周波電流を車両側充電回路へ出力する。
フィルタ回路413は、中心周波数f3のバンドパスフィルタであり、電波通信により車両側二次コイル41と一次コイルLを介して、充電停止信号、充電指示信号、充電情報を路面側充電制御部301へ出力する。
また、車両側二次コイル42にはフィルタ回路412,415が接続されている。
フィルタ回路412は、中心周波数f4のバンドパスフィルタであり、磁気結合された車両側二次コイル42と一次コイルLを介して車両側充電制御部305の電力供給用高周波電源から供給された周波数f4の充電用の高周波電流を車両側充電回路へ出力する。
フィルタ回路415は、中心周波数f5のバンドパスフィルタであり、充電制御部301へ送信される充電エリア判定情報を車両側二次コイル42へ出力し、また電波通信により一次コイルLと車両側二次コイル42とを介して充電制御部301から送られてきた充電エリア判定情報を検出する。
また、車両側二次コイル41,42の位置を路面の一次コイルLに対し最適な位置に位置決めするためのフィルタ回路416,417、検波回路418,420、積分回路419,421、作動増幅回路422を含む車両側コイル位置調整手段9が設けられている。
フィルタ回路416は中心周波数f1のバンドパスフィルタであり、車両側二次コイル41に接続され、車両側二次コイル41に誘起した周波数f1の位置合わせ信号を検出し検波回路418へ出力する。
フィルタ回路417は、中心周波数f1のバンドパスフィルタであり、車両側二次コイル42に接続され、車両側二次コイル42に誘起した周波数f1の位置合わせ信号を検出し検波回路420へ出力する。
検波回路418は、フィルタ回路416により検出された位置合わせ信号を検波する。
検波回路420は、フィルタ回路417により検出された位置合わせ信号を検波する。
積分回路419は、検波回路418により検波された位置合わせ信号を積分し、位置合わせ信号の受信レベルに応じた直流信号へ変換する。
積分回路421は、検波回路420により検波された位置合わせ信号を積分し、位置合わせ信号の受信レベルに応じた直流信号へ変換する。
差動増幅回路422は、積分回路419により変換された直流信号レベルと、積分回路421により変換された直流信号レベルとの差に応じた信号を出力する。差動増幅回路422の出力は図示していない充電制御ECUへ出力され、充電制御ECUは、差動増幅回路422の出力に応じてステアリングを駆動するモータの制御信号を生成し、ステアリング制御ECUを介して車両2の走行位置を調整し、路面の一次コイルLに対する車両側二次コイル41,42の位置関係がズレのない路面の一次コイルLに対面して重なるように制御する。
In the configuration on the vehicle side shown in FIG. 10, the shape in which the vehicle side secondary coils 41 and 42 are arranged is configured to be substantially the same as the shape of the primary coil L on the road surface. Then, the battery authentication information transmitted by the carrier wave of the frequency f2 is output to one of the vehicle side secondary coils 41, or the battery authentication result transmitted from the road surface side charge control unit 301 and the charging process result are detected. A filter circuit 414 that is a band-pass filter of frequency f2 is connected.
Further, filter circuits 411 and 413 are connected to the vehicle-side secondary coil 41.
The filter circuit 411 is a band-pass filter having a center frequency f4, and the frequency f4 supplied from the high-frequency power supply for power supply of the vehicle-side charging control unit 305 via the magnetically coupled vehicle-side secondary coil 41 and the primary coil L. Is output to the vehicle side charging circuit.
The filter circuit 413 is a bandpass filter having a center frequency f3, and sends a charge stop signal, a charge instruction signal, and charge information to the road surface side charge control unit 301 via the vehicle side secondary coil 41 and the primary coil L by radio wave communication. Output.
Further, filter circuits 412 and 415 are connected to the vehicle-side secondary coil 42.
The filter circuit 412 is a band-pass filter having a center frequency f4, and the frequency f4 supplied from the high-frequency power supply for power supply of the vehicle-side charging control unit 305 via the magnetically coupled vehicle-side secondary coil 42 and the primary coil L. Is output to the vehicle side charging circuit.
The filter circuit 415 is a band-pass filter having a center frequency f5, and outputs the charging area determination information transmitted to the charging control unit 301 to the vehicle-side secondary coil 42, and the primary coil L and the vehicle-side secondary by radio wave communication. Charging area determination information sent from the charging control unit 301 via the coil 42 is detected.
Further, filter circuits 416 and 417 for detecting the positions of the vehicle side secondary coils 41 and 42 at an optimum position with respect to the primary coil L on the road surface, detection circuits 418 and 420, integration circuits 419 and 421, and an operation amplification circuit 422. The vehicle side coil position adjustment means 9 including is provided.
The filter circuit 416 is a bandpass filter having a center frequency f1, is connected to the vehicle-side secondary coil 41, detects an alignment signal of the frequency f1 induced in the vehicle-side secondary coil 41, and outputs it to the detection circuit 418.
The filter circuit 417 is a band-pass filter having a center frequency f1, is connected to the vehicle-side secondary coil 42, detects an alignment signal of the frequency f1 induced in the vehicle-side secondary coil 42, and outputs the detected signal to the detection circuit 420.
The detection circuit 418 detects the alignment signal detected by the filter circuit 416.
The detection circuit 420 detects the alignment signal detected by the filter circuit 417.
The integration circuit 419 integrates the alignment signal detected by the detection circuit 418 and converts it into a DC signal corresponding to the reception level of the alignment signal.
The integration circuit 421 integrates the alignment signal detected by the detection circuit 420 and converts it to a DC signal corresponding to the reception level of the alignment signal.
The differential amplifier circuit 422 outputs a signal corresponding to the difference between the DC signal level converted by the integrating circuit 419 and the DC signal level converted by the integrating circuit 421. The output of the differential amplifier circuit 422 is output to a charge control ECU (not shown). The charge control ECU generates a control signal for a motor that drives the steering in accordance with the output of the differential amplifier circuit 422, and the steering control ECU The position of the vehicle-side secondary coils 41 and 42 with respect to the road surface primary coil L is controlled so as to face and overlap the road surface primary coil L with no deviation.

次に動作について説明する。
図11は、この実施の形態のワイヤレス給電システムの動作を示すフローチャートであり、車両側充電制御部305の充電制御ECUと路面側充電制御部301との動作として示されている。図11において図7と同一または相当のステップについては同一の符号を付し説明を省略する。
この実施の形態では、車両が本線道路から充電エリアに進路変更し路面上の一次コイルL上を走行するようになると、車両側二次コイル41,42と一次コイルLの間の電波通信が可能になることで、先ず電池認証処理を行う(ステップS1)。この電池認証処理では、車両側充電制御部305の充電制御ECUが電池ID情報を、フィルタ回路414を介して車両側二次コイル41へ出力し、車両側二次コイル41と路面の一次コイルLとを介して路面側充電制御部301へ送信する。路面側充電制御部301では前記一次コイルLに誘起した周波数f2による電池ID情報をフィルタ回路435を介して受信し、路面側充電制御部301では受信した電池ID情報をもとに電池認証、課金処理を行い、この認証結果、課金処理結果を一次コイルLと車両側二次コイル41との間の電波通信により車両側充電制御部305の充電制御ECUへ返信する(ステップS21)。
車両側充電制御部305では電池認証が完了したか否かを判定しており(ステップS2)、電池認証が確認され電池認証が完了すると、車両側二次コイル41,42と前記路面側の一次コイルLとの電波通信を実現する通信手段7,8により車両側充電制御部305と路面側充電制御部301との間で周波数f5の充電エリア判定情報が送受信される。車両側充電制御部305では、自車両が路面上の一次コイルL上を走行しているか否かを判定しており(ステップS3)、路面側充電制御部301から充電エリア判定情報を受信することで車両2が路面上の一次コイルL上を走行していると判定する。また路面側充電制御部301でも、車両側充電制御部305から充電エリア判定情報を受信することで路面上の一次コイルL上を車両2が走行しているか、また車両2が充電エリアのどの一次コイルL上を走行しているかを判定する(ステップS121)。
この実施の形態でも、車両側充電制御部305は自車両について充電エリアの一次コイルL上を走行していると判定すると、車両側二次コイル41,42に誘起される周波数f1の起電力の差分から路面の一次コイルLに対する位置合わせ処理を行う(ステップS4)。また、前記位置合わせ処理が完了すると(ステップS5)、充電開始指示信号を路面側充電制御部301へ送信し(ステップS6)、SOC検出(ステップS8)、検出したSOCに応じた車速指示(ステップS9)、充電指示(ステップS10)を行う。
一方、路面側充電制御部301は、充電エリアの路面上の一次コイルL上を車両2が走行していると判定すると(ステップS121)、充電開始指示信号を車両側充電制御部305から受信することで充電開始指示信号受信完了を返信し(ステップS124)、充電情報の受信を行い(ステップS26)、さらに前記ステップS121で特定した路面上の一次コイルLのスイッチ回路の常開接点を制御信号により閉成することで、前記特定した路面上の一次コイルを電力供給用高周波電源に接続し、充電情報に応じた高周波電流を、前記ステップS121で特定した路面上の一次コイルLへ出力する(ステップS29)。そして、路面側充電制御部301は、車両側充電制御部305から充電完了に伴う充電停止信号を受信するか、あるいは車両2の車両側充電制御部305との間で充電エリア判定情報の送受信が不可能になることで充電エリアの路面上の一次コイルL上を車両2が走行していないと判定すると、前記スイッチ回路の常開接点を制御信号により開状態に制御し、前記一次コイルLと電力供給用高周波電源との接続を解除し、接続前記一次コイルLへ出力していた充電用の高周波電流をオフする(ステップS31)。
Next, the operation will be described.
FIG. 11 is a flowchart showing the operation of the wireless power feeding system of this embodiment, and is shown as the operation of the charge control ECU of the vehicle side charge control unit 305 and the road surface side charge control unit 301. In FIG. 11, the same or corresponding steps as those in FIG.
In this embodiment, when the vehicle changes its course from the main road to the charging area and travels on the primary coil L on the road surface, radio wave communication between the vehicle-side secondary coils 41 and 42 and the primary coil L is possible. Thus, the battery authentication process is first performed (step S1). In this battery authentication process, the charge control ECU of the vehicle side charge control unit 305 outputs the battery ID information to the vehicle side secondary coil 41 via the filter circuit 414, and the vehicle side secondary coil 41 and the road surface primary coil L. To the road surface side charge control unit 301. The road surface side charging control unit 301 receives battery ID information by the frequency f2 induced in the primary coil L via the filter circuit 435, and the road surface side charging control unit 301 performs battery authentication and charging based on the received battery ID information. Processing is performed, and the authentication result and the billing processing result are returned to the charge control ECU of the vehicle side charge control unit 305 by radio wave communication between the primary coil L and the vehicle side secondary coil 41 (step S21).
The vehicle-side charge control unit 305 determines whether or not the battery authentication is completed (step S2). When the battery authentication is confirmed and the battery authentication is completed, the vehicle-side secondary coils 41 and 42 and the road surface side primary are determined. Charging area determination information of frequency f5 is transmitted and received between the vehicle side charging control unit 305 and the road surface side charging control unit 301 by the communication means 7 and 8 that realize radio wave communication with the coil L. The vehicle-side charge control unit 305 determines whether or not the host vehicle is traveling on the primary coil L on the road surface (step S3), and receives charging area determination information from the road-side charge control unit 301. Thus, it is determined that the vehicle 2 is traveling on the primary coil L on the road surface. The road surface side charging control unit 301 also receives the charging area determination information from the vehicle side charging control unit 305 to determine whether the vehicle 2 is traveling on the primary coil L on the road surface, and which primary side of the charging area the vehicle 2 is in. It is determined whether the vehicle is traveling on the coil L (step S121).
Also in this embodiment, when the vehicle-side charge control unit 305 determines that the vehicle is traveling on the primary coil L of the charging area, the electromotive force of the frequency f1 induced in the vehicle-side secondary coils 41 and 42 is obtained. From the difference, alignment processing for the primary coil L on the road surface is performed (step S4). When the positioning process is completed (step S5), a charge start instruction signal is transmitted to the road surface side charge control unit 301 (step S6), SOC detection (step S8), and a vehicle speed instruction (step S8) corresponding to the detected SOC (step S6). S9) A charge instruction (step S10) is performed.
On the other hand, if the road surface side charge control part 301 determines with the vehicle 2 driving | running | working on the primary coil L on the road surface of a charge area (step S121), it will receive a charge start instruction | indication signal from the vehicle side charge control part 305. Thus, the completion of reception of the charging start instruction signal is returned (step S124), the charging information is received (step S26), and the normally open contact of the switch circuit of the primary coil L on the road surface specified in step S121 is controlled. The primary coil on the identified road surface is connected to the high-frequency power supply for power supply, and the high-frequency current corresponding to the charging information is output to the primary coil L on the road surface identified in step S121 ( Step S29). Then, the road surface side charge control unit 301 receives a charge stop signal accompanying the completion of charging from the vehicle side charge control unit 305 or transmits / receives charge area determination information to / from the vehicle side charge control unit 305 of the vehicle 2. If it is determined that the vehicle 2 is not traveling on the primary coil L on the road surface of the charging area due to the impossibility, the normally open contact of the switch circuit is controlled to an open state by a control signal, and the primary coil L The connection with the high-frequency power supply for power supply is released, and the high-frequency current for charging output to the connected primary coil L is turned off (step S31).

以上説明したように、この実施の形態によれば、車両のシャーシ裏面に車両側二次コイル41,42を設け、充電エリアの路面上には並列接続された複数のコイルC1,C2,C3,C4,C5,C6からなる一次コイルLを複数設けた。そして、車両側二次コイル41,42のそれぞれと一次コイルLとの間の電波通信により先ず電池認証処理が行われ、電池認証が承認されると、次に車両側二次コイル41,42に誘起される周波数f1による起電力のレベルが、それぞれ等しいレベルになるように車両2のパワーステアリングのモータが制御されることにより車両2の走行位置の微調整が行われ、車両2の車両側二次コイル41,42が路面の一次コイルLと重なるように位置合わせが行われる。そして、この位置合わせが行われた状態で自車両のSOCに応じた自車両の走行速度制御が行われ、充電情報、車両2の充電指示が通信手段7,8により送受信され、充電情報に応じて路面側充電制御部301から充電が行われる。従って、走行中の車両2の車両側充電制御部305と路面側充電制御部301との間で、車両側二次コイル41,42と路面の一次コイルLとを介して通信を行いながら、路面側充電制御部301から走行中の車両2に対しワイヤレスで効率よく充電できる効果がある。   As described above, according to this embodiment, the vehicle-side secondary coils 41 and 42 are provided on the rear surface of the vehicle chassis, and a plurality of coils C1, C2, C3 connected in parallel on the road surface of the charging area. A plurality of primary coils L made of C4, C5, and C6 were provided. Then, battery authentication processing is first performed by radio wave communication between each of the vehicle side secondary coils 41 and 42 and the primary coil L. When the battery authentication is approved, the vehicle side secondary coils 41 and 42 are By controlling the power steering motor of the vehicle 2 so that the level of the electromotive force generated by the induced frequency f1 is equal to each other, the travel position of the vehicle 2 is finely adjusted. Positioning is performed so that the secondary coils 41 and 42 overlap the primary coil L of the road surface. Then, the traveling speed control of the host vehicle is performed in accordance with the SOC of the host vehicle in a state where the alignment is performed, and charging information and a charging instruction for the vehicle 2 are transmitted and received by the communication means 7 and 8, and according to the charging information. Then, charging is performed from the road surface side charging control unit 301. Accordingly, while performing communication between the vehicle-side secondary coils 41 and 42 and the road surface primary coil L between the vehicle-side charging control unit 305 and the road-side charging control unit 301 of the traveling vehicle 2, the road surface There is an effect that the side charging control unit 301 can efficiently and efficiently charge the traveling vehicle 2.

(第3の実施の形態)
なお、以上の説明では、充電エリアの路面の一次コイルLは並列接続された複数のコイルC1,C2,C3,C4,C5,C6が複数敷設されているとして説明したが、一次コイルLの各コイルC1,C2,C3,C4,C5,C6が、図12に示すように互にハーフピッチの間隔で重畳した位置関係で並列接続され路面側に敷設されていてもよい。
図12は、この実施の形態であるワイヤレス給電システムの路面の一次コイルLの構成を示す概略構成図である。
一次コイルLをこのように構成した場合、一次コイルL上を車両2が走行する期間、車両側の制御コイル31,32と一次コイルL、車両側の充電用二次コイル4と一次コイルL、あるいは車両側二次コイル41,42と一次コイルLは常に磁気結合した状態、電波通信可能な状態にあることから充電と制御を連続的に行うことが可能となる。
(Third embodiment)
In the above description, the primary coil L on the road surface of the charging area has been described as being provided with a plurality of coils C1, C2, C3, C4, C5, and C6 connected in parallel. The coils C1, C2, C3, C4, C5, and C6 may be connected in parallel and laid on the road surface side in a positional relationship of being overlapped with each other at a half pitch interval as shown in FIG.
FIG. 12 is a schematic configuration diagram showing the configuration of the primary coil L of the road surface of the wireless power feeding system according to this embodiment.
When the primary coil L is configured in this way, the vehicle-side control coils 31 and 32 and the primary coil L, the vehicle-side secondary coil for charging 4 and the primary coil L, during the period when the vehicle 2 travels on the primary coil L, Or since the vehicle side secondary coils 41 and 42 and the primary coil L are always in a magnetically coupled state and in a state where radio wave communication is possible, charging and control can be performed continuously.

(第4の実施の形態)
なお、以上の説明した実施の形態では、路面の一次コイルLは並列接続された複数のコイルC1,C2,C3,C4,C5,C6から構成され、複数敷設されているとして説明したが、前記一次コイルLは、それぞれ独立したコイルが充電エリアの路面上に敷設されている構成であってもよい。
第2の実施の形態の構成を例に説明すると、車両が充電エリアに進路変更し路面側の一次コイル上を走行するようになると、一次コイル上を車両が通過するたびに、車両側二次コイル41,42と前記路面側の一次コイルとの電波通信により、車両側充電制御部305と路面側充電制御部301との間で充電エリア判定情報が送受信される。車両側充電制御部305では、路面側充電制御部301から充電エリア判定情報を受信することで車両が路面側の一次コイル上を走行していることを判定する。また路面側充電制御部301でも、車両側充電制御部305から充電エリア判定情報を受信することで車両が充電エリアのどの一次コイル上を走行しているかを特定し、また充電エリア判定情報の受信から路面上の一次コイル上を車両が走行していることを判定する。
また、車両側充電制御部305は自車両について充電エリアの一次コイルL上を走行していると判定すると、車両側二次コイル41,42に励起される位置合わせ信号による起電力の差分から路面の一次コイルLに対する位置合わせ処理を行う。また、充電開始信号を路面側充電制御部301へ送信し、SOC検出、検出したSOCに応じた車速指示、充電指示を行う。
一方、路面側充電制御部301は、充電エリアの路面の一次コイル上を車両が走行していると判定すると、充電開始信号を車両側充電制御部305から受信することで充電情報の受信を行い、さらに前記特定した路面上の一次コイルを電力供給用高周波電源に接続し、充電情報に応じた高周波電流を、前記特定した一次コイルへ出力する。そして、路面側充電制御部301は、車両側充電制御部305から充電完了に伴う充電停止信号を受信するか、あるいは車両の車両側充電制御部305との間で充電エリア判定情報の送受信が不可能になることで充電エリアの一次コイル上を車両が走行していないと判定すると、前記一次コイルと電力供給用高周波電源との接続を解除し、接続前記一次コイルへの充電用高周波電流の供給を遮断する。
(Fourth embodiment)
In the above-described embodiment, the primary coil L of the road surface has been described as being composed of a plurality of coils C1, C2, C3, C4, C5, and C6 connected in parallel. The primary coil L may be configured such that independent coils are laid on the road surface of the charging area.
The configuration of the second embodiment will be described as an example. When the vehicle changes its course to the charging area and runs on the primary coil on the road surface side, every time the vehicle passes on the primary coil, the secondary on the vehicle side Charging area determination information is transmitted and received between the vehicle side charging control unit 305 and the road surface side charging control unit 301 by radio wave communication between the coils 41 and 42 and the primary coil on the road surface side. The vehicle side charge control unit 305 receives the charging area determination information from the road surface side charge control unit 301 to determine that the vehicle is traveling on the road surface side primary coil. Further, the road surface side charge control unit 301 also specifies on which primary coil of the charging area the vehicle is traveling by receiving the charging area determination information from the vehicle side charging control unit 305, and receives the charging area determination information. It is determined that the vehicle is traveling on the primary coil on the road surface.
When the vehicle-side charge control unit 305 determines that the vehicle is traveling on the primary coil L of the charging area, the road surface is determined from the difference in electromotive force generated by the alignment signals excited by the vehicle-side secondary coils 41 and 42. The alignment process for the primary coil L is performed. Moreover, a charge start signal is transmitted to the road surface side charge control part 301, SOC detection, the vehicle speed instruction | indication according to detected SOC, and a charge instruction | indication are performed.
On the other hand, when the road surface side charge control unit 301 determines that the vehicle is traveling on the primary coil of the road surface in the charging area, the road surface side charge control unit 301 receives the charging information by receiving a charge start signal from the vehicle side charge control unit 305. Further, the primary coil on the identified road surface is connected to a high frequency power supply for power supply, and a high frequency current corresponding to charging information is output to the identified primary coil. Then, the road surface side charging control unit 301 receives a charging stop signal accompanying the completion of charging from the vehicle side charging control unit 305 or does not transmit or receive charging area determination information to or from the vehicle side charging control unit 305 of the vehicle. When it is determined that the vehicle is not running on the primary coil of the charging area, the connection between the primary coil and the high-frequency power supply for power supply is released, and the supply of the high-frequency current for charging to the connected primary coil is released. Shut off.

この実施の形態でも、走行中の車両の車両側充電制御部305と路面側充電制御部301との間で、車両側二次コイル41,42と路面の一次コイルLとの電波通信により通信を行いながら、路面側充電制御部301から走行中の車両に対し車両側二次コイル41,42と路面の一次コイルLとの共鳴磁気結合によるワイヤレスで効率のよい給電を行い前記車両が搭載しているバッテリへ充電できる効果がある。   Also in this embodiment, communication is performed between the vehicle-side charging control unit 305 and the road-side charging control unit 301 of the traveling vehicle by radio wave communication between the vehicle-side secondary coils 41 and 42 and the road surface primary coil L. While performing, the vehicle is mounted by performing efficient and wireless power feeding by resonance magnetic coupling between the vehicle side secondary coils 41 and 42 and the road surface primary coil L to the traveling vehicle from the road surface side charge control unit 301. The battery can be charged.

1,301……路面側充電制御部、2……車両、3,31,32……制御コイル(車両側コイル)、4……充電用二次コイル、5,303……車両側充電制御部、6……バッテリ、7,8……通信手段、9……車両側コイル位置調整手段、10……車速指示手段、L……一次コイル、11,12,13,14,15,16,17……スイッチ回路(高周波電流供給手段)、206……充電回路。   DESCRIPTION OF SYMBOLS 1,301 ... Road surface side charge control part, 2 ... Vehicle, 3, 31, 32 ... Control coil (vehicle side coil), 4 ... Secondary coil for charge, 5,303 ... Vehicle side charge control part , 6 ... battery, 7, 8 ... communication means, 9 ... vehicle side coil position adjusting means, 10 ... vehicle speed instruction means, L ... primary coil, 11, 12, 13, 14, 15, 16, 17 ... Switch circuit (high-frequency current supply means), 206 ... Charging circuit.

Claims (5)

路面に設けられた一次コイルと、
電力供給用高周波電源から前記一次コイルへ充電用高周波電流を給電する路面側高周波電流給電手段と、
前記一次コイルと磁気結合し得るように車両に設けられている車両側コイルと、
前記一次コイルと前記車両側コイルとの共鳴磁気結合を介して、前記充電用高周波電流をもとに前記車両側コイルに誘起する起電力により前記車両が搭載する電池を充電する充電手段と、
前記電力供給用高周波電源による前記電池の充電のための制御情報を、前記一次コイルと前記車両側コイルとを介して電波により送受信する通信手段と、
前記通信手段により送受信される前記制御情報をもとに前記路面側高周波電流給電手段による前記一次コイルへの高周波電流の給電を制御する路面側充電制御部と、
前記制御情報をもとに前記充電手段による前記電池の充電を制御する車両側充電制御部と、
を備えたことを特徴とするワイヤレス給電システム。
A primary coil provided on the road surface;
Road surface side high frequency current power supply means for supplying high frequency current for charging from the high frequency power supply for power supply to the primary coil,
A vehicle-side coil provided in the vehicle so as to be magnetically coupled to the primary coil;
Charging means for charging a battery mounted on the vehicle by an electromotive force induced in the vehicle-side coil based on the high-frequency current for charging, via a resonant magnetic coupling between the primary coil and the vehicle-side coil;
Communication means for transmitting and receiving control information for charging the battery by the high-frequency power supply for power supply via radio waves via the primary coil and the vehicle-side coil;
A road surface side charge control unit for controlling the feeding of the high frequency current to the primary coil by the road surface side high frequency current feeding means based on the control information transmitted and received by the communication means,
A vehicle-side charge control unit that controls charging of the battery by the charging unit based on the control information;
A wireless power supply system characterized by comprising:
前記車両の走行位置を調整し、前記車両側コイルと前記一次コイルとが重なるように前記車両側コイルの位置合わせを行う車両側コイル位置調整手段を備えたことを特徴とする請求項1記載のワイヤレス給電システム。   2. The vehicle-side coil position adjusting means for adjusting a traveling position of the vehicle and aligning the vehicle-side coil so that the vehicle-side coil and the primary coil overlap each other. Wireless power supply system. 前記制御情報は、前記車両が搭載する電池の認証のための電池認証情報と、前記電池の充電状況を示すSOC情報、充電電流、充電電圧などの充電情報を含むことを特徴とする請求項1記載のワイヤレス給電システム。   2. The control information includes battery authentication information for authenticating a battery mounted on the vehicle, and charging information such as SOC information indicating a charging state of the battery, a charging current, and a charging voltage. The wireless power supply system described. 前記電池の充電状況を示すSOC情報に応じた走行速度をオートクルージング機能に対し指示する車速指示手段を備えたことを特徴とする請求項1記載のワイヤレス給電システム。   The wireless power feeding system according to claim 1, further comprising vehicle speed instruction means for instructing an auto cruising function of a traveling speed according to SOC information indicating a charging state of the battery. 前記車両側コイルは制御コイルと充電用二次コイルから構成され、
前記充電手段は、前記一次コイルと前記充電用二次コイルとの共鳴磁気結合を介して、前記電力供給用高周波電源から前記一次コイルへ給電される充電用高周波電流をもとに前記充電用二次コイルに誘起する起電力により前記車両が搭載する電池を充電し、
前記通信手段は、前記制御情報を、前記一次コイルと前記制御コイルおよび前記充電用二次コイルとを介して電波により送受信することを特徴とする請求項1記載のワイヤレス給電システム。
The vehicle side coil is composed of a control coil and a secondary coil for charging,
The charging means includes the charging secondary current based on a charging high-frequency current fed from the power-supplying high-frequency power source to the primary coil via a resonant magnetic coupling between the primary coil and the charging secondary coil. The battery mounted on the vehicle is charged by the electromotive force induced in the next coil,
The wireless power feeding system according to claim 1, wherein the communication unit transmits and receives the control information by radio waves through the primary coil, the control coil, and the charging secondary coil.
JP2011186730A 2011-08-30 2011-08-30 Wireless power supply system Expired - Fee Related JP5691939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186730A JP5691939B2 (en) 2011-08-30 2011-08-30 Wireless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186730A JP5691939B2 (en) 2011-08-30 2011-08-30 Wireless power supply system

Publications (2)

Publication Number Publication Date
JP2013051744A true JP2013051744A (en) 2013-03-14
JP5691939B2 JP5691939B2 (en) 2015-04-01

Family

ID=48013381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186730A Expired - Fee Related JP5691939B2 (en) 2011-08-30 2011-08-30 Wireless power supply system

Country Status (1)

Country Link
JP (1) JP5691939B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195350A (en) * 2013-03-28 2014-10-09 Ryutech Co Ltd Electric vehicle power supply system
CN104333145A (en) * 2014-10-18 2015-02-04 刘跃进 Electric vehicle-used rechargeable tire and tire-type wireless charging belt system
CN104617682A (en) * 2015-02-05 2015-05-13 广西电网有限责任公司电力科学研究院 Method for recognizing electric vehicle in multi-guide-rail wireless power supply mode
CN106030979A (en) * 2013-12-31 2016-10-12 电气道路有限公司 System and method for powering an electric vehicle on a road
CN106218429A (en) * 2016-08-03 2016-12-14 中国地质大学(武汉) Superconduction emission type electric motor car wireless charging system
JP2016541223A (en) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド Device alignment in inductive power transfer systems
KR20170050568A (en) * 2015-10-30 2017-05-11 한국과학기술원 Modularized power supply apparatus for wireless charging electric vehicle
WO2017163388A1 (en) * 2016-03-25 2017-09-28 富士機械製造株式会社 Wireless power supply device
CN107399244A (en) * 2017-07-27 2017-11-28 许继电源有限公司 A kind of mobile vehicle wireless charging system
CN107867251A (en) * 2017-10-26 2018-04-03 深圳市奈士迪技术研发有限公司 A kind of high intelligent new-energy automobile of wireless charging efficiency based on Internet of Things
JP2018098831A (en) * 2016-12-08 2018-06-21 三菱自動車工業株式会社 Vehicle positional displacement correction device
JP2018113765A (en) * 2017-01-11 2018-07-19 国立大学法人静岡大学 Power transmission system and power transmission sheet
JP2018148704A (en) * 2017-03-06 2018-09-20 株式会社東芝 Positional deviation direction estimating device, positional deviation direction estimating method and program
US10128681B2 (en) 2013-10-30 2018-11-13 Denso Corporation Non-contact power supply control system for controlling power supply by living body detection
KR20190033001A (en) * 2017-09-20 2019-03-28 도요타지도샤가부시키가이샤 Non-contact power supply system and power reception device
JP2019194603A (en) * 2019-06-06 2019-11-07 株式会社Subaru Vehicle sub mobility charging system
CN111284338A (en) * 2020-03-16 2020-06-16 赵洪超 Wireless charging system of new energy automobile
US10826565B2 (en) 2014-09-05 2020-11-03 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
WO2021020165A1 (en) * 2019-07-26 2021-02-04 株式会社デンソー Power feeding system during traveling
WO2021050941A1 (en) 2019-09-13 2021-03-18 Momentum Dynamics Corporation Data link for resonant induction wireless charging
CN112663432A (en) * 2020-12-18 2021-04-16 江苏东交智控科技集团股份有限公司 Pavement structure
WO2021157184A1 (en) * 2020-02-06 2021-08-12 株式会社Ihi Contactless power feed facility
US11121740B2 (en) 2014-09-05 2021-09-14 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
JP2021150442A (en) * 2020-03-18 2021-09-27 島田理化工業株式会社 Coil unit, non-contact power feeding device, non-contact power receiving and feeding system, induction heating device, and electromagnetic cooker
US11198369B2 (en) 2018-01-19 2021-12-14 Denso Corporation Power supply apparatus
WO2022230409A1 (en) 2021-04-26 2022-11-03 株式会社デンソー Contactless power feeding coil assembly and power feeding system
US11984735B2 (en) 2019-07-26 2024-05-14 Denso Corporation Dynamic wireless power transfer system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767270A (en) * 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd Displacement detector in noncontact power supply for mobile body
JPH08237890A (en) * 1995-02-28 1996-09-13 Fuji Electric Co Ltd Non-contact power feeding device for automobile
US5573090A (en) * 1994-05-05 1996-11-12 H. R. Ross Industries, Inc. Raodway-powered electric vehicle system having onboard power metering and communication channel features
JP2000006683A (en) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd Traveling speed control system for vehicle
JP2007135335A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Energy supply apparatus, energy supply method
JP2008253131A (en) * 1999-12-10 2008-10-16 Toyota Motor Corp Energy supply apparatus
JP2010068632A (en) * 2008-09-11 2010-03-25 Yazaki Corp Wireless charging system for vehicles
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767270A (en) * 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd Displacement detector in noncontact power supply for mobile body
US5573090A (en) * 1994-05-05 1996-11-12 H. R. Ross Industries, Inc. Raodway-powered electric vehicle system having onboard power metering and communication channel features
JPH08237890A (en) * 1995-02-28 1996-09-13 Fuji Electric Co Ltd Non-contact power feeding device for automobile
JP2000006683A (en) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd Traveling speed control system for vehicle
JP2008253131A (en) * 1999-12-10 2008-10-16 Toyota Motor Corp Energy supply apparatus
JP2007135335A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Energy supply apparatus, energy supply method
JP2010068632A (en) * 2008-09-11 2010-03-25 Yazaki Corp Wireless charging system for vehicles
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195350A (en) * 2013-03-28 2014-10-09 Ryutech Co Ltd Electric vehicle power supply system
JP2016541223A (en) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド Device alignment in inductive power transfer systems
US10128681B2 (en) 2013-10-30 2018-11-13 Denso Corporation Non-contact power supply control system for controlling power supply by living body detection
JP2017509290A (en) * 2013-12-31 2017-03-30 エレクトリック ロード リミテッド System and method for supplying power to an electric vehicle on a road
CN106030979A (en) * 2013-12-31 2016-10-12 电气道路有限公司 System and method for powering an electric vehicle on a road
US10449865B2 (en) 2013-12-31 2019-10-22 Electric Road Ltd. System and method for powering on-road electric vehicles via wireless power transfer
US11318845B2 (en) 2013-12-31 2022-05-03 Electric Road Ltd. System and method for powering on-road electric vehicles via wireless power transfer
US10826565B2 (en) 2014-09-05 2020-11-03 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
US11671145B2 (en) 2014-09-05 2023-06-06 Inductev Inc. Near field, full duplex data link for resonant induction wireless charging
US11121740B2 (en) 2014-09-05 2021-09-14 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
CN104333145A (en) * 2014-10-18 2015-02-04 刘跃进 Electric vehicle-used rechargeable tire and tire-type wireless charging belt system
CN104617682A (en) * 2015-02-05 2015-05-13 广西电网有限责任公司电力科学研究院 Method for recognizing electric vehicle in multi-guide-rail wireless power supply mode
KR20170050568A (en) * 2015-10-30 2017-05-11 한국과학기술원 Modularized power supply apparatus for wireless charging electric vehicle
KR102508407B1 (en) 2015-10-30 2023-03-10 한국과학기술원 Modularized power supply apparatus for wireless charging electric vehicle
WO2017163388A1 (en) * 2016-03-25 2017-09-28 富士機械製造株式会社 Wireless power supply device
JPWO2017163388A1 (en) * 2016-03-25 2019-01-31 株式会社Fuji Non-contact power feeding device
US11011933B2 (en) 2016-03-25 2021-05-18 Fuji Corporation Contactless electric power supply device
CN106218429B (en) * 2016-08-03 2019-02-01 中国地质大学(武汉) Superconduction emission type electric motor car wireless charging system
CN106218429A (en) * 2016-08-03 2016-12-14 中国地质大学(武汉) Superconduction emission type electric motor car wireless charging system
JP2018098831A (en) * 2016-12-08 2018-06-21 三菱自動車工業株式会社 Vehicle positional displacement correction device
JP2018113765A (en) * 2017-01-11 2018-07-19 国立大学法人静岡大学 Power transmission system and power transmission sheet
JP2018148704A (en) * 2017-03-06 2018-09-20 株式会社東芝 Positional deviation direction estimating device, positional deviation direction estimating method and program
CN107399244A (en) * 2017-07-27 2017-11-28 许继电源有限公司 A kind of mobile vehicle wireless charging system
JP2019057990A (en) * 2017-09-20 2019-04-11 トヨタ自動車株式会社 Non-contact power supply system and power incoming side device
KR102179227B1 (en) * 2017-09-20 2020-11-16 도요타지도샤가부시키가이샤 Non-contact power supply system and power reception device
KR20190033001A (en) * 2017-09-20 2019-03-28 도요타지도샤가부시키가이샤 Non-contact power supply system and power reception device
US11052781B2 (en) 2017-09-20 2021-07-06 Toyota Jidosha Kabushiki Kaisha Non-contact power supply system and power reception device
CN107867251A (en) * 2017-10-26 2018-04-03 深圳市奈士迪技术研发有限公司 A kind of high intelligent new-energy automobile of wireless charging efficiency based on Internet of Things
US11198369B2 (en) 2018-01-19 2021-12-14 Denso Corporation Power supply apparatus
JP2019194603A (en) * 2019-06-06 2019-11-07 株式会社Subaru Vehicle sub mobility charging system
WO2021020165A1 (en) * 2019-07-26 2021-02-04 株式会社デンソー Power feeding system during traveling
US11984735B2 (en) 2019-07-26 2024-05-14 Denso Corporation Dynamic wireless power transfer system
JP7172900B2 (en) 2019-07-26 2022-11-16 株式会社デンソー Power supply system while driving
JP2021023003A (en) * 2019-07-26 2021-02-18 株式会社デンソー In-motion power supply system
EP4005851A4 (en) * 2019-07-26 2022-09-14 Denso Corporation Power feeding system during traveling
US11984733B2 (en) 2019-07-26 2024-05-14 Denso Corporation Power feeding system during travelling
JP2022547710A (en) * 2019-09-13 2022-11-15 インダクトイーブイ インク. Data link for resonant inductive wireless charging
JP7444490B2 (en) 2019-09-13 2024-03-06 インダクトイーブイ インク. Datalink for resonant inductive wireless charging
WO2021050941A1 (en) 2019-09-13 2021-03-18 Momentum Dynamics Corporation Data link for resonant induction wireless charging
WO2021157184A1 (en) * 2020-02-06 2021-08-12 株式会社Ihi Contactless power feed facility
CN111284338A (en) * 2020-03-16 2020-06-16 赵洪超 Wireless charging system of new energy automobile
JP7084956B2 (en) 2020-03-18 2022-06-15 島田理化工業株式会社 Coil unit, non-contact power supply device, non-contact power supply system, induction heating device and electromagnetic cooker
JP2021150442A (en) * 2020-03-18 2021-09-27 島田理化工業株式会社 Coil unit, non-contact power feeding device, non-contact power receiving and feeding system, induction heating device, and electromagnetic cooker
CN112663432A (en) * 2020-12-18 2021-04-16 江苏东交智控科技集团股份有限公司 Pavement structure
WO2022230409A1 (en) 2021-04-26 2022-11-03 株式会社デンソー Contactless power feeding coil assembly and power feeding system

Also Published As

Publication number Publication date
JP5691939B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5691939B2 (en) Wireless power supply system
US10146647B2 (en) Systems, methods, and apparatus related to wireless charging management
US9859755B2 (en) Device alignment and identification in inductive power transfer systems
KR102406107B1 (en) Wireless charging system for electric vehicle with adjustable flux angle
US20130300354A1 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
JP5810632B2 (en) Non-contact power feeding device
JP5834463B2 (en) Torque control device and non-contact charging system
JP4604094B2 (en) Vehicle power supply device and vehicle window material
US20130335015A1 (en) Contactless power transmitting device, contactless power receiving device, and contactless power transfer system
WO2016014181A1 (en) Devices, systems, and method for dynamic electric vehicle charging with position detection
CN104813565B (en) Contactless power supply device, contactless power supply system and non-contact power method
CN107571753B (en) A kind of dynamic radio charging Automatic Alignment System and its control method based on electric bus docking process
EP3132518B1 (en) System and method for frequency protection in wireless charging
WO2012111155A1 (en) Position alignment device, power reception device, and power transmission device
US10086712B2 (en) Charging apparatus and non-contact power feeding apparatus
JP5966407B2 (en) Mobile vehicle and non-contact power transmission device
JP2013236524A (en) Non-contact power feeding system
JP5966332B2 (en) Mobile vehicle and non-contact power transmission device
JP2014193095A (en) Non-contact power supply system
JP2013169109A (en) Mobile vehicle and non contact power transmission apparatus
JP5974460B2 (en) Mobile vehicle and non-contact power transmission device
JP2013110784A (en) Non-contact feeding apparatus and method
JP2023016542A (en) Ground power supply device
JP6860430B2 (en) Contactless power transfer system
JP2022190551A (en) Movable body and control method of movable body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5691939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees