JP2013032797A - Foil bearing - Google Patents

Foil bearing Download PDF

Info

Publication number
JP2013032797A
JP2013032797A JP2011168282A JP2011168282A JP2013032797A JP 2013032797 A JP2013032797 A JP 2013032797A JP 2011168282 A JP2011168282 A JP 2011168282A JP 2011168282 A JP2011168282 A JP 2011168282A JP 2013032797 A JP2013032797 A JP 2013032797A
Authority
JP
Japan
Prior art keywords
bearing
foil
shaft
peripheral surface
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011168282A
Other languages
Japanese (ja)
Other versions
JP2013032797A5 (en
Inventor
Masato Yoshino
真人 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011168282A priority Critical patent/JP2013032797A/en
Priority to PCT/JP2012/068790 priority patent/WO2013018605A1/en
Priority to CN201610561066.7A priority patent/CN105952781B/en
Priority to CN201280037796.7A priority patent/CN103717926B/en
Priority to US14/235,580 priority patent/US9033579B2/en
Priority to EP12820742.0A priority patent/EP2740951B1/en
Priority to US15/483,456 priority patent/USRE48269E1/en
Publication of JP2013032797A publication Critical patent/JP2013032797A/en
Publication of JP2013032797A5 publication Critical patent/JP2013032797A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of components and reduce relative movement tolerance in a thrust direction of a shaft, in a foil bearing relatively supporting the shaft in a radial direction and the thrust direction.SOLUTION: A pair of tapered surfaces (a tapered outer peripheral surface 21a and a tapered inner peripheral surface 22a) facing to each other are provided on an outer peripheral surface of a protrusion 21 and an inner peripheral surface of an outside member 22 in the shaft 6. A foil member 23 is attached on the tapered inner peripheral surface 22a of the outside member 22, and a bearing gap S is formed between the tapered outer peripheral surface 21a of the protrusion 21 and a bearing surface A of the foil member 23.

Description

本発明は、薄膜状のフォイルに形成された軸受面で軸受隙間を形成し、この軸受隙間に生じる流体膜で回転部材を支持するフォイル軸受に関する。   The present invention relates to a foil bearing in which a bearing gap is formed by a bearing surface formed in a thin film foil, and a rotating member is supported by a fluid film generated in the bearing gap.

ガスタービンや過給機(ターボチャージャ)の軸は高速で回転駆動される。また、軸に取り付けられたタービン翼は高温に晒される。そのため、これらの軸を支持する軸受には、高温・高速回転といった過酷な環境に耐え得ることが要求される。この種の用途の軸受として、油潤滑の転がり軸受や油動圧軸受を使用する場合もある。しかし、潤滑油などの液体による潤滑が困難な場合、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難な場合、あるいは液体のせん断による抵抗が問題になる場合、等の条件下では、油を用いた軸受の使用は制約を受ける。そこで、上記のような条件下での使用に適合する軸受として、空気動圧軸受が着目されている。   The shaft of a gas turbine or a supercharger (turbocharger) is driven to rotate at a high speed. Further, the turbine blade attached to the shaft is exposed to high temperature. For this reason, bearings that support these shafts are required to withstand harsh environments such as high temperature and high speed rotation. An oil-lubricated rolling bearing or an oil dynamic pressure bearing may be used as a bearing for this type of application. However, when lubrication with a liquid such as lubricating oil is difficult, when it is difficult to separately provide an auxiliary machine for the lubricating oil circulation system from the viewpoint of energy efficiency, or when resistance due to liquid shear becomes a problem, etc. Below, the use of bearings with oil is restricted. Therefore, an air dynamic pressure bearing has attracted attention as a bearing suitable for use under the above conditions.

空気動圧軸受としては、回転側と固定側の双方の軸受面を剛体で構成したものが一般的である。しかしながら、この種の空気動圧軸受では、回転側と固定側の軸受面間に形成される軸受隙間の管理が不十分であると、安定限界を超えた際にホワールと呼ばれる自励的な軸の触れ回りを生じ易い。そのため、使用される回転速度に応じた隙間管理が重要となる。しかし、ガスタービンや過給機のように、温度変化の激しい環境では熱膨張の影響で軸受隙間の幅が変動するため、精度の良い隙間管理は極めて困難となる。   As an air dynamic pressure bearing, one in which both the rotating side and the fixed side bearing surfaces are made of a rigid body is generally used. However, in this type of air dynamic pressure bearing, if the bearing clearance formed between the rotating and stationary bearing surfaces is insufficiently controlled, a self-excited shaft called a whirl when the stability limit is exceeded. It is easy to produce the touch around. Therefore, gap management according to the rotation speed used is important. However, since the width of the bearing gap fluctuates under the influence of thermal expansion in an environment where the temperature changes rapidly, such as a gas turbine or a supercharger, accurate gap management becomes extremely difficult.

温度変化の大きい環境下でも隙間管理を容易にできる軸受としてフォイル軸受が知られている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである。フォイル軸受では、フォイルの可撓性により、軸の回転速度や荷重、周囲温度等の運転条件に応じた適切な軸受隙間が形成される。このため、フォイル軸受は安定性に優れるという特徴があり、一般的な空気動圧軸受と比較して高速での使用が可能である。また、一般的な動圧軸受では、数μm程度の軸受隙間を常時確保する必要があるため、製造時の公差、さらには温度変化が激しい場合の熱膨張まで考慮すると、厳密な隙間管理は困難である。これに対して、フォイル軸受の場合には、数十μm程度の軸受隙間に管理すれば足り、その製造や隙間管理が容易となる利点を有する。   Foil bearings are known as bearings that can easily manage clearances even in environments with large temperature changes. In the foil bearing, a bearing surface is constituted by a thin film (foil) having low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. In the foil bearing, an appropriate bearing gap is formed according to operating conditions such as the rotational speed and load of the shaft and the ambient temperature due to the flexibility of the foil. For this reason, a foil bearing has the characteristic that it is excellent in stability, and it can be used at high speed compared with a general air dynamic pressure bearing. In addition, in general dynamic pressure bearings, it is necessary to always maintain a bearing gap of about several μm. Therefore, it is difficult to strictly manage the gap considering tolerances during manufacturing and thermal expansion when temperature changes are severe. It is. On the other hand, in the case of a foil bearing, it is sufficient to manage the bearing gap of about several tens of μm, and there is an advantage that its manufacture and gap management are easy.

また、ガスタービンや過給機の軸には、タービンの高速回転により発生する気流のスラスト方向の反力が加わるため、軸をラジアル方向だけでなくスラスト方向にも支持する必要がある。例えば、特許文献1〜3には、回転軸をラジアル方向に支持するフォイル軸受が示されている。また、特許文献4〜6には、回転軸をスラスト方向に支持するフォイル軸受が示されている。   Further, since the reaction force in the thrust direction of the air flow generated by the high-speed rotation of the turbine is applied to the shaft of the gas turbine or the supercharger, it is necessary to support the shaft not only in the radial direction but also in the thrust direction. For example, Patent Documents 1 to 3 show a foil bearing that supports a rotating shaft in a radial direction. Patent Documents 4 to 6 show foil bearings that support the rotating shaft in the thrust direction.

特開2002−364643号公報JP 2002-364463 A 特開2003−262222号公報JP 2003-262222 A 特開2009−299748号公報JP 2009-299748 A 特開昭61−36725号公報JP 61-36725 A 実開昭61−38321号公報Japanese Utility Model Publication No. 61-38321 特開昭63−195412号公報Japanese Unexamined Patent Publication No. 63-195212

しかし、回転部材をラジアル方向に支持するフォイル軸受とスラスト方向に支持するフォイル軸受とを別々に設けると、部品数が多くなってコスト高を招く。   However, if a foil bearing that supports the rotating member in the radial direction and a foil bearing that supports the rotating member in the thrust direction are provided separately, the number of parts increases and the cost increases.

また、上記のように、フォイル軸受は、転がり軸受や一般的な空気動圧軸受よりも軸受隙間を大きく設定できるが、軸受隙間を大きくした分だけ軸の相対的な移動許容量が大きくなる。特に、ガスタービンや過給機の軸を支持するスラスト軸受としてフォイル軸受使用した場合、軸のスラスト方向の移動許容量が大きいと、軸に取り付けられた羽根(タービン、圧縮機)のスラスト方向の移動許容量も大きくなるため、羽根がケーシングと干渉しないように、羽根とケーシングとの間の隙間を予め大きめに設定する必要が生じる。羽根とケーシングとの間の隙間を大きくすると、この隙間から空気が漏れてしまうため、圧縮機における圧縮率、あるいは、タービンにおける変換効率が低下してしまう。   Further, as described above, the foil bearing can set a bearing gap larger than that of a rolling bearing or a general air dynamic pressure bearing. However, the relative movement allowance of the shaft is increased by increasing the bearing gap. In particular, when a foil bearing is used as a thrust bearing for supporting a shaft of a gas turbine or a turbocharger, if the movement allowance in the thrust direction of the shaft is large, the blade (turbine, compressor) attached to the shaft in the thrust direction Since the allowable movement amount increases, it is necessary to set a large gap in advance between the blade and the casing so that the blade does not interfere with the casing. When the gap between the blades and the casing is increased, air leaks from the gap, so that the compression rate in the compressor or the conversion efficiency in the turbine is lowered.

本発明は、軸をラジアル方向及びスラスト方向に相対支持するフォイル軸受において、部品数を削減すると共に、軸のスラスト方向の相対的な移動許容量を小さくすることを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to reduce the number of components and reduce the relative movement allowance of a shaft in the thrust direction in a foil bearing that relatively supports the shaft in the radial direction and the thrust direction.

上記の目的を達成するため、本発明は、軸と、内周に軸が挿入された外側部材と、軸の外周面と外側部材の内周面との間に配置され、可撓性のある軸受面を有するフォイル部材とを備え、フォイル部材の軸受面で軸受隙間を形成し、軸受隙間に生じる流体膜で軸部材と外側部材との相対回転を支持するフォイル軸受であって、軸の外周面及び外側部材の内周面に互いに対向する一対のテーパ面を設け、一方のテーパ面にフォイル部材を取り付けると共に、他方のテーパ面と軸受面との間に軸受隙間を形成する。   In order to achieve the above object, the present invention has a flexible structure that is disposed between a shaft, an outer member having a shaft inserted into the inner periphery thereof, and an outer peripheral surface of the shaft and an inner peripheral surface of the outer member. A foil member having a bearing surface, wherein a bearing gap is formed on the bearing surface of the foil member, and a fluid film generated in the bearing gap supports a relative rotation between the shaft member and the outer member, and the outer periphery of the shaft A pair of tapered surfaces facing each other are provided on the inner peripheral surface of the surface and the outer member, a foil member is attached to one of the tapered surfaces, and a bearing gap is formed between the other tapered surface and the bearing surface.

このように、本発明に係るフォイル軸受では、一方のテーパ面に取り付けたフォイル部材の軸受面と他方のテーパ面との間に軸受隙間を形成する。この場合、テーパ面の法線方向に支持力が発生するため、この支持力のラジアル方向成分及びスラスト方向成分により、軸をラジアル方向及びスラスト方向に相対支持することができる。従って、上記のフォイル軸受を用いれば、ラジアル方向支持用の軸受とスラスト方向支持用の軸受とを別々に設ける場合と比べて、部品数を削減することができる。   Thus, in the foil bearing according to the present invention, a bearing gap is formed between the bearing surface of the foil member attached to one tapered surface and the other tapered surface. In this case, since a support force is generated in the normal direction of the tapered surface, the shaft can be relatively supported in the radial direction and the thrust direction by the radial direction component and the thrust direction component of the support force. Therefore, if the above-described foil bearing is used, the number of parts can be reduced as compared with the case where the radial support bearing and the thrust support bearing are provided separately.

また、上記のフォイル軸受では、スラスト方向に対して傾斜した方向(テーパ面の法線方向)に軸受隙間が形成されるため、外側部材に対する軸のスラスト方向の移動許容量を抑えることができる。すなわち、例えば図8に示すように、固定部材101に取り付けられたフォイル102の軸受面102aと、回転軸103のフランジ部104の端面104aとの間にスラスト方向の軸受隙間が形成される場合、このスラスト軸受隙間の大きさX’が、回転軸103のスラスト方向の移動許容量x’となる(x’=X’)。これに対し、図9に示す例では、固定部材201の端面201a及び回転軸203のフランジ部204の端面204aを、軸方向に対して角度θだけ傾斜したテーパ面とし、固定部材201の端面201aに取り付けたフォイル202の軸受面202aとフランジ部204の端面204aとの間に軸受隙間が形成される。この場合、軸受隙間の大きさXのスラスト方向成分が回転軸203のスラスト方向の移動許容量xとなる(x=X・sinθ)。従って、図8に示すスラスト軸受隙間の大きさX’と図9に示す軸受隙間の大きさXとが等しい場合、テーパ面間に軸受隙間を形成した図9に示す例の方が、回転軸の移動許容量を小さくすることができる(x<x’)。尚、図8及び図9では、理解の容易化のため、軸受隙間X、X’の大きさを誇張して示している。   Further, in the above-described foil bearing, since the bearing gap is formed in the direction inclined with respect to the thrust direction (the normal direction of the tapered surface), it is possible to suppress the allowable movement of the shaft in the thrust direction with respect to the outer member. That is, for example, as shown in FIG. 8, when a thrust bearing gap is formed between the bearing surface 102 a of the foil 102 attached to the fixing member 101 and the end surface 104 a of the flange portion 104 of the rotating shaft 103, The size X ′ of the thrust bearing gap is the allowable movement amount x ′ of the rotating shaft 103 in the thrust direction (x ′ = X ′). On the other hand, in the example shown in FIG. 9, the end surface 201a of the fixing member 201 and the end surface 204a of the flange portion 204 of the rotating shaft 203 are tapered surfaces inclined by an angle θ with respect to the axial direction. A bearing gap is formed between the bearing surface 202 a of the foil 202 attached to the end surface 204 a and the end surface 204 a of the flange portion 204. In this case, the thrust direction component of the bearing gap size X is the allowable movement amount x of the rotating shaft 203 in the thrust direction (x = X · sin θ). Therefore, when the size X ′ of the thrust bearing gap shown in FIG. 8 is equal to the size X of the bearing gap shown in FIG. 9, the example shown in FIG. Can be reduced (x <x ′). 8 and 9, the size of the bearing gaps X and X 'is exaggerated for easy understanding.

上記のフォイル軸受において、軸の外周面及び外側部材の内周面に、互いに対向し、軸方向一方側に大径部を配した一対の第1テーパ面と、互いに対向し、軸方向他方側に大径部を配した一対の第2テーパ面とを設ければ、これらの第1テーパ面及び第2テーパ面により、軸を外側部材に対して両スラスト方向に支持することができる。   In the foil bearing described above, the pair of first tapered surfaces facing each other on the outer peripheral surface of the shaft and the inner peripheral surface of the outer member and having a large diameter portion disposed on one axial side are opposed to each other and the other axial side If a pair of 2nd taper surfaces which arranged a large diameter part in are provided, a shaft can be supported to both thrust directions with respect to an outside member by these 1st taper surfaces and 2nd taper surfaces.

軸と外側部材とが相対回転したとき、一対のテーパ面の相対的な周速は大径側ほど大きくなるため、テーパ面の大径部において軸受隙間に生じる圧力が最大となる。従って、それぞれの大径部が軸方向外側に配されるように、第1テーパ面及び第2テーパ面を軸方向に並べて配置すれば、支持力が高い大径部の軸方向距離(軸受スパン)を大きくすることができ、フォイル軸受のモーメント剛性が高められる。   When the shaft and the outer member rotate relative to each other, the relative peripheral speed of the pair of tapered surfaces increases toward the larger diameter side, so that the pressure generated in the bearing gap at the large diameter portion of the tapered surface is maximized. Therefore, if the first taper surface and the second taper surface are arranged side by side in the axial direction so that the respective large diameter portions are arranged on the outside in the axial direction, the axial distance (bearing span) of the large diameter portion having a high supporting force can be obtained. ) Can be increased, and the moment rigidity of the foil bearing can be increased.

以上のようなフォイル軸受をガスタービンや過給機のロータ支持用として使用すれば、軸のスラスト方向の移動許容量を小さくすることができる。これにより、タービンや圧縮機の羽根とケーシングとの間の隙間を小さく設定することが可能となり、圧縮機における圧縮率あるいはタービンにおける変換効率を高めることができる。   If the foil bearing as described above is used for supporting a rotor of a gas turbine or a supercharger, the allowable movement amount of the shaft in the thrust direction can be reduced. Thereby, it becomes possible to set the clearance gap between the blade | wing and casing of a turbine or a compressor small, and the compression rate in a compressor or the conversion efficiency in a turbine can be improved.

以上のように、本発明によれば、軸をラジアル方向及びスラスト方向に相対支持するフォイル軸受において、部品数を削減できると共に、軸のスラスト方向の相対的な移動許容量を小さくすることができる。   As described above, according to the present invention, in the foil bearing that relatively supports the shaft in the radial direction and the thrust direction, the number of parts can be reduced and the relative movement allowable amount of the shaft in the thrust direction can be reduced. .

マイクロガスタービンを概念的に示す図である。It is a figure which shows a micro gas turbine notionally. 上記マイクロガスタービンに組み込まれた、本発明の一実施形態に係るフォイル軸受の軸方向断面図である。It is an axial sectional view of a foil bearing according to an embodiment of the present invention incorporated in the micro gas turbine. 上記フォイル軸受の一部を切り欠いた分解斜視図である。It is a disassembled perspective view which notched a part of said foil bearing. 上記フォイル軸受の軸直交方向断面図である。It is an axial orthogonal direction sectional view of the foil bearing. 他の実施形態に係るフォイル軸受の軸方向断面図である。It is an axial sectional view of a foil bearing according to another embodiment. 他の実施形態に係るフォイル軸受の軸直交方向断面図である。It is an axial orthogonal direction sectional view of the foil bearing which concerns on other embodiment. 過給機を概念的に示す図である。It is a figure which shows a supercharger notionally. 軸受隙間をスラスト方向に形成したフォイル軸受の断面図である。It is sectional drawing of the foil bearing which formed the bearing clearance gap in the thrust direction. 軸受隙間をスラスト方向に対して傾斜した方向に形成したフォイル軸受の断面図である。It is sectional drawing of the foil bearing which formed the bearing clearance in the direction inclined with respect to the thrust direction.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、マイクロガスタービンの構成を概念的に示す。このマイクロガスタービンは、翼列を形成したタービン1及び圧縮機2と、発電機3と、燃焼器4と、再生器5とを主に備える。タービン1、圧縮機2、及び発電機3には、水平方向に延びる共通の軸6が設けられ、この軸6と、タービン1および圧縮機2とで一体回転可能のロータが構成される。吸気口7から吸入された空気は、圧縮機2で圧縮され、再生器5で加熱された上で燃焼器4に送り込まれる。この圧縮空気に燃料を混合して燃焼させ、このときの高温、高圧のガスでタービン1を回転させる。タービン1の回転力が軸6を介して発電機3に伝達され、発電機3が回転することにより発電し、この電力がインバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。   FIG. 1 conceptually shows the configuration of the micro gas turbine. The micro gas turbine mainly includes a turbine 1 and a compressor 2 that form blade rows, a generator 3, a combustor 4, and a regenerator 5. The turbine 1, the compressor 2, and the generator 3 are provided with a common shaft 6 that extends in the horizontal direction, and the shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally. Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. The compressed air is mixed with fuel and burned, and the turbine 1 is rotated by the high-temperature and high-pressure gas at this time. The rotational force of the turbine 1 is transmitted to the generator 3 via the shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.

図2に、ロータの支持構造、特に、タービン1と圧縮機2との軸方向間における支持構造を示す。この領域は高温、高圧のガスで回転されるタービン1に隣接しているため、空気動圧軸受、特にフォイル軸受10が適用される。   FIG. 2 shows a support structure of the rotor, particularly a support structure between the turbine 1 and the compressor 2 in the axial direction. Since this region is adjacent to the turbine 1 rotated by high-temperature and high-pressure gas, an air dynamic pressure bearing, particularly a foil bearing 10 is applied.

本実施形態のフォイル軸受10は、軸方向に並べて配された第1軸受部20及び第2軸受部20’で構成される。第1軸受部20は、図3の分解図に示すように、軸6から外周に突出して設けられた環状の突出部21と、突出部21の外周に設けられた環状の外側部材22と、突出部21と外側部材22との間に設けられたフォイル部材23とを備える。第2軸受部20は、第1軸受部20を軸方向で反転させた構成を成し、突出部21’、外側部材22’、及びフォイル部材23’とを備える。尚、図3では、フォイル軸受10の円周方向一部を切り欠いて示しているが、実際は、図4に示すように、突出部21、21’及び外側部材22、22’は全周で連続した環状を成し、フォイル部材23、23’はほぼ全周に設けられる。   The foil bearing 10 of the present embodiment includes a first bearing portion 20 and a second bearing portion 20 ′ arranged side by side in the axial direction. As shown in the exploded view of FIG. 3, the first bearing portion 20 includes an annular protrusion 21 provided to protrude from the shaft 6 to the outer periphery, an annular outer member 22 provided on the outer periphery of the protrusion 21, A foil member 23 provided between the protruding portion 21 and the outer member 22 is provided. The second bearing portion 20 has a configuration in which the first bearing portion 20 is inverted in the axial direction, and includes a protruding portion 21 ′, an outer member 22 ′, and a foil member 23 ′. In FIG. 3, a part of the foil bearing 10 in the circumferential direction is notched, but actually, as shown in FIG. 4, the protrusions 21, 21 ′ and the outer members 22, 22 ′ are all around. A continuous ring shape is formed, and the foil members 23 and 23 'are provided almost all around.

第1軸受部20の突出部21は軸6の外周面6aに固定され、外側部材22はケーシング30の内周に固定される(図2参照)。第1軸受部20は互いに対向する一対の第1テーパ面を有し、図示例では、突出部21に形成された第1テーパ状外周面21a、及び、外側部材22に形成された第1テーパ状内周面22aを有する。第1テーパ状外周面21aと第1テーパ状内周面22aとは、軸方向に対する傾斜角度が同じである。   The protruding portion 21 of the first bearing portion 20 is fixed to the outer peripheral surface 6a of the shaft 6, and the outer member 22 is fixed to the inner periphery of the casing 30 (see FIG. 2). The first bearing portion 20 has a pair of first tapered surfaces opposed to each other. In the illustrated example, the first tapered outer peripheral surface 21 a formed on the protruding portion 21 and the first tapered surface formed on the outer member 22. The inner peripheral surface 22a has a shape. The first tapered outer peripheral surface 21a and the first tapered inner peripheral surface 22a have the same inclination angle with respect to the axial direction.

フォイル部材23は、可撓性のある軸受面Aを有し、突出部21の第1テーパ状外周面21aと外側部材22の第1テーパ状内周面22aとの間のテーパ状の空間に配置される。本実施形態では、図4に示すように、固定側に設けられた外側部材22の第1テーパ状内周面22aにフォイル部材23が固定され、回転側に設けられた突出部21の第1テーパ状外周面21aとフォイル部材23の軸受面Aとの間に軸受隙間Sが形成される。尚、実際の軸受隙間Sの幅は数十μm程度の微小なものであるが、図4ではその幅を誇張して描いている。   The foil member 23 has a flexible bearing surface A, and is formed in a tapered space between the first tapered outer peripheral surface 21 a of the protruding portion 21 and the first tapered inner peripheral surface 22 a of the outer member 22. Be placed. In the present embodiment, as shown in FIG. 4, the foil member 23 is fixed to the first tapered inner peripheral surface 22 a of the outer member 22 provided on the fixed side, and the first protrusion 21 provided on the rotating side is first. A bearing gap S is formed between the tapered outer peripheral surface 21 a and the bearing surface A of the foil member 23. Note that the actual width of the bearing gap S is as small as several tens of μm, but the width is exaggerated in FIG.

本実施形態のフォイル部材23は、軸受面Aを有する金属製のトップフォイル23aと、トップフォイル23aを弾性支持する金属製のバックフォイル23bとからなる、いわゆるバンプフォイル型である(図3参照)。トップフォイル23aは、1枚のテーパ状のフォイルからなり、内周面に軸受面Aが設けられる(図4参照)。軸受面Aは、孔や段差のない平滑なテーパ面状をなす。トップフォイル23aの一端23a1は、外側部材22の内周面22aに形成された溝22bに嵌合固定される。バックフォイル23bは、全体的にテーパ状を成した1枚のフォイルからなり、トップフォイル23aと外側部材22との間に配置される。バックフォイル23bには、円周方向複数箇所から外径に向けて突出した屈曲部23b1が設けられる。バックフォイル23bの一端23b3は、外側部材22の内周面22aの溝22bに嵌合固定される。バックフォイル23bの屈曲部23b1の外径端が外側部材22の第1テーパ状内周面22aと当接すると共に、バックフォイル23bの内周面23b2がトップフォイル23aの外周面に当接することで、トップフォイル23aがバックフォイル23bにより外周から弾性的に支持される。   The foil member 23 of this embodiment is a so-called bump foil type composed of a metal top foil 23a having a bearing surface A and a metal back foil 23b that elastically supports the top foil 23a (see FIG. 3). . The top foil 23a is formed of a single taper-shaped foil, and a bearing surface A is provided on the inner peripheral surface (see FIG. 4). The bearing surface A has a smooth tapered surface shape without holes or steps. One end 23 a 1 of the top foil 23 a is fitted and fixed in a groove 22 b formed on the inner peripheral surface 22 a of the outer member 22. The back foil 23 b is formed of a single foil having a taper shape as a whole, and is disposed between the top foil 23 a and the outer member 22. The back foil 23b is provided with a bent portion 23b1 projecting from a plurality of locations in the circumferential direction toward the outer diameter. One end 23 b 3 of the back foil 23 b is fitted and fixed in the groove 22 b of the inner peripheral surface 22 a of the outer member 22. The outer diameter end of the bent portion 23b1 of the back foil 23b is in contact with the first tapered inner peripheral surface 22a of the outer member 22, and the inner peripheral surface 23b2 of the back foil 23b is in contact with the outer peripheral surface of the top foil 23a. The top foil 23a is elastically supported from the outer periphery by the back foil 23b.

トップフォイル23a及びバックフォイル23bは、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる薄膜のフォイルで形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、油による防錆効果は期待できない。鋼材料や銅合金の代表例として、炭素鋼や黄銅を挙げることができるが、一般的な炭素鋼では錆による腐食が発生し易く、黄銅では加工ひずみによる置き割れを生じることがある(黄銅中のZnの含有量が多いほどこの傾向が強まる)。そのため、帯状フォイルとしては、ステンレス鋼もしくは青銅製のものを使用するのが好ましい。   The top foil 23a and the back foil 23b are formed of a thin film foil made of a metal having a high spring property and good workability, such as a steel material or a copper alloy. In an air dynamic pressure bearing using air as a fluid film as in the present embodiment, since no lubricating oil exists in the atmosphere, the antirust effect by the oil cannot be expected. Typical examples of steel materials and copper alloys include carbon steel and brass, but general carbon steel is susceptible to corrosion due to rust, and brass may cause cracks due to processing strain (in brass) This tendency increases as the Zn content increases.) Therefore, it is preferable to use a stainless steel or bronze foil as the belt-like foil.

第2軸受部20’は互いに対向する一対の第2テーパ面を有し、本実施形態では図2に示すように、突出部21’に形成された第2テーパ状外周面21a’、及び、外側部材22’に形成された第2テーパ状内周面22a’を有する。第1軸受部20の第1テーパ面は軸方向一方側(タービン1側、図中右側)に大径部を配し、第2軸受部20’の第2テーパ面は軸方向他方側(圧縮機2側、図中左側)に大径部を配している。その結果、第1テーパ面及び第2テーパ面は、大径部が軸方向内側に配され、小径部が軸方向外側に配される。尚、第2軸受部20’の各構成は、第1軸受部20の各構成を軸方向で反転させたものであるため、対応する構成の符号に「’」を付して示し、詳しい説明は省略する。   The second bearing portion 20 ′ has a pair of second tapered surfaces facing each other. In the present embodiment, as shown in FIG. 2, a second tapered outer peripheral surface 21a ′ formed on the protruding portion 21 ′, and The outer member 22 ′ has a second tapered inner peripheral surface 22a ′. The first taper surface of the first bearing portion 20 has a large-diameter portion on one axial side (the turbine 1 side, the right side in the figure), and the second taper surface of the second bearing portion 20 ′ is the other axial side (compressed). A large diameter part is arranged on the machine 2 side (left side in the figure). As a result, as for the 1st taper surface and the 2nd taper surface, the large diameter part is distribute | arranged to the axial direction inner side, and the small diameter part is distribute | arranged to the axial direction outer side. Each configuration of the second bearing portion 20 ′ is obtained by inverting each configuration of the first bearing portion 20 in the axial direction. Is omitted.

軸6が円周方向一方に回転すると、フォイル軸受10の第1軸受部20及び第2軸受部20’の軸受面A、A’と突出部21、21’のテーパ状外周面21a、21a’との間に軸受隙間S、S’が形成され、この軸受隙間S、S’に生じる流体膜で、軸6がラジアル方向及びスラスト両方向に非接触支持される(図2参照)。特に、図2に示すように軸6を地面と平行にして回転させる場合、外側部材22、22’に対して軸6が自重により下方に偏心するため、これらの間に円周方向一方に向けて狭まった楔状の軸受隙間S、S’が形成される。そして、軸6の回転に伴って楔状の軸受隙間S、S’の流体が幅狭側へ押し込まれることにより、流体膜の圧力が高められる。   When the shaft 6 rotates in one circumferential direction, the bearing surfaces A and A ′ of the first bearing portion 20 and the second bearing portion 20 ′ of the foil bearing 10 and the tapered outer peripheral surfaces 21a and 21a ′ of the protruding portions 21 and 21 ′. The bearing gaps S and S ′ are formed between the shaft 6 and the shaft 6 is supported in a non-contact manner in both the radial direction and the thrust direction by the fluid film generated in the bearing gaps S and S ′ (see FIG. 2). In particular, when the shaft 6 is rotated parallel to the ground as shown in FIG. 2, the shaft 6 is decentered downward by its own weight with respect to the outer members 22 and 22 ′. Narrow wedge-shaped bearing gaps S and S ′ are formed. As the shaft 6 rotates, the fluid in the wedge-shaped bearing gaps S and S 'is pushed toward the narrow side, whereby the pressure of the fluid film is increased.

このとき、トップフォイル23a、23a’及びバックフォイル23b、23b’の有する可撓性により、トップフォイル23a、23a’の軸受面A、A’が、荷重や軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、軸受隙間Sは運転条件に応じた適切幅に自動調整される。そのため、高温、高速回転といった過酷な条件下でも、軸受隙間Sを最適幅に管理することができ、軸6を安定して支持することが可能となる。   At this time, due to the flexibility of the top foils 23a and 23a ′ and the back foils 23b and 23b ′, the bearing surfaces A and A ′ of the top foils 23a and 23a ′ can be used for the load, the rotational speed of the shaft 6 and the ambient temperature. Since the bearing gap S is arbitrarily deformed according to the operating conditions, the bearing gap S is automatically adjusted to an appropriate width according to the operating conditions. Therefore, the bearing gap S can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 6 can be stably supported.

このように、テーパ状の軸受面A、A’とテーパ状外周面21a、21a’との間に軸受隙間S、S’を形成することで、各軸受隙間S、S’に生じる流体膜で軸6をラジアル方向及びスラスト方向に支持することができる。また、第1テーパ面と第2テーパ面とを軸方向対称に設けることで、軸6を両スラスト方向に支持することができる。   Thus, by forming the bearing gaps S and S ′ between the tapered bearing surfaces A and A ′ and the tapered outer peripheral surfaces 21a and 21a ′, a fluid film generated in each bearing gap S and S ′. The shaft 6 can be supported in the radial direction and the thrust direction. Moreover, the shaft 6 can be supported in both thrust directions by providing the first taper surface and the second taper surface symmetrically in the axial direction.

また、軸受隙間S、S’がスラスト方向に対して傾斜した方向(テーパ状の軸受面A、A’の法線方向)に形成されるため、軸受隙間がスラスト方向に形成される場合と比べて、軸6のスラスト方向の移動許容量を小さくすることができる(図8及び図9参照)。これにより、図2に示すように、タービン1とこれを内周に収容するハウジング31との間のスラスト方向隙間T1、及び、圧縮機2とこれを内周に収容するハウジング32との間のスラスト方向隙間T2を小さく設定することができ、タービン1による変換効率、及び、圧縮機2による圧縮率を高めることができる。   Further, since the bearing gaps S and S ′ are formed in a direction inclined with respect to the thrust direction (the normal direction of the tapered bearing surfaces A and A ′), the bearing gap is formed in the thrust direction. Thus, the allowable movement amount of the shaft 6 in the thrust direction can be reduced (see FIGS. 8 and 9). As a result, as shown in FIG. 2, the thrust direction gap T1 between the turbine 1 and the housing 31 that accommodates it in the inner periphery, and the compressor 2 and the housing 32 that accommodates it in the inner periphery. The thrust direction gap T2 can be set small, and the conversion efficiency by the turbine 1 and the compression rate by the compressor 2 can be increased.

フォイル軸受10では、軸6の停止直前や起動直後の低速回転時において、トップフォイル23a、23a’の軸受面A、A’や突出部21、21’のテーパ状外周面21a、21a’に表面粗さ以上の厚さの空気膜を形成することが困難となる。そのため、軸受面A、A’とテーパ状外周面21a、21a’との間で金属接触を生じ、トルクの増大を招く。この時の摩擦力を減じてトルク低減を図るため、軸受面A、A’には、表面を低摩擦化する被膜を形成するのが望ましい。この種の被膜としては、例えば DLC膜、チタンアルミナイトライド膜、あるいは二硫化モリブデン膜を使用することができる。DLC膜、チタンやアルミナイトライド膜はCVDやPVDで 形成することができ、二硫化モリブデン膜はスプレーで簡単に形成することができる。特にDLC膜やチタンアルミナイトライド膜は硬質であるので、これらで被膜を形成することにより、軸受面A、A’の耐摩耗性をも向上させることができ、軸受寿命を増大させることができる。尚、上記のような被膜を、軸受面A、A’に形成する代わりに、あるいはこれに加えて、これらの面と対向する突出部21、21’のテーパ状外周面21a、21a’に形成してもよい。   The foil bearing 10 has a surface on the bearing surfaces A and A ′ of the top foils 23 a and 23 a ′ and the tapered outer peripheral surfaces 21 a and 21 a ′ of the protrusions 21 and 21 ′ during low-speed rotation immediately before the shaft 6 stops and immediately after the shaft 6 starts. It becomes difficult to form an air film having a thickness greater than the roughness. Therefore, metal contact occurs between the bearing surfaces A and A 'and the tapered outer peripheral surfaces 21a and 21a', resulting in an increase in torque. In order to reduce the torque by reducing the friction force at this time, it is desirable to form a coating on the bearing surfaces A and A 'that reduces the friction of the surface. As this type of coating, for example, a DLC film, a titanium aluminum nitride film, or a molybdenum disulfide film can be used. The DLC film, titanium or aluminum nitride film can be formed by CVD or PVD, and the molybdenum disulfide film can be easily formed by spraying. In particular, since the DLC film and the titanium aluminum nitride film are hard, the wear resistance of the bearing surfaces A and A ′ can be improved and the bearing life can be increased by forming a film with these films. . In addition to or in addition to forming the coating film as described above on the bearing surfaces A and A ′, the coating films are formed on the tapered outer peripheral surfaces 21a and 21a ′ of the projecting portions 21 and 21 ′ facing these surfaces. May be.

また、軸受の運転中は、トップフォイル23aの裏面(軸受面Aと反対側の面)とバックフォイル23bの内周面23b2との間や、バックフォイル23bの屈曲部23b1と外側部材22、22’のテーパ状内周面22a、22a’との間でも微小摺動が生じるため、この摺動部分にも上記の被膜を形成することにより、耐摩耗性の向上を図ってもよい。なお、振動の減衰作用を向上させるためには、この摺動部である程度の摩擦力が存在する方が好都合な場合もあるので、この部分の被膜にはそれほど低摩擦性は要求されない。従って、この部分の被膜としては、DLC膜やチタンやアルミナイトライド膜を使用するのが好ましい。   Further, during the operation of the bearing, between the back surface of the top foil 23a (the surface opposite to the bearing surface A) and the inner peripheral surface 23b2 of the back foil 23b, the bent portion 23b1 of the back foil 23b and the outer members 22, 22 Since micro-sliding occurs between the tapered inner peripheral surfaces 22a and 22a ', the wear resistance may be improved by forming the coating on the sliding part. In order to improve the vibration damping action, it may be more convenient that a certain amount of frictional force exists in the sliding portion. Therefore, the low friction property is not required for the coating of this portion. Therefore, it is preferable to use a DLC film, titanium, or an aluminum nitride film as the coating of this portion.

本発明は上記の実施形態に限られない。尚、以下の説明において、上記の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. In the following description, portions having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

例えば、図5に示す実施形態では、第1軸受部20及び第2軸受部20’を、第1テーパ面及び第2テーパ面の大径部が軸方向外側に配されるように配置している。これにより、軸受隙間S、S’の大径部間の軸方向距離を、図2に示す実施形態よりも大きくすることができる。軸6(突出部21、21’)の外側部材22、22’に対する周速は、第1テー面及び第2テーパ面の大径側ほど速くなるため、軸受隙間S、S’に生じる流体膜の圧力は、第1テーパ面及び第2テーパ面の大径部で最も高くなる。従って、図5に示すように、軸受隙間S、S’の大径部間の軸方向距離(軸受スパン)を大きくすることで、フォイル軸受10の軸受剛性、とくにモーメント剛性を高めることができる。   For example, in the embodiment shown in FIG. 5, the first bearing portion 20 and the second bearing portion 20 ′ are arranged so that the large diameter portions of the first tapered surface and the second tapered surface are arranged on the outside in the axial direction. Yes. Thereby, the axial distance between the large diameter portions of the bearing gaps S and S ′ can be made larger than that in the embodiment shown in FIG. 2. Since the peripheral speed of the shaft 6 (protruding portions 21, 21 ′) with respect to the outer members 22, 22 ′ increases as the diameter of the first taper surface and the second taper surface increases, the fluid film generated in the bearing gaps S, S ′. Is the highest at the large diameter portions of the first tapered surface and the second tapered surface. Therefore, as shown in FIG. 5, by increasing the axial distance (bearing span) between the large diameter portions of the bearing gaps S and S ′, the bearing rigidity, particularly the moment rigidity of the foil bearing 10 can be increased.

また、以上の実施形態では、第1テーパ面と第2テーパ面とが軸方向で対称な形状である場合を示したが、これに限らず、これらの傾斜角度を異ならせてもよい。   Moreover, although the case where the 1st taper surface and the 2nd taper surface were symmetrical shapes in the axial direction was shown in the above embodiment, it is not restricted to this, You may vary these inclination angles.

また、以上の実施形態では、フォイル軸受10の第1軸受部20及び第2軸受部20’をバンプフォイル型のフォイル軸受で構成した場合を示したが、これに限らず、第1軸受部20及び第2軸受部20’の何れか一方又は双方を、複数のリーフフォイルを円周方向に並べて配した、いわゆるリーフ型のフォイル軸受で構成してもよい。   Moreover, although the case where the 1st bearing part 20 and 2nd bearing part 20 'of the foil bearing 10 were comprised by the bump foil type foil bearing was shown in the above embodiment, it is not restricted to this, The 1st bearing part 20 is shown. Further, either one or both of the second bearing portion 20 ′ may be constituted by a so-called leaf type foil bearing in which a plurality of leaf foils are arranged in the circumferential direction.

具体的には、例えば図6に示すように、外側部材22のテーパ状内周面22aに、フォイル部材としての複数のリーフフォイル(リーフ24)を円周方向に並べて配することができる。各リーフ24は、金属製の薄膜フォイルで形成され、円周方向一方(軸6の回転方向(矢印参照)先行側)の端部24aが自由端とされ、円周方向他方の端部24bが外側部材22に固定される。リーフ24の固定端24bは、外側部材22の内周面22aに形成された溝22cに嵌合固定される。リーフ24の自由端24a側の一部領域は、他のリーフ24と半径方向に重ねて配される。複数のリーフ12の内径側の面は、孔や段差のない平滑な軸受面Aを構成し、各リーフ24の軸受面Aと突出部21の外周面21aとの間に、円周方向一方へ向けて半径方向幅を狭めた楔状の軸受隙間Sが形成される。   Specifically, for example, as shown in FIG. 6, a plurality of leaf foils (leafs 24) as foil members can be arranged in the circumferential direction on the tapered inner peripheral surface 22 a of the outer member 22. Each leaf 24 is formed of a metal thin film foil, with one end 24a in the circumferential direction (the rotation side of the shaft 6 (see arrow) leading side) being a free end and the other end 24b in the circumferential direction being It is fixed to the outer member 22. The fixed end 24 b of the leaf 24 is fitted and fixed in a groove 22 c formed on the inner peripheral surface 22 a of the outer member 22. A partial region on the free end 24 a side of the leaf 24 is arranged so as to overlap with the other leaf 24 in the radial direction. The surfaces on the inner diameter side of the plurality of leaves 12 constitute a smooth bearing surface A having no holes or steps, and between the bearing surface A of each leaf 24 and the outer peripheral surface 21a of the projecting portion 21 in one circumferential direction. A wedge-shaped bearing gap S having a narrower radial width is formed.

ところで、バンプフォイル型のフォイル軸受において、軸6を地面と平行にして回転させる場合(図2参照)、上述のように外側部材22、22’に対して軸6が自重により下方に偏心することでこれらの間に楔状の軸受隙間が形成される。しかし、例えば軸6を地面と垂直にして回転させる場合、軸6が、自重によりテーパ面に沿って軸受中心に調心されるため、楔状の軸受隙間が形成されず、流体膜の圧力が高まりにくい。これに対し、図6に示すリーフ型のフォイル軸受では、軸6が軸受中心に配された状態でも楔状の軸受隙間Sが形成されるため、軸6の偏心状態によらず高い圧力を発生させることができる。従って、部品点数を削減できる点、及び、バックフォイルのバネ性を容易に調整できる観点からは、バンプフォイル型のフォイル軸受を採用することが好ましい。一方、軸6が地面と垂直な場合や、ラジアル荷重よりスラスト荷重の方が大きい場合には、リーフ型のフォイル軸受を採用することが好ましい。   By the way, in the bump foil type foil bearing, when the shaft 6 is rotated in parallel with the ground (see FIG. 2), the shaft 6 is decentered downward by its own weight as described above with respect to the outer members 22 and 22 ′. A wedge-shaped bearing gap is formed between them. However, for example, when the shaft 6 is rotated perpendicularly to the ground, the shaft 6 is centered on the bearing center along the tapered surface by its own weight, so that a wedge-shaped bearing gap is not formed, and the pressure of the fluid film increases. Hateful. On the other hand, in the leaf type foil bearing shown in FIG. 6, since the wedge-shaped bearing gap S is formed even when the shaft 6 is arranged at the center of the bearing, a high pressure is generated regardless of the eccentric state of the shaft 6. be able to. Therefore, it is preferable to employ a bump foil type foil bearing from the viewpoint that the number of parts can be reduced and the spring property of the back foil can be easily adjusted. On the other hand, when the shaft 6 is perpendicular to the ground or when the thrust load is larger than the radial load, it is preferable to employ a leaf type foil bearing.

また、以上の実施形態では、フォイル軸受10を、軸6をスラスト方向一方に支持する第1軸受部20と、スラスト方向他方に支持する第2軸受部20’とで構成した場合を示したが、これに限らず、フォイル軸受10を何れか一方の軸受部のみで構成してもよい。   Moreover, in the above embodiment, although the foil bearing 10 was comprised with the 1st bearing part 20 which supports the axis | shaft 6 to one thrust direction, and the 2nd bearing part 20 'which supports the thrust direction other side, it showed. However, the present invention is not limited to this, and the foil bearing 10 may be configured by only one of the bearing portions.

また、以上の実施形態では、固定側の部材(外側部材22、22’)にフォイル部材23、23’を固定した場合を示したが、これとは逆に、フォイル部材23、23’を回転側の部材(軸6の突出部21,21’)に固定してもよい。この場合、フォイル部材23、23’の軸受面Aと外側部材22、22’のテーパ状内周面22a、22a’との間に、軸受隙間S、S’が形成される。ただし、フォイル部材を回転側の部材に固定すると、フォイル部材が高速で回転するため、遠心力によりフォイルが変形する恐れがある。従って、フォイルの変形を回避する観点からは、上記の実施形態のようにフォイル部材を固定側の部材に取り付けることが好ましい。   Moreover, although the case where foil member 23, 23 'was fixed to the member (outside member 22, 22') on the fixed side was shown in the above embodiment, contrary to this, foil member 23, 23 'is rotated. You may fix to the side member (projection part 21,21 'of the axis | shaft 6). In this case, bearing gaps S and S 'are formed between the bearing surface A of the foil members 23 and 23' and the tapered inner peripheral surfaces 22a and 22a 'of the outer members 22 and 22'. However, when the foil member is fixed to the rotating member, the foil member rotates at a high speed, and thus the foil may be deformed by centrifugal force. Therefore, from the viewpoint of avoiding deformation of the foil, it is preferable to attach the foil member to the member on the fixed side as in the above embodiment.

また、以上の実施形態では、本発明に係るスラストフォイル軸受20をガスタービンに適用した場合を示したが、これに限らず、例えば図7に示すような過給機に適用してもよい。この過給機は、エンジン63に空気を送り込むいわゆるターボチャージャであり、圧縮機61と、タービン62とを備える。圧縮機61及びタービン62は軸6で連結されている。軸6は、ラジアルフォイル軸受10とスラストフォイル軸受20とでラジアル方向及び両スラスト方向に支持される。図示例では、ラジアルフォイル軸受10を軸方向に離隔した2箇所に設けている。図示しない吸気口から吸入された空気は、圧縮機61で圧縮され、燃料を混合してエンジン63に供給される。エンジン63で燃料を混合した圧縮空気を燃焼させ、エンジン63から排気された高温、高圧のガスでタービン62を回転させる。このときのタービン62の回転力が、軸6を介して圧縮機61に伝達される。タービン62を回転させた後のガスは、排ガスとして外部に排出される。   Moreover, although the case where the thrust foil bearing 20 which concerns on this invention was applied to the gas turbine was shown in the above embodiment, you may apply not only to this but to a supercharger as shown, for example in FIG. This supercharger is a so-called turbocharger that sends air to the engine 63, and includes a compressor 61 and a turbine 62. The compressor 61 and the turbine 62 are connected by a shaft 6. The shaft 6 is supported by the radial foil bearing 10 and the thrust foil bearing 20 in the radial direction and in both thrust directions. In the illustrated example, the radial foil bearings 10 are provided at two locations separated in the axial direction. Air sucked from an intake port (not shown) is compressed by the compressor 61, mixed with fuel, and supplied to the engine 63. The compressed air mixed with fuel is burned by the engine 63, and the turbine 62 is rotated by the high-temperature and high-pressure gas exhausted from the engine 63. The rotational force of the turbine 62 at this time is transmitted to the compressor 61 via the shaft 6. The gas after rotating the turbine 62 is discharged to the outside as exhaust gas.

本発明にかかるフォイル軸受は、マイクロタービンや過給機に限らず、潤滑油などの液体による潤滑が困難である、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難である、あるいは液体のせん断による抵抗が問題になる等の制限下で使用される自動車等の車両用軸受、さらには産業機器用の軸受として広く使用することが可能である。   The foil bearing according to the present invention is not limited to a micro turbine or a supercharger, and it is difficult to lubricate with a liquid such as a lubricating oil. From the viewpoint of energy efficiency, it is difficult to separately provide an auxiliary machine for a lubricating oil circulation system. In addition, it can be widely used as a bearing for a vehicle such as an automobile used under a restriction that resistance due to liquid shear becomes a problem, and further as a bearing for industrial equipment.

なお、以上に述べたフォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受のみならず、圧力発生流体として潤滑油を使用した油動圧軸受としても使用することができる。   The foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.

1 タービン
2 圧縮機
3 発電機
4 燃焼器
5 再生器
6 軸
7 吸気口
8 インバータ
9 排熱回収装置
10 フォイル軸受
20 第1軸受部
20’ 第2軸受部
21、21’ 突出部
21a 第1テーパ状外周面(第1テーパ面)
21a’ 第2テーパ状外周面(第2テーパ面)
22、22’ 外側部材
22a 第1テーパ状内周面(第1テーパ面)
22a’ 第2テーパ状内周面(第2テーパ面)
23、23’ フォイル部材
23a トップフォイル
23b バックフォイル
23b1 屈曲部
23b2 連結部
A、A’ 軸受面
S、S’ 軸受隙間
DESCRIPTION OF SYMBOLS 1 Turbine 2 Compressor 3 Generator 4 Combustor 5 Regenerator 6 Shaft 7 Intake port 8 Inverter 9 Waste heat recovery device 10 Foil bearing 20 First bearing part 20 'Second bearing part 21, 21' Protruding part 21a First taper Outer peripheral surface (first taper surface)
21a '2nd taper-shaped outer peripheral surface (2nd taper surface)
22, 22 'Outer member 22a First tapered inner peripheral surface (first tapered surface)
22a '2nd taper-shaped inner peripheral surface (2nd taper surface)
23, 23 'Foil member 23a Top foil 23b Back foil 23b1 Bending part 23b2 Connecting part A, A' Bearing surface S, S 'Bearing gap

Claims (5)

軸と、内周に軸が挿入された外側部材と、軸の外周面と外側部材の内周面との間に配置され、可撓性のある軸受面を有するフォイル部材とを備え、フォイル部材の軸受面で軸受隙間を形成し、前記軸受隙間に生じる流体膜で軸部材と外側部材との相対回転を支持するフォイル軸受であって、
軸の外周面及び外側部材の内周面に互いに対向する一対のテーパ面を設け、一方のテーパ面に前記フォイル部材を取り付けると共に、他方のテーパ面と前記軸受面との間に前記軸受隙間を形成するフォイル軸受。
A foil member comprising: a shaft; an outer member having an inner shaft inserted therein; and a foil member having a flexible bearing surface disposed between the outer peripheral surface of the shaft and the inner peripheral surface of the outer member. Forming a bearing gap on the bearing surface, and supporting a relative rotation between the shaft member and the outer member by a fluid film generated in the bearing gap,
A pair of tapered surfaces facing each other are provided on the outer peripheral surface of the shaft and the inner peripheral surface of the outer member, and the foil member is attached to one tapered surface, and the bearing gap is provided between the other tapered surface and the bearing surface. Forming foil bearing.
軸の外周面及び外側部材の内周面に、互いに対向し、軸方向一方側に大径部を配した一対の第1テーパ面と、互いに対向し、軸方向他方側に大径部を配した一対の第2テーパ面とを設けた請求項1記載のフォイル軸受。   A pair of first tapered surfaces facing each other on the outer peripheral surface of the shaft and the inner peripheral surface of the outer member and having a large diameter portion disposed on one side in the axial direction, and a large diameter portion disposed on the other side in the axial direction. The foil bearing according to claim 1, further comprising a pair of second tapered surfaces. それぞれの大径部が軸方向外側に配されるように、第1テーパ面及び第2テーパ面を軸方向に並べて配置した請求項2記載のフォイル軸受。   The foil bearing according to claim 2, wherein the first tapered surface and the second tapered surface are arranged side by side in the axial direction so that the respective large diameter portions are arranged on the outer side in the axial direction. 請求項1〜3の何れかに記載のスラストフォイル軸受を有するガスタービン。   A gas turbine having the thrust foil bearing according to claim 1. 請求項1〜3の何れかに記載のスラストフォイル軸受を有する過給機。   The supercharger which has a thrust foil bearing in any one of Claims 1-3.
JP2011168282A 2011-08-01 2011-08-01 Foil bearing Pending JP2013032797A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011168282A JP2013032797A (en) 2011-08-01 2011-08-01 Foil bearing
PCT/JP2012/068790 WO2013018605A1 (en) 2011-08-01 2012-07-25 Thrust foil bearing
CN201610561066.7A CN105952781B (en) 2011-08-01 2012-07-25 Foil bearing
CN201280037796.7A CN103717926B (en) 2011-08-01 2012-07-25 thrust foil bearing
US14/235,580 US9033579B2 (en) 2011-08-01 2012-07-25 Thrust foil bearing
EP12820742.0A EP2740951B1 (en) 2011-08-01 2012-07-25 Thrust foil bearing
US15/483,456 USRE48269E1 (en) 2011-08-01 2012-07-25 Thrust foil bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168282A JP2013032797A (en) 2011-08-01 2011-08-01 Foil bearing

Publications (2)

Publication Number Publication Date
JP2013032797A true JP2013032797A (en) 2013-02-14
JP2013032797A5 JP2013032797A5 (en) 2013-12-05

Family

ID=47788834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168282A Pending JP2013032797A (en) 2011-08-01 2011-08-01 Foil bearing

Country Status (1)

Country Link
JP (1) JP2013032797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141806A1 (en) * 2014-03-19 2015-09-24 Ntn株式会社 Foil bearing
WO2015141506A1 (en) * 2014-03-19 2015-09-24 株式会社豊田自動織機 Electric turbo compressor
CN111963262A (en) * 2020-09-23 2020-11-20 萍乡北京理工大学高新技术研究院 Outline type air bearing
WO2022214133A1 (en) * 2021-04-09 2022-10-13 Schaeffler Technologies AG & Co. KG Radial foil bearing having an overload protection and a shaft displacement limiting mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434762A (en) * 1963-07-11 1969-03-25 Garrett Corp Hydrodynamic shaft bearing
JPS6239287B2 (en) * 1983-04-23 1987-08-21 Ishikawajima Harima Heavy Ind
JPS62193139U (en) * 1986-05-30 1987-12-08
JPH048915A (en) * 1990-04-27 1992-01-13 Hitachi Ltd Radial thrust bearing and its assembly
US5634723A (en) * 1995-06-15 1997-06-03 R & D Dynamics Corporation Hydrodynamic fluid film bearing
US20090087299A1 (en) * 2007-10-02 2009-04-02 Agrawal Giridhari L Foil gas bearing supported high temperature centrifugal blower and method for cooling thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434762A (en) * 1963-07-11 1969-03-25 Garrett Corp Hydrodynamic shaft bearing
JPS6239287B2 (en) * 1983-04-23 1987-08-21 Ishikawajima Harima Heavy Ind
JPS62193139U (en) * 1986-05-30 1987-12-08
JPH048915A (en) * 1990-04-27 1992-01-13 Hitachi Ltd Radial thrust bearing and its assembly
US5634723A (en) * 1995-06-15 1997-06-03 R & D Dynamics Corporation Hydrodynamic fluid film bearing
US20090087299A1 (en) * 2007-10-02 2009-04-02 Agrawal Giridhari L Foil gas bearing supported high temperature centrifugal blower and method for cooling thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141806A1 (en) * 2014-03-19 2015-09-24 Ntn株式会社 Foil bearing
WO2015141506A1 (en) * 2014-03-19 2015-09-24 株式会社豊田自動織機 Electric turbo compressor
US9822816B2 (en) 2014-03-19 2017-11-21 Ntn Corporation Foil bearing
CN111963262A (en) * 2020-09-23 2020-11-20 萍乡北京理工大学高新技术研究院 Outline type air bearing
WO2022214133A1 (en) * 2021-04-09 2022-10-13 Schaeffler Technologies AG & Co. KG Radial foil bearing having an overload protection and a shaft displacement limiting mechanism

Similar Documents

Publication Publication Date Title
US9784307B2 (en) Foil bearing
US9689422B2 (en) Foil bearing unit
USRE48269E1 (en) Thrust foil bearing
JP5766562B2 (en) Thrust foil bearing
JP6104597B2 (en) Foil bearing
JP2012092969A (en) Foil bearing
JP6591179B2 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP6104596B2 (en) Foil bearing
JP5840423B2 (en) Foil bearing
JP2013032797A (en) Foil bearing
JP2013044394A (en) Thrust foil bearing
JP6305749B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
JP6144222B2 (en) Foil bearing
JP6246574B2 (en) Foil bearing unit and turbomachine
JP2019082195A (en) Foil bearing, foil bearing unit and turbo machine
JP2012072817A (en) Foil bearing
JP6219489B2 (en) Foil bearing
JP2015052345A (en) Foil bearing unit
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
JP2023046778A (en) foil bearing
JP2019138374A (en) Foil bearing, foil bearing unit and turbo machine
JP2017075678A (en) Foil bearing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150220