JP2012092969A - Foil bearing - Google Patents

Foil bearing Download PDF

Info

Publication number
JP2012092969A
JP2012092969A JP2011195045A JP2011195045A JP2012092969A JP 2012092969 A JP2012092969 A JP 2012092969A JP 2011195045 A JP2011195045 A JP 2011195045A JP 2011195045 A JP2011195045 A JP 2011195045A JP 2012092969 A JP2012092969 A JP 2012092969A
Authority
JP
Japan
Prior art keywords
foil
bearing
foil bearing
shaft
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011195045A
Other languages
Japanese (ja)
Inventor
Hiroki Fujiwara
宏樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011195045A priority Critical patent/JP2012092969A/en
Publication of JP2012092969A publication Critical patent/JP2012092969A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the cost of a foil bearing by providing a single foil member with a bearing surface and a spring that supports elastically the bearing surface.SOLUTION: The foil bearing includes a cylindrical outer member 11, a shaft 6 inserted into the inner periphery of the outer member 11, and a foil member 13 interposed between an inner peripheral surface 11b of the outer member 11 and an outer peripheral surface 6a of the shaft 6. A single foil member 13 which is cylindrical and has an end has a bearing surface 15 and a spring 16 for elastically supporting the bearing surface 15. One end of the foil member 13 is fixed to the outer member 11, and the spring 16 is protruded toward the contour side of the bearing surface 15 to slidably contact with the inner peripheral surface 11b of the outer member 11.

Description

本発明は、外方部材の内周面と軸の外周面との間に薄膜状のフォイル部材を介在させたフォイル軸受に関する。   The present invention relates to a foil bearing in which a thin film foil member is interposed between an inner peripheral surface of an outer member and an outer peripheral surface of a shaft.

ガスタービンやターボチャージャの主軸は高速で回転駆動される。また、主軸に取り付けられたタービン翼は高温に晒される。そのため、これらの主軸を支持する軸受には、高温・高速回転といった過酷な環境に耐え得ることが要求される。この種の用途の軸受として、油潤滑の転がり軸受や油動圧軸受を使用する場合もあるが、潤滑油などの液体による潤滑が困難な場合、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難な場合、あるいは液体のせん断による抵抗が問題になる場合、等の条件下では、これらの軸受の使用は制約を受ける。そこで、そのような条件下での使用に適合する軸受として、空気動圧軸受が着目されている。   The main shaft of a gas turbine or turbocharger is driven to rotate at high speed. Moreover, the turbine blade attached to the main shaft is exposed to high temperature. Therefore, bearings that support these main shafts are required to be able to withstand severe environments such as high temperature and high speed rotation. Oil lubricated rolling bearings and hydrodynamic pressure bearings may be used as bearings for this type of application, but if lubrication with a liquid such as lubricating oil is difficult, the auxiliary equipment of the lubricating oil circulation system from the viewpoint of energy efficiency The use of these bearings is restricted under conditions such as when it is difficult to provide a separate or when resistance due to liquid shear becomes a problem. Therefore, an air dynamic pressure bearing has attracted attention as a bearing suitable for use under such conditions.

空気動圧軸受としては、回転側と固定側の双方の軸受面を剛体で構成したものが一般的である。しかしながら、この種の空気動圧軸受では、回転側と固定側の軸受面間に形成されるラジアル軸受隙間の管理が不十分であると、安定限界を超えた際にホワールと呼ばれる自励的な主軸の振れ回りを生じ易い。そのため、使用される回転速度に応じた隙間管理が重要となる。特に、ガスタービンやターボチャージャのように、温度変化の激しい環境では、熱膨張の影響でラジアル軸受隙間の幅が変動するため、精度の良い隙間管理は極めて困難となる。   As an air dynamic pressure bearing, one in which both the rotating side and the fixed side bearing surfaces are made of a rigid body is generally used. However, in this type of air dynamic pressure bearing, if the radial bearing clearance formed between the rotating and stationary bearing surfaces is insufficiently managed, a self-excited so-called whirl is called when the stability limit is exceeded. It is easy for the spindle to run out. Therefore, gap management according to the rotation speed used is important. In particular, in an environment where the temperature changes drastically, such as a gas turbine or a turbocharger, the width of the radial bearing gap fluctuates due to the effect of thermal expansion, so that accurate gap management becomes extremely difficult.

ホワールが生じにくく、かつ温度変化の大きい環境下でも隙間管理を容易にできる軸受としてフォイル軸受が知られている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである。通常は、軸受の内周面をトップフォイルと呼ばれる薄板で構成し、その外径側にバックフォイルと呼ばれるばね状の部材を配置してトップフォイルが受ける荷重をバックフォイルで弾性的に支持している。この場合、軸の回転時には、軸の外周面とトップフォイルの内周面との間に空気膜が形成され、軸が非接触支持される。   A foil bearing is known as a bearing that is less likely to cause a whirl and can easily manage a gap even in an environment with a large temperature change. In the foil bearing, a bearing surface is constituted by a thin film (foil) having low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. Normally, the inner peripheral surface of the bearing is composed of a thin plate called a top foil, and a spring-like member called a back foil is arranged on the outer diameter side to elastically support the load received by the top foil with the back foil. Yes. In this case, when the shaft rotates, an air film is formed between the outer peripheral surface of the shaft and the inner peripheral surface of the top foil, and the shaft is supported in a non-contact manner.

フォイル軸受では、フォイルの可撓性により、軸の回転速度や荷重、周囲温度等の運転条件に応じた適切なラジアル軸受隙間が形成されるため、安定性に優れるという特徴があり、一般的な空気動圧軸受と比較して高速での使用が可能である。また、一般的な動圧軸受のラジアル軸受隙間は軸直径の1/1000のオーダーで管理する必要があり、例えば直径数mm程度の軸では数μm程度のラジアル軸受隙間を常時確保する必要がある。従って、製造時の公差、さらには温度変化が激しい場合の熱膨張まで考慮すると、厳密な隙間管理は困難である。これに対して、フォイル軸受の場合には、数十μm程度のラジアル軸受隙間に管理すれば足り、その製造や隙間管理が容易となる利点を有する。   Foil bearings are characterized by excellent stability because of the flexibility of the foil, an appropriate radial bearing gap is formed according to the operating conditions such as shaft rotation speed, load, and ambient temperature. It can be used at a higher speed than an air dynamic pressure bearing. In addition, the radial bearing clearance of a general dynamic pressure bearing needs to be managed in the order of 1/1000 of the shaft diameter. For example, a radial bearing clearance of about several μm needs to be always secured for a shaft having a diameter of about several millimeters. . Therefore, when taking into account manufacturing tolerances, and even thermal expansion when the temperature change is severe, strict gap management is difficult. On the other hand, in the case of a foil bearing, it is sufficient to manage a radial bearing gap of about several tens of μm, and there is an advantage that its manufacture and gap management become easy.

フォイル軸受としては、バックフォイルに設けた切り起こしでトップフォイルを弾性的に支持するもの(特許文献1)、素線を網状に編成した弾性体で軸受フォイルを弾性的に支持するもの(特許文献2)、および、バックフォイルに、外輪内面に接触し周方向に移動しない支持部とトップフォイルからの面圧により弾性的に撓む弾性部とを設けたもの(特許文献3)等が公知である。   As the foil bearing, a top foil is elastically supported by a cut and raised provided in a back foil (Patent Document 1), and a bearing foil is elastically supported by an elastic body formed by meshing strands (Patent Document). 2) and those having a back foil provided with a support portion that contacts the inner surface of the outer ring and does not move in the circumferential direction and an elastic portion that is elastically bent by the surface pressure from the top foil (Patent Document 3), etc. are known. is there.

フォイル軸受の一種として、バックフォイルを設けず、トップフォイルを周方向で分割してリーフフォイルを形成し、リーフフォイルをその一部を重ね合わせながら周方向の複数個所に設け、リーフフォイルの重なり合った部分でばね性を得るリーフ型と呼ばれるものも存在する。このリーフ型のフォイル軸受としては、固定軸受環を周方向で複数の円弧状環部材に分割し、各円弧状環部材の接合端部にフォイルの一端を溶接すると共に、フォイルにレイリーステップを屈曲形成したもの(特許文献4)、リーフをピエゾバイモルフで形成したもの(特許文献5)、リーフフォイルを線膨張率の異なる2種類の金属からなるバイメタルにより形成したもの(特許文献6)、等が公知である。   As a type of foil bearing, the back foil is not provided, the top foil is divided in the circumferential direction to form a leaf foil, and the leaf foils are provided in multiple places in the circumferential direction while overlapping the parts, and the leaf foils overlap. There is also a so-called leaf type that obtains springiness at a portion. In this leaf type foil bearing, the fixed bearing ring is divided into a plurality of arc-shaped ring members in the circumferential direction, one end of the foil is welded to the joining end of each arc-shaped ring member, and a Rayleigh step is bent on the foil. One formed (Patent Document 4), one formed by a piezo bimorph (Patent Document 5), one formed by a bimetal made of two types of metals having different linear expansion coefficients (Patent Document 6), etc. It is known.

特開2002−364643公報JP 2002-364463 A 特開2003−262222号公報JP 2003-262222 A 特開2009−299748号公報JP 2009-299748 A 特公平2−20851号公報Japanese Examined Patent Publication No. 2-20851 特開平4−54309号公報JP-A-4-54309 特開2002−295467号公報JP 2002-295467 A

従来のフォイル軸受のうち、特許文献1〜3に示すフォイル軸受では、トップフォイルとバックフォイルの二種類のフォイルが必要であり、部品点数が多くなる。また、組み立て工程も煩雑化しており、フォイル軸受のさらなる低コスト化を阻む要因になっている。特にバックフォイルは複雑な形状であることが多く、その製造工程が煩雑化する傾向にあることから、改善が要望されている。   Among the conventional foil bearings, the foil bearings disclosed in Patent Documents 1 to 3 require two types of foils, a top foil and a back foil, and increase the number of parts. In addition, the assembly process is complicated, which is a factor that hinders further cost reduction of the foil bearing. In particular, the back foil often has a complicated shape, and the manufacturing process tends to be complicated, and therefore, improvement is desired.

特許文献4〜6に示すリーフ型のフォイル軸受では、複数のリーフを外方部材の内周にそれぞれ個別に取り付ける必要がある。そのため、煩雑な組み立て工程を要し、同様にコスト高となっている。   In the leaf type foil bearings shown in Patent Documents 4 to 6, it is necessary to individually attach a plurality of leaves to the inner periphery of the outer member. Therefore, a complicated assembly process is required, and the cost is similarly high.

そこで、本発明は、フォイル軸受の低コスト化を図ることを目的とする。   Therefore, an object of the present invention is to reduce the cost of a foil bearing.

上記目的を達成するため、本発明は、円筒状の外方部材と、外方部材の内周に挿入された軸と、外方部材の内周面と軸の外周面との間に介在する円筒状のフォイル部材とを具備し、フォイル部材に、ラジアル軸受隙間を形成する軸受面を設け、ラジアル軸受隙間に生じた流体膜で軸と外方部材の相対回転を支持するフォイル軸受において、一枚のフォイル部材に、軸受面と、軸受面を弾性的に支持するばね部とを設けたことを特徴とする。   In order to achieve the above object, the present invention is interposed between a cylindrical outer member, a shaft inserted in the inner periphery of the outer member, and an inner peripheral surface of the outer member and an outer peripheral surface of the shaft. In a foil bearing comprising a cylindrical foil member, provided with a bearing surface that forms a radial bearing gap on the foil member, and supporting relative rotation of the shaft and the outer member by a fluid film formed in the radial bearing gap. The foil member is provided with a bearing surface and a spring portion that elastically supports the bearing surface.

このように一枚のフォイル部材に軸受面と軸受面を弾性的に支持するばね部の双方を設けることにより、可撓性を有する軸受面を一枚のフォイル部材で形成することができる。そのため、部品点数の削減および組み立て工数の削減を通じて、フォイル軸受の低コスト化を図ることができる。   Thus, by providing both the bearing surface and the spring portion that elastically supports the bearing surface in one foil member, a flexible bearing surface can be formed by one foil member. Therefore, the cost of the foil bearing can be reduced through the reduction in the number of parts and the number of assembly steps.

ばね部は、フォイル部材に舌片部を形成し、舌片部を塑性変形させることで構成することができる。舌片部は、帯状フォイルにワイヤカット加工あるいはプレス加工を施すことで形成することができる。この場合、ばね部は、平面状、曲面状、円筒面状の何れかの形状に形成することができる。さらには、舌片部を軸方向の折り曲げ線で複数回折り返すことでばね部を形成することもできる。   The spring portion can be configured by forming a tongue piece on the foil member and plastically deforming the tongue piece. The tongue piece can be formed by subjecting the strip-like foil to wire cutting or pressing. In this case, the spring portion can be formed in any one of a planar shape, a curved surface shape, and a cylindrical surface shape. Furthermore, the spring portion can be formed by bending the tongue piece portion a plurality of times along the axial fold line.

舌片部を周方向の折り返し線で折り返すことにより、ばね部と軸受面を半径方向でオーバーラップさせることができる。この場合、軸受面の背後にばね部が配置された形になって、軸受面が半径方向の弾性力で直接支持される。そのため、軸受面の許容変形量が大きくなり、ラジアル軸受隙間幅の自己調整能力が強化されて振動の減衰効果が高まる。   By folding the tongue piece part along the circumferential folding line, the spring part and the bearing surface can be overlapped in the radial direction. In this case, the spring portion is arranged behind the bearing surface, and the bearing surface is directly supported by the elastic force in the radial direction. Therefore, the allowable deformation amount of the bearing surface is increased, the self-adjusting ability of the radial bearing gap width is enhanced, and the vibration damping effect is enhanced.

舌片部を周方向の折り返し線で折り返した場合、この折り返し線が軸受面の軸方向一方側だけに存在すると、折り返し線で弾性力が生じるため、軸受面に僅かな傾き(ミスアライメント)を生じるおそれがある。この傾きは、舌片部の前記折り返し線を軸受面の軸方向両側に設けることで解消することができる。   When the tongue piece is folded back along the circumferential folding line, if this folding line exists only on one side in the axial direction of the bearing surface, an elastic force is generated at the folding line, so a slight inclination (misalignment) occurs on the bearing surface. May occur. This inclination can be eliminated by providing the folding line of the tongue piece on both axial sides of the bearing surface.

ばね部と軸受面は、上記のように半径方向でオーバーラップさせる他、軸方向で異なる位置に形成してもよい。   In addition to overlapping in the radial direction as described above, the spring portion and the bearing surface may be formed at different positions in the axial direction.

ばね部を軸方向の複数個所に離隔形成すると共に、軸方向で隣接するばね部の間に軸受面を配置することにより、軸受面の軸方向両側を弾性的に支持することができ、軸受面の撓み変形が安定化する。特にばね部を軸方向の二箇所に形成すれば単列のフォイル軸受を構成することができる。また、ばね部を軸方向の三箇所に形成すれば複列のフォイル軸受を構成することができ、モーメント荷重に対する軸受剛性の向上を図ることができる。   By forming the spring parts apart at a plurality of positions in the axial direction and arranging the bearing surfaces between the adjacent spring parts in the axial direction, both axial sides of the bearing surface can be elastically supported. The bending deformation of is stabilized. In particular, if the spring portions are formed at two axial positions, a single-row foil bearing can be configured. Further, if the spring portions are formed at three positions in the axial direction, a double-row foil bearing can be formed, and the bearing rigidity against moment load can be improved.

ばね部を円周方向の複数個所に設けることで、軸受面に作用する弾性支持力を円周方向で均一化することができる。   By providing the spring portions at a plurality of locations in the circumferential direction, the elastic supporting force acting on the bearing surface can be made uniform in the circumferential direction.

フォイル部材は有端の円筒状に形成することができる。フォイル部材の一端部は外方部材もしくは軸に固定する。前者の場合、ばね部を軸受面の外径側に配置して外方部材の内周面に摺動可能に接触させ、後者の場合、ばね部を軸受面の内径側に配置して軸の外周面に摺動可能に接触させるのが望ましい。これにより、軸受面の可撓性が高まり、フォイル部材による振動の減衰作用を強化することができる。   The foil member can be formed in a cylindrical shape with ends. One end of the foil member is fixed to the outer member or the shaft. In the former case, the spring part is arranged on the outer diameter side of the bearing surface so as to be slidably contacted with the inner peripheral surface of the outer member, and in the latter case, the spring part is arranged on the inner diameter side of the bearing surface. It is desirable that the outer peripheral surface is slidably contacted. As a result, the flexibility of the bearing surface can be increased, and the vibration damping action by the foil member can be enhanced.

フォイル部材の軸受面には、起動直後や停止直後の低速回転状態では、ラジアル軸受隙間を介して軸受面と対向する部材が摺接する。軸受面に被膜を形成することで、軸受面を保護し、摺接時における軸受面の摩耗を抑制することができる。   A member facing the bearing surface is slidably contacted with the bearing surface of the foil member via a radial bearing gap in a low-speed rotation state immediately after starting or immediately after stopping. By forming a coating on the bearing surface, the bearing surface can be protected and wear of the bearing surface during sliding contact can be suppressed.

上記のように、ばね部を軸受面の外径側に配置して外方部材の内周面に摺動可能に接触させた場合、互いに摺動するばね部と外方材の内周面のうち、何れか一方又は双方に被膜を形成するのが望ましい。この摺動部の摩擦特性はフォイル部材による振動減衰性を左右する。そのため、被膜を形成することで摺動部において最適な大きさの摩擦力を得ることができる。ばね部を軸受面の内径側に配置して軸の外周面に摺動可能に接触させた場合には、同様の理由から、互いに摺動するばね部と軸の外周面のうち、何れか一方または相方に被膜を形成するのが望ましい。   As described above, when the spring portion is arranged on the outer diameter side of the bearing surface and is slidably contacted with the inner peripheral surface of the outer member, the spring portion sliding with each other and the inner peripheral surface of the outer member Of these, it is desirable to form a film on either one or both. The frictional characteristics of the sliding part influence the vibration damping property of the foil member. For this reason, by forming the coating film, it is possible to obtain an optimum frictional force at the sliding portion. When the spring part is arranged on the inner diameter side of the bearing surface and is slidably contacted with the outer peripheral surface of the shaft, for the same reason, either one of the spring part sliding with each other and the outer peripheral surface of the shaft Alternatively, it is desirable to form a film on both sides.

上記の各被膜、特に軸受面の被膜としては、表面を低摩擦化するものを使用するのが望ましい。これにより起動直後や停止直後の摩擦トルクを減じて低トルク化を図ることができる。   As each of the above-mentioned coatings, particularly the coating on the bearing surface, it is desirable to use a coating that reduces the surface friction. As a result, it is possible to reduce the torque by reducing the friction torque immediately after starting and immediately after stopping.

低摩擦の被膜として、DLC被膜、チタンアルミナイトライド被膜、二流化モリブデン被膜の何れかを使用することができる。DLC被膜やチタンアルミナイトライド被膜は硬質被膜であるため、これらを使用すれば、低摩擦化のみならず、耐摩耗性の向上による軸受寿命の増大を図ることもできる。   As the low friction coating, any of a DLC coating, a titanium aluminum nitride coating, and a diverted molybdenum coating can be used. Since the DLC coating and the titanium aluminum nitride coating are hard coatings, the use of these can not only reduce friction but also increase the bearing life by improving wear resistance.

以上に述べたフォイル軸受は、ガスタービンのロータの支持や、過給機のロータの支持に使用することができる。   The foil bearing described above can be used for supporting a rotor of a gas turbine or a rotor of a supercharger.

本発明によれば、部品点数を削減し、部品コストや組み立てコストの低廉化を通じてフォイル軸受の低コスト化を図ることができる。   According to the present invention, the number of parts can be reduced, and the cost of the foil bearing can be reduced through the reduction of parts cost and assembly cost.

マイクロガスタービンの構成を概念的に示す図である。It is a figure which shows notionally the structure of a micro gas turbine. 上記マイクロガスタービンにおけるロータの支持構造を示す断面図である。It is sectional drawing which shows the support structure of the rotor in the said micro gas turbine. 本発明にかかるフォイル軸受の一実施形態を示す正面図である。It is a front view which shows one Embodiment of the foil bearing concerning this invention. 図3に示すフォイル軸受に使用されるフォイル部材の斜視図である。It is a perspective view of the foil member used for the foil bearing shown in FIG. フォイル部材を形成するための金属素材を示す平面図である。It is a top view which shows the metal raw material for forming a foil member. 金属素材に形成した舌片部の各種形態を示す断面図である。It is sectional drawing which shows the various forms of the tongue piece part formed in the metal raw material. 複列フォイル軸受用のフォイル部材を示す斜視図である。It is a perspective view which shows the foil member for double row foil bearings. 他の実施形態にかかるフォイル部材の製作工程を示す平面図である。It is a top view which shows the manufacturing process of the foil member concerning other embodiment. 他の実施形態にかかるフォイル部材の製作工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the foil member concerning other embodiment. 他の実施形態にかかるフォイル部材の製作工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the foil member concerning other embodiment. 他の実施形態にかかるフォイル部材を使用したフォイル軸受の断面図である。It is sectional drawing of the foil bearing which uses the foil member concerning other embodiment. 他の実施形態にかかるフォイル部材を展開した平面図である。It is the top view which developed the foil member concerning other embodiments. 他の実施形態にかかるフォイル部材の製作工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the foil member concerning other embodiment. 他の実施形態にかかるフォイル部材を展開した平面図である。It is the top view which developed the foil member concerning other embodiments. 他の実施形態にかかるフォイル部材の製作工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the foil member concerning other embodiment. 他の実施形態にかかるフォイル部材を展開した平面図である。It is the top view which developed the foil member concerning other embodiments. フォイル軸受の他の実施形態を示す正面図である。It is a front view which shows other embodiment of a foil bearing. 過給機の構成を概念的に示す図である。It is a figure which shows notionally the structure of a supercharger.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、マイクロガスタービンと呼ばれるガスタービン装置の構成を概念的に示す。このマイクロガスタービンは、翼列を形成したタービン1および圧縮機2と、発電機3と、燃焼器4と、再生器5とを主に備える。タービン1、圧縮機2、および発電機3には、水平方向に延びる共通の軸6が設けられ、この軸6と、タービン1および圧縮機2とで一体回転可能のロータが構成される。吸気口7から吸入された空気は、圧縮機2で圧縮され、再生器5で加熱された上で燃焼器4に送り込まれる。この圧縮空気に燃料を混合して燃焼させ、高温、高圧のガスでタービン1を回転させる。タービン1の回転力が軸6を介して発電機3に伝達され、発電機3が回転することにより発電し、この電力がインバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。   FIG. 1 conceptually shows the configuration of a gas turbine device called a micro gas turbine. The micro gas turbine mainly includes a turbine 1 and a compressor 2 that form blade rows, a generator 3, a combustor 4, and a regenerator 5. The turbine 1, the compressor 2, and the generator 3 are provided with a common shaft 6 that extends in the horizontal direction, and the shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally. Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. Fuel is mixed with this compressed air and burned, and the turbine 1 is rotated by high-temperature and high-pressure gas. The rotational force of the turbine 1 is transmitted to the generator 3 via the shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.

図2に、上記マイクロガスタービンにおけるロータの支持構造の一例を示す。この支持構造では、軸方向の2箇所にラジアル軸受10を配置し、軸6のフランジ部6bの軸方向両側にスラスト軸受20、20を配置することにより、軸6がラジアル方向及び両スラスト方向に支持されている。   FIG. 2 shows an example of a rotor support structure in the micro gas turbine. In this support structure, the radial bearings 10 are arranged at two locations in the axial direction, and the thrust bearings 20 and 20 are arranged on both axial sides of the flange portion 6b of the shaft 6, so that the shaft 6 is in the radial direction and both thrust directions. It is supported.

この支持構造において、タービン1と圧縮機2の間の領域は、高温、高圧のガスで回転されるタービン1に隣接しているために高温雰囲気となる。この高温雰囲気では、潤滑油やグリース等からなる潤滑剤が変質・蒸発してしまうため、これらの潤滑剤を使用する通常の軸受(転がり軸受等)を適用することは難しい。そのため、この種の支持構造で使用される軸受10、20としては、空気動圧軸受、特にフォイル軸受が適合する。   In this support structure, the region between the turbine 1 and the compressor 2 is adjacent to the turbine 1 that is rotated by high-temperature, high-pressure gas, and therefore has a high-temperature atmosphere. In this high temperature atmosphere, the lubricant composed of lubricating oil, grease and the like is altered and evaporated, so it is difficult to apply a normal bearing (such as a rolling bearing) using these lubricants. Therefore, as the bearings 10 and 20 used in this type of support structure, an air dynamic pressure bearing, particularly a foil bearing is suitable.

以下、上記マイクロガスタービン用のラジアル軸受10に適合するフォイル軸受10の構成を図3〜17に基づいて説明する。このフォイル軸受10は、図3に示すように、図示しないハウジングの内周に固定される円筒状の外方部材11と、外方部材11の内周に挿入された軸6と、外方部材11の内周面と軸6の外周面との間に介在させた有端円筒状のフォイル部材13とで構成される。   Hereinafter, the structure of the foil bearing 10 suitable for the radial bearing 10 for the micro gas turbine will be described with reference to FIGS. As shown in FIG. 3, the foil bearing 10 includes a cylindrical outer member 11 fixed to the inner periphery of a housing (not shown), a shaft 6 inserted into the inner periphery of the outer member 11, and an outer member. 11 and an end-cylindrical foil member 13 interposed between the inner peripheral surface of 11 and the outer peripheral surface of the shaft 6.

図4に示すように、一枚のフォイル部材13に軸受面15とばね部16とが一体に形成される。軸受面15はフォイル部材13の内周面に形成され、孔や段差のない平滑な円筒面状をなす。ばね部16は、フォイル部材13を部分的に塑性変形させて設けられた半径方向に弾性変形可能な領域であり、図示例では、軸受面15の外径側に突出させた切り起こしでばね部16が構成されている。ばね部16は、円周方向の複数個所に等ピッチで設けられ、かつ軸受面15の軸方向両側に配設されている。   As shown in FIG. 4, the bearing surface 15 and the spring portion 16 are integrally formed on one foil member 13. The bearing surface 15 is formed on the inner peripheral surface of the foil member 13 and has a smooth cylindrical surface shape without holes or steps. The spring portion 16 is a region that is elastically deformable in the radial direction and is provided by partially plastically deforming the foil member 13. In the illustrated example, the spring portion 16 is formed by a cut and raised projecting toward the outer diameter side of the bearing surface 15. 16 is configured. The spring parts 16 are provided at a plurality of positions in the circumferential direction at equal pitches, and are disposed on both axial sides of the bearing surface 15.

フォイル部材13は、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる厚さ20μm〜200μm程度の帯状フォイルで形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、油による防錆効果は期待できない。鋼材料や銅合金の代表例として、炭素鋼や黄銅を挙げることができるが、一般的な炭素鋼では錆による腐食が発生し易く、黄銅では加工ひずみによる置き割れを生じることがある(黄銅中のZnの含有量が多いほどこの傾向が強まる)。そのため、帯状フォイルとしては、ステンレス鋼もしくは青銅製のものを使用するのが好ましい。   The foil member 13 is formed of a belt-like foil having a thickness of about 20 μm to 200 μm made of a metal having a good spring property and good workability, such as a steel material or a copper alloy. In an air dynamic pressure bearing using air as a fluid film as in the present embodiment, since no lubricating oil exists in the atmosphere, the antirust effect by the oil cannot be expected. Typical examples of steel materials and copper alloys include carbon steel and brass, but general carbon steel is susceptible to corrosion due to rust, and brass may cause cracks due to processing strain (in brass) This tendency increases as the Zn content increases.) Therefore, it is preferable to use a stainless steel or bronze foil as the belt-like foil.

以下、図4に示すフォイル部材13の製作手順を説明する。なお、以下で述べる「軸方向」、「半径方向」、および「周方向」の用語は、製作後のフォイル部材13を外方部材11の内周に組み込んだ状態での軸方向、半径方向、および周方向を意味する。具体的には、帯状フォイル30の短辺に沿う方向が「軸方向」となり、長辺に沿う方向が「周方向」となり、厚さ方向が「半径方向」となる。   Hereinafter, the manufacturing procedure of the foil member 13 shown in FIG. 4 will be described. In addition, the terms “axial direction”, “radial direction”, and “circumferential direction” described below are the axial direction, radial direction in a state in which the manufactured foil member 13 is incorporated in the inner periphery of the outer member 11, And circumferential direction. Specifically, the direction along the short side of the strip-shaped foil 30 is the “axial direction”, the direction along the long side is the “circumferential direction”, and the thickness direction is the “radial direction”.

図5に示すように、上記金属製の帯状フォイル30を準備し、その両側縁の複数個所にワイヤカット加工やプレス加工等でL字型の切り込み31を形成する。この切り込み31は、軸方向の切り込み31a、および該切り込み31aの終端につながった周方向の切り込み31bで構成される。この切り込み31により、帯状フォイル30の軸方向両側にフラップ状をなす複数の舌片部60が形成される。次に、各舌片部60を、その根元の軸方向の折り曲げ線(破線で示す)で折り曲げて半径方向に起立させ、図6(a)に示すように、各舌片部60で切起こしを形成する。その後、各舌片部60を外径側にして帯状フォイル30を円筒状にローリングさせることで、図4に示すフォイル部材13が得られる。   As shown in FIG. 5, the metal strip foil 30 is prepared, and L-shaped cuts 31 are formed at a plurality of locations on both side edges by wire cutting or pressing. The notch 31 includes an axial notch 31a and a circumferential notch 31b connected to the end of the notch 31a. By the cuts 31, a plurality of tongue pieces 60 having a flap shape are formed on both axial sides of the belt-like foil 30. Next, each tongue piece 60 is bent at the root axial fold line (shown by a broken line) and raised in the radial direction, and cut up at each tongue piece 60 as shown in FIG. Form. Then, the foil member 13 shown in FIG. 4 is obtained by rolling the belt-like foil 30 in a cylindrical shape with each tongue piece 60 as the outer diameter side.

舌片部60は、図6(a)に示すように小さい角度θで折り曲げる他、同図(b)に示すように90°を越える大きな角度θで折り曲げてもよい。あるいは同図(c)に示すように、舌片部60を円弧状に折り曲げたり、同図(d)に示すように円形に丸めたりしてもよい。図6(a)および(b)の舌片部60であれば平面状のばね部16を形成することができ、同図(c)の舌片部60であれば曲面状のばね部16を形成することができ、同図(d)の舌片部60であれば円筒面状のばね部16を形成することができる。このように舌片部60の折り曲げ角度θを調整し、あるいは舌片部60の折り曲げ形態を変更することで、ばね部16のばね定数を最適値に調整することができる。   The tongue piece 60 may be bent at a small angle θ as shown in FIG. 6 (a), or may be bent at a large angle θ exceeding 90 ° as shown in FIG. 6 (b). Alternatively, the tongue piece 60 may be bent into an arc shape as shown in FIG. 5C, or rounded into a circle as shown in FIG. 6 (a) and 6 (b) can form the flat spring portion 16, and the tongue portion 60 in FIG. 6 (c) can form the curved spring portion 16. If it is the tongue piece part 60 of the same figure (d), the cylindrical surface-shaped spring part 16 can be formed. Thus, the spring constant of the spring part 16 can be adjusted to the optimum value by adjusting the bending angle θ of the tongue piece part 60 or changing the bending form of the tongue piece part 60.

このフォイル部材13は、外方部材11の内径側に配置した状態で、その一端を外方部材11の内周に取り付けることにより、外方部材11に固定される。例えば上述したフォイル部材13の製作工程で、帯状フォイル30の一端部に外径方向に起立する取り付け部13aを形成し、この取り付け部13aを外方部材11の内周に形成した嵌合溝11aに嵌合固定することで、フォイル部材13を外方部材11に固定することができる。嵌合溝11aへの取り付け部13aの固定方法は任意で、接着や溶接で固定することもできる。その後、フォイル部材13の内周に軸6を挿入することで、図3に示すフォイル軸受が完成する。   The foil member 13 is fixed to the outer member 11 by attaching one end of the foil member 13 to the inner periphery of the outer member 11 in a state of being disposed on the inner diameter side of the outer member 11. For example, in the manufacturing process of the foil member 13 described above, an attachment portion 13a standing in the outer diameter direction is formed at one end of the belt-like foil 30, and the fitting groove 11a formed on the inner periphery of the outer member 11 is formed. The foil member 13 can be fixed to the outer member 11 by being fitted and fixed to the outer member 11. The fixing method of the attachment part 13a to the fitting groove 11a is arbitrary, and can also be fixed by adhesion or welding. Then, the foil bearing shown in FIG. 3 is completed by inserting the shaft 6 into the inner periphery of the foil member 13.

フォイル部材13の他端部は、取り付け部13aの近接位置まで延びており、この他端部と取り付け部13aとの間には周方向の隙間tが存在する。また、図3に示すように、各ばね部16の先端が何れも外方部材11の内周面11bに弾性的に接触している。各ばね部16は板ばねとして機能し、これにより軸受面15がばね部16を介して外方部材11に弾性的に支持される。各ばね部16の先端部16aは外方部材11の内周面11bに固定されておらず、内周面11b上を摺動可能である。   The other end portion of the foil member 13 extends to a position close to the attachment portion 13a, and a circumferential gap t exists between the other end portion and the attachment portion 13a. Further, as shown in FIG. 3, the tips of the spring portions 16 are in elastic contact with the inner peripheral surface 11 b of the outer member 11. Each spring portion 16 functions as a leaf spring, whereby the bearing surface 15 is elastically supported by the outer member 11 via the spring portion 16. The distal end portion 16a of each spring portion 16 is not fixed to the inner peripheral surface 11b of the outer member 11, and can slide on the inner peripheral surface 11b.

以上の構成において、軸6を図3の矢印の向きに回転させると、フォイル部材13の軸受面15と軸6の外周面6aとの間に空気膜が形成される。これにより、軸6の周囲に環状のラジアル軸受隙間Cが形成され、軸6がフォイル部材13に対して非接触の状態でラジアル方向に回転自在に支持される。なお、実際のラジアル軸受隙間7の幅は数十μm程度の微小なものであるが、図3ではその幅を誇張して描いている。フォイル部材13のうち、ばね部16の円周方向列を形成した領域の内径側では、舌片部60の折り曲げに伴って生じた隙間から空気が漏れるので、該領域の内径側で圧力を生じることはない。そのため、この領域でのフォイル部材13の内周面は、軸受面15としては機能しない。   In the above configuration, when the shaft 6 is rotated in the direction of the arrow in FIG. 3, an air film is formed between the bearing surface 15 of the foil member 13 and the outer peripheral surface 6 a of the shaft 6. Thereby, an annular radial bearing gap C is formed around the shaft 6, and the shaft 6 is rotatably supported in the radial direction in a non-contact state with respect to the foil member 13. The actual radial bearing gap 7 has a very small width of about several tens of μm, but in FIG. 3, the width is exaggerated. On the inner diameter side of the region of the foil member 13 in which the circumferential row of the spring portions 16 is formed, air leaks from the gap generated by the bending of the tongue piece portion 60, so that pressure is generated on the inner diameter side of the region. There is nothing. Therefore, the inner peripheral surface of the foil member 13 in this region does not function as the bearing surface 15.

また、フォイル部材13が有する可撓性により、軸受面15が荷重や軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、ラジアル軸受隙間Cは運転条件に応じた適切幅に自動調整される。加えて、軸受面15がばね部16によって弾性支持されていること、フォイル部材13の両端部間に隙間tが存在しており、フォイル部材13の拡縮変形が可能であること、さらにばね部16の先端部6aが外方部材11の内周面1bに対して摺動可能であること、等の個々のもしくはこれらを組み合わせた理由からラジアル軸受隙間幅の自己調整能力が強化され、かつ振動の減衰効果も得られる。そのため、高温・高速回転といった過酷な運転条件でもラジアル軸受隙間を最適幅に管理することができ、軸6を安定して支持することが可能となる。   Further, because the flexibility of the foil member 13 causes the bearing surface 15 to be arbitrarily deformed according to the operating conditions such as the load, the rotational speed of the shaft 6 and the ambient temperature, the radial bearing gap C is appropriately set according to the operating conditions. Automatically adjusted to the width. In addition, the bearing surface 15 is elastically supported by the spring portion 16, there is a gap t between both end portions of the foil member 13, the foil member 13 can be expanded and contracted, and the spring portion 16. The self-adjusting ability of the radial bearing gap width is enhanced for the reason that the tip end portion 6a of the outer member 11 is slidable with respect to the inner peripheral surface 1b of the outer member 11, or the combination of these, etc. A damping effect is also obtained. Therefore, the radial bearing gap can be managed to the optimum width even under severe operating conditions such as high temperature and high speed rotation, and the shaft 6 can be stably supported.

特に上記フォイル軸受10では、一枚のフォイル部材13だけで上記各機能を得ることができる。そのため、部品コストや組み立てコストを削減することができ、フォイル軸受の低コスト化を図ることができる。   In particular, in the foil bearing 10, the above functions can be obtained with only one foil member 13. Therefore, it is possible to reduce component costs and assembly costs, and to reduce the cost of the foil bearing.

フォイル軸受10では、軸6の停止直前や起動直後の低速回転時に、軸受面15や軸6の外周面6aの表面粗さ以上の厚さの空気膜の形成が期待できない。そのため、フォイル部材13と軸6の外周面6aとの間で金属接触を生じ、トルクの増大を招く。この時の摩擦力を減じてトルク低減を図るため、軸受面15には低摩擦の被膜を形成するのが望ましい。この種の被膜としては、例えばDLC膜、チタンアルミナイトライド膜、あるいは二硫化モリブデン膜を使用することができる。DLC膜、チタンやアルミナイトライド膜はCVDやPVDで形成することができ、二硫化モリブデン膜はスプレーで簡単に形成することができる。特にDLC膜やチタンアルミナイトライド膜は硬質であるので、これらの被膜を形成することで、軸受面15の耐摩耗性をも向上させることができ、軸受寿命を増大させることができる。このような被膜形成は、フォイル部材13が一枚のみで構成されていることもあり、効率よく行うことができる。   In the foil bearing 10, the formation of an air film having a thickness greater than the surface roughness of the bearing surface 15 and the outer peripheral surface 6 a of the shaft 6 cannot be expected during the low-speed rotation immediately before the shaft 6 is stopped or immediately after the shaft 6 is started. Therefore, a metal contact is produced between the foil member 13 and the outer peripheral surface 6a of the shaft 6 and the torque is increased. In order to reduce the torque by reducing the friction force at this time, it is desirable to form a low friction coating on the bearing surface 15. As this type of coating, for example, a DLC film, a titanium aluminum nitride film, or a molybdenum disulfide film can be used. The DLC film, titanium or aluminum nitride film can be formed by CVD or PVD, and the molybdenum disulfide film can be easily formed by spraying. In particular, since the DLC film and the titanium aluminum nitride film are hard, the wear resistance of the bearing surface 15 can be improved and the bearing life can be increased by forming these films. Such film formation can be efficiently performed because the foil member 13 may be composed of only one sheet.

軸受の運転中は、ばね部16の先端部16aと外方部材11の内周面11bとの間でも微小摺動が生じるため、この摺動部分、すなわちばね部16の先端部16aやこれと接触する外方部材11の内周面11bにも上記の被膜を形成することにより、耐摩耗性の向上を図ってもよい。なお、振動の減衰作用を向上させるためには、この摺動部である程度の摩擦力が存在する方が好都合な場合もあるので、この部分の被膜にはそれほど低摩擦性は要求されない。従って、この部分の被膜としては、DLC膜やチタンやアルミナイトライド膜を使用するのが好ましい。   During the operation of the bearing, a minute slide occurs between the tip 16a of the spring part 16 and the inner peripheral surface 11b of the outer member 11, so that this sliding part, that is, the tip 16a of the spring part 16 and this. Wear resistance may be improved by forming the above-mentioned film on the inner peripheral surface 11b of the outer member 11 that is in contact. In order to improve the vibration damping action, it may be more convenient that a certain amount of frictional force exists in the sliding portion. Therefore, the low friction property is not required for the coating of this portion. Therefore, it is preferable to use a DLC film, titanium, or an aluminum nitride film as the coating of this portion.

図7に本発明の他の実施形態を示す。この実施形態は、フォイル部材13の軸方向三箇所にばね部16を離隔形成し、軸方向で隣り合うばね部16の間に軸受面15を形成することで、複列の軸受面15を有する複列フォイル軸受10を構成した例である。このようにフォイル軸受10を複列化することで、モーメント荷重に対する軸受剛性を向上させることができ、フォイル軸受の用途拡大を図ることができる。例えば、図2に示すマイクロガスタービンでは、2つのラジアル軸受10を1個の軸受に置き換えることが可能となる。本発明の構成であれば、一枚のフォイル部材13で複列軸受を構成することができ、複列化に伴って部品点数や組み立て工数が増えることもなく、複列フォイル軸受の高コスト化を防止することができる。なお、フォイル部材13を製作する際、図5に示す帯状フォイル30への切り込み31の形成をワイヤカット加工で行うと、工数大となって高コスト化するので、切り込み31はプレス加工で形成するのが望ましい。   FIG. 7 shows another embodiment of the present invention. In this embodiment, the spring portions 16 are formed at three positions in the axial direction of the foil member 13, and the bearing surfaces 15 are formed between the adjacent spring portions 16 in the axial direction, thereby having the double-row bearing surfaces 15. It is the example which comprised the double row foil bearing. Thus, by making double the foil bearing 10, the bearing rigidity with respect to moment load can be improved, and the application expansion of a foil bearing can be aimed at. For example, in the micro gas turbine shown in FIG. 2, the two radial bearings 10 can be replaced with one bearing. If it is the structure of this invention, a double row bearing can be comprised with the foil member 13 of 1 sheet, and cost increase of a double row foil bearing does not increase a number of parts and an assembly man-hour with a double row. Can be prevented. Note that when the foil member 13 is manufactured, if the cut 31 is formed in the strip-shaped foil 30 shown in FIG. 5 by wire cutting, the number of steps is increased and the cost is increased. Therefore, the cut 31 is formed by pressing. Is desirable.

以上の実施形態では、軸受面15とばね部16とを軸方向で別位置に形成したフォイル部材13を例示したが、軸受面15とばね部16を半径方向でオーバーラップさせることもできる。以下、図8〜図10に基づいて、この種のフォイル部材13の製作工程を説明する。   In the above embodiment, the foil member 13 in which the bearing surface 15 and the spring portion 16 are formed at different positions in the axial direction is illustrated, but the bearing surface 15 and the spring portion 16 can be overlapped in the radial direction. Hereinafter, the manufacturing process of this type of foil member 13 will be described with reference to FIGS.

図8に示すように、先ず金属製帯状フォイル30の一方の側縁部にL字型の複数の切り込み31(図5と同様に、軸方向の切り込み31aおよび周方向の切り込み31bで形成される)を形成し、舌片部60を構成する。この時、切り込みを有しない帯状部分32の幅寸法Waと舌片部60の幅寸法Wbとは等しくする(Wa=Wb)。   As shown in FIG. 8, first, a plurality of L-shaped cuts 31 (similar to FIG. 5, an axial cut 31 a and a circumferential cut 31 b are formed on one side edge of the metal belt-like foil 30. ) And the tongue piece 60 is formed. At this time, the width dimension Wa of the strip-shaped portion 32 not having a cut is made equal to the width dimension Wb of the tongue piece 60 (Wa = Wb).

次いで、切り込み31で形成された各舌片部60を軸方向の折り返し線で複数回折り返し、図9に示すように折り畳み状態の舌片部60を形成する。図8では、各舌片部60における山折り線を破線で示し、谷折り線を二点鎖線で示している。また、帯状部分32の一端を折り曲げて取り付け部13aを形成する。   Next, a plurality of tongue pieces 60 formed by the cuts 31 are folded back along the axial folding line to form a folded tongue piece 60 as shown in FIG. In FIG. 8, the mountain fold line in each tongue piece part 60 is shown with the broken line, and the valley fold line is shown with the dashed-two dotted line. Further, one end of the belt-like portion 32 is bent to form the attachment portion 13a.

次いで、図9の矢印で示すように、折り畳み状態の舌片部60をその根元の周方向の折り返し線33で折り曲げ、舌片部60を裏側に折り返して、図10に示すように、折り畳み状態の舌片部60を帯状部分32の背後に重ねる。その後、各舌片部60を外径側にして帯状フォイル30を円筒状にローリングさせる。これにより、帯状部分32の表面(内周面)を軸受面15とし、その外径側に折り畳み状態の舌片部60からなるばね部16を一体に有するフォイル部材13が得られる。図11に示すように、このフォイル部材13を外方部材11の内周に配置し、取り付け部13aを外方部材11の嵌合溝11aに嵌合固定し、さらにフォイル部材13の内周に軸6を挿入することでフォイル軸受10が完成する。この構成でも、ばね部16の先端部16aは外方部材11の内周面11bに摺動可能に接触する。   Next, as shown by the arrows in FIG. 9, the folded tongue piece 60 is folded at the root circumferential fold line 33, the tongue piece 60 is folded back, and as shown in FIG. The tongue piece 60 is overlapped behind the belt-like portion 32. Thereafter, the belt-like foil 30 is rolled into a cylindrical shape with each tongue piece 60 as the outer diameter side. As a result, the foil member 13 having the surface (inner peripheral surface) of the belt-like portion 32 as the bearing surface 15 and integrally including the spring portion 16 formed of the folded tongue piece 60 on the outer diameter side thereof is obtained. As shown in FIG. 11, the foil member 13 is arranged on the inner periphery of the outer member 11, the attachment portion 13 a is fitted and fixed in the fitting groove 11 a of the outer member 11, and further, on the inner periphery of the foil member 13. The foil bearing 10 is completed by inserting the shaft 6. Even in this configuration, the distal end portion 16 a of the spring portion 16 is slidably in contact with the inner peripheral surface 11 b of the outer member 11.

図11に示すフォイル軸受10では、軸受面15と、その外径側のばね部16とが半径方向で完全にオーバーラップしている。この場合、軸受面15が半径方向の弾性力で直接支持されるため、軸受面の許容変形量が大きくなる。そのため、ラジアル軸受隙間幅の自己調整能力を強化することができ、振動の減衰効果をより高めることが可能となる。   In the foil bearing 10 shown in FIG. 11, the bearing surface 15 and the outer diameter side spring portion 16 completely overlap in the radial direction. In this case, since the bearing surface 15 is directly supported by the elastic force in the radial direction, the allowable deformation amount of the bearing surface is increased. Therefore, the self-adjusting ability of the radial bearing gap width can be enhanced, and the vibration damping effect can be further enhanced.

図12に、図8〜図10の製作手順で製作したフォイル部材13の展開図を示す。このフォイル部材13では、折り畳み状態の舌片部60を周方向の折り返し線33で折り返しているため、折返し線33の周辺領域Sで弾性力を生じる。折り返し線33はフォイル部材13の軸方向一方側に偏在しているため、フォイル部材13を外方部材11に組み込んだ状態では、軸受面15に僅かなミスアライメントを生じるおそれがある。   FIG. 12 is a development view of the foil member 13 manufactured by the manufacturing procedure of FIGS. In the foil member 13, since the folded tongue piece 60 is folded back by the circumferential folding line 33, an elastic force is generated in the peripheral region S of the folding line 33. Since the folding line 33 is unevenly distributed on one side in the axial direction of the foil member 13, a slight misalignment may occur in the bearing surface 15 when the foil member 13 is incorporated in the outer member 11.

このミスアライメントが問題となる場合には、図10に示すフォイル部材13の製作工程において、図13に示すように、帯状フォイル30の帯状部分32の軸方向両側に舌片部60を形成するのが望ましい。その後、折り畳み状態の舌片部60を周方向の折り返し線33で折り返して帯状フォイル30をローリングさせると、図14に示すように、フォイル部材13の軸方向両側で周方向の折り返し線33の数が同じになる(もしくは数の差が小さくなる)。そのため、折り返し線33の周辺領域で生じる弾性力を軸方向両側で相殺し、軸受面15のミスアライメントを防止することができる。   When this misalignment becomes a problem, in the manufacturing process of the foil member 13 shown in FIG. 10, as shown in FIG. 13, the tongue pieces 60 are formed on both sides in the axial direction of the belt-like portion 32 of the belt-like foil 30. Is desirable. Thereafter, when the folded tongue piece 60 is folded back along the circumferential folding line 33 to roll the belt-like foil 30, the number of circumferential folding lines 33 on both axial sides of the foil member 13 is shown in FIG. Are the same (or the difference in number is small). Therefore, the elastic force generated in the peripheral region of the folding line 33 can be canceled on both sides in the axial direction, and misalignment of the bearing surface 15 can be prevented.

図13および図14の実施形態では、各舌片部60の周方向位置を軸方向両側で一致させ、かつ各舌片部60の幅寸法Wbを帯状部分32(軸受面15)の幅寸法Waの1/2とした場合(Wb=Wa/2)を例示している。同様の作用効果は、図15に示すように、各舌片部60の周方向位置を軸方向両側でずらした場合にも得ることができる。この場合、図16に示すように、帯状部分32(軸受面15)の幅寸法Waと各舌片部60の幅寸法Wbは等しくすることができる。   In the embodiment of FIGS. 13 and 14, the circumferential position of each tongue piece 60 is matched on both sides in the axial direction, and the width dimension Wb of each tongue piece 60 is set to the width dimension Wa of the belt-like portion 32 (bearing surface 15). The case where it is set to 1/2 (Wb = Wa / 2) is illustrated. Similar effects can also be obtained when the circumferential position of each tongue piece 60 is shifted on both axial sides as shown in FIG. In this case, as shown in FIG. 16, the width dimension Wa of the belt-like portion 32 (bearing surface 15) and the width dimension Wb of each tongue piece 60 can be made equal.

以上の説明では、軸6を回転側部材とし、外方部材11を固定側部材とした場合を例示したが、これとは逆に軸6を固定側部材とし、外方部材11を回転側部材とした場合にも上記各実施形態の構成をそのまま適用することもできる。但し、この場合はフォイル部材13が回転側部材となるので、遠心力によるフォイル部材13全体の変形を加味してフォイル部材13の設計を行う必要がある。   In the above description, the case where the shaft 6 is the rotation side member and the outer member 11 is the fixed side member is illustrated. On the contrary, the shaft 6 is the fixed side member and the outer member 11 is the rotation side member. Even in this case, the configuration of each of the above embodiments can be applied as it is. However, in this case, since the foil member 13 serves as the rotation side member, it is necessary to design the foil member 13 in consideration of the deformation of the entire foil member 13 due to the centrifugal force.

また、以上に述べた各実施形態では、フォイル部材13のばね部16を外径側に突出させてその先端部16aを外方部材11の内周面11bに接触させているが、図17に示すように、フォイル部材13のばね部16を軸受面15の内径側に突出させ、その先端部16aを軸6の外周面6aに接触させてもよい。この場合、軸受面15はフォイル部材13の外周面に形成され、この軸受面15と外方部材11の内周面11bとの間にラジアル軸受隙間Cが形成される。フォイル部材13の一端部の取り付け部13aは軸受面15の内径側に突出させ、例えば軸6に設けた嵌合溝6bに嵌合固定する。取り付け部3aはこれ以外にも接着や溶接で軸6に固定しても構わない。図17では外方部材11を回転側としているが、外方部材11を固定側としてもよい。但し、外方部材11を固定側とすると、フォイル部材13が回転側となるので、フォイル部材13の設計時には遠心力によるフォイル部材13の変形を考慮する必要がある。以上の構成でも上記各実施形態と同様の作用効果を得ることができる。   Further, in each of the embodiments described above, the spring portion 16 of the foil member 13 is protruded to the outer diameter side and the tip end portion 16a is brought into contact with the inner peripheral surface 11b of the outer member 11, but FIG. As shown, the spring portion 16 of the foil member 13 may be protruded toward the inner diameter side of the bearing surface 15, and the tip end portion 16 a may be brought into contact with the outer peripheral surface 6 a of the shaft 6. In this case, the bearing surface 15 is formed on the outer peripheral surface of the foil member 13, and a radial bearing gap C is formed between the bearing surface 15 and the inner peripheral surface 11 b of the outer member 11. An attachment portion 13 a at one end of the foil member 13 is projected to the inner diameter side of the bearing surface 15, and is fitted and fixed in a fitting groove 6 b provided in the shaft 6, for example. In addition to this, the attachment portion 3a may be fixed to the shaft 6 by adhesion or welding. In FIG. 17, the outer member 11 is the rotating side, but the outer member 11 may be the fixed side. However, if the outer member 11 is on the fixed side, the foil member 13 is on the rotating side. Therefore, when designing the foil member 13, it is necessary to consider deformation of the foil member 13 due to centrifugal force. With the above configuration, the same effects as those of the above embodiments can be obtained.

本発明にかかるフォイル軸受10の適用対象は、上述したマイクロガスタービンに限られず、例えば過給機のロータを支持する軸受としても使用することができる。過給機は、図18に示すように、エンジン53で生じた排気ガスでタービン51を駆動し、その駆動力で圧縮機52を回転させて吸入エアを圧縮し、エンジン53のトルクアップや効率改善を図るものである。タービン51、圧縮機52、および軸6でロータが構成され、軸6を支持するラジアル軸受10として、上記各実施形態のフォイル軸受10を使用することができる。   The application target of the foil bearing 10 according to the present invention is not limited to the above-described micro gas turbine, and can be used as, for example, a bearing that supports a rotor of a supercharger. As shown in FIG. 18, the supercharger drives the turbine 51 with exhaust gas generated in the engine 53, rotates the compressor 52 with the driving force to compress the intake air, and increases the torque and efficiency of the engine 53. It is intended to improve. The rotor is constituted by the turbine 51, the compressor 52, and the shaft 6, and the foil bearing 10 of each of the above embodiments can be used as the radial bearing 10 that supports the shaft 6.

本発明にかかるフォイル軸受は、マイクロタービンや過給機に限らず、潤滑油などの液体による潤滑が困難である、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難である、あるいは液体のせん断による抵抗が問題になる等の制限下で使用される自動車等の車両用軸受、さらには産業機器用の軸受として広く使用することが可能である。   The foil bearing according to the present invention is not limited to a micro turbine or a supercharger, and it is difficult to lubricate with a liquid such as a lubricating oil. From the viewpoint of energy efficiency, it is difficult to separately provide an auxiliary machine for a lubricating oil circulation system. In addition, it can be widely used as a bearing for a vehicle such as an automobile used under a restriction that resistance due to liquid shear becomes a problem, and further as a bearing for industrial equipment.

なお、以上に述べたフォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受のみならず、圧力発生流体として潤滑油を使用した油動圧軸受としても使用することができる。   The foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.

6 軸
6a 外周面
11 外方部材
11a 嵌合溝
11b 内周面
13 フォイル部材
13a 取り付け部
15 軸受面
16 ばね部
16a 先端部
30 帯状フォイル
60 舌片部
C ラジアル軸受隙間
6 shaft 6a outer peripheral surface 11 outer member 11a fitting groove 11b inner peripheral surface 13 foil member 13a mounting portion 15 bearing surface 16 spring portion 16a tip portion 30 belt-like foil 60 tongue piece portion C radial bearing gap

Claims (20)

円筒状の外方部材と、外方部材の内周に挿入された軸と、外方部材の内周面と軸の外周面との間に介在する円筒状のフォイル部材とを具備し、フォイル部材に、ラジアル軸受隙間を形成する軸受面を設け、ラジアル軸受隙間に生じた流体膜で軸と外方部材の相対回転を支持するフォイル軸受において、
一枚のフォイル部材に、軸受面と、軸受面を弾性的に支持するばね部とを設けたことを特徴とするフォイル軸受。
And a cylindrical outer member, a shaft inserted in the inner periphery of the outer member, and a cylindrical foil member interposed between the inner peripheral surface of the outer member and the outer peripheral surface of the shaft. In a foil bearing that provides a bearing surface that forms a radial bearing gap on the member and supports relative rotation of the shaft and the outer member with a fluid film generated in the radial bearing gap.
A foil bearing comprising a single foil member provided with a bearing surface and a spring portion that elastically supports the bearing surface.
フォイル部材に舌片部を形成し、舌片部を塑性変形させてばね部を構成した請求項1記載のフォイル軸受。   The foil bearing according to claim 1, wherein a tongue piece is formed on the foil member, and the tongue piece is plastically deformed to constitute a spring portion. 舌片部を周方向の折り返し線で折り返して、ばね部と軸受面を半径方向でオーバーラップさせた請求項2記載のフォイル軸受。   The foil bearing according to claim 2, wherein the tongue piece part is folded back along a circumferential folding line so that the spring part and the bearing surface overlap in the radial direction. 舌片部の前記折り返し線を軸受面の軸方向両側に設けた請求項3記載のフォイル軸受。   The foil bearing according to claim 3, wherein the folding line of the tongue piece is provided on both axial sides of the bearing surface. ばね部と軸受面とを軸方向で異なる位置に形成した請求項1または2記載のフォイル軸受。   The foil bearing according to claim 1 or 2, wherein the spring portion and the bearing surface are formed at different positions in the axial direction. ばね部を軸方向の複数個所に離隔形成すると共に、軸方向で隣接するばね部の間に軸受面を配置した請求項1〜5何れか1項に記載のフォイル軸受。   The foil bearing according to any one of claims 1 to 5, wherein the spring portions are spaced apart at a plurality of locations in the axial direction, and a bearing surface is disposed between the adjacent spring portions in the axial direction. ばね部を軸方向の二箇所に形成した請求項6記載のフォイル軸受。   The foil bearing of Claim 6 which formed the spring part in two places of the axial direction. ばね部を軸方向の三箇所に形成した請求項6記載のフォイル軸受。   The foil bearing of Claim 6 which formed the spring part in three places of the axial direction. ばね部を円周方向の複数個所に設けた請求項1〜8何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-8 which provided the spring part in the several places of the circumferential direction. フォイル部材を有端円筒状に形成し、フォイル部材の一端を外方部材に固定した請求項1〜9何れか1項に記載のフォイル軸受。   The foil bearing according to any one of claims 1 to 9, wherein the foil member is formed in a cylindrical shape with an end, and one end of the foil member is fixed to the outer member. フォイル部材を有端円筒状に形成し、フォイル部材の一端を軸に固定した請求項1〜9何れか1項に記載のフォイル軸受。   The foil bearing according to any one of claims 1 to 9, wherein the foil member is formed in an end-cylinder shape, and one end of the foil member is fixed to the shaft. ばね部を軸受面の外径側に配置して外方部材の内周面に摺動可能に接触させた請求項10記載のフォイル軸受。   The foil bearing according to claim 10, wherein the spring portion is disposed on the outer diameter side of the bearing surface and slidably contacts the inner peripheral surface of the outer member. ばね部を軸受面の内径側に配置して軸の外周面に摺動可能に接触させた請求項11記載のフォイル軸受。   The foil bearing according to claim 11, wherein the spring portion is disposed on the inner diameter side of the bearing surface and is slidably brought into contact with the outer peripheral surface of the shaft. 軸受面に被膜を形成した請求項1〜13何れか1項に記載のフォイル軸受。   The foil bearing according to claim 1, wherein a coating is formed on the bearing surface. 互いに摺動するばね部と外方材の内周面のうち、何れか一方又は双方に被膜を形成した請求項12記載のフォイル軸受。   The foil bearing according to claim 12, wherein a coating is formed on one or both of the spring part sliding with each other and the inner peripheral surface of the outer member. 互いに摺動するばね部と軸の外周面のうち、何れか一方または相方に被膜を形成した請求項13記載のフォイル軸受。   The foil bearing according to claim 13, wherein a coating is formed on one or both of the spring portion and the outer peripheral surface of the shaft that slide relative to each other. 被膜が、表面を低摩擦化するものである請求項14〜16何れか1項に記載のフォイル軸受。   The foil bearing according to any one of claims 14 to 16, wherein the coating reduces friction on the surface. 被膜を、DLC被膜、チタンアルミナイトライド被膜、二流化モリブデン被膜の何れかで形成した請求項17記載のフォイル軸受。   The foil bearing according to claim 17, wherein the film is formed of any one of a DLC film, a titanium aluminum nitride film, and a disulfide molybdenum film. ガスタービンのロータの支持に使用される請求項1〜18何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-18 used for support of the rotor of a gas turbine. 過給機のロータの支持に使用される請求項1〜18何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-18 used for support of the rotor of a supercharger.
JP2011195045A 2010-09-27 2011-09-07 Foil bearing Withdrawn JP2012092969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195045A JP2012092969A (en) 2010-09-27 2011-09-07 Foil bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010215446 2010-09-27
JP2010215446 2010-09-27
JP2011195045A JP2012092969A (en) 2010-09-27 2011-09-07 Foil bearing

Publications (1)

Publication Number Publication Date
JP2012092969A true JP2012092969A (en) 2012-05-17

Family

ID=46386506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195045A Withdrawn JP2012092969A (en) 2010-09-27 2011-09-07 Foil bearing

Country Status (1)

Country Link
JP (1) JP2012092969A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126052A (en) * 2012-12-25 2014-07-07 Jtekt Corp Cage guide member of rolling bearing, and rolling bearing
US20150275967A1 (en) * 2012-10-17 2015-10-01 Borgwarner Inc. Oil-free turbocharger bearing assembly having conical shaft supported on compliant gas bearings
WO2016184417A1 (en) * 2015-05-19 2016-11-24 罗立峰 Miniature turbocharger
US9746029B1 (en) 2016-04-18 2017-08-29 General Electric Company Bearing
US9951811B2 (en) 2016-04-18 2018-04-24 General Electric Company Bearing
US10001166B2 (en) 2016-04-18 2018-06-19 General Electric Company Gas distribution labyrinth for bearing pad
US10036279B2 (en) 2016-04-18 2018-07-31 General Electric Company Thrust bearing
US10066505B2 (en) 2016-04-18 2018-09-04 General Electric Company Fluid-filled damper for gas bearing assembly
CN108980198A (en) * 2018-08-12 2018-12-11 西安交通大学 A kind of cantilever style thrust foil bearing
CN109723720A (en) * 2019-02-01 2019-05-07 西安交通大学 A kind of elastic supporting mechanism and kinetic pressure gas thrust bearing
CN109764057A (en) * 2019-02-01 2019-05-17 西安交通大学 A kind of multi stage resilient supporting mechanism and kinetic pressure gas thrust bearing
CN109854612A (en) * 2019-02-01 2019-06-07 西安交通大学 A kind of resilient support assemblies and kinetic pressure gas transverse bearing
CN109915477A (en) * 2019-02-01 2019-06-21 西安交通大学 A kind of multi stage resilient support component and kinetic pressure gas transverse bearing
CN111801505A (en) * 2018-03-07 2020-10-20 株式会社Ihi Radial foil bearing
US10914195B2 (en) 2016-04-18 2021-02-09 General Electric Company Rotary machine with gas bearings
US11193385B2 (en) 2016-04-18 2021-12-07 General Electric Company Gas bearing seal
CN113994112A (en) * 2019-03-22 2022-01-28 布拉顿喷气机控股有限公司 Compliant foil radial bearing
CN117432707A (en) * 2023-12-20 2024-01-23 山东华东风机有限公司 Radial air foil bearing and shafting

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275967A1 (en) * 2012-10-17 2015-10-01 Borgwarner Inc. Oil-free turbocharger bearing assembly having conical shaft supported on compliant gas bearings
US9394941B2 (en) * 2012-10-17 2016-07-19 Borgwarner Inc. Oil-free turbocharger bearing assembly having conical shaft supported on compliant gas bearings
JP2014126052A (en) * 2012-12-25 2014-07-07 Jtekt Corp Cage guide member of rolling bearing, and rolling bearing
WO2016184417A1 (en) * 2015-05-19 2016-11-24 罗立峰 Miniature turbocharger
US10704600B2 (en) 2016-04-18 2020-07-07 General Electric Company Bearing
US9746029B1 (en) 2016-04-18 2017-08-29 General Electric Company Bearing
US9951811B2 (en) 2016-04-18 2018-04-24 General Electric Company Bearing
US10001166B2 (en) 2016-04-18 2018-06-19 General Electric Company Gas distribution labyrinth for bearing pad
US10036279B2 (en) 2016-04-18 2018-07-31 General Electric Company Thrust bearing
US10066505B2 (en) 2016-04-18 2018-09-04 General Electric Company Fluid-filled damper for gas bearing assembly
US11193385B2 (en) 2016-04-18 2021-12-07 General Electric Company Gas bearing seal
US10914195B2 (en) 2016-04-18 2021-02-09 General Electric Company Rotary machine with gas bearings
CN111801505A (en) * 2018-03-07 2020-10-20 株式会社Ihi Radial foil bearing
US11319987B2 (en) 2018-03-07 2022-05-03 Ihi Corporation Radial foil bearing
CN108980198A (en) * 2018-08-12 2018-12-11 西安交通大学 A kind of cantilever style thrust foil bearing
CN109915477A (en) * 2019-02-01 2019-06-21 西安交通大学 A kind of multi stage resilient support component and kinetic pressure gas transverse bearing
CN109854612A (en) * 2019-02-01 2019-06-07 西安交通大学 A kind of resilient support assemblies and kinetic pressure gas transverse bearing
CN109764057A (en) * 2019-02-01 2019-05-17 西安交通大学 A kind of multi stage resilient supporting mechanism and kinetic pressure gas thrust bearing
CN109723720A (en) * 2019-02-01 2019-05-07 西安交通大学 A kind of elastic supporting mechanism and kinetic pressure gas thrust bearing
CN113994112A (en) * 2019-03-22 2022-01-28 布拉顿喷气机控股有限公司 Compliant foil radial bearing
CN117432707A (en) * 2023-12-20 2024-01-23 山东华东风机有限公司 Radial air foil bearing and shafting
CN117432707B (en) * 2023-12-20 2024-03-15 山东华东风机有限公司 Radial air foil bearing and shafting

Similar Documents

Publication Publication Date Title
JP2012092969A (en) Foil bearing
US9784307B2 (en) Foil bearing
JP5781402B2 (en) Foil bearing
JP6113444B2 (en) Foil bearing
JP6104597B2 (en) Foil bearing
JP5766562B2 (en) Thrust foil bearing
JP6104596B2 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP5840423B2 (en) Foil bearing
WO2017065181A1 (en) Foil bearing
JP2013044394A (en) Thrust foil bearing
JP6144222B2 (en) Foil bearing
JP2013032797A (en) Foil bearing
JP2019082195A (en) Foil bearing, foil bearing unit and turbo machine
WO2020195488A1 (en) Thrust foil bearing, foil bearing unit, turbo machine, and foil
JP6246574B2 (en) Foil bearing unit and turbomachine
JP2012072817A (en) Foil bearing
JP6219489B2 (en) Foil bearing
JP6622054B2 (en) Foil bearing
JP2017075680A (en) Foil bearing
JP6541946B2 (en) Foil bearing and foil provided thereto
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
JP2021067353A (en) Foil bearing and rotating machine comprising the same
WO2017065176A1 (en) Foil bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202