JP2013014492A - Silicic acid phosphate fertilizer, and method for producing the same - Google Patents

Silicic acid phosphate fertilizer, and method for producing the same Download PDF

Info

Publication number
JP2013014492A
JP2013014492A JP2011150295A JP2011150295A JP2013014492A JP 2013014492 A JP2013014492 A JP 2013014492A JP 2011150295 A JP2011150295 A JP 2011150295A JP 2011150295 A JP2011150295 A JP 2011150295A JP 2013014492 A JP2013014492 A JP 2013014492A
Authority
JP
Japan
Prior art keywords
sewage sludge
fertilizer
silicic acid
raw material
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011150295A
Other languages
Japanese (ja)
Inventor
Toshio Imai
敏夫 今井
Keiichi Miura
啓一 三浦
Koji Nomura
幸治 野村
Terubumi Hashimoto
光史 橋本
Nobutaka Minowa
信孝 美濃和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Original Assignee
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Onoda Chemical Industry Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2011150295A priority Critical patent/JP2013014492A/en
Priority to CN201280032022.5A priority patent/CN103649016B/en
Priority to EP12805013.5A priority patent/EP2725001B1/en
Priority to PCT/JP2012/066361 priority patent/WO2013002250A1/en
Priority to KR1020147001339A priority patent/KR101941319B1/en
Publication of JP2013014492A publication Critical patent/JP2013014492A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a phosphate fertilizer which has high citric acid solubility of phosphoric acid and high solubility of silicic acid, and can contribute to the saving of natural resources of phosphorous or the saving of energy in the production of the fertilizer.SOLUTION: This silicic acid phosphate fertilizer is produced by firing a mixed raw material comprising sewage sludge and/or a material derived therefrom and a calcium source. The sewage sludge and/or the material derived therefrom are preferably at least one kind or more selected from sewage sludge, a sewage sludge dried product, a sewage sludge carbide, a sewage sludge incineration ash, and sewage sludge molten slag. The silicic acid phosphate fertilizer can be produced by using a rotary kiln or an electric furnace as a firing furnace.

Description

本発明は、下水汚泥及び/又はその由来物を含む原料を用いて焼成してなる、けい酸りん肥、及びその製造方法に関する。   The present invention relates to phosphorus silicate fertilizer, which is fired using a raw material containing sewage sludge and / or a derivative thereof, and a method for producing the same.

従来、我が国では、りんは天然資源として産出されないため、そのほぼ全てを輸入に頼っていた。しかし、近年、天然のりん資源は世界的にも枯渇しつつあり、りんの価格が高騰しているため、りんの確保が難しくなっている。そこで、りん肥料の製造分野では、天然のりん資源に代わるものとして、りん鉱石とほぼ同じ20〜30%(質量)のりんを含む下水汚泥焼却灰が考えられている。
また、我が国において、下水汚泥及びその焼却灰は、それぞれ、年間220万トン及び30万トンと大量に発生するため、下水汚泥等の処理は社会的要請でもあった。
したがって、肥料の原料として下水汚泥焼却灰を活用する技術は、前記天然りん資源の枯渇問題を解決する手段や、前記社会的要請に応え得る手段として、極めて重要である。
Traditionally, in Japan, phosphorus is not produced as a natural resource, so almost all of it relied on imports. However, in recent years, natural phosphorus resources have been depleted worldwide, and the price of phosphorus has soared, making it difficult to secure phosphorus. In view of this, in the field of phosphorus fertilizer production, sewage sludge incineration ash containing 20-30% (mass) of phosphorus, which is almost the same as phosphate ore, is considered as an alternative to natural phosphorus resources.
In Japan, sewage sludge and its incinerated ash are generated in large quantities of 2.2 million tons and 300,000 tons per year, respectively, and the treatment of sewage sludge has been a social request.
Therefore, the technology of using sewage sludge incineration ash as a fertilizer raw material is extremely important as a means for solving the depletion problem of the natural phosphorus resources and a means for meeting the social demand.

現在、下水汚泥焼却灰を原料として用いたりん肥料の一つに、熔成汚泥灰複合肥料がある。該肥料は、下水汚泥焼却灰に、肥料又は肥料原料を混合して溶融したものである。しかし、該肥料は溶融法で製造されるため、溶融によるエネルギー消費が大きく、また、連続生産ができず生産効率が低いという問題がある。
また、特許文献1には、汚泥の焼却灰に対して、20から50重量%(質量%)の硫酸カルシウムを添加したことを特徴とする肥料が提案されている。しかし、該肥料は、焼却灰を単に混合したものにすぎず、焼却灰に含まれるりんは溶解性が低いため、りん酸のく溶率は低く、りんが肥料の成分として有効に活用されているとはいい難い。
Currently, one of the fertilizers using sewage sludge incineration ash as a raw material is a molten sludge ash compound fertilizer. The fertilizer is obtained by mixing and melting fertilizer or a fertilizer raw material in sewage sludge incineration ash. However, since the fertilizer is produced by a melting method, there is a problem that energy consumption due to melting is large, and continuous production is not possible and production efficiency is low.
Patent Document 1 proposes a fertilizer characterized by adding 20 to 50% by weight (mass%) of calcium sulfate to sludge incineration ash. However, the fertilizer is simply a mixture of incinerated ash, and the phosphorus contained in the incinerated ash has low solubility, so the phosphoric acid has a low solubility and phosphorus is effectively utilized as a component of the fertilizer. It is hard to be.

特開平09−328385号公報JP 09-328385 A

したがって、本発明は、りん酸のく溶率が高く、りんの省資源やりん肥料の製造における省エネルギーに寄与することができる、りん肥料を提供することを目的とする。   Therefore, an object of the present invention is to provide a phosphorus fertilizer that has a high solubility of phosphoric acid and can contribute to energy saving in the production of phosphorus resources and phosphorus fertilizer.

本発明者は、前記目的を達成するために鋭意検討した結果、下水汚泥及び/又はその由来物と、カルシウム源とを含む原料を焼成してなるけい酸りん肥は、前記目的を達成できることを見い出し、本発明を完成させた。   As a result of intensive investigations to achieve the above object, the present inventor has found that phosphorous silicate fertilizer obtained by firing a raw material containing sewage sludge and / or a derivative thereof and a calcium source can achieve the above object. Discovered and completed the present invention.

すなわち、本発明は、以下の[1]〜[3]を提供する。
[1]下水汚泥及び/又はその由来物と、カルシウム源とを含む原料を、焼成してなるけい酸りん肥。
[2]前記下水汚泥及び/又はその由来物が、下水汚泥、下水汚泥乾燥物、下水汚泥炭化物、下水汚泥焼却灰、及び、下水汚泥溶融スラグから選ばれる、少なくとも1種以上である、前記[1]に記載のけい酸りん肥。
[3]前記[1]又は[2]に記載のけい酸りん肥の製造方法であって、焼成炉として、ロータリーキルン又は電気炉を用いる、けい酸りん肥の製造方法。
That is, the present invention provides the following [1] to [3].
[1] Phosphorous silicate fertilizer obtained by firing a raw material containing sewage sludge and / or a derivative thereof and a calcium source.
[2] The sewage sludge and / or its derivative is at least one selected from sewage sludge, sewage sludge dried product, sewage sludge carbide, sewage sludge incinerated ash, and sewage sludge molten slag, 1] Phosphorous silicate fertilizer according to [1].
[3] The method for producing phosphorus silicate fertilizer according to [1] or [2], wherein a rotary kiln or an electric furnace is used as a firing furnace.

本発明のけい酸りん肥は、(i)りん酸のく溶率や、けい酸の可溶率が高く、(ii)下水汚泥等の再資源化により、りんの省資源に寄与することができる。
また、本発明のけい酸りん肥の製造方法は、(i)溶融肥料の製造と比べて、焼成におけるエネルギー消費が少ないため、省エネルギーに寄与することができるとともに、(ii)ロータリーキルンを用いた場合、連続生産が可能で生産効率が高くなる。
The phosphorous silicate fertilizer of the present invention (i) has high phosphoric acid solubility and silicic acid solubility, and (ii) can contribute to resource conservation of phosphorus by recycling sewage sludge and the like. it can.
In addition, the method for producing phosphorous silicate fertilizer of the present invention can contribute to energy saving because of less energy consumption in firing compared to (i) production of molten fertilizer, and (ii) when a rotary kiln is used Continuous production is possible and production efficiency is increased.

本発明は、前記のとおり、下水汚泥及び/又はその由来物と、カルシウム源とを含む原料を焼成してなるけい酸りん肥である。
以下に、本発明について、けい酸りん肥と、その製造方法に分けて、詳細に説明する。なお、%は特に示さない限り、質量%である。
As described above, the present invention is phosphorous silicate fertilizer obtained by firing a raw material containing sewage sludge and / or a product derived therefrom and a calcium source.
Hereinafter, the present invention will be described in detail by dividing it into phosphoric silicate fertilizer and its production method. In addition, unless otherwise indicated,% is the mass%.

1.けい酸りん肥
(1)原料
本発明のけい酸りん肥の原料は、下水汚泥及び/又はその由来物と、カルシウム源とを含むものである。そして、下水汚泥及び/又はその由来物とは、下水汚泥、下水汚泥乾燥物、下水汚泥炭化物、下水汚泥焼却灰、及び、下水汚泥溶融スラグから選ばれる、少なくとも1種以上である。
(i)下水汚泥、その由来物
該下水汚泥は、下水道の終末処理場における下水処理や排水処理の過程において、下水や排水から、沈殿やろ過等により分離して得た、有機物や無機物を含む泥状物であり、さらに、該下水汚泥は、該泥状物を遠心分離等で脱水して得られる脱水汚泥も含む。
また、前記下水汚泥乾燥物は、前記下水汚泥を天日干し又は乾燥機により乾燥して、含水率を概ね50%以下にしたものである。
また、前記下水汚泥炭化物は、下水汚泥を加熱して、下水汚泥に含まれる有機物の一部又は全部を炭化物としたものである。該加熱温度は300〜800℃が好ましく、500〜700℃がより好ましい。加熱温度が300℃未満では、炭化に時間がかかり、800℃を超えると、炭化物が燃焼するおそれがある。該燃焼を抑制するために、無酸素又は低酸素状態で加熱するのが好ましい。該炭化物は、本発明のけい酸りん肥の製造(焼成)において燃料の一部にもなるため、その分、焼成に要するエネルギーを節約できる。
また、前記下水汚泥焼却灰は、下水汚泥を焼却して得られる残渣である。該焼却灰の化学組成(単位は%)は、一例として、SiO;28、P;25、Al;15、CaO;11、Fe;7、Cr;0.02、Ni;0.02、Pb;0.009、As;0.001、Cd;0.001等である。一般に、該焼却灰は、りん鉱石と比べSiOが多く、重金属を含むという違いがある。
また、前記下水汚泥溶融スラグは、前記下水汚泥焼却灰を1350℃以上で溶融したものである。
1. Phosphorous silicate manure (1) Raw material The raw material of the phosphorous silicate fertilizer of this invention contains a sewage sludge and / or its derived material, and a calcium source. And sewage sludge and / or its derived material is at least one selected from sewage sludge, dried sewage sludge, sewage sludge carbide, sewage sludge incinerated ash, and sewage sludge molten slag.
(I) Sewage sludge and its derivatives The sewage sludge contains organic and inorganic substances obtained by separation from sewage and wastewater by precipitation, filtration, etc. in the process of sewage treatment and wastewater treatment at the sewage final treatment plant. Further, the sewage sludge includes dehydrated sludge obtained by dehydrating the mud by centrifugation or the like.
Moreover, the dried sewage sludge is obtained by drying the sewage sludge with a sun or a drier so that the water content is approximately 50% or less.
Moreover, the said sewage sludge carbide heats sewage sludge and makes a part or all of the organic substance contained in a sewage sludge carbide. The heating temperature is preferably 300 to 800 ° C, more preferably 500 to 700 ° C. If heating temperature is less than 300 degreeC, it will take time for carbonization, and when it exceeds 800 degreeC, there exists a possibility that a carbide | carbonized_material may combust. In order to suppress the combustion, it is preferable to heat in an oxygen-free or low-oxygen state. Since the carbide also becomes a part of the fuel in the production (calcination) of the phosphorous silicate fertilizer of the present invention, the energy required for the burning can be saved correspondingly.
The sewage sludge incineration ash is a residue obtained by incinerating sewage sludge. The chemical composition (unit:%) of the incinerated ash is, for example, SiO 2 ; 28, P 2 O 5 ; 25, Al 2 O 3 ; 15, CaO; 11, Fe 2 O 3 ; 7, Cr; 02, Ni; 0.02, Pb; 0.009, As; 0.001, Cd; 0.001, and the like. Generally, the incineration ash has a difference in that it contains more SiO 2 and contains heavy metals than phosphate ore.
The sewage sludge melting slag is obtained by melting the sewage sludge incineration ash at 1350 ° C. or higher.

(ii)カルシウム源
該カルシウム源は、けい酸りん肥の化学組成比が、前記範囲内になるように調整するため、下水汚泥及び/又はその由来物に添加するものである。該カルシウム源としては、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、りん酸カルシウム、塩化カルシウム、硫酸カルシウム、石灰石、生石灰、消石灰、セメント、鉄鋼スラグ、石膏、及び、畜産糞焼却灰等から選ばれる、少なくとも1種以上である。
一般に、下水汚泥等はSiOを多く含むため、通常、シリカ源を添加する場合は少ないが、SiOが少ない場合は、適宜、けい石やけい酸カルシウムなどのシリカ源を添加してもよい。
(Ii) Calcium source The calcium source is added to the sewage sludge and / or a derivative thereof in order to adjust the chemical composition ratio of the phosphorous silicate fertilizer to be within the above range. The calcium source is selected from calcium carbonate, calcium oxide, calcium hydroxide, calcium phosphate, calcium chloride, calcium sulfate, limestone, quicklime, cement, steel slag, gypsum, and livestock feces incineration ash, etc. At least one or more.
In general, sewage sludge, etc. containing a large amount of SiO 2, usually less when adding the silica source, if SiO 2 is small, it may optionally be added silica source such as silica stone and calcium silicate .

(2)化学組成
本発明のけい酸りん肥中のCaOの含有率は、好ましくは35〜55%であり、より好ましくは38〜52%であり、さらに好ましくは40〜51%である。該含有率が35〜55%の範囲であれば、後掲の表2に示すように、けい酸りん肥中のりん酸のく溶率は60%以上及びけい酸の可溶率は40%以上と高くなる。
けい酸りん肥中のCa/Pのモル比は、好ましくは2〜7.5、より好ましくは2.5〜6、さらに好ましくは3〜4である。該モル比が2〜7.5の範囲内であれば、けい酸りん肥中のりん酸のく溶率は60%以上と高くなる。
ここで、りん酸のく溶率とは、けい酸りん肥中のりん酸に対する、く溶性りん酸の質量比(%)であり、けい酸の可溶率とは、けい酸りん肥中のけい酸に対する、可溶性けい酸の質量比(%)である。また、く溶性りん酸量は、肥料分析法(農林水産省農業環境技術研究所法)に規定されているバナドモリブデン酸アンモニウム法により、可溶性けい酸量は、同法に規定されている過塩素酸法により、測定することができる。
なお、原料やけい酸りん肥中の酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。
(2) Chemical composition The content rate of CaO in the phosphorous silicate fertilizer of this invention becomes like this. Preferably it is 35-55%, More preferably, it is 38-52%, More preferably, it is 40-51%. If the content is in the range of 35-55%, as shown in Table 2 below, the solubility of phosphoric acid in phosphorous silicate fertilizer is 60% or more and the solubility of silicic acid is 40%. More than that.
The molar ratio of Ca / P in phosphorus silicate fertilizer is preferably 2 to 7.5, more preferably 2.5 to 6, and still more preferably 3 to 4. When the molar ratio is in the range of 2 to 7.5, the solubility of phosphoric acid in the phosphorous silicate fertilizer is as high as 60% or more.
Here, the solubility of phosphoric acid is the mass ratio (%) of soluble phosphoric acid to phosphoric acid in phosphorous silicate fertilizer. The solubility of silicic acid is the percentage of phosphoric acid in fertilized silicic acid. It is a mass ratio (%) of soluble silicic acid to silicic acid. In addition, the amount of soluble phosphoric acid is determined by the ammonium vanadmolybdate method specified in the Fertilizer Analysis Method (Agricultural Environment Technology Laboratory Method of the Ministry of Agriculture, Forestry and Fisheries). It can be measured by the chloric acid method.
In addition, quantification of the oxide in the raw material and phosphorus silicate fertilizer can be performed by a fundamental parameter method using a fluorescent X-ray apparatus.

2.けい酸りん肥の製造方法
該製造方法は、通常、焼成炉として、ロータリーキルン又は電気炉を用いるものである。好ましくは、該製造方法は、(1)下水汚泥及び/又はその由来物に、カルシウム源を混合して、けい酸りん肥中のCaOの含有率が35〜55質量%となる原料を得る混合工程と、(2)前記肥料の原料を、焼成炉を用いて1150〜1350℃で焼成して、焼成物を得る焼成工程を含む。また、肥料の粉末度等を調整する必要がある場合は、さらに、(3)該焼成物を粉砕して造粒する、粉砕および造粒工程を含むものである。以下に、各工程について説明する。
2. Method for Producing Phosphorus Silicate Fertilizer In this method, a rotary kiln or an electric furnace is usually used as a firing furnace. Preferably, in the production method, (1) mixing to obtain a raw material in which the CaO content in the phosphorous silicate fertilizer is 35 to 55% by mass by mixing the calcium source with the sewage sludge and / or a product derived therefrom. And (2) a firing step of firing the fertilizer raw material at 1150 to 1350 ° C. using a firing furnace to obtain a fired product. Moreover, when it is necessary to adjust the fineness etc. of fertilizer, it further includes (3) a pulverization and granulation step of pulverizing and granulating the fired product. Below, each process is demonstrated.

(1)混合工程
該工程は、下水汚泥及び/又はその由来物に、けい酸りん肥中のCaOの含有率が35〜55質量%となるように、カルシウム源を混合して原料を得る必須の工程である。下水汚泥等やカルシウム源は、混合し易い粒度になるように、必要に応じてボールミル、ローラミル又はロッドミル等で粉砕する。
カルシウム源は、下水処理場においては、流入してくる下水、沈殿池、あるいは脱水前のスラリー状汚泥に投入し、混合することができる。カルシウム源は、脱水後のケーキ状汚泥、あるいは汚泥乾燥物に対しては、該ケーキ状汚泥あるいは汚泥乾燥物を必要に応じて乾燥した後に、得られた乾燥物に投入し、粉砕することで混合することができ、または、該ケーキ状汚泥あるいは汚泥乾燥物に水を添加し再度スラリー状にした後に、得られたスラリー状のものに投入し、混合することができる。カルシウム源は、下水汚泥炭化物、下水汚泥焼却灰、あるいは下水汚泥溶融スラグに対しては、投入し、粉砕することで混合することができる。なお、下水汚泥及び/又はその由来物のみの粉砕物を得た後、この粉砕物と粉状のカルシウム源を混合してもよい。混合は、ミキサ、混練機、エアーブレンディングなどの汎用の混合機を用いて行なうことができる。液状あるいはスラリー状の下水汚泥に粉状のカルシウム源を添加する場合は、適度に攪拌すれば混合され、粗粒分を含まないので、粉砕を行う必要はない。
また、各原料の混合方法として、例えば、各原料の一部を電気炉等で焼成した後、該焼成灰中の酸化物を定量し、該定量値と所定の配合に基づき、各原料を混合する方法が挙げられる。該酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。後記するように、焼成前の原料の化学組成は、焼成後のけい酸りん肥の化学組成と、ほぼ同一であるから、CaOの含有率が35〜55質量%のけい酸りん肥を得るためには、通常、CaOの含有率が該範囲を満たす原料を用いれば十分である。ただし、正確を期すためには、該原料の一部を電気炉等で焼成して、該原料中のCaOの含有率と、該焼成物中のCaOの含有率との相関を事前に把握しておき、該相関に基づき、原料の混合割合を、目的とするけい酸りん肥中のCaOの含有率になるように修正することが好ましい。
(1) Mixing step This step is essential to obtain a raw material by mixing a calcium source with sewage sludge and / or its origin so that the CaO content in the phosphorous silicate fertilizer is 35 to 55% by mass. It is this process. The sewage sludge and the calcium source are pulverized with a ball mill, a roller mill, a rod mill, or the like as necessary so that the particle size can be easily mixed.
In the sewage treatment plant, the calcium source can be introduced and mixed into the incoming sewage, the sedimentation basin, or slurry sludge before dehydration. For the calcium source, cake-like sludge after dehydration, or dried sludge is dried as needed and then put into the obtained dried product and pulverized. The mixture can be mixed, or water can be added to the cake sludge or sludge dried product to form a slurry again, and then the resulting slurry can be added and mixed. The calcium source can be mixed by introducing and pulverizing sewage sludge carbide, sewage sludge incinerated ash, or sewage sludge molten slag. In addition, after obtaining the pulverized material only of sewage sludge and / or its origin, you may mix this pulverized material and a powdery calcium source. Mixing can be performed using a general-purpose mixer such as a mixer, a kneader, or air blending. When a powdery calcium source is added to liquid or slurry sewage sludge, it is mixed with moderate stirring and does not contain coarse particles, so there is no need to grind.
In addition, as a method of mixing each raw material, for example, after firing a part of each raw material in an electric furnace or the like, the oxide in the fired ash is quantified, and the raw materials are mixed based on the quantitative value and a predetermined composition. The method of doing is mentioned. The oxide can be quantified by a fundamental parameter method using a fluorescent X-ray apparatus. As will be described later, since the chemical composition of the raw material before firing is almost the same as the chemical composition of phosphorous silicate fertilizer after firing, in order to obtain phosphorus silicate fertilizer having a CaO content of 35 to 55 mass%. In general, it is sufficient to use a raw material with a CaO content satisfying this range. However, for accuracy, a part of the raw material is fired in an electric furnace or the like, and the correlation between the content of CaO in the raw material and the content of CaO in the fired product is grasped in advance. It is preferable to correct the mixing ratio of the raw materials based on the correlation so that the content of CaO in the target phosphorous silicate fertilizer is achieved.

(2)焼成工程
該工程は、前記原料を、焼成炉を用いて焼成する必須の工程である。前記原料は、粉末のままで、該粉末に水を添加してスラリーにした状態で、若しくは、脱水ケーキの状態で焼成するか、又は、該粉末、若しくは、該粉末のセメント固化物等を、パンペレタイザー等の造粒機や、ブリケットマシン、ロールプレス等の成形機で、それぞれ造粒や成形してから焼成する。
該焼成温度は、通常、1150〜1350℃であり、好ましくは、1200〜1300℃である。1150〜1350℃の温度範囲内で焼成したけい酸りん肥は、りん酸のく溶率やけい酸の可溶率が高い。また、焼成時間は、10〜60分が好ましく、20〜40分がより好ましい。該時間が10分未満では焼成が不十分であり、60分を超えると生産効率が低下する。
(2) Firing step This step is an essential step of firing the raw material using a firing furnace. The raw material remains in powder form, and is baked in a slurry state by adding water to the powder, or in a dehydrated cake state, or the powder, cement solidified product of the powder, etc. Using a granulator such as a pan pelletizer, or a molding machine such as a briquette machine or roll press, each is granulated or molded and then fired.
The firing temperature is usually 1150 to 1350 ° C, and preferably 1200 to 1300 ° C. Phosphoric silicate fertilized within the temperature range of 1150 to 1350 ° C. has a high solubility of phosphoric acid and a high solubility of silicic acid. Moreover, 10 to 60 minutes are preferable and, as for baking time, 20 to 40 minutes are more preferable. When the time is less than 10 minutes, the firing is insufficient, and when it exceeds 60 minutes, the production efficiency is lowered.

(3)粉砕および造粒工程
該工程は、前記焼成物の粒度を調整する工程であり、粉塵の発生を抑制して、肥料の取り扱いを容易にするためや、肥料効果を十分に発揮させるため、肥料の粒度を調整する必要がある場合に、必要に応じて選択される任意の工程である。該粒度は0.1〜10mmが好ましく、0.5〜5mmがより好ましい。
粉砕手段として、例えば、ジョークラッシャー、ローラーミル、ボールミル又はロッドミル等を用いることができる。また、造粒手段として、例えば、パン型ミキサー、パンペレタイザー、ブリケットマシン、ロールプレス、押し出し成型機等を用いることができる。
また、該工程において、ベントナイトや増粘剤などの造粒助剤を添加したり、肥料の用途に応じて、適宜、けい酸やりん酸の成分を追加したり、窒素、加里、マグネシウム等のその他の肥料成分を、新たに添加することができる。
(3) Grinding and granulating step This step is a step of adjusting the particle size of the fired product, to suppress the generation of dust, to facilitate the handling of fertilizers, and to fully demonstrate the fertilizer effect. This is an optional step that is selected as necessary when the fertilizer particle size needs to be adjusted. The particle size is preferably from 0.1 to 10 mm, more preferably from 0.5 to 5 mm.
As the pulverizing means, for example, a jaw crusher, a roller mill, a ball mill, a rod mill, or the like can be used. Moreover, as a granulation means, a bread type mixer, a bread pelletizer, a briquette machine, a roll press, an extrusion molding machine etc. can be used, for example.
Further, in the process, granulation aids such as bentonite and thickener are added, or depending on the use of fertilizer, components of silicic acid and phosphoric acid are added appropriately, nitrogen, potassium, magnesium, etc. Other fertilizer components can be newly added.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
1.けい酸りん肥の製造
(1)電気炉による焼成
表1に示す化学組成を有する下水汚泥焼却灰a1及びa2と、カルシウム源として、工業用試薬のりん酸三カルシウム(c1)と純度99%の炭酸カルシウム(c2)を用い、表2に示す実施例1〜30、及び、比較例1〜6の配合に従い混合して原料を調製した。次に、該原料を用いて、一軸加圧成形機により成形し、直径15mm、高さ20mmの円柱状の原料を作製した。さらに、該円柱状の原料を、電気炉内に載置した後、昇温速度20℃/分で、表2に示す温度まで昇温し、該温度の下で10分間焼成して焼成物を得た。さらに、該焼成物を、鉄製乳鉢を用いて目開き212μmのふるいを全通するまで粉砕して、粉末状のけい酸りん肥(実施例1〜30、比較例1〜6)を製造した。また、参考例として、下水汚泥焼却灰のみを原料に用いて、前記と同様の方法により、けい酸りん肥を製造した。
該けい酸りん肥の化学組成を表2に示す。
なお、焼成後のけい酸りん肥の化学組成は、焼成前の原料の化学組成と、ほぼ同一であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
1. Manufacture of phosphorous silicate fertilizer (1) Firing by electric furnace Sewage sludge incineration ash a1 and a2 having chemical composition shown in Table 1, tricalcium phosphate (c1), an industrial reagent, and a purity of 99% Using calcium carbonate (c2), the raw materials were prepared by mixing according to the formulations of Examples 1 to 30 and Comparative Examples 1 to 6 shown in Table 2. Next, the raw material was molded by a uniaxial pressure molding machine to produce a columnar raw material having a diameter of 15 mm and a height of 20 mm. Further, after the cylindrical raw material is placed in an electric furnace, the temperature is increased to a temperature shown in Table 2 at a temperature increase rate of 20 ° C./min, and the calcined product is baked for 10 minutes at the temperature. Obtained. Further, the fired product was pulverized using an iron mortar until it passed through a sieve having an opening of 212 μm to produce powdered phosphorous silicate (Examples 1 to 30 and Comparative Examples 1 to 6). Moreover, as a reference example, phosphorous silicate fertilizer was produced by the same method as described above using only sewage sludge incineration ash as a raw material.
Table 2 shows the chemical composition of the phosphorous silicate fertilizer.
The chemical composition of the phosphorous silicate fertilizer after firing was almost the same as the chemical composition of the raw material before firing.

(2)ロータリーキルンによる焼成
表1に示す化学組成を有する下水汚泥焼却灰a3及びa4と、カルシウム源として、石灰石粉末(c3)を用い、表2に示す実施例31及び32の配合に従い、気流混合機により混合して原料を調製した。次に、該原料を用いて、ロールプレス機により乾式で成形し、フレーク状の原料を調製した。次に、該フレーク状の原料を、内径450mm、長さ8.34mのロータリーキルンにより、焼成温度1300℃、キルン内の平均滞留時間40分で焼成して焼成物を得た。さらに、該焼成物を、鉄製乳鉢を用いて、目開き212μmのふるいを全通するまで粉砕して、粉末状のけい酸りん肥(実施例31及び32)を製造した。該けい酸りん肥の化学組成を表2に示す。
なお、焼成後のけい酸りん肥の化学組成は、焼成前の原料の化学組成と、ほぼ同一であった。
(2) Firing with a rotary kiln Using sewage sludge incineration ash a3 and a4 having the chemical composition shown in Table 1 and limestone powder (c3) as the calcium source, airflow mixing according to the formulations of Examples 31 and 32 shown in Table 2 The raw materials were prepared by mixing with a machine. Next, using this raw material, it was molded by a dry method using a roll press to prepare a flaky raw material. Next, the flaky raw material was fired by a rotary kiln having an inner diameter of 450 mm and a length of 8.34 m at a firing temperature of 1300 ° C. and an average residence time of 40 minutes in the kiln to obtain a fired product. Further, the fired product was pulverized using an iron mortar until it passed through a sieve having an opening of 212 μm to produce powdered phosphorous silicate (Examples 31 and 32). Table 2 shows the chemical composition of the phosphorous silicate fertilizer.
The chemical composition of the phosphorous silicate fertilizer after firing was almost the same as the chemical composition of the raw material before firing.

Figure 2013014492
Figure 2013014492

2.く溶性りん酸と可溶性けい酸の測定
けい酸りん肥中のく溶性りん酸の測定は、肥料分析法(農林水産省農業環境技術研究所法)に規定されているバナドモリブデン酸アンモニウム法により、また、可溶性けい酸は、同法に規定されている過塩素酸法により測定した。また、これらの測定値から、りん酸のく溶率やけい酸の可溶率を算出した。その結果を表2に示す。
2. Measurement of soluble phosphoric acid and soluble silicic acid Measurement of soluble phosphoric acid in phosphorous silicic acid fertilizer was carried out by the ammonium vanadmolybdate method stipulated in the fertilizer analysis method (Agricultural Environmental Technology Research Institute, Ministry of Agriculture, Forestry and Fisheries). The soluble silicic acid was measured by the perchloric acid method defined in the same method. Moreover, the solubility of phosphoric acid and the solubility of silicic acid were calculated from these measured values. The results are shown in Table 2.

Figure 2013014492
Figure 2013014492

表2に示すように、本発明のけい酸りん肥(実施例1〜32)は、りん酸のく溶率が60.0%以上で、けい酸の可溶率は70.2%以上といずれも高かった。特に、焼成炉としてロータリーキルンを用いて焼成したけい酸りん肥(実施例31、32)のりん酸のく溶率、及び、けい酸の可溶率は、いずれも100%と最高の値となった。
これに対し、比較例1〜6のけい酸りん肥は、りん酸のく溶率が75.3%以下で、けい酸の可溶率は23.4%以下であり、特に、けい酸の可溶率が低かった。
As shown in Table 2, the phosphoric acid silicic acid fertilizers (Examples 1 to 32) of the present invention have a phosphoric acid solubility of 60.0% or more and a silicic acid solubility of 70.2% or more. Both were high. In particular, the phosphoric acid solubility and the silicic acid solubility of phosphoric acid silicic acid fertilizers (Examples 31 and 32) calcined using a rotary kiln as the calcining furnace are both 100% and the highest value. It was.
In contrast, the phosphoric acid fertilizers of Comparative Examples 1 to 6 have a phosphoric acid solubility of 75.3% or less and a silicic acid solubility of 23.4% or less. The solubility rate was low.

以上の結果から、本発明のけい酸りん肥は、りん酸のく溶率、及びけい酸の可溶率が高く、有害成分の含有量が少なく、下水汚泥等の再資源化により、りんの省資源に寄与することができる。また、本発明のけい酸りん肥の製造方法は、溶融肥料の製造と比べて、焼成におけるエネルギー消費が少ないため、省エネルギーに寄与することができるとともに、ロータリーキルンを用いた場合、連続生産が可能で生産効率が高くなる。   From the above results, the phosphorous silicate fertilizer of the present invention has a high solubility rate of phosphoric acid and a high solubility rate of silicic acid, a low content of harmful components, and recycling of sewage sludge, etc. It can contribute to resource saving. In addition, the method for producing phosphoric silicate fertilizer of the present invention consumes less energy in firing compared to the production of molten fertilizer, so that it can contribute to energy saving, and when a rotary kiln is used, continuous production is possible. Production efficiency is increased.

Claims (3)

下水汚泥及び/又はその由来物と、カルシウム源とを含む原料を、焼成してなるけい酸りん肥。   Phosphoric silicate fertilizer obtained by firing a raw material containing sewage sludge and / or a product derived therefrom and a calcium source. 前記下水汚泥及び/又はその由来物が、下水汚泥、下水汚泥乾燥物、下水汚泥炭化物、下水汚泥焼却灰、及び、下水汚泥溶融スラグから選ばれる、少なくとも1種以上である、請求項1に記載のけい酸りん肥。   2. The sewage sludge and / or a derivative thereof is at least one selected from sewage sludge, sewage sludge dried product, sewage sludge carbide, sewage sludge incinerated ash, and sewage sludge molten slag. Phosphosilicate manure. 請求項1又は2に記載のけい酸りん肥の製造方法であって、焼成炉としてロータリーキルン又は電気炉を用いる、けい酸りん肥の製造方法。   It is a manufacturing method of the phosphorous silicate manure of Claim 1 or 2, Comprising: The manufacturing method of the phosphorous silicate fertilizer using a rotary kiln or an electric furnace as a baking furnace.
JP2011150295A 2011-06-27 2011-07-06 Silicic acid phosphate fertilizer, and method for producing the same Withdrawn JP2013014492A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011150295A JP2013014492A (en) 2011-07-06 2011-07-06 Silicic acid phosphate fertilizer, and method for producing the same
CN201280032022.5A CN103649016B (en) 2011-06-27 2012-06-27 The manufacture method of phosphatic manure and phosphatic manure
EP12805013.5A EP2725001B1 (en) 2011-06-27 2012-06-27 Phosphate fertilizer, and method for producing phosphate fertilizer
PCT/JP2012/066361 WO2013002250A1 (en) 2011-06-27 2012-06-27 Phosphate fertilizer, and method for producing phosphate fertilizer
KR1020147001339A KR101941319B1 (en) 2011-06-27 2012-06-27 Phosphate fertilizer and method for producing phosphate fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011150295A JP2013014492A (en) 2011-07-06 2011-07-06 Silicic acid phosphate fertilizer, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013014492A true JP2013014492A (en) 2013-01-24

Family

ID=47687543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150295A Withdrawn JP2013014492A (en) 2011-06-27 2011-07-06 Silicic acid phosphate fertilizer, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013014492A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053061A (en) * 2011-08-10 2013-03-21 Taiheiyo Cement Corp Phosphate fertilizer, and method for producing the same
JP2017137203A (en) * 2016-02-01 2017-08-10 太平洋セメント株式会社 Siliceous fertilizer and manufacturing method therefor
JP2018043896A (en) * 2016-09-13 2018-03-22 太平洋セメント株式会社 Silicate fertilizer and production method thereof
JP2019123631A (en) * 2018-01-15 2019-07-25 太平洋セメント株式会社 Silicic acid fertilizer and manufacturing method therefor
JP7411314B2 (en) 2019-07-10 2024-01-11 太平洋セメント株式会社 Silicate fertilizer and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053061A (en) * 2011-08-10 2013-03-21 Taiheiyo Cement Corp Phosphate fertilizer, and method for producing the same
JP2017137203A (en) * 2016-02-01 2017-08-10 太平洋セメント株式会社 Siliceous fertilizer and manufacturing method therefor
JP2018043896A (en) * 2016-09-13 2018-03-22 太平洋セメント株式会社 Silicate fertilizer and production method thereof
JP2019123631A (en) * 2018-01-15 2019-07-25 太平洋セメント株式会社 Silicic acid fertilizer and manufacturing method therefor
JP7079100B2 (en) 2018-01-15 2022-06-01 太平洋セメント株式会社 Silicic acid fertilizer and its manufacturing method
JP7411314B2 (en) 2019-07-10 2024-01-11 太平洋セメント株式会社 Silicate fertilizer and its manufacturing method

Similar Documents

Publication Publication Date Title
KR101941319B1 (en) Phosphate fertilizer and method for producing phosphate fertilizer
JP6021199B2 (en) Method for producing phosphate fertilizer
JP2007306844A (en) Method for producing greening material using waste material, and greening material
KR101794362B1 (en) Ore fine agglomerate to be used in sintering process and production process of ore fines agglomerate
JP2013014492A (en) Silicic acid phosphate fertilizer, and method for producing the same
JP6088277B2 (en) How to use waste gypsum board
JP6391142B2 (en) Method for producing phosphate fertilizer
JP5188640B2 (en) Phosphate fertilizer and method for producing the same
JP6722969B2 (en) Silicate fertilizer and method for producing the same
JP6804132B2 (en) Silicic acid fertilizer and its manufacturing method
JP5984572B2 (en) Phosphate fertilizer and method for producing the same
JP6022226B2 (en) Method for producing silicate phosphate fertilizer
JP6025540B2 (en) Method for producing phosphate fertilizer
JP2018135237A (en) Method of producing phosphorous silicate fertilizer
JP5988684B2 (en) Method for producing phosphate fertilizer
JP5954777B2 (en) Method for producing phosphate fertilizer
JP6282035B2 (en) Phosphate fertilizer and method for producing the same
JP6804131B2 (en) Silicic acid fertilizer and its manufacturing method
JP7079101B2 (en) How to make silicic acid fertilizer
JP5946721B2 (en) Method for producing phosphate fertilizer
JP6021182B2 (en) Method for producing a bitter earth phosphate fertilizer
JP5413591B2 (en) Treatment method for crushed stone sludge using cement manufacturing process
JP2020063173A (en) Silicate fertilizer and method of producing the same
JP2016160112A (en) Silicic acid fertilizer
JP2016138023A (en) Manufacturing method of phosphoric acid fertilizer

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007