JP2013000947A - Workpiece forming mold - Google Patents

Workpiece forming mold Download PDF

Info

Publication number
JP2013000947A
JP2013000947A JP2011132921A JP2011132921A JP2013000947A JP 2013000947 A JP2013000947 A JP 2013000947A JP 2011132921 A JP2011132921 A JP 2011132921A JP 2011132921 A JP2011132921 A JP 2011132921A JP 2013000947 A JP2013000947 A JP 2013000947A
Authority
JP
Japan
Prior art keywords
mold
cooling
molding
pair
molds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011132921A
Other languages
Japanese (ja)
Inventor
Susumu Horinaka
進 堀中
Ryo Ito
遼 伊藤
Fumito Ueha
文人 上羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011132921A priority Critical patent/JP2013000947A/en
Publication of JP2013000947A publication Critical patent/JP2013000947A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a workpiece forming mold that can shorten the cycle time of workpiece molding by raising the temperature of a molding surface of a metal mold speedily and uniformly up to the mold removal temperature of resin to be molded, and also shortening the cooling time of the metal mold having been heated.SOLUTION: A workpiece forming mold 10 includes a pair of molding molds (a first molding mold 11 and a second molding mold 12) for molding a workpiece by heating and cooling, and a pair of cooling molds ( a first cooling mold 13 and a second cooling mold 14) which have cooling means (a cooling pipe 131 and a cooling pipe 141), and are arranged on reverse surface sides of respective molding surfaces of the pair of molding molds, respectively. When the pair of molding molds are heated, the pair of molding molds are heated by induction heating while the pair of molding molds and the pair of cooling molds are apart from each other, and when the pair of molding molds are cooled, the pair of molding molds are cooled and clamped as the pair of molding molds and the pair of cooling molds abut against each other.

Description

本発明は、ワーク成形金型に関する。詳しくは、成形型と冷却型とを分離し、成形型のみを誘導加熱を用いて加熱するワーク成形金型に関する。   The present invention relates to a workpiece molding die. More specifically, the present invention relates to a work mold that separates a mold and a cooling mold and heats only the mold using induction heating.

従来より、加工手段を加熱し、高温の加工手段で材料を加工する技術が知られている。例えば樹脂成形では、金型を加熱し、高温の金型で材料を加圧成形する。加圧成形後は、金型内から成形品を取出す際に成形品が変形しない温度になるまで、成形品を金型内にて冷却する。   Conventionally, a technique for heating a processing means and processing a material with a high-temperature processing means is known. For example, in resin molding, a mold is heated, and a material is pressure-molded with a high-temperature mold. After the pressure molding, the molded product is cooled in the mold until it reaches a temperature at which the molded product does not deform when the molded product is taken out from the mold.

このように、高温の金型で材料を加工する技術では、加熱と冷却が繰り返し行われる。従って、サイクルタイムを短縮するためには、金型を急加熱する技術が必要である。金型を急加熱する技術としては、誘導加熱を利用した技術が知られている。   Thus, in the technique of processing a material with a high-temperature mold, heating and cooling are repeatedly performed. Therefore, in order to shorten the cycle time, a technique for rapidly heating the mold is necessary. As a technique for rapidly heating the mold, a technique using induction heating is known.

ところで、樹脂成形金型のような複雑な形状のワークを誘導加熱により加熱する場合、渦電流が集中し易い部分と集中し難い部分が存在するため、加熱のされ方に偏りが生じる。そこで、加熱の偏りを防止するために、金型の成形面を含む加熱帯の一部にキュリー温度を有する磁性化合物を含ませることで成形面の温度がキュリー温度以上に上がらないように抑制する技術が開示されている(特許文献1参照)。   By the way, when a workpiece having a complicated shape such as a resin molding die is heated by induction heating, there are a portion where eddy current is likely to concentrate and a portion where it is difficult to concentrate, so that the heating method is biased. Therefore, in order to prevent uneven heating, a magnetic compound having a Curie temperature is included in a part of the heating zone including the molding surface of the mold so that the temperature of the molding surface does not rise above the Curie temperature. A technique is disclosed (see Patent Document 1).

また、誘導加熱を利用して急加熱した金型を冷却する技術としては、金型内に冷却水通路を設け、冷却時に冷却水を循環させる技術が知られている(特許文献2参照)。   In addition, as a technique for cooling a rapidly heated mold using induction heating, a technique for providing a cooling water passage in the mold and circulating the cooling water during cooling is known (see Patent Document 2).

特表2007−535786号公報Special table 2007-535786 gazette 特開2011−020390号公報JP 2011-020390 A

ここで、特許文献1の技術では、キュリー温度に到達して磁性化合物がジュール発熱をしなくなっても、加熱帯のうち磁性化合物が存在しない部分には渦電流が発生するため、その部分で発生したジュール熱が伝熱することで、成形面が加熱され続けてしまう。よって、成形面を均一に昇温させることは困難であった。   Here, in the technique of Patent Document 1, even when the Curie temperature is reached and the magnetic compound does not generate Joule heat, an eddy current is generated in a portion of the heating zone where the magnetic compound does not exist. As the Joule heat is transferred, the molding surface continues to be heated. Therefore, it has been difficult to raise the temperature of the molding surface uniformly.

さらに、特許文献1の技術において急加熱した金型を冷却するためには、特許文献2の技術のように加熱された金型内に冷却水を循環させる必要があるが、加熱中は冷却水の循環が停止しており加熱後に冷却水の循環が始まる。よって、冷却開始から暫くは冷却水が金型により温められてしまうので、冷却に時間がかかってしまう。   Further, in order to cool the rapidly heated mold in the technique of Patent Document 1, it is necessary to circulate the cooling water in the heated mold as in the technique of Patent Document 2, but during the heating, the cooling water The circulation of the cooling water is stopped and the circulation of the cooling water starts after heating. Therefore, the cooling water is warmed by the mold for a while from the start of cooling, and thus it takes time for cooling.

本発明は上記に鑑みてなされたものであり、その目的は、金型の成形面の温度を成形する樹脂の脱型温度以上まで、迅速かつ均一に昇温させるとともに、加熱した金型の冷却時間を早めることで、ワーク成形のサイクルタイムを早めることができるワーク成形金型を提供することにある。   The present invention has been made in view of the above, and its purpose is to quickly and uniformly raise the temperature of the molding surface of the mold to a temperature equal to or higher than the demolding temperature of the molding resin and to cool the heated mold. An object of the present invention is to provide a workpiece molding die that can shorten the cycle time of workpiece molding by advancing the time.

上記目的を達成するため本発明に係るワーク成形金型(例えば、後述のワーク成形金型10)は、加熱及び冷却によりワークを成形する一対の成形型(例えば、後述の第1成形型11及び第2成形型12)と、冷却手段(例えば、後述の冷却パイプ131及び冷却パイプ141)を有し、前記一対の成形型の各成形面の裏面側にそれぞれ配置された一対の冷却型(例えば、後述の第1冷却型13及び第2冷却型14)と、を備え、前記一対の成形型の加熱時には、前記一対の成形型と前記一対の冷却型とが離間した状態で、前記一対の成形型が誘導加熱によって加熱され、前記一対の成形型の冷却時には、前記一対の成形型と前記一対の冷却型とが当接することで前記一対の成形型の冷却及び型締めがなされることを特徴とする。   In order to achieve the above object, a workpiece molding die according to the present invention (for example, a workpiece molding die 10 described later) includes a pair of molding dies (for example, a first molding die 11 described later and a workpiece molding die described later). A second mold 12) and a cooling means (for example, a cooling pipe 131 and a cooling pipe 141, which will be described later), and a pair of cooling molds (for example, the rear surfaces of the molding surfaces of the pair of molds, respectively) A first cooling mold 13 and a second cooling mold 14), which will be described later, and when the pair of molds are heated, the pair of molds and the pair of cooling molds are separated from each other. The mold is heated by induction heating, and at the time of cooling the pair of molds, the pair of molds and the pair of cooling molds come into contact with each other to cool and clamp the pair of molds. Features.

本発明によれば、誘導加熱時には、一対の成形型と一対の冷却型とは離間しているため成形型が冷却型に熱を奪われない。また、冷却手段を止めずに冷却型の温度を予め低くしておくことができる。よって、成形型を迅速かつ均一に加熱できるとともに冷却を短時間かつ均一に行うことができるので、ワーク成形のサイクルタイムを早めることができる。   According to the present invention, at the time of induction heating, the pair of molds and the pair of cooling molds are separated from each other, so that the molds are not deprived of heat by the cooling molds. Further, the temperature of the cooling mold can be lowered in advance without stopping the cooling means. Therefore, since the mold can be heated quickly and uniformly, and the cooling can be performed in a short time and uniformly, the work molding cycle time can be shortened.

この場合、前記一対の成形型の前記一対の冷却型との当接面の形状は、前記一対の成形型の成形面の形状に沿った凹凸形状であることが好ましい。   In this case, it is preferable that the shape of the contact surface of the pair of molding dies with the pair of cooling dies is an uneven shape along the shape of the molding surface of the pair of molding dies.

この発明によれば、成形型の冷却型との当接面の形状は、成形面の形状に沿った凹凸形状であるので、成形型の厚みを均一にすることができる。よって、伝熱による加熱をより均一にできるため、成形面をより均一に加熱できる。
また、この発明によれば、成形面と冷却型との間の距離を均一にすることができるので、成形面をより均一に冷却できる。すなわち、成形面の加熱及び冷却をより均一に行うことができる。
According to this invention, since the shape of the contact surface of the molding die with the cooling die is an uneven shape along the shape of the molding surface, the thickness of the molding die can be made uniform. Therefore, since heating by heat transfer can be made more uniform, the molding surface can be heated more uniformly.
Moreover, according to this invention, since the distance between a molding surface and a cooling die can be made uniform, a molding surface can be cooled more uniformly. That is, heating and cooling of the molding surface can be performed more uniformly.

さらに、成形面が均一に加熱されることにより、樹脂射出時におけるキャビティ内の樹脂温度をより高くすることができ、樹脂の流動性が向上するため、成形品(ワーク)の薄肉化を図れるとともにゲート数を削減できる、またウエルド(成形品の表面に発生するひび割れのように見えるすじ)やフローマーク(成形品の表面にゲートを中心とした年輪状の波模様が発生する外観不良の現象)といった成形不良を改善できる。
また、成形面を均一に冷却することにより、収縮差によるヒケ(成形品の表面に発生する凹み)やデフォームを防止できる。
Furthermore, since the molding surface is uniformly heated, the resin temperature in the cavity during resin injection can be increased, and the fluidity of the resin can be improved, so that the thickness of the molded product (workpiece) can be reduced. The number of gates can be reduced, and welds (streaks that look like cracks that occur on the surface of the molded product) and flow marks (phenomenon of appearance defects that cause a ring-shaped wave pattern around the gate on the surface of the molded product) This can improve molding defects.
In addition, by uniformly cooling the molding surface, sink marks (depressions generated on the surface of the molded product) and deformation due to shrinkage differences can be prevented.

本発明によれば、金型の成形面の温度を成形する樹脂の脱型温度以上まで、迅速かつ均一に昇温させるとともに、加熱した金型の冷却時間を早めることで、ワーク成形のサイクルタイムを早めることができるワーク成形金型を提供できる。   According to the present invention, the temperature of the molding surface of the mold is rapidly and uniformly raised to a temperature equal to or higher than the demolding temperature of the molding resin, and the cooling time of the heated mold is shortened, so that the cycle time of the workpiece molding is increased. It is possible to provide a work mold that can speed up the process.

本発明の一実施形態に係るワーク成形金型を含むワーク成形システムの構成を示す模式図である。It is a mimetic diagram showing composition of a work forming system containing a work forming die concerning one embodiment of the present invention. 上記実施形態に係るワーク成形金型の横断面図を含むワーク成形システムの構成を示す図である。It is a figure which shows the structure of the workpiece shaping | molding system containing the cross-sectional view of the workpiece shaping die which concerns on the said embodiment. 上記実施形態に係るワーク成形金型の横断面図を含むワーク成形システムの構成を示す図である。It is a figure which shows the structure of the workpiece shaping | molding system containing the cross-sectional view of the workpiece shaping die which concerns on the said embodiment. 上記実施形態に係るワーク成形金型の横断面図を含むワーク成形システムの構成を示す図である。It is a figure which shows the structure of the workpiece shaping | molding system containing the cross-sectional view of the workpiece shaping die which concerns on the said embodiment. 上記実施形態に係るワーク成形金型の横断面図を含むワーク成形システムの構成を示す図である。It is a figure which shows the structure of the workpiece shaping | molding system containing the cross-sectional view of the workpiece shaping die which concerns on the said embodiment. 上記実施形態に係る磁性材の磁気特性を示す図である。It is a figure which shows the magnetic characteristic of the magnetic material which concerns on the said embodiment. 上記実施形態に係る成形型の温度変化を示す図である。It is a figure which shows the temperature change of the shaping | molding die concerning the said embodiment.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係るワーク成形金型を含むワーク成形システムの構成を示す模式図である。
図2は、本発明の一実施形態に係るワーク成形金型の横断面図を含むワーク成形システムの構成を示す図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of a workpiece forming system including a workpiece molding die according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a workpiece forming system including a cross-sectional view of a workpiece molding die according to an embodiment of the present invention.

本実施形態に係るワーク成形システム1は、誘導加熱を利用して成形型を加熱して、成形型を冷却型とともに型締めしてから、成形型を冷却しつつ樹脂の射出成形を行う。
ワーク成形システム1の構成について説明する。
ワーク成形システム1は、ワーク成形金型10と、ワーク成形金型10に接続された射出装置20と、ワーク成形金型10の上下に対向するように配置された一対の高周波コイル30,30と、一対の高周波コイル30,30に高周波電流を通電させる一対の高周波電源40,40と、ワーク成形金型10を構成する複数の金型(後述する第1成形型11、第2成形型12、及び第1冷却型13)の進退を制御する金型制御機構50と、射出装置20、一対の高周波電源40,40、及び金型制御機構50を制御する制御装置60と、を備える。
The workpiece molding system 1 according to the present embodiment heats a mold using induction heating, clamps the mold together with a cooling mold, and then performs resin injection molding while cooling the mold.
The configuration of the workpiece forming system 1 will be described.
The workpiece molding system 1 includes a workpiece molding die 10, an injection device 20 connected to the workpiece molding die 10, and a pair of high-frequency coils 30, 30 arranged so as to face the workpiece molding die 10. , A pair of high-frequency power sources 40, 40 for applying a high-frequency current to the pair of high-frequency coils 30, 30 and a plurality of molds constituting the workpiece molding die 10 (first molding die 11, second molding die 12, which will be described later, And a mold control mechanism 50 for controlling the advance and retreat of the first cooling mold 13), an injection device 20, a pair of high-frequency power supplies 40 and 40, and a control device 60 for controlling the mold control mechanism 50.

ワーク成形金型10は、第1成形型11、第2成形型12、第1冷却型13、第2冷却型14、及びガイド部15を備える。
一対の成形型である第1成形型11と第2成形型12とは互いに対向して配置されており、第1成形型11と第2成形型12との互いの対向面がワークの成形面となる。また、一対の冷却型である第1冷却型13及び第2冷却型14について、第1冷却型13は第1成形型11の成形面の裏面側に配置されており、第2冷却型14は第2成形型12の成形面の裏面側に配置されている。
また、第1成形型11の第1冷却型13との当接面の形状は、第1成形型11の成形面の形状に沿って第2成形型12側に凹んだ形状である。また、第2成形型12の第2冷却型14との当接面の形状は、第2成形型12の成形面の形状に沿って第2冷却型14側に凸の形状である。
The workpiece molding die 10 includes a first molding die 11, a second molding die 12, a first cooling die 13, a second cooling die 14, and a guide portion 15.
The first mold 11 and the second mold 12 that are a pair of molds are arranged to face each other, and the opposing surfaces of the first mold 11 and the second mold 12 are the molding surfaces of the workpiece. It becomes. Moreover, about the 1st cooling mold 13 and the 2nd cooling mold 14 which are a pair of cooling molds, the 1st cooling mold 13 is arrange | positioned at the back surface side of the molding surface of the 1st shaping | molding die 11, and the 2nd cooling mold 14 is The second mold 12 is disposed on the back side of the molding surface.
Further, the shape of the contact surface of the first mold 11 with the first cooling mold 13 is a shape recessed toward the second mold 12 along the shape of the molding surface of the first mold 11. The shape of the contact surface of the second mold 12 with the second cooling mold 14 is a convex shape toward the second cooling mold 14 along the shape of the molding surface of the second mold 12.

さらに、第1冷却型13及び第2冷却型14には、それぞれ冷却型を冷却する冷却手段としての冷却パイプ131及び冷却パイプ141が形成されており、これらの冷却パイプ内に冷却水を通すことで第1冷却型13及び第2冷却型14を常に冷却状態にしておくことができる。なお、冷却パイプ131及び冷却パイプ141はそれぞれ複数形成されている。
さらにまた、第1成形型11、第2成形型12、第1冷却型13、及び第2冷却型14は、ガイド部15を介して接続されており、ガイド部15は、第1成形型11、第2成形型12、及び第1冷却型13の進退をガイドする。なお、第2冷却型14は射出装置20とともに固定配置されており、第2冷却型14自体は移動しない。
また、これら金型の進退の制御は、制御装置60により制御される金型制御機構50によって行われる。なお、ガイド部15は、絶縁体で構成されている。
さらにまた、第1成形型11及び第2成形型12は、成形する樹脂のガラス転移温度(または融点)より高いキュリー温度を持つ磁性体で組成されている。
Further, the first cooling mold 13 and the second cooling mold 14 are respectively formed with a cooling pipe 131 and a cooling pipe 141 as cooling means for cooling the cooling mold, and the cooling water is passed through these cooling pipes. Thus, the first cooling mold 13 and the second cooling mold 14 can be always kept in a cooled state. A plurality of cooling pipes 131 and cooling pipes 141 are formed.
Furthermore, the first mold 11, the second mold 12, the first cooling mold 13, and the second cooling mold 14 are connected via a guide portion 15, and the guide portion 15 is connected to the first mold 11. The second mold 12 and the first cooling mold 13 are guided forward and backward. The second cooling mold 14 is fixedly disposed together with the injection device 20, and the second cooling mold 14 itself does not move.
Further, the advance / retreat of the molds is controlled by a mold control mechanism 50 controlled by the control device 60. In addition, the guide part 15 is comprised with the insulator.
Furthermore, the first mold 11 and the second mold 12 are made of a magnetic material having a Curie temperature higher than the glass transition temperature (or melting point) of the resin to be molded.

ここで、図6を参照して、キュリー温度について説明する。
図6は、一般的な磁性材の磁気特性を示す図であり、具体的には、一般的な磁性材の温度と透磁率との関係を示す図である。ここで、透磁率とは、磁性体の磁化の様子を表す物質定数であり、磁束密度と磁場の強さとの比を意味する。図6に示すように、磁性材は、所定温度以下では透磁率が高く、所定温度を超えると透磁率が急激に低下する特性を有する。
このときの所定温度はキュリー温度と呼ばれ、強磁性体が常磁性体に転移する各磁性材に固有の温度である。このような磁気特性を有する磁性材としては、鉄、コバルト、ニッケル等の単体の他、上記の磁気特性を維持した状態で合金化された種々の整磁合金が例示される。この整磁合金によれば、所望のキュリー温度を有する磁性材料が得られ、第1成形型11及び第2成形型12を所望の温度に加熱制御することが可能である。
Here, the Curie temperature will be described with reference to FIG.
FIG. 6 is a diagram showing the magnetic characteristics of a general magnetic material. Specifically, FIG. 6 is a diagram showing the relationship between the temperature and the magnetic permeability of a general magnetic material. Here, the magnetic permeability is a material constant representing the state of magnetization of the magnetic material, and means the ratio between the magnetic flux density and the strength of the magnetic field. As shown in FIG. 6, the magnetic material has a characteristic that the magnetic permeability is high below a predetermined temperature, and the magnetic permeability rapidly decreases when the temperature exceeds the predetermined temperature.
The predetermined temperature at this time is called the Curie temperature, and is a temperature unique to each magnetic material in which the ferromagnetic material transitions to the paramagnetic material. Examples of the magnetic material having such magnetic characteristics include various magnetic shunt alloys that are alloyed while maintaining the above magnetic characteristics, in addition to simple substances such as iron, cobalt, and nickel. According to this magnetic shunt alloy, a magnetic material having a desired Curie temperature is obtained, and the first mold 11 and the second mold 12 can be controlled to be heated to a desired temperature.

次に、図2乃至図5を参照してワーク成形システム1の動作について説明する。
図2に示した状態で、第1成形型11及び第2成形型12は、誘導加熱により加熱される。誘導加熱は、制御装置60により一対の高周波電源40,40を制御して一対の高周波コイル30,30に高周波電流を通電させることで、第1成形型11及び第2成形型12を貫通する磁束を発生させる。この磁束により第1成形型11及び第2成形型12に渦電流が発生し、急速に加熱される。
Next, the operation of the workpiece forming system 1 will be described with reference to FIGS.
In the state shown in FIG. 2, the first mold 11 and the second mold 12 are heated by induction heating. In the induction heating, the control device 60 controls the pair of high-frequency power sources 40 and 40 to pass a high-frequency current through the pair of high-frequency coils 30 and 30, so that the magnetic flux penetrating the first mold 11 and the second mold 12. Is generated. Due to this magnetic flux, eddy currents are generated in the first mold 11 and the second mold 12 and are rapidly heated.

誘導加熱時には、図2に示すように、第1成形型11及び第2成形型12と第1冷却型13及び第2冷却型14とを離間しておく。また、第1成形型11と第2成形型12とを離間させておく。
誘導加熱により、第1成形型11及び第2成形型12の温度が磁性体のキュリー温度に到達すると、強磁性体が常磁性体に転移し、透磁率が急激に低下する。よって、渦電流が発生しなくなり、成形型の加熱が止まる。その後、型締めが行われる。
At the time of induction heating, as shown in FIG. 2, the first mold 11 and the second mold 12 are separated from the first cooling mold 13 and the second cooling mold 14. Moreover, the 1st shaping | molding die 11 and the 2nd shaping | molding die 12 are spaced apart.
When the temperature of the first molding die 11 and the second molding die 12 reaches the Curie temperature of the magnetic material by induction heating, the ferromagnetic material transitions to a paramagnetic material, and the magnetic permeability rapidly decreases. Therefore, no eddy current is generated and heating of the mold is stopped. Thereafter, mold clamping is performed.

型締めは次のように行われる。すなわち、第1成形型11、第2成形型12、及び第1冷却型13を第2冷却型14の方向へ移動させて、第1成形型11と第2成形型12とを当接させ、さらに、第1成形型11と第1冷却型13とを当接させ、さらにまた、第2成形型12と第2冷却型14とを当接させる。当接後の状態を図3に示す。
このとき、図3に示すように、第1成形型11と第2成形型12との間にワーク(例えば、樹脂成形品)を成形するためのキャビティ16が形成される。
Clamping is performed as follows. That is, the first mold 11, the second mold 12, and the first cooling mold 13 are moved in the direction of the second cooling mold 14 to bring the first mold 11 and the second mold 12 into contact with each other, Further, the first mold 11 and the first cooling mold 13 are brought into contact with each other, and the second mold 12 and the second cooling mold 14 are brought into contact with each other. The state after contact is shown in FIG.
At this time, as shown in FIG. 3, a cavity 16 for forming a workpiece (for example, a resin molded product) is formed between the first mold 11 and the second mold 12.

型締めが完了すると、射出装置20からキャビティ16への樹脂の射出が開始される。
樹脂の射出は、射出装置20のノズル(図示せず)から、第2冷却型14及び第2成形型12に形成されたスプルー、ランナー及びゲート(図示せず)を介して行われ、キャビティ16へ樹脂が流入される。
なお、第1冷却型13及び第2冷却型14は常に冷却状態にあるため、型締めが完了すると、第1成形型11及び第2成形型12の冷却が速やかに開始される。したがって、樹脂のガラス転移温度(または融点)に第1成形型11及び第2成形型12の温度が低下するまでの間に樹脂を射出することが好ましい。
当該温度が樹脂のガラス転移温度(または融点)への低下後に樹脂を射出すると、樹脂の流動性が低下してしまうからである。
When the mold clamping is completed, injection of resin from the injection device 20 into the cavity 16 is started.
The resin is injected from a nozzle (not shown) of the injection device 20 through sprues, runners, and gates (not shown) formed in the second cooling mold 14 and the second molding die 12. Resin flows in.
Since the first cooling mold 13 and the second cooling mold 14 are always in a cooled state, when the mold clamping is completed, the cooling of the first molding mold 11 and the second molding mold 12 is started promptly. Therefore, it is preferable to inject the resin until the temperature of the first mold 11 and the second mold 12 decreases to the glass transition temperature (or melting point) of the resin.
This is because if the resin is injected after the temperature is lowered to the glass transition temperature (or melting point) of the resin, the fluidity of the resin is lowered.

図4は、樹脂が射出され保圧冷却が行われている様子を示した図である。
図4によれば、樹脂がキャビティ16(図3参照)にワークの成形に必要な量だけ射出され、ワークWが成形されている。この状態で、保圧冷却を行いワークWの成形を完了させる。
FIG. 4 is a diagram illustrating a state in which resin is injected and holding pressure cooling is performed.
According to FIG. 4, the resin is injected into the cavity 16 (see FIG. 3) by an amount necessary for forming the work, and the work W is formed. In this state, holding pressure cooling is performed to complete the forming of the workpiece W.

ワークWの成形が完了すると、図5に示すように、第1成形型11及び第1冷却型13を第2成形型12とは反対方向に移動させて金型を開き、ワークWを取り出す。
ワークWを取り出したら、図2に示す位置に第1成形型11、第2成形型12、及び第1冷却型13を移動させて初期状態に戻す。
When the forming of the work W is completed, as shown in FIG. 5, the first forming mold 11 and the first cooling mold 13 are moved in the opposite direction to the second forming mold 12 to open the mold, and the work W is taken out.
When the workpiece W is taken out, the first molding die 11, the second molding die 12, and the first cooling die 13 are moved to the positions shown in FIG.

図7を参照して、成形型の温度変化について説明する。図7は、成形型の温度変化を示す図である。
成形型が誘導加熱により加熱されると、磁性体のキュリー温度に到達するまで成形型の温度が上昇する。その後、型締めを行うが、型締めが完了するまでは、冷却型が成形型に当接しないので、温度低下は緩やかである。型締めが完了すると、冷却型が成形型に当接するので、成形型の温度の低下率が上昇する。
樹脂のキャビティへの射出は型締め完了後に行われるので、射出している間に成形型の温度は低下していく。そのため、樹脂の流動性低下を防止するため、成形型の温度が樹脂のガラス転移温度(または融点)に低下するまでの間に樹脂が射出されることが好ましい。樹脂の射出が完了すると、ワークの成形が完了するまで保圧冷却が行われる。ワークの成形が完了する温度まで成形型の温度が低下したら、金型を開いてワークを取り出す。
With reference to FIG. 7, the temperature change of a shaping | molding die is demonstrated. FIG. 7 is a view showing a temperature change of the mold.
When the mold is heated by induction heating, the temperature of the mold increases until the Curie temperature of the magnetic material is reached. Thereafter, the mold is clamped, but until the mold clamping is completed, the cooling mold does not come into contact with the mold, so the temperature drop is moderate. When the mold clamping is completed, the cooling mold comes into contact with the mold, so that the temperature decrease rate of the mold increases.
Since the injection of the resin into the cavity is performed after the completion of the mold clamping, the temperature of the molding die is lowered during the injection. For this reason, in order to prevent a decrease in the fluidity of the resin, it is preferable that the resin is injected before the temperature of the mold decreases to the glass transition temperature (or melting point) of the resin. When the injection of the resin is completed, the holding pressure cooling is performed until the molding of the workpiece is completed. When the temperature of the mold is lowered to the temperature at which the molding of the workpiece is completed, the mold is opened and the workpiece is taken out.

本実施形態に係るワーク成形金型10によれば、以下の効果が奏される。
(1)本実施形態によれば、誘導加熱時には、第1成形型11及び第2成形型12と第1冷却型13及び第2冷却型14とは離間しているため成形型が冷却型に熱を奪われない。また、冷却パイプ131及び冷却パイプ141への流水を止めずに冷却型の温度を予め低くしておくことができる。よって、第1成形型11及び第2成形型12を迅速かつ均一に加熱できるとともに冷却を短時間かつ均一に行うことができるので、ワークWの成形のサイクルタイムを早めることができる。
The workpiece molding die 10 according to the present embodiment has the following effects.
(1) According to this embodiment, at the time of induction heating, the first mold 11 and the second mold 12 are separated from the first cooling mold 13 and the second cooling mold 14, so that the mold is a cooling mold. I'm not deprived of heat. Further, the temperature of the cooling mold can be lowered in advance without stopping the flowing water to the cooling pipe 131 and the cooling pipe 141. Therefore, the first mold 11 and the second mold 12 can be heated quickly and uniformly and can be cooled in a short time and uniformly, so that the cycle time for molding the workpiece W can be shortened.

(2)本実施形態によれば、第1成形型11の第1冷却型13との当接面の形状は、第1成形型11の成形面の形状に沿って第2成形型12側に凹んだ形状であり、また、第2成形型12の第2冷却型14との当接面の形状は、第2成形型12の成形面の形状に沿って第2冷却型14側に凸の形状であるので、第1成形型11及び第2成形型12の厚みを均一にすることができる。よって、伝熱による加熱をより均一にできるため、第1成形型11及び第2成形型12の成形面をより均一に加熱できる。
また、本実施形態によれば、第1成形型11の成形面と第1冷却型13との間の距離、及び、第2成形型12の成形面と第2冷却型14との間の距離を均一することができるので、両成形型の成形面をより均一に冷却できる。すなわち、成形面の加熱及び冷却をより均一に行うことができる。
(2) According to the present embodiment, the shape of the contact surface of the first mold 11 with the first cooling mold 13 is on the second mold 12 side along the shape of the mold surface of the first mold 11. The shape of the contact surface of the second mold 12 with the second cooling mold 14 is convex toward the second cooling mold 14 along the shape of the molding surface of the second mold 12. Since it is a shape, the thickness of the 1st shaping | molding die 11 and the 2nd shaping | molding die 12 can be made uniform. Therefore, since heating by heat transfer can be made more uniform, the molding surfaces of the first mold 11 and the second mold 12 can be heated more uniformly.
Further, according to the present embodiment, the distance between the molding surface of the first molding die 11 and the first cooling die 13 and the distance between the molding surface of the second molding die 12 and the second cooling die 14. Therefore, the molding surfaces of both molds can be cooled more uniformly. That is, heating and cooling of the molding surface can be performed more uniformly.

さらに、成形面が均一に加熱されることにより、樹脂射出時におけるキャビティ16内の樹脂温度をより高くすることができ、樹脂の流動性が向上するため、ワークWの薄肉化を図れるとともにゲート数を削減できる、またウエルド(成形品の表面に発生するひび割れのように見えるすじ)やフローマーク(成形品の表面にゲートを中心とした年輪状の波模様が発生する外観不良の現象)といった成形不良を改善できる。
また、成形面を均一に冷却することにより、収縮差によるヒケ(成形品の表面に発生する凹み)やデフォームを防止できる。
Furthermore, since the molding surface is uniformly heated, the resin temperature in the cavity 16 at the time of resin injection can be increased, and the fluidity of the resin can be improved, so that the workpiece W can be made thinner and the number of gates can be increased. In addition, molding such as welds (streaks that look like cracks that occur on the surface of the molded product) and flow marks (phenomenon of appearance defects that cause a ring-shaped wave pattern around the gate on the surface of the molded product). Defects can be improved.
In addition, by uniformly cooling the molding surface, sink marks (depressions generated on the surface of the molded product) and deformation due to shrinkage differences can be prevented.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
例えば上記実施形態では、射出成形を行う場合について説明したが、これに限定されるものではなく、熱プレスを行ってもよい。熱プレスの場合には、第1成形型11及び第2成形型12が均一に加熱された時点で、第1成形型11と第2成形型12との間にワークを挿入し、第1冷却型13及び第2冷却型14と併せてプレス成形を行う。また、キャビティ16は不要であるため、第1成形型11及び第2成形型12の成形面全体が当接するように成形型を加工するのが好ましい。
また、上記実施形態では、第1成形型11及び第2成形型12の誘導加熱時に、第1成形型11と第2成形型12とを分離させた場合について説明したが、これに限られるものではなく、第1成形型11と第2成形型12とを接続させてもよい。この場合、渦電流は成形型それぞれの閉回路を流れるのではなく、接続された第1成形型11及び第2成形型12の外側を循環するようになるため、干渉するおそれがなくなりより流れ易くなる。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
For example, although the case where injection molding is performed has been described in the above embodiment, the present invention is not limited to this, and hot pressing may be performed. In the case of hot pressing, when the first mold 11 and the second mold 12 are uniformly heated, a workpiece is inserted between the first mold 11 and the second mold 12, and the first cooling is performed. Press molding is performed together with the mold 13 and the second cooling mold 14. Moreover, since the cavity 16 is unnecessary, it is preferable to process the mold so that the entire molding surfaces of the first mold 11 and the second mold 12 are in contact with each other.
Moreover, although the said embodiment demonstrated the case where the 1st shaping | molding die 11 and the 2nd shaping | molding die 12 were isolate | separated at the time of the induction heating of the 1st shaping | molding die 11 and the 2nd shaping | molding die 12, it is restricted to this. Instead, the first mold 11 and the second mold 12 may be connected. In this case, the eddy current does not flow through the closed circuit of each molding die, but circulates outside the connected first molding die 11 and second molding die 12, so there is no risk of interference and it is easier to flow. Become.

1…ワーク成形システム
10…ワーク成形金型
11…第1成形型
12…第2成形型
13…第1冷却型
14…第2冷却型
15…ガイド部
16…キャビティ
20…射出装置
30…高周波コイル
40…高周波電源
50…金型制御機構
60…制御装置
131…冷却パイプ
141…冷却パイプ
W…ワーク
DESCRIPTION OF SYMBOLS 1 ... Work shaping | molding system 10 ... Work shaping | molding die 11 ... 1st shaping | molding die 12 ... 2nd shaping | molding die 13 ... 1st cooling die 14 ... 2nd cooling die 15 ... Guide part 16 ... Cavity 20 ... Injection apparatus 30 ... High frequency coil DESCRIPTION OF SYMBOLS 40 ... High frequency power supply 50 ... Mold control mechanism 60 ... Control apparatus 131 ... Cooling pipe 141 ... Cooling pipe W ... Workpiece

Claims (2)

加熱及び冷却によりワークを成形する一対の成形型と、
冷却手段を有し、前記一対の成形型の各成形面の裏面側にそれぞれ配置された一対の冷却型と、を備え、
前記一対の成形型の加熱時には、前記一対の成形型と前記一対の冷却型とが離間した状態で、前記一対の成形型が誘導加熱によって加熱され、
前記一対の成形型の冷却時には、前記一対の成形型と前記一対の冷却型とが当接することで前記一対の成形型の冷却及び型締めがなされることを特徴とするワーク成形金型。
A pair of molds for molding a workpiece by heating and cooling; and
A cooling means, and a pair of cooling molds disposed on the back side of each molding surface of the pair of molding dies, and
At the time of heating the pair of molds, the pair of molds is heated by induction heating in a state where the pair of molds and the pair of cooling molds are separated from each other,
When cooling the pair of molds, the pair of molds and the pair of cooling molds come into contact with each other to cool and clamp the pair of molds.
前記一対の成形型の前記一対の冷却型との当接面の形状は、前記一対の成形型の成形面の形状に沿った凹凸形状であることを特徴とする請求項1に記載のワーク成形金型。   2. The workpiece forming according to claim 1, wherein a shape of a contact surface of the pair of forming dies with the pair of cooling dies is an uneven shape along a shape of a forming surface of the pair of forming dies. Mold.
JP2011132921A 2011-06-15 2011-06-15 Workpiece forming mold Withdrawn JP2013000947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132921A JP2013000947A (en) 2011-06-15 2011-06-15 Workpiece forming mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132921A JP2013000947A (en) 2011-06-15 2011-06-15 Workpiece forming mold

Publications (1)

Publication Number Publication Date
JP2013000947A true JP2013000947A (en) 2013-01-07

Family

ID=47670036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132921A Withdrawn JP2013000947A (en) 2011-06-15 2011-06-15 Workpiece forming mold

Country Status (1)

Country Link
JP (1) JP2013000947A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457392A (en) * 2014-04-25 2017-02-22 沙特基础工业全球技术有限公司 Molds and methods of making molds having conforming heating and cooling systems
WO2018174534A1 (en) * 2017-03-24 2018-09-27 (주)컴테크케미칼 Device for simultaneously molding/manufacturing shoe components using induction heater
JP2019077179A (en) * 2017-10-24 2019-05-23 ザ・ボーイング・カンパニーThe Boeing Company Induction molding for parts having thermoplastic portions
WO2020017698A1 (en) * 2018-07-20 2020-01-23 아진산업(주) Press apparatus with improved heating efficiency

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457392A (en) * 2014-04-25 2017-02-22 沙特基础工业全球技术有限公司 Molds and methods of making molds having conforming heating and cooling systems
CN106457392B (en) * 2014-04-25 2018-08-31 沙特基础工业全球技术有限公司 Mold and its manufacturing method with conformal heating and cooling system
WO2018174534A1 (en) * 2017-03-24 2018-09-27 (주)컴테크케미칼 Device for simultaneously molding/manufacturing shoe components using induction heater
JP2019077179A (en) * 2017-10-24 2019-05-23 ザ・ボーイング・カンパニーThe Boeing Company Induction molding for parts having thermoplastic portions
JP7210215B2 (en) 2017-10-24 2023-01-23 ザ・ボーイング・カンパニー Induction heat forming for parts with thermoplastic parts
WO2020017698A1 (en) * 2018-07-20 2020-01-23 아진산업(주) Press apparatus with improved heating efficiency

Similar Documents

Publication Publication Date Title
KR100850308B1 (en) Synthetic resin molding mold
TWI389600B (en) Coaxial cooling and rapid conductive coil construction and molds with cobalt cooling and rapid conductive coil construction
RU2630119C2 (en) Method and device for heating press moulds, in particular, for pressure moulding
CN101909839B (en) System and method for forming polymer
JP5469669B2 (en) Equipment for forming materials using induction heating that allows preheating of the equipment
JP2008110583A (en) Injection molding machine and injection molding method
JP2013000947A (en) Workpiece forming mold
TWI421161B (en) High frequency electromagnetic induction heating device and method for using the same to heat surface of mold
JP2012505777A5 (en)
JP2009528190A (en) Non-contact high frequency induction heating device for plastic mold and injection nozzle
JPH09239070A (en) Method for molding golf ball and metal mold for molding golf ball
JP5261283B2 (en) Mold for plastic molding
JP2012040847A (en) Metal mold for molding
JP5587845B2 (en) Aluminum casting equipment
KR100950030B1 (en) Non-contact high-frequency induction heating apparatus for plastic mold
JP6040546B2 (en) Electromagnetic induction heating mold equipment for resin molding
JP2013226810A (en) Resin molding manufacturing method using electromagnetic induction heating type mold apparatus
JP3393079B2 (en) Light metal injection molding method
KR20170140497A (en) Mold device using high-frequency induction heating
JP2013173256A (en) Molding apparatus
JPH04173313A (en) Mold for injection molding and injection molding method using said mold
US20130093120A1 (en) Molding surface-heating apparatus and molding method
JP2016107448A (en) Molding method of resin product
JP5340039B2 (en) Resin injection molding method
JP6504772B2 (en) Injection molding apparatus, injection molding method and method of manufacturing molded article

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902