JP2012530665A - Method for increasing luminous efficiency of field emission luminescent material, luminescent glass element and preparation method thereof - Google Patents

Method for increasing luminous efficiency of field emission luminescent material, luminescent glass element and preparation method thereof Download PDF

Info

Publication number
JP2012530665A
JP2012530665A JP2012516471A JP2012516471A JP2012530665A JP 2012530665 A JP2012530665 A JP 2012530665A JP 2012516471 A JP2012516471 A JP 2012516471A JP 2012516471 A JP2012516471 A JP 2012516471A JP 2012530665 A JP2012530665 A JP 2012530665A
Authority
JP
Japan
Prior art keywords
light
metal layer
metal
emitting glass
glass element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012516471A
Other languages
Japanese (ja)
Other versions
JP5435517B2 (en
Inventor
ショウ,ミンジー
マ,ウェンボー
リウ,ユガン
Original Assignee
海洋王照明科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股▲ふん▼有限公司 filed Critical 海洋王照明科技股▲ふん▼有限公司
Publication of JP2012530665A publication Critical patent/JP2012530665A/en
Application granted granted Critical
Publication of JP5435517B2 publication Critical patent/JP5435517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77742Silicates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

本発明では電界放出発光材料の発光効率を高める方法、発光ガラス素子およびその調製方法を開示しており、化学式がaMO・bY・cSiO・dTbである発光ガラスを基板として、基板の表面に非周期性の金属マイクロ・ナノ構造を持つ金属層を形成するものであり、金属層に陰極線を出射すると、陰極線は金属層を透過した後、基板を励起して発光させる。調製方法では、発光ガラス基板を調製して、ガラス基板の表面に金属層を形成した後、アニール処理し、冷却した後に発光ガラス素子が得られる、工程を含む。本発明の発光ガラス素子は工程が簡単で、使用しやすく信頼性が高く、電界放出発光材料の発光効率を大幅に高める方法、優れた透光性、高い均一性を備え、発光効率が高く、安定性に優れ、構造が簡単で、調製方法が簡単で、低コストの発光ガラス素子を提供する。
【選択図】図1
How to increase the luminous efficiency of the field emission light-emitting material in the present invention, discloses a light-emitting glass element and its preparation method, the light-emitting glass formula is aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3 As a substrate, a metal layer having an aperiodic metal micro / nano structure is formed on the surface of the substrate. When a cathode ray is emitted to the metal layer, the cathode ray passes through the metal layer and then excites the substrate to emit light. Let The preparation method includes a step of preparing a luminescent glass substrate, forming a metal layer on the surface of the glass substrate, annealing, and cooling to obtain a luminescent glass element. The light-emitting glass element of the present invention has a simple process, is easy to use, has high reliability, has a method of greatly increasing the light emission efficiency of the field emission light-emitting material, has excellent translucency, and high uniformity, has high light emission efficiency, Provided is a light-emitting glass element having excellent stability, a simple structure, a simple preparation method, and low cost.
[Selection] Figure 1

Description

本発明は発光材料の技術分野に属するものであり、電界放出発光材料の発光効率を高める方法、発光ガラス素子およびその調製方法に関し、とりわけ電界放出発光材料の発光効率を高める方法、発光ガラス素子およびその調製方法に関する。 The present invention belongs to the technical field of luminescent materials, and relates to a method for increasing the luminous efficiency of a field emission luminescent material, a luminescent glass element and a method for preparing the same, and in particular, a method for increasing the luminescent efficiency of a field emission luminescent material, a luminescent glass element and It relates to the preparation method.

現在、真空マイクロエレクトロニクス分野において、電界放出デバイスは照明およびディスプレイ分野において幅広い応用の将来性を示しており、国内外の研究機関から広く注目を集めている。その動作原理は次の通りである。真空環境下で、陽極により電界放出陰極アレイ(field emissive arrays,FEAs)に正電圧を印加することで加速電界を形成し、陰極放出された電子が加速して陰極板上の発光材料にぶつかり発光する。電界放出デバイスの動作温度範囲は広く(−40℃〜80℃)、反応時間は短く(−1ms)、構造が簡単で、消費電力が少なく、エコロジーで環境保護に適合する。一部蛍光粉体、発光ガラス、発光フィルムなどの材料は電界放出デバイスにて発光材料として使用することができるものの、これらはいずれも発光効率が低いという本質的な問題があり、電界放出デバイスの応用、特に照明分野での応用への制限が大きい。 Currently, in the field of vacuum microelectronics, field emission devices have shown wide-ranging application potential in the fields of illumination and display, and are attracting widespread attention from domestic and foreign research institutions. The operation principle is as follows. Under a vacuum environment, an accelerating electric field is formed by applying a positive voltage to field emission cathode arrays (FEAs) by the anode, and the electrons emitted from the cathode are accelerated and collide with the light emitting material on the cathode plate. To do. The field emission device has a wide operating temperature range (−40 ° C. to 80 ° C.), a short reaction time (−1 ms), a simple structure, low power consumption, ecology and environmental protection. Although some materials such as fluorescent powder, luminescent glass, and luminescent film can be used as luminescent materials in field emission devices, they all have the inherent problem of low luminous efficiency. There are significant restrictions on applications, especially in the lighting field.

表面プラズモン(Surface Plasmon,SP)は金属および媒体の界面を伝搬する一種の波であり、その振幅は界面から離れるにつれて指数が減衰する。金属表面の構造を改変すると、表面プラズモンポラリトン(Surface Plasmon Polaritons,SPPs)の性質、色の分散関係、励起モード、カップリング効果などに大きな変化が生じる。SPPsによる磁場は、光波のサブ波長のサイズ構造中で伝搬するうえ、光周波数からマイクロ波帯域の電磁放射を発生して調節して、光伝搬に対する能動的な制御が実現する。SPPsの励起では、光の状態密度を高めて、自然放出割合が向上するので、内部量子効率を大幅に高めて、現在における各種固体発光装置を発光効率が低いという苦境から開放して、新型の超高輝度および高速動作する発光デバイスの誕生を促す。 Surface plasmon (SP) is a kind of wave that propagates through the interface between metal and medium, and the amplitude of the surface plasmon decreases as the distance from the interface increases. If the structure of the metal surface is modified, a large change occurs in the properties of surface plasmon polaritons (SPPs), color dispersion relations, excitation modes, coupling effects, and the like. The magnetic field generated by the SPPs propagates in the size structure of the subwavelength of the light wave, and generates and adjusts electromagnetic radiation in the microwave band from the optical frequency to realize active control over the light propagation. In the excitation of SPPs, the density of states of light is increased and the spontaneous emission ratio is improved, so that the internal quantum efficiency is greatly increased, and various solid state light emitting devices are released from the predicament of low luminous efficiency. Encourage the birth of light-emitting devices that operate at ultra-high brightness and high speed.

本発明が解決すべき技術的課題は、従来技術は発光効率が低いという欠陥に対して、工程が簡単で、使用しやすく信頼性が高く、電界放出発光材料の発光効率を大幅に高める方法を提供するところにある。 The technical problem to be solved by the present invention is a method for greatly improving the luminous efficiency of a field emission light-emitting material, which is simple in process, easy to use and highly reliable against the defect that the conventional technique has low luminous efficiency. There is to offer.

本発明がさらに解決すべき技術的課題は、優れた透光性、高い均一性を備え、発光効率が高く、安定性に優れ、構造が簡単な電界放出発光材料の発光効率を大幅に高める方法に用いられる発光ガラス素子を提供するところにある。 The technical problem to be further solved by the present invention is a method for greatly increasing the light emission efficiency of a field emission light emitting material having excellent light transmission, high uniformity, high light emission efficiency, excellent stability and simple structure. The present invention provides a light emitting glass element used in the above.

本発明のまたさらに解決すべき技術的課題は、工程が簡単で、低コストの発光ガラス素子の調製方法を提供するところにある。 A further technical problem to be solved by the present invention is to provide a method for preparing a light-emitting glass element having a simple process and a low cost.

本発明がその技術的課題を解決するために採用する技術的思想は以下のとおりである。電界放出発光材料の発光効率を高める方法であって、発光ガラスを基板として、金属材料が当該発光ガラス基板の表面に非周期性の金属マイクロ・ナノ構造を持つ金属層を形成することで、発光ガラス素子を得る工程を含み、そして当該発光ガラス基板に陰極線を出射すると、当該陰極線は前記金属層を透過した後、前記発光ガラス基板を励起して発光させる The technical idea that the present invention adopts in order to solve the technical problem is as follows. A method for increasing the luminous efficiency of a field emission light-emitting material, in which a light-emitting glass is used as a substrate, and a metal material forms a metal layer having a non-periodic metal micro / nano structure on the surface of the light-emitting glass substrate. A step of obtaining a glass element, and emitting a cathode ray to the light emitting glass substrate, the cathode ray passes through the metal layer and then excites the light emitting glass substrate to emit light.

ものであり、前記発光ガラス基板の化学式はaMO・bY・cSiO・dTbであって、式中、Mはアルカリ金属元素であり、a、b、c、dはモル分率であり、これらの値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である。 Is intended, the chemical formula of the emission glass substrate is a aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, wherein, M is an alkali metal element, a, b, c, d is These are molar fractions, and the ranges of these values are: a is 25 to 60, b is 0.01 to 15, c is 40 to 70, and d is 0.01 to 15.

発光ガラス基板を備えた電界放出発光材料の発光効率を高める方法に用いられる発光ガラス素子であって、前記発光ガラス基板の表面には金属層が設けられており、前記金属層は金属微細構造を有しており、前記発光ガラス基板は、化学式aMO・bY・cSiO・dTbの複合酸化物を含み、
式中、Mはアルカリ金属元素であり、a、b、c、dはモル分率であり、これらの値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である。
A light-emitting glass element used in a method for increasing luminous efficiency of a field emission light-emitting material provided with a light-emitting glass substrate, wherein a metal layer is provided on a surface of the light-emitting glass substrate, and the metal layer has a metal microstructure. has, the light emitting glass substrate includes a composite oxide of formula aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3,
In the formula, M is an alkali metal element, a, b, c, and d are mole fractions, and the ranges of these values are as follows: a is 25 to 60, b is 0.01 to 15, and c is 40 to 40. 70 and d are 0.01-15.

前記発光ガラス素子において、前記アルカリ金属元素はNa、K、Liのうちの少なくとも一種類である。 In the light emitting glass element, the alkali metal element is at least one of Na, K, and Li.

前記発光ガラス素子において、前記金属層の金属は金、銀、アルミニウム、銅、チタン、鉄、ニッケル、コバルト、クロム、パラジウム、マグネシウム、亜鉛のうちの少なくとも一種類である。 In the luminescent glass element, the metal of the metal layer is at least one of gold, silver, aluminum, copper, titanium, iron, nickel, cobalt, chromium, palladium, magnesium, and zinc.

前記発光ガラス素子において、前記金属層の金属が金、銀、アルミニウムのうちの少なくとも一種類である。 In the light-emitting glass element, the metal of the metal layer is at least one of gold, silver, and aluminum.

前記発光ガラス素子において、前記金属層の厚さが0.5nm〜200nmである。 In the light-emitting glass element, the metal layer has a thickness of 0.5 nm to 200 nm.

前記発光ガラス素子において、前記金属層の厚さが1nm〜100nmである。 In the light emitting glass element, the metal layer has a thickness of 1 nm to 100 nm.

発光ガラス素子の調製方法であって、
化学式がaMO・bY・cSiO・dTbであって、式中、Mはアルカリ金属元素であり、a、b、c、dはモル分率であり、これらの値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である複合酸化物を含む発光ガラス基板を調製する工程と、
前記発光ガラス基板の表面に金属層を形成する工程と、
前記発光ガラス基板および金属層を真空にてアニール処理して、前記金属層に金属微細構造を形成して、冷却した後に所望の発光ガラス素子を得る工程と、を含む。
A method for preparing a light emitting glass element, comprising:
Formula is a aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, wherein, M is an alkali metal element, a, b, c, d are mole fractions, these values Wherein a is 25 to 60, b is 0.01 to 15, c is 40 to 70, and d is 0.01 to 15;
Forming a metal layer on the surface of the light emitting glass substrate;
Annealing the luminescent glass substrate and the metal layer in a vacuum to form a metal microstructure in the metal layer and cooling to obtain a desired luminescent glass element.

前記発光ガラス素子の調製方法において、前記発光ガラス基板の調製工程は、各々がモル分率に対応するアルカリ金属塩、SiO、YおよびTb原料を得て、1200℃〜1500℃の温度で混合・溶融、冷却して、さらに還元雰囲気中にて、600〜1100℃の温度でアニール処理し、発光ガラス基板を得る。 In the method for preparing the light-emitting glass element, the step of preparing the light-emitting glass substrate includes obtaining alkali metal salts, SiO 2 , Y 2 O 3 and Tb 4 O 7 raw materials each corresponding to a molar fraction of 1200 ° C. to Mixing, melting, and cooling are performed at a temperature of 1500 ° C., and further annealing is performed at a temperature of 600 to 1100 ° C. in a reducing atmosphere to obtain a light emitting glass substrate.

前記発光ガラス素子の調製方法において、前記金属層は金属スパッタリングまたは蒸着により発光ガラス基板表面に形成されたものである。 In the method for preparing the light emitting glass element, the metal layer is formed on the surface of the light emitting glass substrate by metal sputtering or vapor deposition.

前記発光ガラス素子の調製方法において、前記真空アニール処理は50℃〜650℃で行われ、アニール時間は5分間〜5時間である。 In the method for preparing the light emitting glass element, the vacuum annealing treatment is performed at 50 ° C. to 650 ° C., and the annealing time is 5 minutes to 5 hours.

前記発光ガラス素子の調製方法において、前記真空アニール処理は100℃〜500℃で行われるのが好ましく、アニール時間は15分間〜3時間であるのが好ましい。 In the method for preparing a light emitting glass element, the vacuum annealing treatment is preferably performed at 100 ° C. to 500 ° C., and the annealing time is preferably 15 minutes to 3 hours.

本発明では、化学式がaMO・bY・cSiO・dTbである発光ガラス上に金属層を一層設けており、当該金属層は陰極線下にて発光ガラスとの間の界面に表面プラズモンが形成され、表面プラズモン現象により、化学式がaMO・bY・cSiO・dTbである発光ガラスの発光効率を高めており、当該方法により電界放出発光材料は発光効率が低いという問題を解決している。 In the present invention, the chemical formula aM 2 O · bY are further provided a metal layer 2 O 3 · cSiO 2 · dTb 2 O 3 a is emitting the glass, the metal layer between the light emitting glass in cathode ray under surface plasmon formed at the interface, the surface plasmon phenomenon, the formula has enhanced emission efficiency of the light-emitting glass is aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, the field emission light emitting material by the method Solves the problem of low luminous efficiency.

本発明の発光ガラス素子は金属層と、発光ガラスとからなり、発光ガラスは化学式がaMO・bY・cSiO・dTbである緑色発光ガラスであって、金属層は非周期性の金属マイクロ・ナノ構造を持ち、出射された陰極線はまず金属層を透過して、ひいては発光ガラスを励起して発光させるものであり、この過程において、金属層と発光ガラスとの界面上に表面プラズモン現象が発生しており、当該表面プラズモン現象により発光ガラスの内部量子効率が大幅に高められ、つまり自然放出割合が向上して、ひいては発光ガラスの発光効率を大幅に高めるので、電界放出発光材料は発光効率が低いという問題を解決している。 Emitting glass element of the present invention is a metal layer made of a light-emitting glass, luminescent glass is a green light-emitting glass formula is aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, metal layer The cathode wire that has a non-periodic metal micro / nano structure is first transmitted through the metal layer, and thus excites the luminescent glass to emit light. In this process, the interface between the metal layer and the luminescent glass A surface plasmon phenomenon has occurred on the surface, and the surface plasmon phenomenon significantly increases the internal quantum efficiency of the luminescent glass, that is, the spontaneous emission ratio is improved, and as a result, the luminous efficiency of the luminescent glass is greatly increased. The emitted light emitting material solves the problem of low luminous efficiency.

さらに、本発明の発光ガラス素子の調製方法は、発光ガラス基板上に金属層を一層形成して、その後アニール処理を経るだけで、所望の発光ガラス素子を得ることができるので、工程が簡単で、低コストで、幅広い応用の将来性を備える。 Furthermore, the method for preparing the light-emitting glass element of the present invention is simple because the desired light-emitting glass element can be obtained simply by forming a metal layer on the light-emitting glass substrate and then performing an annealing process. , Low cost, with broad application potential.

本発明の目的、技術的思想および長所をより明確にするために、図面および実施例を合わせて、本発明により詳細な説明を行う。理解されるべきは、ここに記述する具体的な実施例は本発明を解釈するためだけのものであり、本発明の限定に用いるものではないということである。 In order to clarify the object, technical idea and advantages of the present invention, the present invention will be described in detail with reference to the drawings and examples. It should be understood that the specific embodiments described herein are only for interpreting the invention and are not intended to limit the invention.

電界放出発光材料の発光効率を高める方法は、具体的に以下の工程を含む。発光ガラスを基板として、金属材料を発光ガラス基板の表面にスパッタリングして、非周期性の金属マイクロ・ナノ構造を持つ金属層を形成することで、発光ガラス素子を得るものであり、当該発光ガラス基板に陰極線を出射すると、当該陰極線は前記金属層を透過した後、前記発光ガラス基板を励起して発光させる。前記金属材料は金、銀、アルミニウム、銅、チタン、鉄、ニッケル、コバルト、クロム、パラジウム、マグネシウム、亜鉛のうちの少なくとも一種類または複数種類であって、金、銀、アルミニウムのうちの一種類または複数種類であるのが好ましい。発光ガラス基板は緑色発光ガラスであり、当該緑色発光ガラスの化学式はaMO・bY・cSiO・dTbであって、式中、MはNa、K、Liのうちの少なくとも一種類であり、a、b、c、dはモル分率であり、これらの値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である。 The method for increasing the luminous efficiency of the field emission luminescent material specifically includes the following steps. A light emitting glass element is obtained by sputtering a metal material on the surface of a light emitting glass substrate using a light emitting glass as a substrate to form a metal layer having an aperiodic metal micro-nano structure. When a cathode ray is emitted to the substrate, the cathode ray passes through the metal layer and then excites the luminescent glass substrate to emit light. The metal material is at least one or more of gold, silver, aluminum, copper, titanium, iron, nickel, cobalt, chromium, palladium, magnesium, and zinc, and one of gold, silver, and aluminum Or it is preferable that there are multiple types. Emission glass substrate is green-emitting glass, the chemical formula of the green emission glass is a aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, wherein, M is Na, K, of Li At least one kind, a, b, c, and d are mole fractions, and these values range from 25 to 60, b from 0.01 to 15, c from 40 to 70, and d from 0. .01-15.

図1を参照する。上記した電界放出発光材料の発光効率を高める方法に用いられるガラス素子は、発光ガラス基板1と、発光ガラス基板1の表面に設けられる金属層2とを備えている。金属層2は金属微細構造を有しており、当該金属微細構造はときにはマイクロ・ナノ構造と呼ばれる。さらに、当該金属微細構造は非周期性、つまり不規則に配列された金属結晶体からなるものである Please refer to FIG. A glass element used in the above-described method for increasing the luminous efficiency of a field emission luminescent material includes a luminescent glass substrate 1 and a metal layer 2 provided on the surface of the luminescent glass substrate 1. The metal layer 2 has a metal microstructure, and the metal microstructure is sometimes called a micro / nano structure. Further, the metal microstructure is non-periodic, that is, composed of irregularly arranged metal crystals.

当該発光ガラス基板1は化学式aMO・bY・cSiO・dTbの複合酸化物を含み、式中、Mはアルカリ金属元素であり、a、b、c、dはモル分率であり、各々の値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である。当該発光ガラス基板1中にはテルビウムの化合物が含まれており、当該テルビウムの化合物はこの種の組成の発光ガラスにてその発光効果を充分に発揮できる。当該発光ガラス基板1はさらに優れた透光性能を備えている。 The luminescent glass substrate 1 includes a composite oxide of formula aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, wherein, M is an alkali metal element, a, b, c, d are mole Each value ranges from 25 to 60, b from 0.01 to 15, c from 40 to 70, and d from 0.01 to 15. The luminescent glass substrate 1 contains a terbium compound, and the terbium compound can sufficiently exhibit its light-emitting effect in the luminescent glass having this kind of composition. The light emitting glass substrate 1 has further excellent light transmission performance.

このうち、金属層2は、例えば酸化腐食しにくい金属といった化学的に安定性に優れた金属、 別に常用される金属、金、銀、アルミニウム、チタン、鉄、ニッケル、コバルト、クロム、パラジウム、マグネシウム、亜鉛のうちの少なくとも一種類からなるものであるのが好ましく、金、銀、アルミニウムのうちの少なくとも一種類であるのがより好ましい。金属層2中の金属物の種類はこれらの単一金属または複合金属とすることができる。複合金属は上記した金属の二種類または二種以上の合金であって、例えば、金属層2は銀・アルミニウム合金層または金・アルミニウム合金層とすることができ、このうちの銀または金の重量割合は70%以上であるのが好ましい。金属層14の厚さは0.5nm〜200nmであるのが好ましく、1nm〜100nmであるのがより好ましい。 Among these, the metal layer 2 is a metal having excellent chemical stability, for example, a metal that is not easily oxidized and corroded, and another commonly used metal, gold, silver, aluminum, titanium, iron, nickel, cobalt, chromium, palladium, magnesium. , Zinc is preferable, and at least one of gold, silver, and aluminum is more preferable. The kind of metal in the metal layer 2 can be a single metal or a composite metal. The composite metal is an alloy of two or more kinds of the metals described above. For example, the metal layer 2 can be a silver / aluminum alloy layer or a gold / aluminum alloy layer, and the weight of silver or gold among these layers The proportion is preferably 70% or more. The thickness of the metal layer 14 is preferably 0.5 nm to 200 nm, and more preferably 1 nm to 100 nm.

アルカリ金属MはNa、K、Liのうちの少なくとも一種類であるのが好ましい。 The alkali metal M is preferably at least one of Na, K, and Li.

上記発光ガラス素子を発光素子とすることで、例えば、電界放出型ディスプレイ、電界放出型光源または大型の広告看板などといった超高輝度および高速動作の発光デバイスに広く応用することができる。電界放出型ディスプレイを例にとれば、陽極が電界放出陰極アレイに正方向の電圧を印加して加速電界を形成して、陰極が放出した電子は、金属層2に対して陰極線を放出して、微細構造を有する金属層2と発光ガラス基板1との間に表面プラズモンが形成され、表面プラズモン現象により、発光ガラス基板1の内部量子効率を大幅に高めるので、発光材料の発光効率が低いという問題を解決する。また、発光ガラス基板1表面には金属層が一層形成されており、金属層全体と発光ガラス基板との間に均一な界面が形成されて、発光の均一性を高めることができる。 By using the light-emitting glass element as a light-emitting element, for example, it can be widely applied to a light-emitting device with ultra-brightness and high-speed operation such as a field emission display, a field emission light source, or a large advertising billboard. Taking a field emission display as an example, the anode applies a positive voltage to the field emission cathode array to form an accelerating electric field, and the electrons emitted from the cathode emit cathode rays to the metal layer 2. The surface plasmon is formed between the metal layer 2 having a fine structure and the light emitting glass substrate 1, and the internal quantum efficiency of the light emitting glass substrate 1 is greatly increased by the surface plasmon phenomenon, so that the light emitting efficiency of the light emitting material is low. Solve a problem. Further, a single metal layer is formed on the surface of the light emitting glass substrate 1, and a uniform interface is formed between the entire metal layer and the light emitting glass substrate, so that the uniformity of light emission can be improved.

上記発光ガラス素子の調製方法は以下の工程を含む。 The method for preparing the light-emitting glass element includes the following steps.

発光ガラス基板の調製:分析試薬のアルカリ金属塩、SiOおよび99.99%のY、Tbを主原料として、化学式aMO・bY・cSiO・dTb中の各元素間のモル分率の割合に応じて、対応する原料を量り取り、1200℃〜1500℃で1〜5時間溶融させて、室温にまで冷却し、さらに還元雰囲気中に置き、600〜1100℃で1〜20時間アニール処理して、緑色発光ガラス基板を得る。また、さらに当該発光ガラス基板を一定寸法にカッティング、研磨加工することで、所望の発光ガラス基板を得る。 Preparation of light-emitting glass substrate: alkali metal salts of analytical reagents, SiO 2 and 99.99% of Y 2 O 3, Tb 4 O 7 as a main raw material, chemical formula aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 Depending on the molar fraction ratio between each element in O 3 , the corresponding raw material is weighed, melted at 1200 ° C. to 1500 ° C. for 1 to 5 hours, cooled to room temperature, and further placed in a reducing atmosphere. Annealing treatment is performed at 600 to 1100 ° C. for 1 to 20 hours to obtain a green light emitting glass substrate. Further, the desired luminescent glass substrate is obtained by further cutting and polishing the luminescent glass substrate to a certain size.

当該発光ガラス基板の表面に金属層を形成する:当該金属層は金属スパッタリングまたは蒸着により発光ガラス基板の表面に形成されたものである。 A metal layer is formed on the surface of the light emitting glass substrate: The metal layer is formed on the surface of the light emitting glass substrate by metal sputtering or vapor deposition.

そして、前記発光ガラス基板および金属層を真空にてアニール処理して、前記金属層に金属微細構造を形成して、冷却した後に、50℃〜650℃にて真空アニール処理するものであり、具体的には、発光ガラス基板の表面に金属層を形成した後、50℃〜650℃で5分間〜5時間真空アニールし、その後自然に室温にまで冷却する。このうち、アニール温度は100℃〜500℃であるのが好ましく、アニール時間は15分間から3時間であるのが好ましい。 Then, the light emitting glass substrate and the metal layer are annealed in vacuum to form a metal microstructure on the metal layer, and after cooling, vacuum annealing is performed at 50 ° C. to 650 ° C. Specifically, after forming a metal layer on the surface of the light emitting glass substrate, vacuum annealing is performed at 50 ° C. to 650 ° C. for 5 minutes to 5 hours, and then naturally cooled to room temperature. Among these, the annealing temperature is preferably 100 ° C. to 500 ° C., and the annealing time is preferably 15 minutes to 3 hours.

上記した構造に似て、金属層2は例えば酸化腐食しにくい金属といった化学的に安定性に優れた金属、 別に常用される金属、金、銀、アルミニウム、チタン、鉄、ニッケル、コバルト、クロム、パラジウム、マグネシウム、亜鉛のうちの少なくとも一種類からなるものであるのが好ましく、金、銀、アルミニウムのうちの少なくとも一種類の金属から形成されるのがより好ましい。金属層2の厚さは0.5nm〜200nmであるのが好ましく、1nm〜100nmであるのがより好ましい。アルカリ金属MはNa、K、Liのうちの少なくとも一種類であるのが好ましい。当該金属層は金属スパッタリングまたは蒸着により発光ガラス基板の表面に形成されたものである。発光ガラス基板の表面に金属層を形成した後、50℃〜650℃で5分間〜5時間真空アニール処理し、その後自然に室温にまで冷却する。このうち、アニール温度は100℃〜500℃であるのが好ましく、アニール時間は15分間から3時間であるのが好ましい。 Similar to the structure described above, the metal layer 2 has a chemically stable metal such as a metal that is difficult to oxidize and corrode, another commonly used metal, gold, silver, aluminum, titanium, iron, nickel, cobalt, chromium, It is preferably made of at least one of palladium, magnesium and zinc, and more preferably made of at least one metal of gold, silver and aluminum. The thickness of the metal layer 2 is preferably 0.5 nm to 200 nm, and more preferably 1 nm to 100 nm. The alkali metal M is preferably at least one of Na, K, and Li. The metal layer is formed on the surface of the light emitting glass substrate by metal sputtering or vapor deposition. After forming a metal layer on the surface of the light emitting glass substrate, vacuum annealing is performed at 50 ° C. to 650 ° C. for 5 minutes to 5 hours, and then naturally cooled to room temperature. Among these, the annealing temperature is preferably 100 ° C. to 500 ° C., and the annealing time is preferably 15 minutes to 3 hours.

発光ガラス素子は上記した各種構造および組成などの特徴を備えている。実際の応用において、例えば電界放出型ディスプレイまたは照明光源に用いたとき、真空環境下で、陽極が電界放出陰極アレイに正方向の電圧を印加して加速電界を形成して、陰極が陰極線を出射し、陰極線の励起の下、電子ビームはまず金属層2を透過して発光ガラス基板1を励起して発光させるが、この過程において、金属層2と発光ガラス基板1との界面上に表面プラズモン現象が発生しており、当該現象により発光ガラス基板の内部量子効率が大幅に高められ、つまり自然放出割合が向上して、ひいては発光ガラスの発光効率を大幅に高めている。 The light emitting glass element has the characteristics such as various structures and compositions described above. In actual applications, for example, when used in a field emission display or an illumination light source, in a vacuum environment, the anode applies a positive voltage to the field emission cathode array to form an accelerating electric field, and the cathode emits a cathode ray. Under the excitation of the cathode ray, the electron beam first passes through the metal layer 2 to excite the luminescent glass substrate 1 to emit light. In this process, the surface plasmon is formed on the interface between the metal layer 2 and the luminescent glass substrate 1. A phenomenon has occurred, and the internal quantum efficiency of the luminescent glass substrate is greatly increased by the phenomenon, that is, the spontaneous emission ratio is improved, and as a result, the luminescent efficiency of the luminescent glass is greatly increased.

表面プラズモン(Surface Plasmon,SP)は金属および媒体の界面を伝搬する一種の波であり、その振幅は界面から離れるにつれて指数が減衰する。金属表面の構造を改変すると、表面プラズモンポラリトン(Surface Plasmon Polaritons,SPPs)の性質、色の分散関係、励起モード、カップリング効果などに大きな変化が生じる。SPPsによる磁場は、光波のサブ波長のサイズ構造中で伝搬するうえ、光周波数からマイクロ波帯域の電磁放射を発生して調節して、光伝搬に対する能動的な制御が実現する。したがって本発明では、SPPsの励起性能を利用して、発光ガラス基板の光の状態密度を高めて、自然放出割合が向上し、しかも表面プラズモンのカップリング効果を利用することで、発光ガラス基板が発光したとき、これとカップリング共振効果が発生するので、発光ガラス基板の内部量子効率を大幅に高めて、発光ガラス基板の発光効率を高めることができる。 Surface plasmon (SP) is a kind of wave that propagates through the interface between metal and medium, and the amplitude of the surface plasmon decreases as the distance from the interface increases. If the structure of the metal surface is modified, a large change occurs in the properties of surface plasmon polaritons (SPPs), color dispersion relations, excitation modes, coupling effects, and the like. The magnetic field generated by the SPPs propagates in the size structure of the subwavelength of the light wave, and generates and adjusts electromagnetic radiation in the microwave band from the optical frequency to realize active control over the light propagation. Therefore, in the present invention, the light emission density of the luminescent glass substrate is increased by utilizing the excitation performance of SPPs, the spontaneous emission ratio is improved, and the coupling effect of the surface plasmon is utilized, whereby the luminescent glass substrate is When light is emitted, a coupling resonance effect is generated, so that the internal quantum efficiency of the light emitting glass substrate can be significantly increased, and the light emission efficiency of the light emitting glass substrate can be increased.

以下、複数の実施例により、発光ガラス素子の異なる組成およびその調製方法、およびその性能などを例示して説明する。 Hereinafter, different examples of the luminescent glass element, its preparation method, its performance, and the like will be described by way of examples.

本発明における発光ガラス素子の構造概略図。The structure schematic of the luminescent glass element in this invention. 実施例1の発光ガラス素子と金属層が設けられていない発光ガラスとを比較した発光スペクトル。The emission spectrum which compared the light emission glass element of Example 1 and the light emission glass in which the metal layer is not provided. 実施例2の発光ガラス素子と金属層が設けられていない発光ガラスとを比較した発光スペクトル。このうち、陰極線発光スペクトルの測定条件として、電子ビーム励起の加速電圧は7KVである。The emission spectrum which compared the light emission glass element of Example 2 and the light emission glass in which the metal layer is not provided. Among these, as a measurement condition of the cathode ray emission spectrum, the acceleration voltage of electron beam excitation is 7 KV.

実施例1
サイズが1×1cm、表面研磨の上記調製方法により得られる30LiO・6Y・60SiO・4Tbの緑色発光ガラスを基板として選択し(各酸化物の前の数字はモル分率を表している。以下同じ)、マグネトロンスパッタリング装置でその表面に厚さ2nmの金属銀層を堆積させ、その後これを真空度が1×10−3Pa未満の環境下に置き、300℃の温度で30分間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。図1に示すように、これは発光ガラス素子の構造図であって、本実施例における発光ガラス素子は発光ガラス基板1を基板として、その上に金属層が設けられており、本発明では金属銀層2を選択し、電子銃から放出された陰極線は金属銀層2上に直接ぶつかり、陰極線はまず金属銀層2を透過して、ひいては発光ガラス基板1を励起して発光させた。
Example 1
The size is 1 × 1 cm 2 and 30Li 2 O · 6Y 2 O 3 · 60SiO 2 · 4Tb 2 O 3 green light emitting glass obtained by the above preparation method of surface polishing is selected as a substrate (the numbers before each oxide are A metal silver layer having a thickness of 2 nm was deposited on the surface thereof by a magnetron sputtering apparatus, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa. After annealing at a temperature of 30 ° C. for 30 minutes, it was cooled to room temperature to obtain a light emitting glass element in this example. As shown in FIG. 1, this is a structural diagram of a light-emitting glass element, and the light-emitting glass element in this example has a light-emitting glass substrate 1 as a substrate and a metal layer provided thereon. The silver layer 2 was selected, and the cathode rays emitted from the electron gun collided directly on the metallic silver layer 2. The cathode rays first transmitted through the metallic silver layer 2 and thus excited the luminescent glass substrate 1 to emit light.

電子銃から発生した陰極線は本実施例のガラス発光素子にぶつかり、図2に示す発光スペクトルを生じるものであって、図中の曲線11は金属銀層が設けられていないガラスの発光スペクトルであり、曲線12は本実施例で得られた発光ガラス素子の発光スペクトルであって、金属銀層2と発光ガラス基板1との間に表面プラズモン現象が発生しており、図中から分かるように、金属銀層2が設けられていない発光ガラスに比べて、本発明の発光ガラス素子は400nmから650nmの発光積分強度が6.5倍にまで高められ、極めて高い発光性能が得られている。 The cathode ray generated from the electron gun collides with the glass light emitting device of this example, and generates the emission spectrum shown in FIG. 2, and the curve 11 in the figure is the emission spectrum of the glass not provided with the metallic silver layer. Curve 12 is the emission spectrum of the light-emitting glass element obtained in this example, and surface plasmon phenomenon occurs between the metallic silver layer 2 and the light-emitting glass substrate 1, and as can be seen from the figure, Compared with the luminescent glass in which the metallic silver layer 2 is not provided, the luminescent glass element of the present invention has an emission integrated intensity of 400 to 650 nm increased to 6.5 times, and extremely high luminescent performance is obtained.

実施例2
サイズが1×1cm、表面研磨の上記調製方法により得られる30LiO・6Y・60SiO・4Tbの緑色発光ガラスを基板として選択し、マグネトロンスパッタリング装置でその表面に厚さ8nmの金属銀層を堆積させ、その後これを真空度が1×10−3Pa未満の環境下に置き、300℃の温度で30分間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 2
A green light emitting glass having a size of 1 × 1 cm 2 and 30Li 2 O · 6Y 2 O 3 · 60SiO 2 · 4Tb 2 O 3 obtained by the above-described preparation method for surface polishing is selected as a substrate, and the surface is thickened by a magnetron sputtering apparatus. A metal silver layer having a thickness of 8 nm is deposited, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 300 ° C. for 30 minutes, and then cooled to room temperature. The luminescent glass element in the example was obtained.

電子銃から発生した陰極線は本発明のガラス発光素子にぶつかり、図3に示す発光スペクトルを生じるものであって、図中の曲線11は金属銀層が設けられていないガラスの発光スペクトルであり、曲線13は本実施例で得られた発光ガラス素子の発光スペクトルであって、金属銀層2と発光ガラス基板1との間に表面プラズモン現象が発生しており、図中から分かるように、金属銀層2が設けられていない発光ガラスに比べて、本発明の発光ガラス素子は400nmから650nmの発光積分強度が5倍にまで高められ、極めて高い発光性能が得られている。以下、各実施例の発光スペクトルはいずれも実施例1および実施例2と似ており、各発光ガラス素子も似た効果を備えることから、以下では別段説明しない。 The cathode ray generated from the electron gun collides with the glass light-emitting element of the present invention, and produces the emission spectrum shown in FIG. 3, and the curve 11 in the figure is the emission spectrum of the glass not provided with the metallic silver layer, A curve 13 is an emission spectrum of the light emitting glass element obtained in this example, and a surface plasmon phenomenon occurs between the metallic silver layer 2 and the light emitting glass substrate 1, and as can be seen from the figure, Compared with the luminescent glass in which the silver layer 2 is not provided, the luminescent glass element of the present invention has an emission integrated intensity from 400 nm to 650 nm increased to 5 times, and an extremely high luminous performance is obtained. Hereinafter, the emission spectrum of each example is similar to that of Example 1 and Example 2, and each light-emitting glass element has a similar effect, and thus will not be described below.

実施例3
サイズが1×1cm、表面研磨の上記調製方法により得られる25NaO・15Y・45SiO・10Tbの緑色発光ガラスを基板として選択し、マグネトロンスパッタリング装置でその表面に厚さ0.5nmの金属金層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、200℃の温度で1時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 3
Size of 1 × 1 cm 2, green light emission glass 25Na 2 O · 15Y 2 O 3 · 45SiO 2 · 10Tb 2 O 3 obtained by the above preparation method of surface polishing is selected as a substrate, the thickness on the surface thereof by the magnetron sputtering apparatus A metal gold layer having a thickness of 0.5 nm is deposited, and then placed in an environment having a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 200 ° C. for 1 hour, and then cooled to room temperature. A light emitting glass element in this example was obtained.

実施例4
サイズが1×1cm、表面研磨の上記調製方法により得られる27NaO・0.01Y・70SiO・15Tbの緑色発光ガラスを基板として選択し、マグネトロンスパッタリング装置でその表面に厚さ200nmの金属アルミニウム層を堆積させ、その後これを真空度が1×10−3Pa未満の環境下に置き、500℃の温度で5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 4
A green light emitting glass having a size of 1 × 1 cm 2 and 27Na 2 O · 0.01Y 2 O 3 · 70SiO 2 · 15Tb 2 O 3 obtained by the above-described preparation method for surface polishing is selected as a substrate, and the surface thereof is selected with a magnetron sputtering apparatus. A metal aluminum layer having a thickness of 200 nm is deposited on the substrate, and then placed in an environment having a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 500 ° C. for 5 hours, and then cooled to room temperature. A light emitting glass element in this example was obtained.

実施例5
サイズが1×1cm、表面研磨の上記調製方法により得られる32NaO・1.5Y・65SiO・12Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ100nmの金属マグネシウム層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、650℃の温度で5分間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 5
Size selects 1 × 1 cm 2, green light emission glass 32Na 2 O · 1.5Y 2 O 3 · 65SiO 2 · 12Tb 2 O 3 obtained by the above preparation method of surface polishing as the substrate, the electron beam vapor deposition apparatus A metal magnesium layer having a thickness of 100 nm is deposited on the surface, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 650 ° C. for 5 minutes, and then cooled to room temperature. The luminescent glass element in this example was obtained.

実施例6
サイズが1×1cm、表面研磨の上記調製方法により得られる35NaO・0.5Y・50SiO・13Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ1nmの金属パラジウム層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、100℃の温度で3時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 6
A green light emitting glass having a size of 1 × 1 cm 2 and 35Na 2 O · 0.5Y 2 O 3 · 50SiO 2 · 13Tb 2 O 3 obtained by the above preparation method of surface polishing is selected as a substrate, and the electron beam evaporation apparatus A metal palladium layer having a thickness of 1 nm was deposited on the surface, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 100 ° C. for 3 hours, and then cooled to room temperature. The luminescent glass element in this example was obtained.

実施例7
サイズが1×1cm、表面研磨の上記調製方法により得られる38NaO・12Y・43SiO・0.5Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ5nmの金属白金層を堆積させ、その後これを真空度が1×10−3Pa未満の環境下に置き、450℃の温度で15分間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 7
The size is 1 × 1 cm 2 , and 38Na 2 O · 12Y 2 O 3 · 43SiO 2 · 0.5Tb 2 O 3 green light emitting glass obtained by the above preparation method of surface polishing is selected as a substrate, and the electron beam evaporation apparatus A metal platinum layer having a thickness of 5 nm was deposited on the surface, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 450 ° C. for 15 minutes, and then cooled to room temperature. The luminescent glass element in this example was obtained.

実施例8
サイズが1×1cm、表面研磨の上記調製方法により得られる28NaO・10Y・68SiO・2Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ20nmの金属鉄層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、50℃の温度で5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 8
A green light emitting glass having a size of 1 × 1 cm 2 and 28Na 2 O · 10Y 2 O 3 · 68SiO 2 · 2Tb 2 O 3 obtained by the above-described preparation method for surface polishing is selected as a substrate, and the surface thereof is applied by an electron beam evaporation apparatus. A metal iron layer having a thickness of 20 nm is deposited, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 50 ° C. for 5 hours, and then cooled to room temperature. The luminescent glass element in an Example was obtained.

実施例9
サイズが1×1cm、表面研磨の上記調製方法により得られる35KO・8Y・55SiO・0.01Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ10nmの金属チタン層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、150℃の温度で2時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 9
A green light emitting glass having a size of 1 × 1 cm 2 and 35K 2 O · 8Y 2 O 3 · 55SiO 2 · 0.01Tb 2 O 3 obtained by the above preparation method of surface polishing is selected as a substrate, and the electron beam evaporation apparatus A titanium metal layer having a thickness of 10 nm is deposited on the surface, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 150 ° C. for 2 hours, and then cooled to room temperature. The luminescent glass element in this example was obtained.

実施例10
サイズが1×1cm、表面研磨の上記調製方法により得られる40KO・5Y・40SiO・9Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ50nmの金属銅層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、200℃の温度で2.5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 10
A green light emitting glass having a size of 1 × 1 cm 2 and 40K 2 O · 5Y 2 O 3 · 40SiO 2 · 9Tb 2 O 3 obtained by the above-described preparation method for surface polishing is selected as a substrate, and the surface thereof is applied by an electron beam evaporation apparatus. A metal copper layer with a thickness of 50 nm was deposited, and then placed in an environment where the degree of vacuum was less than 1 × 10 −3 Pa, annealed at a temperature of 200 ° C. for 2.5 hours, and then cooled to room temperature. The luminescent glass element in this example was obtained.

実施例11
サイズが1×1cm、表面研磨の上記調製方法により得られる36KO・8Y・58SiO・0.8Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ150nmの金属亜鉛層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、350℃の温度で0.5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 11
A green light emitting glass having a size of 1 × 1 cm 2 and 36K 2 O · 8Y 2 O 3 · 58SiO 2 · 0.8Tb 2 O 3 obtained by the above preparation method of surface polishing is selected as a substrate, and the electron beam evaporation apparatus A metal zinc layer having a thickness of 150 nm is deposited on the surface, and then placed in an environment where the degree of vacuum is less than 1 × 10 −3 Pa, annealed at a temperature of 350 ° C. for 0.5 hours, and then cooled to room temperature. Thus, a light emitting glass element in this example was obtained.

実施例12
サイズが1×1cm、表面研磨の上記調製方法により得られる29KO・11Y・50SiO・1.5Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ120nmの金属クロム層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、250℃の温度で2時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 12
A green light emitting glass having a size of 1 × 1 cm 2 and 29K 2 O · 11Y 2 O 3 · 50SiO 2 · 1.5Tb 2 O 3 obtained by the above preparation method of surface polishing is selected as a substrate, and the electron beam evaporation apparatus A metal chromium layer having a thickness of 120 nm was deposited on the surface, and then placed in an environment where the degree of vacuum was less than 1 × 10 −3 Pa, annealed at a temperature of 250 ° C. for 2 hours, and then cooled to room temperature. The luminescent glass element in this example was obtained.

実施例13
サイズが1×1cm、表面研磨の上記調製方法により得られる33KO・7Y・58SiO・7Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ40nmの金属ニッケル層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、80℃の温度で4時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 13
A green light emitting glass having a size of 1 × 1 cm 2 and 33K 2 O · 7Y 2 O 3 · 58SiO 2 · 7Tb 2 O 3 obtained by the above-described preparation method for surface polishing is selected as a substrate, and the surface thereof is applied by an electron beam evaporation apparatus. A metal nickel layer having a thickness of 40 nm is deposited, and then placed in an environment having a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 80 ° C. for 4 hours, cooled to room temperature, The luminescent glass element in an Example was obtained.

実施例14
サイズが1×1cm、表面研磨の上記調製方法により得られる26KO・4Y・69SiO・9.5Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に厚さ180nmの金属コバルト層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、400℃の温度で1時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 14
The size is 1 × 1 cm 2 and 26K 2 O · 4Y 2 O 3 · 69SiO 2 · 9.5Tb 2 O 3 green light emitting glass obtained by the above-mentioned preparation method of surface polishing is selected as a substrate, and the electron beam evaporation apparatus A metallic cobalt layer having a thickness of 180 nm is deposited on the surface, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa, annealed at a temperature of 400 ° C. for 1 hour, and then cooled to room temperature. The luminescent glass element in this example was obtained.

実施例15
サイズが1×1cm、表面研磨の上記調製方法により得られ45KO・8Y・48SiO・1.5Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に8nmの金属層中の銀とアルミニウムと重量割合がそれぞれ80%と20%である金属銀・アルミニウム層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、380℃の温度で2.5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 15
Size selects 1 × 1 cm 2, green light emission glass obtained 45K 2 O · 8Y 2 O 3 · 48SiO 2 · 1.5Tb 2 O 3 by the above preparation method of surface polishing as the substrate, the electron beam vapor deposition apparatus On the surface, silver and aluminum in a metal layer of 8 nm and a metal silver / aluminum layer having a weight ratio of 80% and 20%, respectively, are deposited, and then placed in an environment where the degree of vacuum is less than 1 × 10 −3 Pa. After annealing at a temperature of 380 ° C. for 2.5 hours, it was cooled to room temperature to obtain a light emitting glass element in this example.

実施例16
サイズが1×1cm、表面研磨の上記調製方法により得られ36KO・16Y・52SiO・4Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に15nmの金属層中の銀とアルミニウムと重量割合がそれぞれ90%と10%である金属銀・アルミニウム層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、180℃の温度で3.5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 16
A green light emitting glass having a size of 1 × 1 cm 2 and obtained by the above-described preparation method for surface polishing is selected as a substrate and green light emitting glass of 36K 2 O · 16Y 2 O 3 · 52SiO 2 · 4Tb 2 O 3 is selected on the surface by an electron beam evaporation apparatus. A metal silver / aluminum layer having a weight ratio of 90% and 10%, respectively, is deposited on the 15 nm metal layer, and then placed in an environment with a degree of vacuum of less than 1 × 10 −3 Pa. After annealing at a temperature of 3.5 ° C. for 3.5 hours, it was cooled to room temperature to obtain a light emitting glass element in this example.

実施例17
サイズが1×1cm、表面研磨の上記調製方法により得られ55KO・3Y・62SiO・7Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に7nmの金属層中の金とアルミニウムと重量割合がそれぞれ80%と20%である金属金・アルミニウム層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、270℃の温度で1.5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 17
A green light emitting glass having a size of 1 × 1 cm 2 and 55K 2 O · 3Y 2 O 3 · 62SiO 2 · 7Tb 2 O 3 obtained by the above-described preparation method for surface polishing is selected as a substrate, and the surface thereof is applied by an electron beam evaporation apparatus. A metal gold / aluminum layer having a weight ratio of 80% and 20%, respectively, was deposited on a 7 nm metal layer, which was then placed in an environment with a vacuum of less than 1 × 10 −3 Pa. After annealing at a temperature of 1.5 ° C. for 1.5 hours, it was cooled to room temperature to obtain a light emitting glass element in this example.

実施例18
サイズが1×1cm、表面研磨の上記調製方法により得られ58KO・6Y・35SiO・9Tbの緑色発光ガラスを基板として選択し、電子ビーム蒸着装置でその表面に80nmの金属層中の金とアルミニウムと重量割合がそれぞれ90%と10%である金属金・アルミニウム層を蒸着させ、その後これを真空度が1×10−3Pa未満の環境下に置き、600℃の温度で4.5時間アニール処理した後、室温にまで冷却して、本実施例における発光ガラス素子を得た。
Example 18
Size of 1 × 1 cm 2, green light emission glass obtained 58K 2 O · 6Y 2 O 3 · 35SiO 2 · 9Tb 2 O 3 by the above preparation method of surface polishing is selected as a substrate, on the surface by electron beam evaporation device A metal gold / aluminum layer having a weight ratio of 90% and 10%, respectively, was deposited on the 80 nm metal layer, and then placed in an environment where the degree of vacuum was less than 1 × 10 −3 Pa, 600 After annealing at a temperature of 4.5 ° C. for 4.5 hours, it was cooled to room temperature to obtain a light emitting glass element in this example.

Claims (12)

電界放出発光材料の発光効率を高める方法であって、発光ガラスを基板として、金属材料が当該発光ガラス基板の表面に非周期性の金属マイクロ・ナノ構造を持つ金属層を形成することで、発光ガラス素子を得る工程を含み、そして当該発光ガラス基板に陰極線を出射すると、当該陰極線は前記金属層を透過した後、前記発光ガラス基板を励起して発光させるものであり、前記発光ガラス基板の化学式はaMO・bY・cSiO・dTbであって、式中、Mはアルカリ金属元素であり、a、b、c、dはモル分率であり、これらの値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である、ことを特徴とする電界放出発光材料の発光効率を高める方法。 A method for increasing the luminous efficiency of a field emission light-emitting material, in which a light-emitting glass is used as a substrate, and a metal material forms a metal layer having a non-periodic metal micro / nano structure on the surface of the light-emitting glass substrate. Including a step of obtaining a glass element, and emitting a cathode ray to the light emitting glass substrate, the cathode ray passes through the metal layer and then excites the light emitting glass substrate to emit light, and the chemical formula of the light emitting glass substrate is a aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, wherein, M is an alkali metal element, a, b, c, d is the mole fraction of these values A method for increasing the luminous efficiency of a field emission luminescent material, characterized in that a range is 25 to 60, b is 0.01 to 15, c is 40 to 70, and d is 0.01 to 15. 発光ガラス基板を備えた電界放出発光材料の発光効率を高める方法に用いられる発光ガラス素子であって、前記発光ガラス基板の表面には金属層が設けられており、前記金属層は金属微細構造を有しており、前記発光ガラス基板は、化学式aMO・bY・cSiO・dTbの複合酸化物を含み、
式中、Mはアルカリ金属元素であり、a、b、c、dはモル分率であり、これらの値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である、ことを特徴とする電界放出発光材料の発光効率を高める方法に用いられる発光ガラス素子。
A light-emitting glass element used in a method for increasing luminous efficiency of a field emission light-emitting material provided with a light-emitting glass substrate, wherein a metal layer is provided on a surface of the light-emitting glass substrate, and the metal layer has a metal microstructure. has, the light emitting glass substrate includes a composite oxide of formula aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3,
In the formula, M is an alkali metal element, a, b, c, and d are mole fractions, and the ranges of these values are as follows: a is 25 to 60, b is 0.01 to 15, and c is 40 to 40. 70 and d are 0.01 to 15, wherein the light emitting glass element is used in a method for increasing the light emission efficiency of a field emission light emitting material.
前記アルカリ金属元素がNa、K、Liのうちの少なくとも一種類である、ことを特徴とする請求項2に記載の発光ガラス素子。 The luminescent glass element according to claim 2, wherein the alkali metal element is at least one of Na, K, and Li. 前記金属層の金属が金、銀、アルミニウム、銅、チタン、鉄、ニッケル、コバルト、クロム、パラジウム、マグネシウム、亜鉛のうちの少なくとも一種類である、ことを特徴とする請求項2に記載の発光ガラス素子。 The light emission according to claim 2, wherein the metal of the metal layer is at least one of gold, silver, aluminum, copper, titanium, iron, nickel, cobalt, chromium, palladium, magnesium, and zinc. Glass element. 前記金属層の金属が金、銀、アルミニウムのうちの少なくとも一種類である、ことを特徴とする請求項4に記載の発光ガラス素子。 The light emitting glass element according to claim 4, wherein the metal of the metal layer is at least one of gold, silver, and aluminum. 前記金属層の厚さが0.5nm〜200nmである、ことを特徴とする請求項2に記載の発光ガラス素子。 The luminescent glass element according to claim 2, wherein the metal layer has a thickness of 0.5 nm to 200 nm. 前記金属層の厚さが1nm〜100nmである、ことを特徴とする請求項6に記載の発光ガラス素子。 The light emitting glass element according to claim 6, wherein the metal layer has a thickness of 1 nm to 100 nm. 発光ガラス素子の調製方法であって、
化学式がaMO・bY・cSiO・dTbであって、式中、Mはアルカリ金属元素であり、a、b、c、dはモル分率であり、これらの値の範囲が、aは25〜60、bは0.01〜15、cは40〜70、dは0.01〜15である複合酸化物を含む発光ガラス基板を調製する工程と、
前記発光ガラス基板の表面に金属層を形成する工程と、
前記発光ガラス基板および金属層に真空にてアニール処理して、前記金属層に金属微細構造を形成して、冷却した後に所望の発光ガラス素子を得る工程と、を含む、ことを特徴とする発光ガラス素子の調製方法。
A method for preparing a light emitting glass element, comprising:
Formula is a aM 2 O · bY 2 O 3 · cSiO 2 · dTb 2 O 3, wherein, M is an alkali metal element, a, b, c, d are mole fractions, these values Wherein a is 25 to 60, b is 0.01 to 15, c is 40 to 70, and d is 0.01 to 15;
Forming a metal layer on the surface of the light emitting glass substrate;
And a step of annealing the light emitting glass substrate and the metal layer in a vacuum to form a metal microstructure in the metal layer and cooling to obtain a desired light emitting glass element. A method for preparing a glass element.
前記発光ガラス基板の調製工程は、各々がモル分率に対応するアルカリ金属塩、SiO、YおよびTb原料を得て、1200℃〜1500℃の温度で混合・溶融、冷却して、さらに還元雰囲気中にて、600〜1100℃の温度でアニール処理し、発光ガラス基板を得る、ことを特徴とする請求項8に記載の発光ガラス素子の調製方法。 The process for preparing the light-emitting glass substrate includes obtaining alkali metal salts, SiO 2 , Y 2 O 3 and Tb 4 O 7 raw materials each corresponding to a molar fraction, and mixing and melting at a temperature of 1200 ° C. to 1500 ° C., The method for preparing a light-emitting glass element according to claim 8, wherein the light-emitting glass substrate is obtained by cooling and further annealing at a temperature of 600 to 1100 ° C in a reducing atmosphere. 前記金属層が金属スパッタリングまたは蒸着により発光ガラス基板表面に形成されているものである、ことを特徴とする請求項8に記載の発光ガラス素子の調製方法。 The method for preparing a luminescent glass element according to claim 8, wherein the metal layer is formed on the surface of the luminescent glass substrate by metal sputtering or vapor deposition. 前記真空アニール処理が50℃〜650℃で行われ、アニール時間が5分間〜5時間である、ことを特徴とする請求項8に記載の発光ガラス素子の調製方法。 The method for preparing a light-emitting glass element according to claim 8, wherein the vacuum annealing treatment is performed at 50 ° C to 650 ° C, and the annealing time is 5 minutes to 5 hours. 前記真空アニール処理は100℃〜500℃で行われ、アニール時間は15分間〜3時間である、ことを特徴とする請求項11に記載の発光ガラス素子の調製方法 The method for preparing a light-emitting glass element according to claim 11, wherein the vacuum annealing treatment is performed at 100 ° C to 500 ° C, and the annealing time is 15 minutes to 3 hours.
JP2012516471A 2009-06-23 2009-06-23 Method for increasing luminous efficiency of field emission luminescent material, luminescent glass element and preparation method thereof Active JP5435517B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/072403 WO2010148553A1 (en) 2009-06-23 2009-06-23 Method for raising luminous efficiency of field emissive luminescent material, luminescent glass element and the preparing method thereof

Publications (2)

Publication Number Publication Date
JP2012530665A true JP2012530665A (en) 2012-12-06
JP5435517B2 JP5435517B2 (en) 2014-03-05

Family

ID=43385863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012516471A Active JP5435517B2 (en) 2009-06-23 2009-06-23 Method for increasing luminous efficiency of field emission luminescent material, luminescent glass element and preparation method thereof

Country Status (5)

Country Link
US (1) US9087685B2 (en)
EP (1) EP2447982A4 (en)
JP (1) JP5435517B2 (en)
CN (1) CN102422384B (en)
WO (1) WO2010148553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163759A1 (en) * 2017-03-09 2018-09-13 日本電気硝子株式会社 Glass material and method for manufacturing same
JP2018150222A (en) * 2017-03-09 2018-09-27 日本電気硝子株式会社 Glass material and method for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447337A4 (en) * 2009-06-26 2014-12-24 Oceans King Lighting Science Luminescent glass element, manufacturing method and luminescence method thereof
EP2489644B1 (en) * 2009-08-26 2018-12-19 Ocean's King Lighting Science&Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same
CN103426716A (en) * 2012-05-17 2013-12-04 海洋王照明科技股份有限公司 Field emission light source device
CN103426703A (en) * 2012-05-17 2013-12-04 海洋王照明科技股份有限公司 Light-emitting element for field emission device
CN105742167A (en) * 2014-12-08 2016-07-06 天津恒电空间电源有限公司 Preparation method of multilayer metal electrode capable of being firmly combined with glass

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149888A (en) * 1987-12-05 1989-06-12 Nichia Chem Ind Ltd Low-speed electron beam-exciting fluophor
JPH06157073A (en) * 1992-11-24 1994-06-03 Mitsuboshi Belting Ltd Production of semiconductor element using metal fine particle-dispersed glass
JPH09189662A (en) * 1996-01-08 1997-07-22 Hitachi Ltd Electrochemical light emitting cell and electrochemical emission spectrometer
JPH11314938A (en) * 1997-11-10 1999-11-16 Ivoclar Ag Preparation of molded translucent lithium disilicate glass ceramic product
JP2000086284A (en) * 1998-04-01 2000-03-28 Sumita Optical Glass Inc Oxide glass exhibiting long afterglow and stimulated phosphorescence
JP2000243271A (en) * 1999-02-19 2000-09-08 Canon Inc Metal film forming method
JP2001266768A (en) * 2000-03-15 2001-09-28 Matsushita Electric Works Ltd Surface emission plate, method of producing plane luminescent plate, flat crt display, and field emission display
JP2002311234A (en) * 2001-02-06 2002-10-23 Samsung Sdi Co Ltd Filter film for display device, method for manufacturing the same and display device containing the same
JP2003031150A (en) * 2001-07-13 2003-01-31 Toshiba Corp Fluorescent plane with metal back, metal back forming transcription film, and image display device
JP2012519125A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523091A (en) * 1967-10-27 1970-08-04 Westinghouse Electric Corp Lanthanum,yttrium silicate phosphors
US3654172A (en) * 1970-03-26 1972-04-04 Corning Glass Works Terbium activated radioluminescent silicate glasses
JPS6010065B2 (en) * 1981-06-16 1985-03-14 株式会社東芝 green emitting phosphor
US5391320A (en) * 1989-08-28 1995-02-21 Lockheed Missiles & Space Company, Inc. Terbium activated silicate luminescent glasses
JP3834670B2 (en) * 1998-05-13 2006-10-18 株式会社住田光学ガラス Oxide glass with long afterglow and stimulated emission
US6531074B2 (en) * 2000-01-14 2003-03-11 Osram Sylvania Inc. Luminescent nanophase binder systems for UV and VUV applications
US7758774B2 (en) * 2002-11-29 2010-07-20 Japan Science And Technology Agency Luminescent glass
JP2006083045A (en) * 2004-09-17 2006-03-30 Hitachi Ltd Glass member
CN100433235C (en) * 2005-12-20 2008-11-12 陕西科技大学 Field emission display device in separated structure
JP4347343B2 (en) * 2006-05-09 2009-10-21 富士重工業株式会社 Light emitting device
CN101442089B (en) * 2007-11-21 2010-06-02 中国科学院半导体研究所 Method for reinforcing zinc oxide film blue light emission
US8592333B2 (en) * 2009-03-25 2013-11-26 Ocean's King Lighting Science & Technology Co., Ltd. Green light-emitting glass and method of preparing the same
CN102576651B (en) * 2009-08-26 2015-01-07 海洋王照明科技股份有限公司 Luminescent element, producing method thereof and luminescence method using the same
WO2011022880A1 (en) * 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 Luminescent element, producing method thereof and luminescence method using the same
EP2472562B1 (en) * 2009-08-26 2016-08-10 Ocean's King Lighting Science&Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same
WO2011022881A1 (en) * 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 Luminescent element comprising nitride, the preparing method thereof and the method for luminescence using the element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149888A (en) * 1987-12-05 1989-06-12 Nichia Chem Ind Ltd Low-speed electron beam-exciting fluophor
JPH06157073A (en) * 1992-11-24 1994-06-03 Mitsuboshi Belting Ltd Production of semiconductor element using metal fine particle-dispersed glass
JPH09189662A (en) * 1996-01-08 1997-07-22 Hitachi Ltd Electrochemical light emitting cell and electrochemical emission spectrometer
JPH11314938A (en) * 1997-11-10 1999-11-16 Ivoclar Ag Preparation of molded translucent lithium disilicate glass ceramic product
JP2000086284A (en) * 1998-04-01 2000-03-28 Sumita Optical Glass Inc Oxide glass exhibiting long afterglow and stimulated phosphorescence
JP2000243271A (en) * 1999-02-19 2000-09-08 Canon Inc Metal film forming method
JP2001266768A (en) * 2000-03-15 2001-09-28 Matsushita Electric Works Ltd Surface emission plate, method of producing plane luminescent plate, flat crt display, and field emission display
JP2002311234A (en) * 2001-02-06 2002-10-23 Samsung Sdi Co Ltd Filter film for display device, method for manufacturing the same and display device containing the same
JP2003031150A (en) * 2001-07-13 2003-01-31 Toshiba Corp Fluorescent plane with metal back, metal back forming transcription film, and image display device
JP2012519125A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163759A1 (en) * 2017-03-09 2018-09-13 日本電気硝子株式会社 Glass material and method for manufacturing same
JP2018150222A (en) * 2017-03-09 2018-09-27 日本電気硝子株式会社 Glass material and method for producing the same
CN110234611A (en) * 2017-03-09 2019-09-13 日本电气硝子株式会社 Glass material and its manufacturing method
CN110234611B (en) * 2017-03-09 2021-11-12 日本电气硝子株式会社 Glass material and method for producing same
JP6993612B2 (en) 2017-03-09 2022-01-13 日本電気硝子株式会社 Glass material and its manufacturing method

Also Published As

Publication number Publication date
CN102422384A (en) 2012-04-18
WO2010148553A1 (en) 2010-12-29
EP2447982A4 (en) 2016-11-30
US9087685B2 (en) 2015-07-21
CN102422384B (en) 2013-09-18
EP2447982A1 (en) 2012-05-02
JP5435517B2 (en) 2014-03-05
US20120077025A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5435517B2 (en) Method for increasing luminous efficiency of field emission luminescent material, luminescent glass element and preparation method thereof
WO2011022879A1 (en) Luminescent element, producing method thereof and luminescence method using the same
US8217369B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
US8216671B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
WO2011022878A1 (en) Luminescent element, producing method thereof and luminescence method using the same
JP5350546B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING METHOD USING THE SAME
JP5612688B2 (en) LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING METHOD
US8217370B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
JP5599885B2 (en) LIGHT EMITTING DEVICE, METHOD FOR PRODUCING THEM, AND LIGHT EMITTING METHOD
US8115181B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
JP5612687B2 (en) LIGHT EMITTING DEVICE, METHOD FOR PRODUCING THEM, AND LIGHT EMITTING METHOD
US8415017B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
JP5619035B2 (en) Luminescent glass element, manufacturing method thereof and light emitting method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5435517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250