JP2012110199A - Electric power transmission system - Google Patents

Electric power transmission system Download PDF

Info

Publication number
JP2012110199A
JP2012110199A JP2011015877A JP2011015877A JP2012110199A JP 2012110199 A JP2012110199 A JP 2012110199A JP 2011015877 A JP2011015877 A JP 2011015877A JP 2011015877 A JP2011015877 A JP 2011015877A JP 2012110199 A JP2012110199 A JP 2012110199A
Authority
JP
Japan
Prior art keywords
power transmission
magnetic resonance
resonance antenna
side magnetic
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011015877A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamakawa
博幸 山川
Yasuo Ito
泰雄 伊藤
Naoki Ushiki
直樹 牛来
Satoshi Miyagi
慧 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2011015877A priority Critical patent/JP2012110199A/en
Priority to US13/279,648 priority patent/US20120217819A1/en
Priority to EP11186743A priority patent/EP2455253A3/en
Priority to CN2011103427062A priority patent/CN102457108A/en
Publication of JP2012110199A publication Critical patent/JP2012110199A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric power transmission system suitable for a vehicle charging facility.SOLUTION: The electric power transmission system includes an electric power transmission side system and an electric power reception side system. The electric power transmission side system comprises: switching elements SW1, SW2 which output a rectangular wave; an electric power transmission line CA which transmits the output from the switching elements SW1, SW2; and an electric power transmission side magnetic resonance antenna part 120 to which the rectangular wave transmitted by the electric power transmission line CA is inputted. The electric power reception side system includes an electric power reception side magnetic resonance antenna part 220 which receives electric energy outputted from the electric power transmission side magnetic resonance antenna part 120 by resonating through an electromagnetic field. The electric power transmission side magnetic resonance antenna part 120 includes a capacitor Chaving a predetermined capacity. The inductance of the electric power transmission side magnetic resonance antenna part 120 is 50 μH or more and 500 μH or less, and the capacity is 200 pF or more and 3000 pF or less.

Description

本発明は、磁気共鳴方式の磁気共鳴アンテナが用いられるワイヤレス電力伝送システムに関する。   The present invention relates to a wireless power transmission system in which a magnetic resonance type magnetic resonance antenna is used.

近年、電源コードなどを用いることなく、ワイヤレスで電力(電気エネルギー)を伝送する技術の開発が盛んとなっている。ワイヤレスで電力を伝送する方式の中でも、特に注目されている技術として、磁気共鳴方式と呼ばれるものがある。この磁気共鳴方式は2007年にマサチューセッツ工科大学の研究グループが提案したものであり、これに関連する技術は、例えば、特許文献1(特表2009−501510号公報)に開示されている。   In recent years, development of technology for transmitting electric power (electric energy) wirelessly without using a power cord or the like has become active. Among wireless transmission methods, there is a technique called magnetic resonance as a technology that has attracted particular attention. This magnetic resonance method was proposed by a research group of Massachusetts Institute of Technology in 2007, and a technology related to this is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-501510.

磁気共鳴方式のワイヤレス電力伝送システムは、送電側磁気共鳴アンテナの共振周波数と、受電側磁気共鳴アンテナの共振周波数とを同一とすることで、送電側磁気共鳴アンテナから受電側磁気共鳴アンテナに対し、効率的にエネルギー伝達を行うものであり、電力伝送距離を数十cm〜数mとすることが可能であることが大きな特徴の一つである。   The wireless power transmission system of the magnetic resonance method is configured such that the resonance frequency of the power transmission side magnetic resonance antenna and the resonance frequency of the power reception side magnetic resonance antenna are the same, so that the power transmission side magnetic resonance antenna to the power reception side magnetic resonance antenna One of the major features is that the energy is efficiently transmitted, and the power transmission distance can be several tens of centimeters to several meters.

ここで、従来のワイヤレス電力伝送システムの概略について説明する。図11は従来のワイヤレス電力伝送システムを説明する図であり、図11(A)は従来のワイヤレス電力伝送システムのシステム構成の概略を示す図である。従来のシステムにおいて、正弦波形の電圧が送電側励磁コイルに入力されると、電磁誘導によって送電側磁気共鳴アンテナが励磁される。このとき、送電側磁気共鳴アンテナと受電側磁気共鳴アンテナとが共鳴することによって、受電側磁気共鳴アンテナは送電側磁気共鳴アンテナから電気エネルギーを受け取る。受電側磁気共鳴アンテナの電気エネルギーは、電磁誘導で結合されている受電側励磁コイルを励磁し、受電側励磁コイルから取り出される電力が負荷などに供給されるようになっている。このような従来のシステムにおける正弦波形電圧の周波数は、数MHz〜数十MHzのオーダーである。
特表2009−501510号公報
Here, an outline of a conventional wireless power transmission system will be described. FIG. 11 is a diagram illustrating a conventional wireless power transmission system, and FIG. 11A is a diagram illustrating an outline of a system configuration of the conventional wireless power transmission system. In a conventional system, when a sinusoidal voltage is input to the power transmission side excitation coil, the power transmission side magnetic resonance antenna is excited by electromagnetic induction. At this time, the power receiving side magnetic resonance antenna and the power receiving side magnetic resonance antenna resonate so that the power receiving side magnetic resonance antenna receives electrical energy from the power transmission side magnetic resonance antenna. The electric energy of the power reception side magnetic resonance antenna excites the power reception side excitation coil coupled by electromagnetic induction, and the electric power extracted from the power reception side excitation coil is supplied to a load or the like. The frequency of the sinusoidal waveform voltage in such a conventional system is on the order of several MHz to several tens of MHz.
Special table 2009-501510

ところで、前述した従来の電力伝送システムにおいては、送電側でコイルを励起するために、正弦波形電圧が用いられており、正弦波波形以外の電圧、例えば矩形波波形の電圧が用いられた場合は所定周波数以外の高調波成分が含まれているので、前記高調波成分が反射し、放射損となることでスイッチングロスが発生し、電力伝送効率が低下するという問題があった。図11(B)は、従来のワイヤレス電力伝送システムにおけるスイッチングロスを説明する図である。図11(B)において、実線が送電側回路の電流Iを、また、点線が送電側回路の電圧Vをそれぞれ示しており、図中、斜線部がスイッチングロスに相当するものである。従来のワイヤレス電力伝送システムは、前記正弦波波形を供給するには高周波増幅器を使用するので図11(B)の例に示すように電圧、電流波形がオーバーラップする期間はスイッチングロスとなる。したがって、従来の電力伝送システムでは、送電側のコイルを励起する段階で高周波増幅器での電力損失が生じ、更に電磁誘導結合による伝送損失とが生じるので、送電側から受電側への総合的な電力伝送効率を悪化させていた。   By the way, in the above-described conventional power transmission system, a sinusoidal waveform voltage is used to excite the coil on the power transmission side, and when a voltage other than the sinusoidal waveform, for example, a rectangular waveform voltage is used. Since harmonic components other than the predetermined frequency are included, there is a problem that switching loss occurs due to reflection of the harmonic components and radiation loss, thereby reducing power transmission efficiency. FIG. 11B is a diagram illustrating switching loss in a conventional wireless power transmission system. In FIG. 11B, the solid line indicates the current I of the power transmission side circuit, and the dotted line indicates the voltage V of the power transmission side circuit, and the hatched portion in the figure corresponds to the switching loss. Since the conventional wireless power transmission system uses a high frequency amplifier to supply the sine wave waveform, a switching loss occurs during the period in which the voltage and current waveforms overlap as shown in the example of FIG. Therefore, in the conventional power transmission system, power loss occurs in the high-frequency amplifier at the stage of exciting the coil on the power transmission side, and further transmission loss due to electromagnetic inductive coupling occurs. Therefore, the total power from the power transmission side to the power reception side The transmission efficiency was deteriorated.

高周波増幅器でのスイッチングロスを抑える為に、例えば、D級増幅器、E級増幅器、F
級増幅器などを利用することが考えられるが回路構成が複雑となり、製造コストが高くな
ってしまう欠点がある。
In order to suppress switching loss in high frequency amplifiers, for example, class D amplifier, class E amplifier, F
It is conceivable to use a class amplifier or the like, but there is a disadvantage that the circuit configuration becomes complicated and the manufacturing cost increases.

更には、送電側励磁コイル、送電側磁気共鳴アンテナ、受電側磁気共鳴アンテナ、受電側励磁コイルと多段構成となるので系が複雑となり、各々のコイル(またはアンテナ)間の伝送特性を相互に考慮した上で総合的な電力伝送効率向上を計る設計を行うことが難しかった。   Furthermore, the system becomes complicated because it has a multi-stage configuration with a power transmission side excitation coil, a power transmission side magnetic resonance antenna, a power reception side magnetic resonance antenna, and a power reception side excitation coil, and the transmission characteristics between the coils (or antennas) are mutually considered. In addition, it was difficult to design a design that would improve overall power transmission efficiency.

上記問題を解決するために、請求項1に係る発明は、直流電圧を交流電圧に変換して出力するスイッチング素子と、前記出力された交流電圧が入力される送電側磁気共鳴アンテナ部と、を有する送電側システムと、電磁場を介して前記送電側磁気共鳴アンテナ部と共鳴することにより、前記送電側磁気共鳴アンテナ部から出力される電気エネルギーを受電する受電側磁気共鳴アンテナ部と、を有する受電側システムと、からなることを特徴とする電力伝送システムにおいて、
前記送電側磁気共鳴アンテナ部には所定の誘導成分を有する第1インダクタと所定の容量
成分を有する第1キャパシタとで構成されており、送電側磁気共鳴アンテナ部の前記誘導成分は50μH以上500μH以下であり、前記容量成分が200pF以上3000pF以下であることを特徴とする。
In order to solve the above problem, the invention according to claim 1 includes a switching element that converts a DC voltage into an AC voltage and outputs the power, and a power transmission side magnetic resonance antenna unit to which the output AC voltage is input. A power receiving system having a power transmission side system, and a power receiving side magnetic resonance antenna unit that receives electric energy output from the power transmission side magnetic resonance antenna unit by resonating with the power transmission side magnetic resonance antenna unit via an electromagnetic field. A power transmission system characterized by comprising:
The power transmission side magnetic resonance antenna unit includes a first inductor having a predetermined inductive component and a first capacitor having a predetermined capacitance component, and the inductive component of the power transmission side magnetic resonance antenna unit is 50 μH or more and 500 μH or less. And the capacitance component is 200 pF or more and 3000 pF or less.

また、請求項2に係る発明は、請求項1に記載の電力伝送システムにおいて、送電側磁気共鳴アンテナ部と受電側磁気共鳴アンテナ部との間の結合係数kがk≦0.3を満たすことを特徴とする。   According to a second aspect of the present invention, in the power transmission system according to the first aspect, the coupling coefficient k between the power transmission side magnetic resonance antenna unit and the power reception side magnetic resonance antenna unit satisfies k ≦ 0.3. It is characterized by.

本発明に係る電力伝送システムによれば、スイッチングロスを低減させることが可能となるので、電力伝送の効率悪化を抑制することが可能となる。   According to the power transmission system of the present invention, it is possible to reduce switching loss, and thus it is possible to suppress deterioration in power transmission efficiency.

また、本発明に係る電力伝送システムによれば、磁気共鳴アンテナ部のインダクタンスと容量が、最適となるようにされているので、車両充電設備用の電力伝送システムとして、適切なものを構築することが可能となる。   In addition, according to the power transmission system of the present invention, since the inductance and capacity of the magnetic resonance antenna unit are optimized, an appropriate power transmission system for vehicle charging equipment is constructed. Is possible.

本発明の実施形態に係る電力伝送システムを車両充電設備に適用した例を示す図である。It is a figure which shows the example which applied the electric power transmission system which concerns on embodiment of this invention to vehicle charging equipment. 受電側である車両、送電側である充電設備における制御シーケンス例を示す図である。It is a figure which shows the example of a control sequence in the vehicle which is a power receiving side, and the charging equipment which is a power transmission side. 送電側である充電設備における充電ルーチンのフローチャートを示す図である。It is a figure which shows the flowchart of the charging routine in the charging equipment which is the power transmission side. 本発明の実施形態に係る電力伝送システムにおける電力伝送部を説明する図である。It is a figure explaining the electric power transmission part in the electric power transmission system which concerns on embodiment of this invention. 本発明の実施形態に係る電力伝送システムにおけるスイッチング素子のオンオフ制御を示す図である。It is a figure which shows on-off control of the switching element in the electric power transmission system which concerns on embodiment of this invention. 本発明の実施形態に係る電力伝送システムにおける電圧・電流の関係を示す図である。It is a figure which shows the relationship of the voltage and electric current in the electric power transmission system which concerns on embodiment of this invention. 本発明の他の実施形態に係る電力伝送システムにおける電力伝送部を説明する図である。It is a figure explaining the electric power transmission part in the electric power transmission system which concerns on other embodiment of this invention. 本発明の他の実施形態に係る電力伝送システムにおけるスイッチング素子のオンオフ制御を示す図である。It is a figure which shows on-off control of the switching element in the electric power transmission system which concerns on other embodiment of this invention. 送電側磁気共鳴アンテナ部にコンデンサを設けない場合の回路構成を説明する図である。It is a figure explaining the circuit structure when not providing a capacitor | condenser in the power transmission side magnetic resonance antenna part. 結合係数kと伝送効率との間の関係の測定結果を示す図である。It is a figure which shows the measurement result of the relationship between the coupling coefficient k and transmission efficiency. 従来のワイヤレス電力伝送システムを説明する図である。It is a figure explaining the conventional wireless power transmission system.

以下、本発明の実施形態を図面を参照しつつ説明する。図1は本発明の実施形態に係る電力伝送システムを車両充電設備に適用した例を示す図である。本発明の電力伝送システムは、例えば、電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両への充電のためのシステムに用いるのに好適である。そこで、図1に示すような車両充電設備への適用例を用いて以下説明する。なお、本発明の電力伝送システムは、車両充電設備以外の電力伝送にももちろん用いることが可能である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating an example in which a power transmission system according to an embodiment of the present invention is applied to a vehicle charging facility. The power transmission system of the present invention is suitable for use in a system for charging a vehicle such as an electric vehicle (EV) or a hybrid electric vehicle (HEV). Therefore, description will be made below using an example of application to a vehicle charging facility as shown in FIG. Of course, the power transmission system of the present invention can also be used for power transmission other than vehicle charging equipment.

図1において、一点鎖線の下側に示す構成が送電側システムであり、本例では車両充電設備となっている。一方、一点鎖線の上側に示す構成は受電側システムであり、本例では電気自動車などの車両となっている。上記のような送電側システムは、例えば、地中部に埋設されるような構成となっており、地中埋設された送電側システムの送電側磁気共鳴アンテナ部120に対して、車両を移動させて、車両に搭載される受電側磁気共鳴アンテナ部220を位置合わせした上で、電力の送受を行うようにする。車両の受電側磁気共鳴アンテナ部220は、車両の底面部に配されてなるものである。   In FIG. 1, the configuration shown below the alternate long and short dash line is a power transmission side system, which is a vehicle charging facility in this example. On the other hand, the configuration shown on the upper side of the alternate long and short dash line is a power receiving system, which is a vehicle such as an electric vehicle in this example. The power transmission side system as described above, for example, is configured to be buried in the underground part, and the vehicle is moved with respect to the power transmission side magnetic resonance antenna part 120 of the power transmission side system buried underground. The power receiving side magnetic resonance antenna unit 220 mounted on the vehicle is aligned, and power is transmitted and received. The power receiving side magnetic resonance antenna unit 220 of the vehicle is arranged on the bottom surface of the vehicle.

送電側システムにおいて、送電側主制御部100はCPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用の情報処理部である。この送電側主制御部100は、図示されている送電側主制御部100と接続される各構成と協働するように動作する。   In the power transmission side system, the power transmission side main control unit 100 is a general-purpose information processing unit including a CPU, a ROM that holds a program that operates on the CPU, and a RAM that is a work area of the CPU. The power transmission side main control unit 100 operates so as to cooperate with each component connected to the power transmission side main control unit 100 shown in the figure.

スイッチング素子制御部110は、送電側主制御部100からの制御指令に基づいて、直列接続された2つのスイッチング素子SW1及びスイッチング素子SW2のオンオフ制御を行うものである。ここでは、スイッチング素子SW1及びスイッチング素子SW2として電界効果トランジスタを用いているが、その他の自己消弧型の半導体素子を用いることも可能である。スイッチング素子SW2のドレイン側には定電圧源が接続されており、一定の電圧Vddが印加されるようになっている。   Based on a control command from the power transmission side main control unit 100, the switching element control unit 110 performs on / off control of the two switching elements SW1 and SW2 connected in series. Here, field effect transistors are used as the switching element SW1 and the switching element SW2, but other self-extinguishing type semiconductor elements can also be used. A constant voltage source is connected to the drain side of the switching element SW2, and a constant voltage Vdd is applied.

上記のようなスイッチング素子制御部110からの制御に基づいて、スイッチング素子SW1及びスイッチング素子SW2がオンオフを繰り返すことで、所定の周波数の矩形波がこれらスイッチング素子SW1及びスイッチング素子SW2の接続部Tから交流電圧として出力されるようになっている。スイッチング素子制御部110は制御を変更することで、周波数の異なる矩形波を出力させることができるようになっている。すなわち、スイッチング素子制御部110の制御によれば、スイッチング素子SW1及びスイッチング素子SW2の接続部Tから出力される矩形波は、所定の周波数域をスイープすることができるようになっている。なお、本実施形態においては、スイッチング素子SW1及びスイッチング素子SW2のスイッチングによって生成される矩形波の周波数の範囲は数100kHz〜数1000kHz程度である。なお、本実施形態では、定電圧源からの直流電圧を交流電圧として矩形波形の交流電圧を出力するように制御しているが、電圧を制御するのではなく、電流を制御するように構成しても良い。   Based on the control from the switching element control unit 110 as described above, the switching element SW1 and the switching element SW2 are repeatedly turned on and off, so that a rectangular wave having a predetermined frequency is generated from the connection part T of the switching element SW1 and the switching element SW2. It is output as an AC voltage. The switching element control unit 110 can output rectangular waves having different frequencies by changing the control. That is, according to the control of the switching element control unit 110, the rectangular wave output from the connection part T of the switching element SW1 and the switching element SW2 can sweep a predetermined frequency range. In the present embodiment, the frequency range of the rectangular wave generated by the switching of the switching element SW1 and the switching element SW2 is about several hundred kHz to several thousand kHz. In the present embodiment, control is performed so that a DC voltage from a constant voltage source is used as an AC voltage, and an AC voltage having a rectangular waveform is output. However, instead of controlling the voltage, the current is controlled. May be.

接続部Tから出力される矩形波は、電力伝送線路CAを経て、送電側磁気共鳴アンテナ部120に入力される。この送電側磁気共鳴アンテナ部120は、誘導性リアクタンス成分を有するコイル121(第1インダクタ)と容量性リアクタンス成分を有するコンデン
サ122(容量値:C0)(第1キャパシタ)とから構成されており、対向するようにし
て配置される車両搭載の受電側磁気共鳴アンテナ部220と共鳴することで、送電側磁気共鳴アンテナ部120から出力される電気エネルギーを受電側磁気共鳴アンテナ部220
に送ることができるようになっている。
The rectangular wave output from the connection unit T is input to the power transmission side magnetic resonance antenna unit 120 via the power transmission line CA. The power transmission side magnetic resonance antenna unit 120 includes a coil 121 having a inductive reactance component (first inductor) and a capacitor 122 having a capacitive reactance component (capacitance value: C 0 ) (first capacitor). The electric energy output from the power transmission side magnetic resonance antenna unit 120 is resonated with the vehicle-mounted power reception side magnetic resonance antenna unit 220 arranged so as to face each other.
Can be sent to.

共振周波数検出部140は、伝送する電力の効率が最も高くなる周波数を検出し、検出した共振周波数データを、送電側主制御部100に送ることができるようにされている。電力電送効率は例えばVSWR計などを用いて反射電力が最小となる周波数を探索すれば良い。   The resonance frequency detection unit 140 is configured to detect a frequency at which the efficiency of electric power to be transmitted is the highest, and to send the detected resonance frequency data to the power transmission side main control unit 100. The power transmission efficiency may be determined by searching for a frequency at which the reflected power is minimized using, for example, a VSWR meter.

また、電力検出部130は、不図示の電圧検出部・電流検出部からの検出値を乗算することによって、送電側磁気共鳴アンテナ部120に投入されている電力値を検出することができるようになっている。   In addition, the power detection unit 130 can detect the power value input to the power transmission side magnetic resonance antenna unit 120 by multiplying detection values from a voltage detection unit / current detection unit (not shown). It has become.

また、通信部150は車両側の通信部270と無線通信を行い、車両との間でデータの送受を可能にする構成である。   In addition, the communication unit 150 is configured to perform wireless communication with the vehicle-side communication unit 270 and to transmit and receive data to and from the vehicle.

次に、車両側に設けられている受電側システムについて説明する。受電側システムにおいて、受電側磁気共鳴アンテナ部220は、送電側磁気共鳴アンテナ部120と共鳴することによって、送電側磁気共鳴アンテナ部120から出力される電気エネルギーを受電するものである。受電側磁気共鳴アンテナ部220にも、送電側磁気共鳴アンテナ部120と同様、誘導性リアクタンス成分を有するコイル221(第2インダクタ)と共に、容量性リアクタンスを有するコンデンサ222(容量値:C0)(第2キャパシタ)も含まれる構成となっている。 Next, a power receiving side system provided on the vehicle side will be described. In the power receiving side system, the power receiving side magnetic resonance antenna unit 220 receives electric energy output from the power transmission side magnetic resonance antenna unit 120 by resonating with the power transmission side magnetic resonance antenna unit 120. Similarly to the power-transmission-side magnetic resonance antenna section 120, the power-reception-side magnetic resonance antenna section 220 has a capacitor 221 having a capacitive reactance (capacitance value: C 0 ) (capacitance value: C 0 ) (Second capacitor) is also included.

受電側磁気共鳴アンテナ部220で受電された矩形波の交流電力は、整流器230において整流され、整流された電力は充電制御部235を通して蓄電池240に蓄電されるようになっている。充電制御部235は送電側主制御部100からの指令に基づいて蓄電池240に蓄電する電力の制御を実行する。   The rectangular-wave AC power received by the power-reception-side magnetic resonance antenna unit 220 is rectified by the rectifier 230, and the rectified power is stored in the storage battery 240 through the charge control unit 235. The charging control unit 235 performs control of the electric power stored in the storage battery 240 based on a command from the power transmission side main control unit 100.

図1に示すような系において、送電側磁気共鳴アンテナ部120の第1インダクタ(コイル121)と受電側磁気共鳴アンテナ部220の第2インダクタ(コイル221)は、同一の誘導成分を有するインダクタであり、送電側磁気共鳴アンテナ部120の第1キャパシタ(コンデンサ122)と受電側磁気共鳴アンテナ部220の第2キャパシタ(コンデンサ222)は、同一の容量成分を有するキャパシタにより構成する。   In the system as shown in FIG. 1, the first inductor (coil 121) of the power transmission side magnetic resonance antenna unit 120 and the second inductor (coil 221) of the power reception side magnetic resonance antenna unit 220 are inductors having the same inductive component. In addition, the first capacitor (capacitor 122) of the power transmission side magnetic resonance antenna unit 120 and the second capacitor (capacitor 222) of the power reception side magnetic resonance antenna unit 220 are configured by capacitors having the same capacitance component.

このような系によれば、送電側磁気共鳴アンテナ部120は、第1インダクタ(コイル
121)と第1キャパシタ(コンデンサ122)の共振により発振し、受電側磁気共鳴ア
ンテナ部220は、第2インダクタ(コイル221)第2キャパシタ(コンデンサ222
)の共振により送電側磁気共鳴アンテナ部120から電気エネルギーを受電することとなる。
According to such a system, the power transmission side magnetic resonance antenna unit 120 oscillates due to the resonance of the first inductor (coil 121) and the first capacitor (capacitor 122), and the power reception side magnetic resonance antenna unit 220 includes the second inductor. (Coil 221) Second capacitor (capacitor 222
), The electric energy is received from the power transmission side magnetic resonance antenna unit 120.

受電側システムにおける、受電側主制御部200はCPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用の情報処理部である。この受電側主制御部200は、図示されている受電側主制御部200と接続される各構成と協働するように動作する。   In the power receiving side system, the power receiving side main control unit 200 is a general-purpose information processing unit including a CPU, a ROM holding a program operating on the CPU, and a RAM as a work area of the CPU. The power receiving side main control unit 200 operates so as to cooperate with each component connected to the power receiving side main control unit 200 shown in the figure.

例えば、受電側主制御部200には、蓄電池240から蓄電池の蓄電量に関するデータや、温度に関するデータなどが入力されることにより、蓄電池240を安全かつ効率的に運用するように管理することができるようになっている。また、受電側主制御部200からは、異常時などに蓄電池240の充放電を中止する指令を蓄電池240に出力する。   For example, the power receiving-side main control unit 200 can be managed so that the storage battery 240 can be operated safely and efficiently by inputting data related to the storage amount of the storage battery, data related to temperature, and the like from the storage battery 240. It is like that. In addition, the power receiving side main control unit 200 outputs to the storage battery 240 a command to stop charging / discharging of the storage battery 240 when an abnormality occurs.

インターフェイス部250は、車両の運転席部に設けられ、ユーザー(運転者)に対し
所定の情報などを提供したり、或いは、ユーザーからの操作・入力を受け付けたりするものであり、表示装置、ボタン類、タッチパネル、スピーカーなどで構成されるものである。ユーザーによる所定の操作が実行されると、インターフェイス部250から操作データとして受電側主制御部200に送られ処理される。また、ユーザーに所定の情報を提供する際には、受電側主制御部200からインターフェイス部250に対して、表示指示データが送信される。
The interface unit 250 is provided in the driver's seat of the vehicle and provides predetermined information to the user (driver) or accepts an operation / input from the user. A touch panel, a speaker, and the like. When a predetermined operation by the user is executed, the interface unit 250 transmits the operation data to the power receiving side main control unit 200 for processing. Further, when providing predetermined information to the user, display instruction data is transmitted from the power receiving side main control unit 200 to the interface unit 250.

周辺監視部260は、送電側主制御部100と受電側主制御部200との間の空間Gを監視するための構成である。この空間Gは、本発明に係る電力伝送システムによって、電力が伝送される空間として利用されるので、例えば猫などの小動物が空間Gにいないことを確認する必要がある。周辺監視部260はこのよう目的で利用されるために、周辺監視部260としては撮像装置や赤外線センサなどを利用することができる。周辺監視部260で監視されたデータは、受電側主制御部200に入力され処理されるようになっている。周辺監視部260で、空間G内に何らかのオブジェクトが確認された場合には、電力伝送を中止したり、或いは、電力伝送を開始しないようにしたりすることができる。   The periphery monitoring unit 260 is a configuration for monitoring the space G between the power transmission side main control unit 100 and the power reception side main control unit 200. Since this space G is used as a space where power is transmitted by the power transmission system according to the present invention, it is necessary to confirm that there is no small animal such as a cat in the space G, for example. Since the periphery monitoring unit 260 is used for such a purpose, an imaging device, an infrared sensor, or the like can be used as the periphery monitoring unit 260. Data monitored by the periphery monitoring unit 260 is input to the power receiving side main control unit 200 and processed. When any object is confirmed in the space G by the peripheral monitoring unit 260, the power transmission can be stopped or the power transmission can be prevented from starting.

通信部270は、充電設備側の通信部150と無線通信を行い、充電設備側との間でデータの送受を可能にする構成である。   The communication unit 270 is configured to perform wireless communication with the communication unit 150 on the charging facility side to enable data transmission / reception with the charging facility side.

次に、以上のように構成される車両充電設備に適用された電力伝送システムによって、電力伝送を行う際のシーケンスについて説明する。図2は受電側である車両、送電側である充電設備における典型的な制御シーケンス例を示す図である。   Next, the sequence at the time of performing electric power transmission with the electric power transmission system applied to the vehicle charging equipment comprised as mentioned above is demonstrated. FIG. 2 is a diagram illustrating a typical control sequence example in the vehicle on the power receiving side and the charging facility on the power transmission side.

ステップS11において、車両インターフェイス部250からユーザーが、蓄電池240への充電を行うような操作がなされると、この操作データは受電側主制御部200に送られることとなる。   In step S <b> 11, when the user performs an operation for charging the storage battery 240 from the vehicle interface unit 250, the operation data is sent to the power receiving side main control unit 200.

受電側主制御部200はこの操作データを受信すると、ステップS21では蓄電池240
の管理データから、充電設備側に要求する電力量を演算する。このような演算には、従来周知の適当な方法を適宜利用することができる。
When receiving the operation data, the power receiving side main control unit 200 receives the storage battery 240 in step S21.
The amount of power required for the charging facility is calculated from the management data. For such calculation, a conventionally known appropriate method can be appropriately used.

続く、ステップS22では周辺監視部260による空間Gの監視を開始する。また、ステップS23では、通信部270から充電設備側に充電の開始を要求するデータを送信する。このとき、要求する電力量などのデータを送信するようにしてもよい。   In step S22, monitoring of the space G by the periphery monitoring unit 260 is started. In step S23, data for requesting the start of charging is transmitted from the communication unit 270 to the charging facility side. At this time, data such as the requested amount of power may be transmitted.

充電設備側において、ステップS31で、通信部150から充電開始要求が受信されると、ステップS32で、充電ルーチンに対して充電開始指示を送る。この充電ルーチンについては、後で詳しく述べる。先の充電ルーチンが終了して、充電が完了すると、ステップS33で、充電終了報告を通信部150から車両側に送信する。   On the charging facility side, when a charging start request is received from the communication unit 150 in step S31, a charging start instruction is sent to the charging routine in step S32. This charging routine will be described in detail later. When the previous charging routine is completed and charging is completed, a charging completion report is transmitted from the communication unit 150 to the vehicle side in step S33.

ステップS24で、通信部270が充電終了報告を受信すると、ステップS25で周辺監視部260による監視を終了し、インターフェイス部250に対して、充電終了の旨を表示するために表示指示データを送信する。これを受けたインターフェイス部250は、充電が完了した旨を表示装置などに表示し、ユーザーに報知する。   When the communication unit 270 receives the charging end report in step S24, the monitoring by the periphery monitoring unit 260 is ended in step S25, and display instruction data is transmitted to the interface unit 250 to display the end of charging. . Receiving this, the interface unit 250 displays on the display device or the like that the charging is completed, and notifies the user.

次に、上記の充電ルーチンについて説明する。図3は送電側システムである充電設備における充電ルーチンのフローチャートを示す図である。充電ルーチンは、前記充電開始指示があると、ステップS101におけるループを抜けてステップS102に進む。   Next, the above charging routine will be described. FIG. 3 is a diagram illustrating a flowchart of a charging routine in a charging facility that is a power transmission side system. When the charging start instruction is received, the charging routine exits the loop in step S101 and proceeds to step S102.

ステップS102においては、送電側磁気共鳴アンテナ部120からの出力が、最も低い出力となるように、定電圧源及びスイッチング素子制御部110を制御する。ステップS102では、仮の出力を行うようにする。   In step S102, the constant voltage source and the switching element control unit 110 are controlled so that the output from the power transmission side magnetic resonance antenna unit 120 becomes the lowest output. In step S102, provisional output is performed.

続く、ステップS103では、電力検出部130によって、送電側磁気共鳴アンテナ部120からの出力の監視を開始する。ステップS104では、スイッチング素子制御部110を制御することで所定の周波数遷移幅で、矩形波出力の周波数スイープを実行し、共振周波数検出部140によって送受電に最適な周波数を選択する。   In step S103, the power detection unit 130 starts monitoring the output from the power transmission side magnetic resonance antenna unit 120. In step S104, the switching element control unit 110 is controlled to execute a frequency sweep of a rectangular wave output with a predetermined frequency transition width, and the resonance frequency detection unit 140 selects an optimum frequency for power transmission and reception.

次のステップS105において、送電側磁気共鳴アンテナ部120からの定格出力によって電力を送出する。このとき、電力検出部130からの値を参照するフィードバック制御を行うことで、1.5kw程度の出力を行う。   In the next step S <b> 105, power is sent out by the rated output from the power transmission side magnetic resonance antenna unit 120. At this time, an output of about 1.5 kw is performed by performing feedback control with reference to a value from the power detection unit 130.

ステップS106では、異常が検知されたか否かが判定される。このような異常としては、空間Gに異物が入り、急激なインピーダンス変動を、電力検出部130からの情報を基に検知することなどを挙げることができる。   In step S106, it is determined whether an abnormality has been detected. Examples of such an abnormality include detection of a sudden impedance fluctuation based on information from the power detection unit 130 when a foreign substance enters the space G.

ステップS106で異常がなければ、判定はNOとなり、ステップS107に進み、充電が完了したか、又は、車両側などから充電終了の指示があったか否かが判定される。ステップS107における判定がNOであるときには、ステップS105に戻りループする。   If there is no abnormality in step S106, the determination is no and the process proceeds to step S107, in which it is determined whether charging is completed or an instruction to end charging is received from the vehicle side or the like. If the determination in step S107 is no, the process returns to step S105 and loops.

一方、ステップS106で異常が検知された場合には、ステップS109に進み、インターフェイス部250などにエラー表示を行い、ステップS110で異常終了処理を行い、ステップS311に進み、全処理を終了する。   On the other hand, if an abnormality is detected in step S106, the process proceeds to step S109, an error is displayed on the interface unit 250 or the like, an abnormal end process is performed in step S110, the process proceeds to step S311, and all the processes are terminated.

また、ステップS107で、充電が完了したか、又は、車両側などから充電終了の指示があったと判定された場合には、ステップS108に進み、電力検出部130による出力監視を終了して、ステップS311に進み、全処理を終了する。   If it is determined in step S107 that charging has been completed or there is an instruction to end charging from the vehicle side or the like, the process proceeds to step S108, the output monitoring by the power detection unit 130 is terminated, and the step The process proceeds to S311 and all the processes are terminated.

次に、スイッチング素子SW1、SW2を駆動して、矩形波を送電側磁気共鳴アンテナ部120に入力して、受電側磁気共鳴アンテナ部220と共振させることで、送電側システムから受電側システムに電力を供給することについてより詳しく説明する。図4は本発明の実施形態に係る電力伝送システムにおける電力伝送部を説明する図であり、電力伝送部の要部を抜き出し示したものである。また、図5は本発明の実施形態に係る電力伝送システムにおけるスイッチング素子のオンオフ制御のタイミングを示した図である。   Next, the switching elements SW1 and SW2 are driven, and a rectangular wave is input to the power transmission side magnetic resonance antenna unit 120 to resonate with the power reception side magnetic resonance antenna unit 220, whereby power is transmitted from the power transmission side system to the power reception side system. Will be described in more detail. FIG. 4 is a diagram for explaining a power transmission unit in the power transmission system according to the embodiment of the present invention, in which a main part of the power transmission unit is extracted. FIG. 5 is a diagram showing the timing of on / off control of the switching element in the power transmission system according to the embodiment of the present invention.

スイッチング素子SW2のドレイン側には定電圧源が接続されており、一定の電圧Vddが印加されており、スイッチング素子SW1及びスイッチング素子SW2に対して、図5に示すようなオンオフ制御が繰り返し行われることによって、接続部Tにおける電圧Vdは図6に示すものとなる。図6は本発明の実施形態に係る電力伝送システムにおける電圧・電流の関係を示す図である。また、スイッチング素子SW2を流れる電流Idも図6に示されている。   A constant voltage source is connected to the drain side of the switching element SW2, and a constant voltage Vdd is applied. On / off control as shown in FIG. 5 is repeatedly performed on the switching element SW1 and the switching element SW2. Thus, the voltage Vd at the connection portion T is as shown in FIG. FIG. 6 is a diagram showing the relationship between voltage and current in the power transmission system according to the embodiment of the present invention. Further, the current Id flowing through the switching element SW2 is also shown in FIG.

図6に示す本発明に係る電力伝送システムの電圧・電流特性と、図11(B)に示す従来の電力伝送システムの電圧・電流特性とを比較すると分かるように、前者においては、電圧、電流波形がオーバーラップする期間が無いため、スイッチングロスが存在しないことが分かる。このように本発明に係る電力伝送システムによれば、スイッチングロスを低減させることが可能となるので、電力伝送の効率悪化を抑制することが可能となるのである。   As can be seen by comparing the voltage / current characteristics of the power transmission system according to the present invention shown in FIG. 6 with the voltage / current characteristics of the conventional power transmission system shown in FIG. Since there is no period in which the waveforms overlap, it can be seen that there is no switching loss. As described above, according to the power transmission system of the present invention, it is possible to reduce the switching loss, and thus it is possible to suppress the deterioration of the efficiency of power transmission.

上記のように生成された矩形波電圧を、電力伝送路CAを介して、送電側磁気共鳴アンテナ部120に入力することで、対向するようにして配置される受電側磁気共鳴アンテナ部220との間で共振する。このような共振時することで、送電側磁気共鳴アンテナ部120から出力される電気エネルギーを受電側磁気共鳴アンテナ部220に効率的に送ることができるようになっている。また、このときの共振周波数は、送電側磁気共鳴アンテナ部120のインダクタンスをL,送電側磁気共鳴アンテナ部120と受電側磁気共鳴アンテナ部220と間の相互インダクタンスをLmとして、下式(1)のように表すことができる。   The rectangular wave voltage generated as described above is input to the power transmission side magnetic resonance antenna unit 120 via the power transmission path CA, so that the reception side magnetic resonance antenna unit 220 arranged to face each other Resonates between. By such resonance, the electric energy output from the power transmission side magnetic resonance antenna unit 120 can be efficiently transmitted to the power reception side magnetic resonance antenna unit 220. The resonance frequency at this time is expressed by the following equation (1), where L is the inductance of the power transmission side magnetic resonance antenna unit 120 and Lm is the mutual inductance between the power transmission side magnetic resonance antenna unit 120 and the power reception side magnetic resonance antenna unit 220. It can be expressed as

Figure 2012110199
このような共振周波数としては、本実施形態においては数100kHz〜数1000kHz程度となるように各素子を選択し、かつ、送電側磁気共鳴アンテナ部120のQ値(共振回路の共振のピークの鋭さを表す値)が100以上となるように設定される。
Figure 2012110199
As such a resonance frequency, in this embodiment, each element is selected to be about several hundred kHz to several thousand kHz, and the Q value of the power transmission side magnetic resonance antenna unit 120 (the sharpness of the resonance peak of the resonance circuit) is selected. Is set to be 100 or more.

ここで、図5に示すようなスイッチング素子SW1及びスイッチング素子SW2のオンオフ制御においては、直列に接続されたスイッチング素子SW1及びスイッチング素子SW2が同時に導通して過大電流が流れ、素子が破壊しないように、図5に示すように、あるデッドタイムが設けられるようになっている。なお、このデッドタイムは、スイッチング素子の特性に依存して任意に設定される値である。   Here, in the on / off control of the switching element SW1 and the switching element SW2 as shown in FIG. 5, the switching element SW1 and the switching element SW2 connected in series are simultaneously turned on so that an excessive current flows and the element is not destroyed. As shown in FIG. 5, a certain dead time is provided. This dead time is a value that is arbitrarily set depending on the characteristics of the switching element.

また、図5に示す信号に基づいて駆動されるスイッチング素子SW1及びスイッチング素子SW2で生成される矩形波の周波数の範囲は、数100kHz〜数1000kHz程度である。また、本実施形態においては、送電側磁気共鳴アンテナ部120にコイル121と共にコンデンサCOを含ませることで、電力伝送路CAの距離Dをある程度長くして
も、T側においてインピーダンス整合器などの構成を設けることなく、効率よく電力を送電側磁気共鳴アンテナ部120に投入することが可能となる。
Further, the range of the frequency of the rectangular wave generated by the switching element SW1 and the switching element SW2 driven based on the signal shown in FIG. 5 is about several hundred kHz to several thousand kHz. Further, in the present embodiment, by including the capacitor CO together with the coil 121 in the power transmission side magnetic resonance antenna unit 120, even if the distance D of the power transmission path CA is increased to some extent, an impedance matching device or the like is provided on the T side. It is possible to efficiently input power to the power transmission side magnetic resonance antenna unit 120 without providing a configuration.

次に、本発明の他の実施形態について説明する。先の実施形態においてはスイッチング素子を2つ用いたハーフブリッジ方式のインバーター回路によって矩形波を生成していたが、他の実施形態においては、スイッチング素子を4つ用いたフルブリッジ方式のインバーター回路によって矩形波を生成する。   Next, another embodiment of the present invention will be described. In the previous embodiment, a rectangular wave is generated by a half-bridge inverter circuit using two switching elements. However, in another embodiment, a full-bridge inverter circuit using four switching elements is used. Generate a square wave.

図7は本発明の他の実施形態に係る電力伝送システムにおける電力伝送部を説明する図であり、図8は本発明の他の実施形態に係る電力伝送システムにおけるスイッチング素子のオンオフ制御を示す図である。   FIG. 7 is a diagram illustrating a power transmission unit in a power transmission system according to another embodiment of the present invention, and FIG. 8 is a diagram illustrating on / off control of switching elements in the power transmission system according to another embodiment of the present invention. It is.

本実施形態においては、直列接続されたスイッチング素子SW1とスイッチング素子SW4との間の接続部T1と、直列接続されたスイッチング素子SW2とスイッチング素子SW3との間の接続部T2とが、電力伝送路CAを介して、送電側磁気共鳴アンテナ部120に接続される構成となっており、図8に示すように、スイッチング素子SW1とスイッチング素子SW4がオンのとき、スイッチング素子SW2とスイッチング素子SW3がオフとされ、スイッチング素子SW1とスイッチング素子SW4がオフのとき、スイッチング素子SW2とスイッチング素子SW3がオンとされることで、接続部T1と接続部T2との間に矩形波の交流電圧を発生させる。   In the present embodiment, the connecting portion T1 between the switching elements SW1 and SW4 connected in series and the connecting portion T2 between the switching elements SW2 and SW3 connected in series are a power transmission path. As shown in FIG. 8, when the switching element SW1 and the switching element SW4 are on, the switching element SW2 and the switching element SW3 are off, as shown in FIG. When the switching element SW1 and the switching element SW4 are off, the switching element SW2 and the switching element SW3 are turned on, thereby generating a rectangular wave AC voltage between the connection part T1 and the connection part T2.

以上のような他の実施形態に係る電力伝送システムを用いた電力伝送システムによっても、これまで説明した実施形態と同様の効果を享受することが可能となる。さらに、他の実施形態のようなフルブリッジ方式のインバーター回路によって送電側磁気共鳴アンテナ部120に対し電力を供給すると、供給電圧(Vdd)が同じである場合ハーフブリッジ方
式のものに比べてより大きな電力を供給することが可能となる。
Even with the power transmission system using the power transmission system according to the other embodiments as described above, it is possible to receive the same effects as those of the embodiments described so far. Furthermore, when power is supplied to the power transmission side magnetic resonance antenna unit 120 by the full bridge type inverter circuit as in other embodiments, the power supply voltage (Vdd) is larger than that of the half bridge type when the supply voltage (Vdd) is the same. Electric power can be supplied.

次に、本発明の他の実施形態について説明する。これまでに説明した実施形態においては、接続部T側において、インピーダンスの調整を行う必要をなくすために、送電側磁気共鳴アンテナ部120にコイル121と共にコンデンサCOを含ませるような構成として
いたが、本発明はこれに限定されず、送電側磁気共鳴アンテナ部120をコイル121のみで構成するように構成することもできる。この場合、接続部T側において、何らかのインピーダンス調整を行うようにして、インバーター回路からの矩形波電圧の出力を、電力伝送路CAを介して送電側磁気共鳴アンテナ部120に入力するように構成する。
Next, another embodiment of the present invention will be described. In the embodiments described so far, the power transmission side magnetic resonance antenna unit 120 is configured to include the capacitor CO together with the coil 121 in order to eliminate the necessity of adjusting the impedance on the connection unit T side. The present invention is not limited to this, and the power transmission side magnetic resonance antenna unit 120 can be configured by only the coil 121. In this case, some impedance adjustment is performed on the connection unit T side, and the output of the rectangular wave voltage from the inverter circuit is input to the power transmission side magnetic resonance antenna unit 120 via the power transmission path CA. .

図9は本発明の他の実施形態に係る電力伝送システムにおける電力伝送部の要部を抜き出し示したものであり、送電側磁気共鳴アンテナ部120にコンデンサを設けない場合の回路構成を説明する図である。   FIG. 9 is a diagram illustrating an essential part of a power transmission unit in a power transmission system according to another embodiment of the present invention, illustrating a circuit configuration when no capacitor is provided in the power transmission side magnetic resonance antenna unit 120. It is.

図9(A)は、接続部T側において、容量C1のカップリングコンデンサを設けるようにして、送電側磁気共鳴アンテナ部120に入力するインピーダンスの調整を行うようにした例を示している。   FIG. 9A shows an example in which the impedance input to the power transmission side magnetic resonance antenna unit 120 is adjusted by providing a coupling capacitor having a capacitance C1 on the connection unit T side.

また、図9(B)は、接続部T側において、可変コンデンサC2と可変インダクタL2を用いたインピーダンス整合器を設けるようにして、送電側磁気共鳴アンテナ部120に入力するインピーダンスの調整を行うようにした例を示している。   In FIG. 9B, the impedance input using the variable capacitor C2 and the variable inductor L2 is provided on the connection portion T side so that the impedance input to the power transmission side magnetic resonance antenna unit 120 is adjusted. An example is shown.

また、図9(C)は、接続部T側において、直列接続されたコイルL3とコンデンサC3と、並列接続されたコイルL4とコンデンサC4とからなるバンドバスフィルタを用いたインピーダンス整合器を設けるようにして、送電側磁気共鳴アンテナ部120に入力するインピーダンスの調整を行うようにした例を示している。   In FIG. 9C, an impedance matching unit using a band-pass filter including a coil L3 and a capacitor C3 connected in series and a coil L4 and a capacitor C4 connected in parallel is provided on the connection portion T side. In this example, the impedance input to the power transmission side magnetic resonance antenna unit 120 is adjusted.

以上のような他の実施形態に係る電力伝送システムを用いた電力伝送システムによっても、これまで説明した実施形態と同様の効果を享受することが可能である。   Even with the power transmission system using the power transmission systems according to other embodiments as described above, it is possible to receive the same effects as those of the embodiments described so far.

次に、本発明の他の実施形態について説明する。これまで説明したように、本発明に係る電力伝送システムにおいては、電力伝送効率を一定以上の水準とするために、送電側磁気共鳴アンテナ部120のQ値が100以上となるように設定される。また、利用される矩形波電圧の周波数は、数100kHz〜数1000kHz程度を想定している。   Next, another embodiment of the present invention will be described. As described so far, in the power transmission system according to the present invention, the power transmission efficiency is set so that the Q value of the power transmission side magnetic resonance antenna unit 120 is 100 or more in order to set the power transmission efficiency to a certain level or more. . The frequency of the rectangular wave voltage used is assumed to be about several hundred kHz to several thousand kHz.

また、本発明に係る電力伝送システムを、図1で説明した車両用の充電設備(送電システム)及び車両(受電システム)に適用することを考慮すると、送電側磁気共鳴アンテナ部120のインダクタンスを大きくすることには限界がある。また、同様に、コンデンサC0の容量値にも一定の限度を設ける必要がある。そこで、下式(2)によって求まるQ
値をインダクタンスL、容量C及び抵抗Rの値を変更して計算を行った。
Considering that the power transmission system according to the present invention is applied to the vehicle charging facility (power transmission system) and the vehicle (power reception system) described in FIG. 1, the inductance of the power transmission side magnetic resonance antenna unit 120 is increased. There are limits to doing it. Similarly, it is necessary to provide a certain limit to the capacitance value of the capacitor C 0. Therefore, Q obtained by the following equation (2)
The values were calculated by changing the values of inductance L, capacitance C and resistance R.

Figure 2012110199
以下、本発明に係る電力伝送システムで利用され得る周波数として、f=300[kHZ]、f=400[kHZ]、f=500[kHZ]の3つの周波数について計算を行っている。表1はf=300[kHZ]について、インダクタンスL、容量C及び抵抗Rを組み合わせてQ値を求めたものであり、表2はf=400[kHZ]について、インダクタンスL、容量C及び抵抗Rを組み合わせてQ値を求めたものであり、表3はf=500[kHZ]について、インダクタンスL、容量C及び抵抗Rを組み合わせてQ値を求めたものである。
Figure 2012110199
Hereinafter, three frequencies f = 300 [kHZ], f = 400 [kHZ], and f = 500 [kHZ] are calculated as frequencies that can be used in the power transmission system according to the present invention. Table 1 shows the Q value obtained by combining the inductance L, the capacitance C, and the resistance R for f = 300 [kHZ], and Table 2 shows the inductance L, the capacitance C, and the resistance R for f = 400 [kHZ]. Table 3 shows the Q value obtained by combining the inductance L, the capacitance C, and the resistance R for f = 500 [kHZ].

表1乃至表3において、点線で囲まれた部分におけるインダクタンスL、容量C及び抵抗Rが組み合わせによれば、車両充電設備用の電力伝送システムで用いる磁気共鳴アンテナ部として適当なものである。   In Tables 1 to 3, the combination of the inductance L, the capacitance C, and the resistance R in the portion surrounded by a dotted line is suitable as a magnetic resonance antenna unit used in a power transmission system for vehicle charging equipment.

点線で囲まれた部分は以下を充足する。
・Q値が100以上であること。
・インダクタンスが50μH以上500μH以下であること。
・コンデンサC0の容量が200pF以上3000pF以下であること。
The part enclosed by the dotted line satisfies the following.
・ Q value is 100 or more.
・ Inductance is 50μH or more and 500μH or less.
-Capacitor C 0 has a capacitance of 200 pF to 3000 pF.

このように本発明の他の実施形態に係る電力伝送システムでは、以上のように、送電側磁気共鳴アンテナ部120、受電側磁気共鳴アンテナ部220のインダクタンスが50μH以上500μH以下であり、コンデンサC0の容量が200pF以上3000pF以下
であるように設定されているので、車両充電設備用の電力伝送システムとして、適切なものを構築することが可能となる。
As described above, in the power transmission system according to another embodiment of the present invention, the inductances of the power transmission side magnetic resonance antenna unit 120 and the power reception side magnetic resonance antenna unit 220 are 50 μH or more and 500 μH or less, and the capacitor C 0. Therefore, it is possible to construct an appropriate power transmission system for a vehicle charging facility.

Figure 2012110199
Figure 2012110199

Figure 2012110199
Figure 2012110199

Figure 2012110199
次に、本発明に係る電力伝送システムにおいて、送電側の送電側磁気共鳴アンテナ部120と、車両に搭載される受電側磁気共鳴アンテナ部220との間の結合係数kが満たす
べき値の範囲について説明する。送電側磁気共鳴アンテナ部120と、受電側磁気共鳴アンテナ部220との位置関係をずらして、結合係数kを変化させたときの伝送効率の変化を測定した結果を図10に示す。これによれば、本発明に係る電力伝送システムにおいては、送電側磁気共鳴アンテナ部120と受電側磁気共鳴アンテナ部220との間の結合係数kは、k≦0.3の範囲でも十分な伝送効率を得られることがわかる。先にも説明したとおり、本発明に係る電力伝送システムにおいては、Q値が100以上であることが条件となっているので、結合係数kの値の範囲がk≦0.3であったとしても、磁気共鳴方式のワイヤレス電力伝送システムで要求されるkQ積の条件を十分にクリアすることが可能
である。
Figure 2012110199
Next, in the power transmission system according to the present invention, the range of values that the coupling coefficient k between the power transmission side magnetic resonance antenna unit 120 on the power transmission side and the power reception side magnetic resonance antenna unit 220 mounted on the vehicle should satisfy explain. FIG. 10 shows the result of measuring the change in transmission efficiency when the coupling coefficient k is changed by shifting the positional relationship between the power transmission side magnetic resonance antenna unit 120 and the power reception side magnetic resonance antenna unit 220. According to this, in the power transmission system according to the present invention, the coupling coefficient k between the power transmission side magnetic resonance antenna unit 120 and the power reception side magnetic resonance antenna unit 220 has sufficient transmission even in the range of k ≦ 0.3. It can be seen that efficiency can be obtained. As described above, in the power transmission system according to the present invention, since the Q value is a condition of 100 or more, it is assumed that the range of the value of the coupling coefficient k is k ≦ 0.3. However, it is possible to sufficiently satisfy the condition of the kQ product required in the magnetic resonance type wireless power transmission system.

100・・・送電側主制御部
110・・・スイッチング素子制御部
120・・・送電側磁気共鳴アンテナ部
121・・・コイル
122・・・コンデンサ
130・・・電力検出部
140・・・共振周波数検出部
150・・・通信部
200・・・受電側主制御部
220・・・受電側磁気共鳴アンテナ部
221・・・コイル
222・・・コンデンサ
230・・・整流器
235・・・充電制御部
240・・・蓄電池
250・・・インターフェイス部
260・・・周辺監視部
270・・・通信部
SW1、SW2、SW3、SW4・・・スイッチング素子
C0、C1、C2、C3、C4・・・コンデンサ
L2、L4・・・コイル
CA・・・電力伝送路
DESCRIPTION OF SYMBOLS 100 ... Power transmission side main control part 110 ... Switching element control part 120 ... Power transmission side magnetic resonance antenna part 121 ... Coil 122 ... Capacitor 130 ... Power detection part 140 ... Resonance frequency Detection unit 150 ... communication unit 200 ... power reception side main control unit 220 ... power reception side magnetic resonance antenna unit 221 ... coil 222 ... capacitor 230 ... rectifier 235 ... charge control unit 240 ... Storage battery 250 ... Interface unit 260 ... Peripheral monitoring unit 270 ... Communication units SW1, SW2, SW3, SW4 ... Switching elements C0, C1, C2, C3, C4 ... Capacitor L2, L4 ... Coil CA ... Power transmission path

Claims (2)

直流電圧を交流電圧に変換して出力するスイッチング素子と、
前記出力された交流電圧が入力される送電側磁気共鳴アンテナ部と、を有する送電側システムと、
電磁場を介して前記送電側磁気共鳴アンテナ部と共鳴することにより、前記送電側磁気共鳴アンテナ部から出力される電気エネルギーを受電する受電側磁気共鳴アンテナ部と、を有する受電側システムと、からなることを特徴とする電力伝送システムにおいて、
前記送電側磁気共鳴アンテナ部には所定の誘導成分を有する第1インダクタと所定の容量
成分を有する第1キャパシタとで構成されており、
送電側磁気共鳴アンテナ部の前記誘導成分は50μH以上500μH以下であり、
前記容量成分が200pF以上3000pF以下であることを特徴とする電力伝送システム。
A switching element that converts a DC voltage into an AC voltage and outputs it;
A power transmission side system having a power transmission side magnetic resonance antenna unit to which the output AC voltage is input; and
A power receiving side system including a power receiving side magnetic resonance antenna unit that receives electric energy output from the power transmission side magnetic resonance antenna unit by resonating with the power transmission side magnetic resonance antenna unit via an electromagnetic field. In the power transmission system characterized by
The power transmission-side magnetic resonance antenna unit includes a first inductor having a predetermined inductive component and a first capacitor having a predetermined capacitance component,
The inductive component of the power transmission side magnetic resonance antenna unit is 50 μH or more and 500 μH or less,
The power transmission system, wherein the capacitance component is 200 pF or more and 3000 pF or less.
送電側磁気共鳴アンテナ部と受電側磁気共鳴アンテナ部との間の結合係数kがk≦0.3を満たすことを特徴とする請求項1に記載の電力伝送システム。 The power transmission system according to claim 1, wherein a coupling coefficient k between the power transmission side magnetic resonance antenna unit and the power reception side magnetic resonance antenna unit satisfies k ≦ 0.3.
JP2011015877A 2010-10-27 2011-01-28 Electric power transmission system Pending JP2012110199A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011015877A JP2012110199A (en) 2010-10-27 2011-01-28 Electric power transmission system
US13/279,648 US20120217819A1 (en) 2010-10-27 2011-10-24 Electric power transmission system and antenna
EP11186743A EP2455253A3 (en) 2010-10-27 2011-10-26 Electric power transmission system and antenna
CN2011103427062A CN102457108A (en) 2010-10-27 2011-10-27 Electric power transmisison system and antenna

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010240264 2010-10-27
JP2010240264 2010-10-27
JP2011015877A JP2012110199A (en) 2010-10-27 2011-01-28 Electric power transmission system

Publications (1)

Publication Number Publication Date
JP2012110199A true JP2012110199A (en) 2012-06-07

Family

ID=46495169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015877A Pending JP2012110199A (en) 2010-10-27 2011-01-28 Electric power transmission system

Country Status (1)

Country Link
JP (1) JP2012110199A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516026A (en) * 2013-10-11 2014-01-15 东莞易步机器人有限公司 Parking charging device
CN104158301A (en) * 2014-01-20 2014-11-19 中国海洋大学 Underwater wireless charging method and apparatus based on magnetic resonance
JP2014239175A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Non-contact power transmission device
CN104393652A (en) * 2014-12-05 2015-03-04 国家电网公司 Electric automobile charging pile
CN104734285A (en) * 2015-02-26 2015-06-24 张家港市华为电子有限公司 Method for guaranteeing current-equalizing charging of charging machines when charging machines are connected in parallel
CN104901387A (en) * 2015-06-19 2015-09-09 深圳天珑无线科技有限公司 Charging device and user device
JPWO2013179394A1 (en) * 2012-05-29 2016-01-14 パイオニア株式会社 Non-contact power transmission system and method
JP2018133922A (en) * 2017-02-15 2018-08-23 キヤノン株式会社 Charge control device and control method thereof, and program
JP2019058065A (en) * 2014-05-14 2019-04-11 Wqc株式会社 Wireless power transmission device
EP3591804A1 (en) 2013-07-29 2020-01-08 Canon Kabushiki Kaisha Power transfer system, and power receiving apparatus, power transmitting apparatus, and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267578A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Obstacle detector, energy supply device and system
WO2009036406A1 (en) * 2007-09-13 2009-03-19 Nigel Power, Llc Antennas for wireless power applications
WO2009065099A2 (en) * 2007-11-16 2009-05-22 Nigel Power, Llc Wireless power bridge
JP2010011654A (en) * 2008-06-27 2010-01-14 Sony Corp Power transmitter, power supplying device, and power receiving device
JP2010063324A (en) * 2008-09-07 2010-03-18 Hideo Kikuchi Induced power transmission circuit
JP2010173503A (en) * 2009-01-30 2010-08-12 Showa Aircraft Ind Co Ltd Non-contact power supply device
WO2010116441A1 (en) * 2009-03-30 2010-10-14 富士通株式会社 Wireless power supply system, wireless power transmission device, and wireless power receiving device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267578A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Obstacle detector, energy supply device and system
WO2009036406A1 (en) * 2007-09-13 2009-03-19 Nigel Power, Llc Antennas for wireless power applications
WO2009065099A2 (en) * 2007-11-16 2009-05-22 Nigel Power, Llc Wireless power bridge
JP2010011654A (en) * 2008-06-27 2010-01-14 Sony Corp Power transmitter, power supplying device, and power receiving device
JP2010063324A (en) * 2008-09-07 2010-03-18 Hideo Kikuchi Induced power transmission circuit
JP2010173503A (en) * 2009-01-30 2010-08-12 Showa Aircraft Ind Co Ltd Non-contact power supply device
WO2010116441A1 (en) * 2009-03-30 2010-10-14 富士通株式会社 Wireless power supply system, wireless power transmission device, and wireless power receiving device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013179394A1 (en) * 2012-05-29 2016-01-14 パイオニア株式会社 Non-contact power transmission system and method
JP2014239175A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Non-contact power transmission device
EP3591804A1 (en) 2013-07-29 2020-01-08 Canon Kabushiki Kaisha Power transfer system, and power receiving apparatus, power transmitting apparatus, and control method thereof
US10559984B2 (en) 2013-07-29 2020-02-11 Canon Kabushiki Kaisha Power transfer system, and power receiving apparatus, power transmitting apparatus, and control method thereof
EP4254815A2 (en) 2013-07-29 2023-10-04 Canon Kabushiki Kaisha Power transfer system, and power receiving apparatus, power transmitting apparatus, and control method thereof
CN103516026A (en) * 2013-10-11 2014-01-15 东莞易步机器人有限公司 Parking charging device
CN104158301A (en) * 2014-01-20 2014-11-19 中国海洋大学 Underwater wireless charging method and apparatus based on magnetic resonance
JP2019058065A (en) * 2014-05-14 2019-04-11 Wqc株式会社 Wireless power transmission device
CN104393652A (en) * 2014-12-05 2015-03-04 国家电网公司 Electric automobile charging pile
CN104734285A (en) * 2015-02-26 2015-06-24 张家港市华为电子有限公司 Method for guaranteeing current-equalizing charging of charging machines when charging machines are connected in parallel
CN104901387A (en) * 2015-06-19 2015-09-09 深圳天珑无线科技有限公司 Charging device and user device
JP2018133922A (en) * 2017-02-15 2018-08-23 キヤノン株式会社 Charge control device and control method thereof, and program

Similar Documents

Publication Publication Date Title
JP2012110199A (en) Electric power transmission system
CN107257167B (en) Power transmission device and wireless power transmission system
US9812893B2 (en) Wireless power receiver
EP2908405B1 (en) Wireless Power Transmission System and Power Transmitting Device
KR101349551B1 (en) A wireless power transmission apparatus and method thereof
JP5365306B2 (en) Wireless power supply system
US9270138B2 (en) Electric power transmission system
JP5988191B2 (en) Power transmission system
EP3364521A1 (en) Wireless power transfer system and driving method therefor
US10381879B2 (en) Wireless power transmission system and driving method therefor
US20150054456A1 (en) Electric power transmission system
EP2455253A2 (en) Electric power transmission system and antenna
WO2011093292A1 (en) Non-contact power transmission system and non-contact power transmission apparatus
US20130207603A1 (en) Wireless energy transmission
WO2013084754A1 (en) Contactless power transmission device
WO2013002319A1 (en) Electrical power transmission system
WO2013051361A1 (en) Wireless power transmission device and wireless power transmission method
JP5751327B2 (en) Resonant contactless power supply system
JP2012217228A (en) Power transmission system
JP2011155733A (en) Noncontact power transmission system and noncontact power transmission device
JP2012110211A (en) Electric power transmission system
JP2013158188A (en) Power transmission system
JP2017143699A (en) Non-contact power transmission system and power transmission device
JP5510670B2 (en) Power transmission system
JP2012210116A (en) Electric power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924