WO2011093292A1 - Non-contact power transmission system and non-contact power transmission apparatus - Google Patents

Non-contact power transmission system and non-contact power transmission apparatus Download PDF

Info

Publication number
WO2011093292A1
WO2011093292A1 PCT/JP2011/051386 JP2011051386W WO2011093292A1 WO 2011093292 A1 WO2011093292 A1 WO 2011093292A1 JP 2011051386 W JP2011051386 W JP 2011051386W WO 2011093292 A1 WO2011093292 A1 WO 2011093292A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
side antenna
matching circuit
antenna
Prior art date
Application number
PCT/JP2011/051386
Other languages
French (fr)
Japanese (ja)
Inventor
山川 博幸
泰雄 伊藤
直樹 牛来
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to CN2011800071073A priority Critical patent/CN102725940A/en
Publication of WO2011093292A1 publication Critical patent/WO2011093292A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This application relates to a technology for transmitting power to a device without contact.
  • a rechargeable secondary battery such as a nickel metal hydride battery or a lithium ion battery is used for the power storage device, and charging to the secondary battery is generally performed by power transmission from a power source outside the vehicle.
  • a power transmission method attention is focused on a method of transmitting power in a non-contact state, in addition to connecting a power source outside the vehicle and a power storage device including a secondary battery with a cable.
  • a vehicle power transmission device including a high-frequency power driver, a primary coil, and a primary self-resonant coil is disclosed in order to transmit charging power from an external power source to the electric vehicle in a non-contact state.
  • the power from the power source is converted into high frequency power by the high frequency power driver and is given to the primary self-resonant coil by the primary coil.
  • the primary self-resonant coil is magnetically coupled to the secondary self-resonant coil in the vehicle, and power is transmitted to the vehicle in a non-contact state (Patent Document 1).
  • Patent Document 2 and Non-Patent Document 1 are disclosed as related technologies.
  • the background art only exemplifies a circuit configuration for performing power transmission in a non-contact state with an antenna.
  • power transmission can be performed most efficiently by matching the frequency of the AC power on the power transmission side with the resonance frequency, but the resonance frequency depends on the distance between the antennas. It changes as the mutual inductance changes. Therefore, if the distance between the antennas varies according to the positional relationship between the power transmission device and the vehicle, the frequency of AC power on the power transmission side may deviate from the resonance frequency due to the change in the resonance frequency, and efficient power transmission may not be performed. There is.
  • the present application aims to provide a non-contact power transmission system and a non-contact power transmission device that do not require frequency control of AC power on the power transmission side according to the distance between antennas and can maintain high power transmission efficiency.
  • the non-contact power transmission system disclosed in the present application is a system that performs power transmission in a non-contact state with respect to a device that uses electrical energy as a power source, and includes a power reception side antenna, a power transmission side antenna, an AC power driver, A matching circuit and a control circuit;
  • the power receiving antenna is mounted on the device and receives power by electromagnetic coupling.
  • the power transmission side antenna transmits power to the power reception side antenna by electromagnetic coupling.
  • the AC power driver converts power received from the power source into AC power that can be transmitted from the power transmission side antenna to the power reception side antenna.
  • the matching circuit is provided between the AC power driver and the power transmission side antenna, and can adjust the impedance of the transmission line.
  • the control circuit for controlling the AC power driver and the matching circuit controls the matching circuit in a state where the AC power driver is controlled so that the frequency of the AC power becomes the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna. Perform impedance matching.
  • the non-contact power transmission device disclosed in the present application is a power transmission device that performs power transmission in a non-contact state to a device that uses electrical energy as a power source, and includes a power transmission side antenna, an AC power driver, and a matching circuit. And a control circuit.
  • the power transmission side antenna transmits power to the power reception side antenna mounted on the device by electromagnetic coupling.
  • the AC power driver converts power received from the power source into AC power that can be transmitted from the power transmission side antenna to the power reception side antenna.
  • the matching circuit is provided between the AC power driver and the power transmission side antenna, and can adjust the impedance of the transmission line.
  • the control circuit for controlling the AC power driver and the matching circuit controls the matching circuit in a state where the AC power driver is controlled so that the frequency of the AC power becomes the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna. Perform impedance matching.
  • the frequency of the AC power of the AC power driver is matched with the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna. Then, impedance matching is performed by the matching circuit. By performing impedance matching at the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna, frequency control of AC power on the power transmission side according to the distance between the antennas is unnecessary, and high power transmission efficiency can be maintained.
  • FIG. 1 is a system configuration diagram when a contactless power transmission system is applied to power transmission to an electric vehicle or a hybrid vehicle.
  • the vehicle 2 is an electric vehicle or a hybrid vehicle.
  • a state in which the vehicle 2 is in the power transmission area 1 is shown.
  • a power transmission device 10 is embedded in the power transmission area 1, and non-contact power transmission is performed with the power reception device 20 mounted on the vehicle 2.
  • the power transmission side antenna 11 of the power transmission device 10 and the power reception side antenna 21 of the power reception device 20 resonate, and power is transmitted by electromagnetic coupling.
  • the power transmission antenna 11 has a coupling surface 11 ⁇ / b> A that is electromagnetically coupled along the ground surface of the power transmission area 1.
  • the power receiving antenna 21 has a coupling surface 21 ⁇ / b> A that is electromagnetically coupled along the lower surface of the vehicle 2.
  • the power transmission side antenna 11 is driven by a power transmission unit 12 including an AC power driver that supplies AC power.
  • the power transmission unit 12 is controlled by the control circuit 13. Further, the AC power received by the power receiving antenna 21 is rectified by the power receiving unit 22 and stored in a storage battery or the like.
  • the power receiving unit 22 is controlled by the control circuit 23.
  • FIG. 2 shows the characteristics of the resonance frequency of the system including the power transmission side antenna 11 and the power reception side antenna 21.
  • the horizontal axis is the distance (D) between the power transmission side antenna 11 and the power reception side antenna 21, and the vertical axis is the resonance frequency (f).
  • FIG. 3 is a circuit block diagram of the power transmission device 10.
  • the power transmission device 10 includes a control circuit 13, an oscillator 14, a drive circuit 12A, a matching circuit 12B, a SWR (Standing Wave Ratio, hereinafter, SW A total of 12C (abbreviated as R) and a power transmission side antenna 11. Further, the power transmission area 1 includes an in-area detection sensor 15.
  • the clock signal output from the oscillator 14 is input to the control circuit 13 and used for periodic control such as power supply of the operation clock in the control circuit 13 and AC power of the drive circuit 12A.
  • the control circuit 13 controls the drive circuit 12A and the matching circuit 12B based on signals received from the oscillator 14, the SWR meter 12C, and the in-area detection sensor 15.
  • the drive circuit 12A includes an AC power driver constituted by an inverter or the like, and supplies AC power to the power transmission side antenna 11 through the matching circuit 12B and the SWR meter 12C.
  • the AC power is periodically controlled by the control circuit 13.
  • the matching circuit 12B performs impedance matching between the power transmission side antenna 11 and the drive circuit 12A under the control of the control circuit 13 in order to efficiently supply the AC power supplied from the drive circuit 12A to the power transmission side antenna 11.
  • the SWR meter 12 ⁇ / b> C measures the standing wave ratio of AC power sent from the drive circuit 12 ⁇ / b> A to the power transmission side antenna 11, and transmits the measurement result to the control circuit 13. The presence or absence of a reflected wave due to the propagation of AC power is detected.
  • the power transmission side antenna 11 is an LC resonance coil having an inductance component and a capacitance component, and is magnetically coupled to a power reception side antenna 21 of the power reception device 20 described later, and transmits power to the power reception side antenna 21.
  • an LC resonance coil can be configured by a combination of a coil and a capacitor. Further, if the coil itself is designed to have a stray capacitance in consideration of the stray capacitance between the conductors of the coil, the LC resonance coil can be configured with only the coil.
  • the in-area detection sensor 15 detects whether or not the vehicle 2 has entered the power transmission area 1 and transmits the result to the control circuit 13.
  • FIG. 4 is a circuit block diagram of the power receiving device 20.
  • the power receiving device 20 includes a control circuit 23, an oscillator 24, a power receiving antenna 21, a power receiving detection circuit 22A, a switching circuit 22B, a matching circuit 22C, a rectifying / smoothing circuit 22D, and a charging circuit 22E.
  • the clock signal output from the oscillator 24 is input to the control circuit 23 and used as an operation clock in the control circuit 23.
  • the control circuit 23 controls the switching circuit 22B and the charging circuit 22E based on signals received from the oscillator 24 and the power reception detection circuit 22A.
  • the power reception detection circuit 22A includes, for example, a current sensor, and detects a current flowing through the power reception antenna 21. It is detected whether or not AC power is being transmitted from the power transmission device 10.
  • the switching circuit 22B switches according to the signal received from the control circuit 23 whether the power receiving antenna 21 is in a closed loop state, connected to the charging circuit 22E, or in an open loop state.
  • the matching circuit 22C has a system impedance from the power receiving side antenna 21 to the rectifying / smoothing circuit 22D so that the AC power received by the power receiving side antenna 21 is not reflected and supplied to the charging circuit 22E through the rectifying / smoothing circuit 22D. Align.
  • the rectifying / smoothing circuit 22D converts and smoothes AC power supplied from the power receiving antenna 21 into DC power, and supplies the DC power to the charging circuit 22E.
  • the charging circuit 22E is a circuit that charges the power supplied from the rectifying and smoothing circuit 22D to a power storage device (not shown) such as a battery.
  • the power storage device includes, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery, or a large capacity capacitor.
  • the charging circuit 22E is controlled by the control circuit 23 and performs charging control.
  • the power reception side antenna 21 is an LC resonance coil having an inductance component and a capacitance component, and is magnetically coupled to the power transmission side antenna 11 to receive AC power from the power transmission side antenna 11.
  • FIG. 5 is a circuit block diagram showing a specific example of the matching circuit 12B of the power transmission device 10, and also shows a specific configuration example of the drive circuit 12A.
  • the drive circuit 12A includes, for example, an AC-DC converter 12A1 and an inverter 12A2.
  • AC-DC converter 12A1 includes a diode bridge and a capacitor, and rectifies the power received from AC power supply 16.
  • the inverter 12A2 is a full bridge circuit including a transistor. Each transistor performs a switching operation in accordance with a control signal output from the control circuit 13 (see FIG. 3). Thereby, inverter 12A2 converts the power rectified by AC-DC converter 12A1 into AC power having a desired frequency.
  • the matching circuit 12B includes capacitors C1 to C4, coils L1 to L4, and switches SW1 to SW8. Capacitors C1 to C4 connected in parallel with each other are inserted in series in the transmission line. Each of the coils L1 to L4 connected in parallel to each other is inserted between the transmission lines. The switches SW1 to SW8 are provided corresponding to the capacitors C1 to C4 and the coils L1 to L4, respectively, and switch whether to connect the capacitors and the coils to the transmission line.
  • the control circuit 13 (see FIG. 3) can adjust the values of the inductance and capacitance of the matching circuit 12B by switching each switch on and off.
  • the separation distance (D) between the two antennas varies depending on the positional relationship between the power transmission device 10 and the vehicle 2.
  • the separation distance (D) varies, the mutual inductance changes and the resonance frequency changes.
  • the impedance when the load side is viewed from the power supply unit changes. That is, the impedance of the power transmission side antenna 11 that transmits power to the power reception side antenna 21 connected to the power storage device as a load changes from the drive circuit 12A including the AC power driver that supplies AC power.
  • the non-contact power transmission system of the present embodiment performs the following impedance matching process to compensate for a change in impedance.
  • FIG. 6 is a flowchart of the impedance matching process controlled by the control circuit 13 of the power transmission device 10.
  • the control circuit 13 determines whether or not to start power transmission from the power transmission side antenna 11 to the power reception side antenna 21 (S1). For example, the control circuit 13 determines the start of power transmission based on the detection result transmitted from the in-area detection sensor 15. The control circuit 13 waits until power transmission is started (S1: NO), and performs the subsequent impedance matching process (S1: YES) with the start of power transmission.
  • the control circuit 13 starts control of the inverter 12A2 (S2).
  • the control circuit 13 measures the standing wave ratio with the SWR meter 12C while switching on / off the switches SW1 to SW8 of the matching circuit 12B (S3).
  • the control circuit 13 searches for a combination that minimizes the reflection from the power transmission side antenna 11 among the combinations of the ON / OFF states of the switches, that is, the combinations of the capacitors and coils of the matching circuit 12B.
  • the control circuit 13 employs a combination that minimizes reflection among the combinations of the capacitors and coils of the matching circuit 12B (S4).
  • the control circuit 13 performs on / off control of each switch of the matching circuit 12B with a combination that minimizes reflection, and ends the impedance matching process.
  • the control circuit 13 controls the inverter 12A2 to adjust the frequency of the AC power to the resonance frequency of the power transmission side antenna 11 or the power reception side antenna 21. Then, the control circuit 13 controls the matching circuit 12B under the condition that the reflection from the power transmission side antenna 11 is minimized. Thereby, the impedance of the transmission line can be adjusted according to the change in mutual inductance, and the change in impedance can be compensated. Thus, by performing impedance matching at the resonance frequency of the power transmission side antenna 11 or the resonance frequency of the power reception side antenna 21, frequency control of AC power on the power transmission side according to the separation distance (D) of the antenna becomes unnecessary. High power transmission efficiency can be maintained.
  • the drive circuit 12A is an example of a circuit including an AC power driver, but is not limited to the configuration shown in FIG.
  • the drive circuit 12A may include an amplifier or the like.
  • the resonance frequency of the power transmission side antenna 11 may be determined as an initial value at the time of design, or may be measured by the power transmission device 10.
  • FIG. 5 shows an example in which the matching circuit 12B includes capacitors C1 to C4, coils L1 to L4, and switches SW1 to SW8, but the number of each element is not limited to this. Furthermore, other circuit configurations may be used as long as the values of the inductance and capacitance can be adjusted.
  • FIG. 7 shows a matching circuit 12B-2 as a modification of the matching circuit 12B.
  • the matching circuit 12B-2 includes a variable capacitor C5 and a variable coil L5.
  • the variable capacitor C5 can change the capacitance value based on a control signal from the control circuit 13 (see FIG. 3), and is inserted in series in the transmission line.
  • the variable coil L5 can change the inductance value based on a control signal from the control circuit 13, and is inserted between the transmission lines.
  • control circuit 13 can switch the inductance value of the variable coil L5 and the capacitance value of the variable capacitor C5 to adjust the inductance and capacitance values of the matching circuit 12B-2.
  • control circuit 13 measures the standing wave ratio with the SWR meter 12C while stepwise switching the inductance value of the variable coil L5 and the capacitance value of the variable capacitor C5 in step S3 of the impedance matching process. do it.
  • the present invention is not limited to vehicles, but devices that use electric energy as a power source, such as portable devices such as mobile phones, digital cameras, and notebook computers, stationary devices such as televisions and audio systems, robots, etc. It can also be applied to other industrial equipment, medical equipment, and the like. Furthermore, it is possible to operate only by non-contact power transmission without using the power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

Disclosed is a non-contact power transmission system, wherein frequency control of alternating current power on the power transmitting side, corresponding to the distance between antennas, is eliminated, and a high transmission efficiency can be maintained. Also disclosed is a non-contact power transmission apparatus. The non-contact power transmission system is provided with a power receiving- side antenna, a power transmitting-side antenna, an alternating current power driver, a matching circuit, and a control circuit. The power receiving-side antenna is mounted on an apparatus, and receives power by electromagnetic coupling. The power transmitting-side antenna transmits power to the power receiving-side antenna by electromagnetic coupling. The alternating current power driver converts power received from a power supply into alternating current power, which can be transmitted from the power transmitting-side antenna to the power receiving-side antenna. The matching circuit is provided between the alternating current power driver and the power transmitting-side antenna, and is capable of adjusting the impedance of a transmission path. The control circuit, which controls the alternating current power driver and the matching circuit, performs impedance matching by controlling the matching circuit, in a state wherein the alternating current power driver is controlled such that the frequency of the alternating current power is equal to the resonance frequency of the power transmitting-side antenna.

Description

非接触送電システム、および非接触送電装置Contactless power transmission system and contactless power transmission device
 本願は、機器に非接触で送電する技術に関する。 This application relates to a technology for transmitting power to a device without contact.
 近年、自動車車両の新たな走行駆動技術として、電気エネルギーを動力源として電動機により駆動力を発生する電気自動車や、内燃機関と電動機との補完により駆動力を発生する、いわゆるハイブリッド自動車の開発が進められ、実用化されてきている。 In recent years, as a new driving technology for automobile vehicles, development of electric vehicles that generate electric power using electric energy as a power source and so-called hybrid vehicles that generate electric power by complementing an internal combustion engine and electric motor has been promoted. Has been put into practical use.
 電気エネルギーは車両に搭載されている蓄電装置により車両内に蓄積される。蓄電装置にはニッケル水素電池やリチウムイオン電池などの再充電可能な二次電池が使用されており、二次電池への充電は車両外部の電源からの送電により行われることが一般的である。送電の方法として、車両外部の電源と二次電池を含む蓄電装置との間をケーブルで接続する場合の他、非接触状態で送電する方法が注目されている。 Electrical energy is stored in the vehicle by a power storage device mounted on the vehicle. A rechargeable secondary battery such as a nickel metal hydride battery or a lithium ion battery is used for the power storage device, and charging to the secondary battery is generally performed by power transmission from a power source outside the vehicle. As a power transmission method, attention is focused on a method of transmitting power in a non-contact state, in addition to connecting a power source outside the vehicle and a power storage device including a secondary battery with a cable.
 車両外部の電源から非接触状態で充電電力を電動車両へ送電するために、高周波電力ドライバと、一次コイルと、一次自己共振コイルとを備える車両用送電装置が開示されている。高周波電力ドライバにより電源からの電力が高周波電力に変換され、一次コイルによって一次自己共振コイルに与えられる。一次自己共振コイルは車両にある二次自己共振コイルとの間で磁気的に結合され、非接触状態で車両に電力が送電される(特許文献1)。 A vehicle power transmission device including a high-frequency power driver, a primary coil, and a primary self-resonant coil is disclosed in order to transmit charging power from an external power source to the electric vehicle in a non-contact state. The power from the power source is converted into high frequency power by the high frequency power driver and is given to the primary self-resonant coil by the primary coil. The primary self-resonant coil is magnetically coupled to the secondary self-resonant coil in the vehicle, and power is transmitted to the vehicle in a non-contact state (Patent Document 1).
 また、関連技術として、特許文献2、非特許文献1が開示されている。 In addition, Patent Document 2 and Non-Patent Document 1 are disclosed as related technologies.
特開2009-106136号公報JP 2009-106136 A 特表2009-501510号公報Special table 2009-501510
 しかしながら、背景技術は、アンテナにより非接触状態で送電を行うための回路構成を例示するに過ぎない。アンテナを非接触状態で対向させて送電を行う場合、送電側の交流電力の周波数を共振周波数に合致させることで最も効率的に送電を行うことができるが、共振周波数はアンテナ間距離に応じて相互インダクタンスが変化するのに伴って変化する。したがって、アンテナ間距離が送電装置と車両との位置関係に応じて変動すると、共振周波数の変化により送電側の交流電力の周波数が共振周波数からずれてしまい、効率のよい送電を行うことができないおそれがある。 However, the background art only exemplifies a circuit configuration for performing power transmission in a non-contact state with an antenna. When power is transmitted with the antennas facing each other in a non-contact state, power transmission can be performed most efficiently by matching the frequency of the AC power on the power transmission side with the resonance frequency, but the resonance frequency depends on the distance between the antennas. It changes as the mutual inductance changes. Therefore, if the distance between the antennas varies according to the positional relationship between the power transmission device and the vehicle, the frequency of AC power on the power transmission side may deviate from the resonance frequency due to the change in the resonance frequency, and efficient power transmission may not be performed. There is.
 また、従来、この問題に対して、アンテナ間距離により変化する共振周波数に応じて送電側の交流電力の周波数を制御することも提案されている。しかしながら、共振周波数が送電側回路の動作可能な周波数範囲外にある場合には調整することができず、回路動作範囲内にある場合にも複雑な制御が必要になるおそれがあり好ましくない。 Conventionally, it has been proposed to control the frequency of the AC power on the power transmission side according to the resonance frequency that varies depending on the distance between the antennas. However, adjustment is not possible when the resonance frequency is outside the operable frequency range of the power transmission side circuit, and complex control may be required when the resonance frequency is within the circuit operation range, which is not preferable.
 本願は、アンテナ間距離に応じた送電側の交流電力の周波数制御を不要とし、高い送電効率を維持することが可能な非接触送電システム、および非接触送電装置を提供することを目的とする。 The present application aims to provide a non-contact power transmission system and a non-contact power transmission device that do not require frequency control of AC power on the power transmission side according to the distance between antennas and can maintain high power transmission efficiency.
 本願に開示される非接触送電システムは、電気エネルギーを動力源として利用する機器に対して非接触状態で送電を行うシステムであって、受電側アンテナと、送電側アンテナと、交流電力ドライバと、整合回路と、制御回路と、を備える。受電側アンテナは、機器に搭載され、電磁的結合により受電する。送電側アンテナは、受電側アンテナに対して電磁的結合により送電する。交流電力ドライバは、電源から受ける電力を、送電側アンテナから受電側アンテナへ送電可能な交流電力に変換する。整合回路は、交流電力ドライバと送電側アンテナとの間に設けられ、伝送線路のインピーダンスを調整可能である。交流電力ドライバおよび整合回路を制御する制御回路は、交流電力の周波数が送電側アンテナの共振周波数あるいは受電側アンテナの共振周波数となるように交流電力ドライバを制御した状態で、整合回路を制御してインピーダンス整合を行う。 The non-contact power transmission system disclosed in the present application is a system that performs power transmission in a non-contact state with respect to a device that uses electrical energy as a power source, and includes a power reception side antenna, a power transmission side antenna, an AC power driver, A matching circuit and a control circuit; The power receiving antenna is mounted on the device and receives power by electromagnetic coupling. The power transmission side antenna transmits power to the power reception side antenna by electromagnetic coupling. The AC power driver converts power received from the power source into AC power that can be transmitted from the power transmission side antenna to the power reception side antenna. The matching circuit is provided between the AC power driver and the power transmission side antenna, and can adjust the impedance of the transmission line. The control circuit for controlling the AC power driver and the matching circuit controls the matching circuit in a state where the AC power driver is controlled so that the frequency of the AC power becomes the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna. Perform impedance matching.
 また、本願に開示される非接触送電装置は、電気エネルギーを動力源として利用する機器に対して非接触状態で送電を行う送電装置であって、送電側アンテナと、交流電力ドライバと、整合回路と、制御回路と、を備える。送電側アンテナは、機器に搭載される受電側アンテナに対して電磁的結合により送電する。交流電力ドライバは、電源から受ける電力を、送電側アンテナから受電側アンテナへ送電可能な交流電力に変換する。整合回路は、交流電力ドライバと送電側アンテナとの間に設けられ、伝送線路のインピーダンスを調整可能である。交流電力ドライバおよび整合回路を制御する制御回路は、交流電力の周波数が送電側アンテナの共振周波数あるいは受電側アンテナの共振周波数となるように交流電力ドライバを制御した状態で、整合回路を制御してインピーダンス整合を行う。 The non-contact power transmission device disclosed in the present application is a power transmission device that performs power transmission in a non-contact state to a device that uses electrical energy as a power source, and includes a power transmission side antenna, an AC power driver, and a matching circuit. And a control circuit. The power transmission side antenna transmits power to the power reception side antenna mounted on the device by electromagnetic coupling. The AC power driver converts power received from the power source into AC power that can be transmitted from the power transmission side antenna to the power reception side antenna. The matching circuit is provided between the AC power driver and the power transmission side antenna, and can adjust the impedance of the transmission line. The control circuit for controlling the AC power driver and the matching circuit controls the matching circuit in a state where the AC power driver is controlled so that the frequency of the AC power becomes the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna. Perform impedance matching.
 本願に開示される非接触送電システム、非接触送電装置によれば、交流電力ドライバの交流電力の周波数が送電側アンテナの共振周波数あるいは受電側アンテナの共振周波数に合わせられる。そして、整合回路によるインピーダンス整合が行われる。送電側アンテナの共振周波数あるいは受電側アンテナの共振周波数におけるインピーダンス整合の実施により、アンテナ間距離に応じた送電側の交流電力の周波数制御を不要とし、高い送電効率を維持することができる。 According to the non-contact power transmission system and the non-contact power transmission device disclosed in the present application, the frequency of the AC power of the AC power driver is matched with the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna. Then, impedance matching is performed by the matching circuit. By performing impedance matching at the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna, frequency control of AC power on the power transmission side according to the distance between the antennas is unnecessary, and high power transmission efficiency can be maintained.
非接触送電システムを示す図である。It is a figure which shows a non-contact power transmission system. 送電動作における共振周波数を示す図である。It is a figure which shows the resonant frequency in power transmission operation. 送電装置の回路ブロック図である。It is a circuit block diagram of a power transmission device. 受電装置の回路ブロック図である。It is a circuit block diagram of a power receiving apparatus. 整合回路の具体例を示す回路ブロック図である。It is a circuit block diagram which shows the specific example of a matching circuit. インピーダンスマッチング処理のフローチャートである。It is a flowchart of an impedance matching process. 整合回路の変形例を示す回路ブロック図である。It is a circuit block diagram which shows the modification of a matching circuit.
 図1は、非接触送電システムを電気自動車あるいはハイブリッド自動車への送電に適用する場合のシステム構成図である。車両2が電気自動車あるいはハイブリッド自動車である。車両2が送電エリア1に入庫している状態を示す。送電エリア1には送電装置10が埋設されており、車両2に搭載されている受電装置20との間で、非接触送電が行われる。 FIG. 1 is a system configuration diagram when a contactless power transmission system is applied to power transmission to an electric vehicle or a hybrid vehicle. The vehicle 2 is an electric vehicle or a hybrid vehicle. A state in which the vehicle 2 is in the power transmission area 1 is shown. A power transmission device 10 is embedded in the power transmission area 1, and non-contact power transmission is performed with the power reception device 20 mounted on the vehicle 2.
 非接触送電では、送電装置10の送電側アンテナ11と受電装置20の受電側アンテナ21とが共鳴して、電磁的結合により電力の送電が行われる。送電側アンテナ11は、送電エリア1の地表面に沿って、電磁的結合がなされる結合面11Aが配置される。受電側アンテナ21は、車両2の下面に沿って、電磁的結合がなされる結合面21Aが配置される。送電側アンテナ11は、交流電力を給電する交流電力ドライバを含む送電部12により駆動される。送電部12は制御回路13により制御される。また、受電側アンテナ21にて受電された交流電力は受電部22により整流されて蓄電池等に蓄積される。受電部22は制御回路23により制御される。 In non-contact power transmission, the power transmission side antenna 11 of the power transmission device 10 and the power reception side antenna 21 of the power reception device 20 resonate, and power is transmitted by electromagnetic coupling. The power transmission antenna 11 has a coupling surface 11 </ b> A that is electromagnetically coupled along the ground surface of the power transmission area 1. The power receiving antenna 21 has a coupling surface 21 </ b> A that is electromagnetically coupled along the lower surface of the vehicle 2. The power transmission side antenna 11 is driven by a power transmission unit 12 including an AC power driver that supplies AC power. The power transmission unit 12 is controlled by the control circuit 13. Further, the AC power received by the power receiving antenna 21 is rectified by the power receiving unit 22 and stored in a storage battery or the like. The power receiving unit 22 is controlled by the control circuit 23.
 続いて、非接触送電におけるアンテナ間距離と共振周波数との一般的な関係について説明する。図2は、送電側アンテナ11および受電側アンテナ21を含む系の共振周波数の特性を示す。横軸は送電側アンテナ11と受電側アンテナ21との離間距離(D)であり、縦軸は共振周波数(f)である。離間距離(D)がD=D0以上の領域は、受電側アンテナ21との電磁的結合の影響が無視される領域である。系は受電側アンテナ21を含まず、送電側アンテナ11が有する固有の共振周波数(f=f0)で共振する。離間距離(D)がD=D0以下の領域では、系は送電側アンテナ11と受電側アンテナ21とが電磁的に結合された状態となる。電磁的結合に伴う相互インダクタンスによる影響を受ける領域である。この領域では、共振周波数は離間距離(D)に依存して変化する。送電側アンテナ11の固有の共振周波数(f=f0)を挟んで2つの共振点が存在し、離間距離(D)が短くなるにつれて2つの共振点が離れる。また、この領域での共振周波数で高い送電効率が得られる。 Next, the general relationship between the distance between antennas and the resonance frequency in contactless power transmission will be described. FIG. 2 shows the characteristics of the resonance frequency of the system including the power transmission side antenna 11 and the power reception side antenna 21. The horizontal axis is the distance (D) between the power transmission side antenna 11 and the power reception side antenna 21, and the vertical axis is the resonance frequency (f). The region where the separation distance (D) is D = D0 or more is a region where the influence of electromagnetic coupling with the power receiving antenna 21 is ignored. The system does not include the power reception side antenna 21 and resonates at a specific resonance frequency (f = f0) of the power transmission side antenna 11. In the region where the separation distance (D) is D = D0 or less, the system is in a state where the power transmission side antenna 11 and the power reception side antenna 21 are electromagnetically coupled. This is a region affected by mutual inductance associated with electromagnetic coupling. In this region, the resonance frequency varies depending on the separation distance (D). There are two resonance points across the specific resonance frequency (f = f0) of the power transmitting antenna 11, and the two resonance points are separated as the separation distance (D) becomes shorter. Further, high power transmission efficiency can be obtained at the resonance frequency in this region.
 図3は、送電装置10の回路ブロック図である。送電装置10は、制御回路13、発振器14、駆動回路12A、整合回路12B、SWR(Standing Wave Ratio、以下、SW
Rと略記する)計12C、および送電側アンテナ11を備える。さらに、送電エリア1にはエリア内検出センサ15を備える。
FIG. 3 is a circuit block diagram of the power transmission device 10. The power transmission device 10 includes a control circuit 13, an oscillator 14, a drive circuit 12A, a matching circuit 12B, a SWR (Standing Wave Ratio, hereinafter, SW
A total of 12C (abbreviated as R) and a power transmission side antenna 11. Further, the power transmission area 1 includes an in-area detection sensor 15.
 発振器14から出力されるクロック信号は、制御回路13へ入力され、制御回路13内の動作クロックおよび駆動回路12Aの交流電力の給電などの周期制御に用いられる。 The clock signal output from the oscillator 14 is input to the control circuit 13 and used for periodic control such as power supply of the operation clock in the control circuit 13 and AC power of the drive circuit 12A.
 制御回路13は、発振器14、SWR計12C、エリア内検出センサ15から受信した信号をもとに、駆動回路12A、整合回路12Bを制御する。 The control circuit 13 controls the drive circuit 12A and the matching circuit 12B based on signals received from the oscillator 14, the SWR meter 12C, and the in-area detection sensor 15.
 駆動回路12Aは、インバータなどで構成される交流電力ドライバを含み、整合回路12BおよびSWR計12Cを通じて送電側アンテナ11に交流電力を供給する。該交流電力は、制御回路13により周期制御される。 The drive circuit 12A includes an AC power driver constituted by an inverter or the like, and supplies AC power to the power transmission side antenna 11 through the matching circuit 12B and the SWR meter 12C. The AC power is periodically controlled by the control circuit 13.
 整合回路12Bは、駆動回路12Aから供給される交流電力を送電側アンテナ11へ効率よく供給するために、制御回路13からの制御により、送電側アンテナ11と駆動回路12Aとのインピーダンス整合をとる。 The matching circuit 12B performs impedance matching between the power transmission side antenna 11 and the drive circuit 12A under the control of the control circuit 13 in order to efficiently supply the AC power supplied from the drive circuit 12A to the power transmission side antenna 11.
 SWR計12Cは、駆動回路12Aから送電側アンテナ11へと送られる交流電力についての定在波比を計測し、制御回路13に計測結果を送信する。交流電力の伝搬による反射波の有無を検出する。 The SWR meter 12 </ b> C measures the standing wave ratio of AC power sent from the drive circuit 12 </ b> A to the power transmission side antenna 11, and transmits the measurement result to the control circuit 13. The presence or absence of a reflected wave due to the propagation of AC power is detected.
 送電側アンテナ11は、インダクタンス成分とキャパシタンス成分とを有するLC共振コイルであり、後述する受電装置20の受電側アンテナ21との間で磁気的に結合され、受電側アンテナ21へ電力を送電する。なお、コイルとコンデンサとの組み合わせでLC共振コイルを構成することができる。また、コイルの導線間の浮遊容量を考慮して、コイル自身に浮遊容量を持たせる設計をすれば、コイルのみでLC共振コイルを構成することもできる。 The power transmission side antenna 11 is an LC resonance coil having an inductance component and a capacitance component, and is magnetically coupled to a power reception side antenna 21 of the power reception device 20 described later, and transmits power to the power reception side antenna 21. Note that an LC resonance coil can be configured by a combination of a coil and a capacitor. Further, if the coil itself is designed to have a stray capacitance in consideration of the stray capacitance between the conductors of the coil, the LC resonance coil can be configured with only the coil.
 エリア内検出センサ15は、送電エリア1に車両2が進入したか否かを検出し、その結果を制御回路13に送信する。 The in-area detection sensor 15 detects whether or not the vehicle 2 has entered the power transmission area 1 and transmits the result to the control circuit 13.
 図4は、受電装置20の回路ブロック図である。受電装置20は、制御回路23、発振器24、受電側アンテナ21、受電検出回路22A、切替回路22B、整合回路22C、整流平滑回路22D、および充電回路22Eを備える。 FIG. 4 is a circuit block diagram of the power receiving device 20. The power receiving device 20 includes a control circuit 23, an oscillator 24, a power receiving antenna 21, a power receiving detection circuit 22A, a switching circuit 22B, a matching circuit 22C, a rectifying / smoothing circuit 22D, and a charging circuit 22E.
 発振器24から出力されるクロック信号は、制御回路23に入力され、制御回路23内の動作クロックとして用いられる。 The clock signal output from the oscillator 24 is input to the control circuit 23 and used as an operation clock in the control circuit 23.
 制御回路23は、発振器24、および受電検出回路22Aから受信した信号をもとに、切替回路22B、および充電回路22Eを制御する。 The control circuit 23 controls the switching circuit 22B and the charging circuit 22E based on signals received from the oscillator 24 and the power reception detection circuit 22A.
 受電検出回路22Aは、例えば、電流センサを備えており、受電側アンテナ21に流れる電流を検出する。送電装置10からの交流電力の送電が行われているか否かを検出する。 The power reception detection circuit 22A includes, for example, a current sensor, and detects a current flowing through the power reception antenna 21. It is detected whether or not AC power is being transmitted from the power transmission device 10.
 切替回路22Bは、制御回路23から受信した信号により、受電側アンテナ21を閉ループ状態にするか、充電回路22Eに接続するか、開ループ状態にするか、を切替える。 The switching circuit 22B switches according to the signal received from the control circuit 23 whether the power receiving antenna 21 is in a closed loop state, connected to the charging circuit 22E, or in an open loop state.
 整合回路22Cは、受電側アンテナ21に受電された交流電力が反射されずに整流平滑回路22Dを通じて充電回路22Eへと供給されるように、受電側アンテナ21から整流平滑回路22Dに至る系のインピーダンス整合をとる。 The matching circuit 22C has a system impedance from the power receiving side antenna 21 to the rectifying / smoothing circuit 22D so that the AC power received by the power receiving side antenna 21 is not reflected and supplied to the charging circuit 22E through the rectifying / smoothing circuit 22D. Align.
 整流平滑回路22Dは、受電側アンテナ21から供給される交流電力を直流電力に変換および平滑化し、充電回路22Eに供給する。 The rectifying / smoothing circuit 22D converts and smoothes AC power supplied from the power receiving antenna 21 into DC power, and supplies the DC power to the charging circuit 22E.
 充電回路22Eは、整流平滑回路22Dから供給される電力をバッテリー等の蓄電装置(不図示)に充電する回路である。ここで、蓄電装置は、例えば、リチウムイオン電池やニッケル水素電池などの二次電池や大容量のキャパシタから成る。充電回路22Eは、制御回路23から制御され、充電制御を行う。 The charging circuit 22E is a circuit that charges the power supplied from the rectifying and smoothing circuit 22D to a power storage device (not shown) such as a battery. Here, the power storage device includes, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery, or a large capacity capacitor. The charging circuit 22E is controlled by the control circuit 23 and performs charging control.
 受電側アンテナ21は、インダクタンス成分とキャパシタンス成分とを有するLC共振コイルであり、送電側アンテナ11との間で磁気的に結合され、送電側アンテナ11より交流電力を受電する。 The power reception side antenna 21 is an LC resonance coil having an inductance component and a capacitance component, and is magnetically coupled to the power transmission side antenna 11 to receive AC power from the power transmission side antenna 11.
 図5は、送電装置10の整合回路12Bの具体例を示す回路ブロック図であり、合わせて駆動回路12Aの具体的な構成例も示す。駆動回路12Aは、例えば、AC-DCコンバータ12A1、インバータ12A2を含む。AC-DCコンバータ12A1は、ダイオードブリッジ、コンデンサを備え、交流電源16から受ける電力を整流する。インバータ12A2は、トランジスタを含んだフルブリッジ回路である。制御回路13(図3参照)が出力する制御信号により、各トランジスタはスイッチング動作を行う。これにより、インバータ12A2は、AC-DCコンバータ12A1によって整流された電力を、所望の周波数を有する交流電力に変換する。 FIG. 5 is a circuit block diagram showing a specific example of the matching circuit 12B of the power transmission device 10, and also shows a specific configuration example of the drive circuit 12A. The drive circuit 12A includes, for example, an AC-DC converter 12A1 and an inverter 12A2. AC-DC converter 12A1 includes a diode bridge and a capacitor, and rectifies the power received from AC power supply 16. The inverter 12A2 is a full bridge circuit including a transistor. Each transistor performs a switching operation in accordance with a control signal output from the control circuit 13 (see FIG. 3). Thereby, inverter 12A2 converts the power rectified by AC-DC converter 12A1 into AC power having a desired frequency.
 整合回路12Bは、コンデンサC1~C4、コイルL1~L4、スイッチSW1~SW8を備える。互いに並列に接続されたコンデンサC1~C4の各々は、伝送線路に直列に挿入される。互いに並列に接続されたコイルL1~L4の各々は、伝送線路間に挿入される。スイッチSW1~SW8は、コンデンサC1~C4およびコイルL1~L4の各々に対応して設けられ、各コンデンサおよびコイルを伝送線路に接続するか否かを切り替える。これにより、制御回路13(図3参照)は、各スイッチのオンオフを切り替えて、整合回路12Bのインダクタンスおよびキャパシタンスの値を調整することができる。 The matching circuit 12B includes capacitors C1 to C4, coils L1 to L4, and switches SW1 to SW8. Capacitors C1 to C4 connected in parallel with each other are inserted in series in the transmission line. Each of the coils L1 to L4 connected in parallel to each other is inserted between the transmission lines. The switches SW1 to SW8 are provided corresponding to the capacitors C1 to C4 and the coils L1 to L4, respectively, and switch whether to connect the capacitors and the coils to the transmission line. Thus, the control circuit 13 (see FIG. 3) can adjust the values of the inductance and capacitance of the matching circuit 12B by switching each switch on and off.
 送電側アンテナ11と受電側アンテナ21とが相互に電磁的に結合している状態で、2つのアンテナの離間距離(D)は、送電装置10と車両2との位置関係に応じて変動する。図2で説明したように、離間距離(D)が変動すると、相互インダクタンスが変化して共振周波数が変化する。その結果、電源部から負荷側を見たインピーダンスが変化してしまう。すなわち、交流電力を給電する交流電力ドライバを含む駆動回路12Aから、負荷としての蓄電装置に繋がる受電側アンテナ21へ送電する送電側アンテナ11を見たインピーダンスが変化する。これに対して何の補償も施さなければ、離間距離(D)が最適距離からずれた場合に、送電効率が急激に低下する。そこで、本実施形態の非接触送電システムは、以下のインピーダンスマッチング処理を行い、インピーダンスの変化を補償する。 In the state where the power transmission side antenna 11 and the power reception side antenna 21 are electromagnetically coupled to each other, the separation distance (D) between the two antennas varies depending on the positional relationship between the power transmission device 10 and the vehicle 2. As described in FIG. 2, when the separation distance (D) varies, the mutual inductance changes and the resonance frequency changes. As a result, the impedance when the load side is viewed from the power supply unit changes. That is, the impedance of the power transmission side antenna 11 that transmits power to the power reception side antenna 21 connected to the power storage device as a load changes from the drive circuit 12A including the AC power driver that supplies AC power. On the other hand, if no compensation is performed, the transmission efficiency is drastically reduced when the separation distance (D) deviates from the optimum distance. Therefore, the non-contact power transmission system of the present embodiment performs the following impedance matching process to compensate for a change in impedance.
 図6は、送電装置10の制御回路13により制御される、インピーダンスマッチング処理のフローチャートである。制御回路13は、送電側アンテナ11から受電側アンテナ21への送電を開始するか否かを判断する(S1)。制御回路13は、例えば、エリア内検出センサ15から送信される検出結果に基づいて、送電の開始を判断する。制御回路13は、送電を開始するまで待機し(S1:NO)、送電の開始に伴って、以降のインピーダンスマッチング処理を行う(S1:YES)。 FIG. 6 is a flowchart of the impedance matching process controlled by the control circuit 13 of the power transmission device 10. The control circuit 13 determines whether or not to start power transmission from the power transmission side antenna 11 to the power reception side antenna 21 (S1). For example, the control circuit 13 determines the start of power transmission based on the detection result transmitted from the in-area detection sensor 15. The control circuit 13 waits until power transmission is started (S1: NO), and performs the subsequent impedance matching process (S1: YES) with the start of power transmission.
 送電の開始に従い、制御回路13は、インバータ12A2の制御を開始する(S2)。制御回路13は、交流電力の周波数が、送電側アンテナ11あるいは受電側アンテナ21が有する固有の共振周波数(f=f0=1/2π(LC)1/2)となるように、インバータ12A2を制御する。 Following the start of power transmission, the control circuit 13 starts control of the inverter 12A2 (S2). The control circuit 13 controls the inverter 12A2 so that the frequency of the AC power becomes a specific resonance frequency (f = f0 = 1 / 2π (LC) 1/2 ) of the power transmission side antenna 11 or the power reception side antenna 21. To do.
 そして、制御回路13は、整合回路12BのスイッチSW1~SW8のオンオフを切り替えながら、SWR計12Cによって定在波比を計測する(S3)。制御回路13は、各スイッチのオンオフの組合せ、すなわち、整合回路12Bの各コンデンサおよびコイルの組合せのうち、送電側アンテナ11からの反射が最小となる組合せを探索する。 Then, the control circuit 13 measures the standing wave ratio with the SWR meter 12C while switching on / off the switches SW1 to SW8 of the matching circuit 12B (S3). The control circuit 13 searches for a combination that minimizes the reflection from the power transmission side antenna 11 among the combinations of the ON / OFF states of the switches, that is, the combinations of the capacitors and coils of the matching circuit 12B.
 そして、制御回路13は、整合回路12Bの各コンデンサおよびコイルの組合せのうち反射が最小となる組合せを採用する(S4)。制御回路13は、反射が最小となる組合せで整合回路12Bの各スイッチをオンオフ制御し、インピーダンスマッチング処理を終了する。 The control circuit 13 employs a combination that minimizes reflection among the combinations of the capacitors and coils of the matching circuit 12B (S4). The control circuit 13 performs on / off control of each switch of the matching circuit 12B with a combination that minimizes reflection, and ends the impedance matching process.
 以上、詳細に説明したように、本実施形態によれば、制御回路13は、インバータ12A2を制御して、交流電力の周波数を送電側アンテナ11あるいは受電側アンテナ21の共振周波数に合わせる。そして、制御回路13は、送電側アンテナ11からの反射が最小となる条件で、整合回路12Bを制御する。これにより、相互インダクタンスの変化に応じて伝送線路のインピーダンスを調整し、インピーダンスの変化を補償することができる。このように、送電側アンテナ11の共振周波数あるいは受電側アンテナ21の共振周波数におけるインピーダンス整合を実施することで、アンテナの離間距離(D)に応じた送電側の交流電力の周波数制御を不要とし、高い送電効率を維持することができる。したがって、送電側と受電側との相対位置によって充電できない状況になることを防止し、非接触送電システムの使い勝手を向上することができる。従来のようにアンテナ間距離により変化する共振周波数に応じて送電側の交流電力の周波数を追従制御する方式や、周波数追従制御に併せてインピーダンス整合を行う方式と比較しても、高い伝送効率が得られ、特に近距離伝送で高い効果が得られる。 As described above in detail, according to the present embodiment, the control circuit 13 controls the inverter 12A2 to adjust the frequency of the AC power to the resonance frequency of the power transmission side antenna 11 or the power reception side antenna 21. Then, the control circuit 13 controls the matching circuit 12B under the condition that the reflection from the power transmission side antenna 11 is minimized. Thereby, the impedance of the transmission line can be adjusted according to the change in mutual inductance, and the change in impedance can be compensated. Thus, by performing impedance matching at the resonance frequency of the power transmission side antenna 11 or the resonance frequency of the power reception side antenna 21, frequency control of AC power on the power transmission side according to the separation distance (D) of the antenna becomes unnecessary. High power transmission efficiency can be maintained. Therefore, it is possible to prevent a situation in which charging cannot be performed due to the relative position between the power transmission side and the power reception side, and to improve the usability of the non-contact power transmission system. Compared to conventional methods that follow the frequency of AC power on the power transmission side according to the resonance frequency that changes depending on the distance between antennas, and methods that perform impedance matching in conjunction with frequency follow-up control, high transmission efficiency is achieved. In particular, a high effect can be obtained by short-distance transmission.
 尚、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications and changes can be made without departing from the spirit of the present invention.
 例えば、駆動回路12Aは、交流電力ドライバを含んで構成される回路の一例であるが、図5に示した構成に限定されるものではない。AC-DCコンバータ12A1、インバータ12A2に加えて、増幅器等を備えて駆動回路12Aを構成してもよい。 For example, the drive circuit 12A is an example of a circuit including an AC power driver, but is not limited to the configuration shown in FIG. In addition to the AC-DC converter 12A1 and the inverter 12A2, the drive circuit 12A may include an amplifier or the like.
 また、送電側アンテナ11の共振周波数については、設計時に初期値として決定してもよいし、送電装置10において計測してもよい。 Further, the resonance frequency of the power transmission side antenna 11 may be determined as an initial value at the time of design, or may be measured by the power transmission device 10.
 また、図5には、整合回路12BがコンデンサC1~C4、コイルL1~L4、スイッチSW1~SW8を備える場合を一例として示したが、各素子の個数はこれに限定されるものではない。さらに、インダクタンスおよびキャパシタンスの値を調整可能な構成であれば、他の回路構成であってもよい。図7に、整合回路12Bの変形例として、整合回路12B-2を示す。整合回路12B-2は、可変コンデンサC5、可変コイルL5を備える。可変コンデンサC5は、制御回路13(図3参照)からの制御信号に基づいてキャパシタンスの値を変更可能であり、伝送線路に直列に挿入される。可変コイルL5は、制御回路13からの制御信号に基づいてインダクタンスの値を変更可能であり、伝送線路間に挿入される。これにより、制御回路13は、可変コイルL5のインダクタンス値および可変コンデンサC5のキャパシタンス値を切り替えて、整合回路12B-2のインダクタンスおよびキャパシタンスの値を調整することができる。この場合には、制御回路13は、インピーダンスマッチング処理のS3において、可変コイルL5のインダクタンス値、可変コンデンサC5のキャパシタンス値をステップ制御で段階的に切り替えながら、SWR計12Cによって定在波比を計測すればよい。 FIG. 5 shows an example in which the matching circuit 12B includes capacitors C1 to C4, coils L1 to L4, and switches SW1 to SW8, but the number of each element is not limited to this. Furthermore, other circuit configurations may be used as long as the values of the inductance and capacitance can be adjusted. FIG. 7 shows a matching circuit 12B-2 as a modification of the matching circuit 12B. The matching circuit 12B-2 includes a variable capacitor C5 and a variable coil L5. The variable capacitor C5 can change the capacitance value based on a control signal from the control circuit 13 (see FIG. 3), and is inserted in series in the transmission line. The variable coil L5 can change the inductance value based on a control signal from the control circuit 13, and is inserted between the transmission lines. Thereby, the control circuit 13 can switch the inductance value of the variable coil L5 and the capacitance value of the variable capacitor C5 to adjust the inductance and capacitance values of the matching circuit 12B-2. In this case, the control circuit 13 measures the standing wave ratio with the SWR meter 12C while stepwise switching the inductance value of the variable coil L5 and the capacitance value of the variable capacitor C5 in step S3 of the impedance matching process. do it.
 また、前記実施形態では、車両2に対して非接触送電を行う場合を説明した。しかし、本発明は、車両に限らず、電気エネルギーを動力源として利用する機器、例えば、携帯電話機、デジタルカメラ、ノートパソコンといった携帯型機器をはじめ、テレビ、オーディオシステムといった据え置き型の機器、ロボット等の産業機器、医療機器などに対しても適用可能である。さらに、蓄電装置を使用せず、非接触送電だけで稼働させることも可能である。 In the above embodiment, the case where contactless power transmission is performed to the vehicle 2 has been described. However, the present invention is not limited to vehicles, but devices that use electric energy as a power source, such as portable devices such as mobile phones, digital cameras, and notebook computers, stationary devices such as televisions and audio systems, robots, etc. It can also be applied to other industrial equipment, medical equipment, and the like. Furthermore, it is possible to operate only by non-contact power transmission without using the power storage device.
 1         送電エリア
 2          車両
 10        送電装置
 11        送電側アンテナ
 11A、21A   結合面
 12        送電部
 12A       駆動回路
 12B       整合回路
 12C       SWR計
 13、23     制御回路
 14、24     発振器
 15        エリア内検出センサ
 20        受電装置 21        受電側アンテナ
 22        受電部
 22A       受電検出回路
 22B       切替回路
 22C       整合回路
 22D       整流平滑回路
 22E       充電回路
 C1~C4     コンデンサ
 C5        可変コンデンサ
 L1~L4     コイル
 L5        可変コイル
 SW1~SW8   スイッチ
 
DESCRIPTION OF SYMBOLS 1 Power transmission area 2 Vehicle 10 Power transmission apparatus 11 Power transmission side antenna 11A, 21A Coupling surface 12 Power transmission part 12A Drive circuit 12B Matching circuit 12C SWR meter 13, 23 Control circuit 14, 24 Oscillator 15 In-area detection sensor 20 Power reception device 21 Power reception side antenna 22 Power Receiving Unit 22A Power Receiving Detection Circuit 22B Switching Circuit 22C Matching Circuit 22D Rectifying Smoothing Circuit 22E Charging Circuit C1 to C4 Capacitor C5 Variable Capacitor L1 to L4 Coil L5 Variable Coil SW1 to SW8 Switch

Claims (5)

  1.  電気エネルギーを動力源として利用する機器に対して非接触状態で送電を行う非接触送電システムであって、
     前記機器に搭載され、電磁的結合により受電する受電側アンテナと、
     前記受電側アンテナに対して前記電磁的結合により送電する送電側アンテナと、
     電源から受ける電力を、前記送電側アンテナから前記受電側アンテナへ送電可能な交流電力に変換する交流電力ドライバと、
     前記交流電力ドライバと前記送電側アンテナとの間に設けられ、伝送線路のインピーダンスを調整可能な整合回路と、
     前記交流電力ドライバおよび前記整合回路を制御する制御回路と、
     を備え、
     前記制御回路は、
     前記交流電力の周波数が前記送電側アンテナの共振周波数あるいは前記受電側アンテナの共振周波数となるように前記交流電力ドライバを制御した状態で、前記整合回路を制御してインピーダンス整合を行う
     ことを特徴とする非接触送電システム。
    A non-contact power transmission system that transmits power in a non-contact state to a device that uses electrical energy as a power source,
    A power receiving antenna mounted on the device and receiving power by electromagnetic coupling;
    A power transmission side antenna for transmitting power by the electromagnetic coupling to the power reception side antenna;
    AC power driver that converts power received from a power source into AC power that can be transmitted from the power transmitting antenna to the power receiving antenna;
    A matching circuit that is provided between the AC power driver and the power transmission antenna, and that can adjust the impedance of the transmission line;
    A control circuit for controlling the AC power driver and the matching circuit;
    With
    The control circuit includes:
    In the state where the AC power driver is controlled so that the frequency of the AC power becomes the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna, the matching circuit is controlled to perform impedance matching. Contactless power transmission system.
  2.  前記整合回路は、
     コイルと、
     コンデンサと、
     前記コイルおよび前記コンデンサの各々を前記伝送線路に接続するか否かを切り替え可能なスイッチと、
     を備え、
     前記制御回路は、
     前記スイッチのオンオフを切り替えて、前記整合回路のインダクタンスおよびキャパシタンスの値を調整することによってインピーダンス整合を行う
     ことを特徴とする請求項1に記載の非接触送電システム。
    The matching circuit includes:
    Coils,
    A capacitor,
    A switch capable of switching whether to connect each of the coil and the capacitor to the transmission line;
    With
    The control circuit includes:
    The contactless power transmission system according to claim 1, wherein impedance matching is performed by switching on and off of the switch and adjusting values of inductance and capacitance of the matching circuit.
  3.  前記伝送線路の定在波比を計測するSWR計をさらに備え、
     前記制御回路は、
     前記SWR計の計測結果に基づいて、前記スイッチのオンオフの組合せのうち前記送電側アンテナからの反射が最小となる組合せを探索し、前記反射が最小となる組合せで前記整合回路を制御することによってインピーダンス整合を行う
     ことを特徴とする請求項2に記載の非接触送電システム。
    An SWR meter for measuring a standing wave ratio of the transmission line;
    The control circuit includes:
    Based on the measurement result of the SWR meter, by searching for the combination that minimizes the reflection from the power transmission side antenna among the on / off combinations of the switch, and by controlling the matching circuit with the combination that minimizes the reflection The contactless power transmission system according to claim 2, wherein impedance matching is performed.
  4.  前記整合回路は、
     インダクタンスの値を変更可能な可変コイルと、
     キャパシタンスの値を変更可能な可変コンデンサと、
     を備え、
     前記制御回路は、
     前記可変コイルのインダクタンス値および前記可変コンデンサのキャパシタンス値を切り替えて、前記整合回路のインダクタンスおよびキャパシタンスの値を調整することによってインピーダンス整合を行う
     ことを特徴とする請求項1に記載の非接触送電システム。
    The matching circuit includes:
    A variable coil capable of changing the inductance value;
    A variable capacitor whose capacitance value can be changed;
    With
    The control circuit includes:
    The contactless power transmission system according to claim 1, wherein impedance matching is performed by switching an inductance value of the variable coil and a capacitance value of the variable capacitor, and adjusting values of an inductance and a capacitance of the matching circuit. .
  5.  電気エネルギーを動力源として利用する機器に対して非接触状態で送電を行う非接触送電装置であって、
     前記機器に搭載される受電側アンテナに対して電磁的結合により送電する送電側アンテナと、 電源から受ける電力を、前記送電側アンテナから前記受電側アンテナへ送電可能な交流電力に変換する交流電力ドライバと、
     前記交流電力ドライバと前記送電側アンテナとの間に設けられ、伝送線路のインピーダンスを調整可能な整合回路と、
     前記交流電力ドライバおよび前記整合回路を制御する制御回路と、
     を備え、
     前記制御回路は、前記交流電力の周波数が前記送電側アンテナの共振周波数あるいは前記受電側アンテナの共振周波数となるように前記交流電力ドライバを制御した状態で、前記整合回路を制御してインピーダンス整合を行う
     ことを特徴とする非接触送電装置。
    A non-contact power transmission device that transmits power in a non-contact state to a device that uses electrical energy as a power source,
    A power transmission side antenna that transmits power by electromagnetic coupling to a power reception side antenna mounted on the device, and an AC power driver that converts power received from a power source into AC power that can be transmitted from the power transmission side antenna to the power reception side antenna When,
    A matching circuit that is provided between the AC power driver and the power transmission antenna, and that can adjust the impedance of the transmission line;
    A control circuit for controlling the AC power driver and the matching circuit;
    With
    The control circuit controls the matching circuit to perform impedance matching in a state in which the AC power driver is controlled so that the frequency of the AC power becomes the resonance frequency of the power transmission side antenna or the resonance frequency of the power reception side antenna. A non-contact power transmission device characterized by performing.
PCT/JP2011/051386 2010-01-26 2011-01-26 Non-contact power transmission system and non-contact power transmission apparatus WO2011093292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800071073A CN102725940A (en) 2010-01-26 2011-01-26 Non-contact power transmission system and non-contact power transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014094 2010-01-26
JP2010014094A JP2011155732A (en) 2010-01-26 2010-01-26 Noncontact power transmission system and noncontact power transmission device

Publications (1)

Publication Number Publication Date
WO2011093292A1 true WO2011093292A1 (en) 2011-08-04

Family

ID=44319279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051386 WO2011093292A1 (en) 2010-01-26 2011-01-26 Non-contact power transmission system and non-contact power transmission apparatus

Country Status (3)

Country Link
JP (1) JP2011155732A (en)
CN (1) CN102725940A (en)
WO (1) WO2011093292A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711327A (en) * 2012-05-25 2012-10-03 天津工业大学 LED (light emitting diode) indoor desk lamp based on wireless electric energy transmission technology
WO2014041655A1 (en) * 2012-09-13 2014-03-20 トヨタ自動車株式会社 Non-contact power supply system, power transmission device used therein, and vehicle
WO2015032525A1 (en) * 2013-09-06 2015-03-12 Robert Bosch Gmbh Device for inductive energy transmission and method for inductive energy transmission
US9649946B2 (en) 2012-09-13 2017-05-16 Toyota Jidosha Kabushiki Kaisha Vehicle and contactless power supply system for adjusting impedence based on power transfer efficiency
JP2018121388A (en) * 2017-01-23 2018-08-02 トヨタ自動車株式会社 Transmission apparatus and power transmission system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089464B2 (en) 2012-06-25 2017-03-08 株式会社豊田自動織機 Non-contact power transmission device
CN103866723A (en) * 2012-12-13 2014-06-18 芜湖爱瑞特环保科技有限公司 Magnetic-coupling remote efficient transmission robot sweeper
JP6015491B2 (en) * 2013-02-26 2016-10-26 トヨタ自動車株式会社 Power receiving device, vehicle including the same, power transmitting device, and power transmission system
CN103151853A (en) * 2013-04-03 2013-06-12 天津工业大学 Wireless power transmission impedance automatic matching device
CN103414255B (en) * 2013-06-05 2015-06-24 中国人民解放军国防科学技术大学 Self-tuning magnetic-coupling resonance wireless energy transmission system and self-tuning method thereof
WO2014207677A1 (en) * 2013-06-28 2014-12-31 UNIVERSITé LAVAL Smart multicoil inductively-coupled array for wireless power transmission
DE102013219534A1 (en) 2013-09-27 2015-04-02 Siemens Aktiengesellschaft Charging station for an electrically driven vehicle
KR102207998B1 (en) * 2014-10-24 2021-01-25 엘에스전선 주식회사 Wireless power transmission apparatus and wireless power transmission system
US11183881B2 (en) 2015-09-11 2021-11-23 Yank Technologies, Inc. Injection molding electroplating for three-dimensional antennas
CN108391457B (en) * 2015-09-11 2022-08-02 扬科技术有限公司 Wireless charging platform utilizing three-dimensional phase coil array
CN106961163A (en) * 2016-01-12 2017-07-18 西安中兴新软件有限责任公司 A kind of charging control circuit, charge control method and mobile terminal
JP6842885B2 (en) * 2016-11-11 2021-03-17 日立Geニュークリア・エナジー株式会社 Wireless power supply device and wireless power supply method
EP3595130B1 (en) * 2017-03-10 2022-01-12 Mitsubishi Electric Engineering Company, Limited Resonance-type power reception device
JP7021009B2 (en) * 2018-06-06 2022-02-16 株式会社Soken Contactless power transfer system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238372A (en) * 2000-02-24 2001-08-31 Nippon Telegr & Teleph Corp <Ntt> Power transmission system, electromagnetic field generator, and electromagnetic field receiver
JP2002152997A (en) * 2000-11-09 2002-05-24 Nippon Baruufu Kk High-frequency remote power supply
JP2010130800A (en) * 2008-11-28 2010-06-10 Nagano Japan Radio Co Non-contact power transmission system
JP2011050140A (en) * 2009-08-26 2011-03-10 Sony Corp Non-contact electric power feeding apparatus, non-contact power electric receiver receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2338120T3 (en) * 2003-08-19 2010-05-04 Neturen Co., Ltd. APPLIANCE FOR ELECTRICAL SUPPLY AND HEATING EQUIPMENT BY INDUCTION.
KR20060084955A (en) * 2005-01-21 2006-07-26 엘지전자 주식회사 Apparatus for anetnna inpedance matching in multi mode mobile phone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238372A (en) * 2000-02-24 2001-08-31 Nippon Telegr & Teleph Corp <Ntt> Power transmission system, electromagnetic field generator, and electromagnetic field receiver
JP2002152997A (en) * 2000-11-09 2002-05-24 Nippon Baruufu Kk High-frequency remote power supply
JP2010130800A (en) * 2008-11-28 2010-06-10 Nagano Japan Radio Co Non-contact power transmission system
JP2011050140A (en) * 2009-08-26 2011-03-10 Sony Corp Non-contact electric power feeding apparatus, non-contact power electric receiver receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711327A (en) * 2012-05-25 2012-10-03 天津工业大学 LED (light emitting diode) indoor desk lamp based on wireless electric energy transmission technology
WO2014041655A1 (en) * 2012-09-13 2014-03-20 トヨタ自動車株式会社 Non-contact power supply system, power transmission device used therein, and vehicle
JPWO2014041655A1 (en) * 2012-09-13 2016-08-12 トヨタ自動車株式会社 Non-contact power supply system, power transmission device and vehicle used therefor
US9649946B2 (en) 2012-09-13 2017-05-16 Toyota Jidosha Kabushiki Kaisha Vehicle and contactless power supply system for adjusting impedence based on power transfer efficiency
US9963040B2 (en) 2012-09-13 2018-05-08 Toyota Jidosha Kabushiki Kaisha Non-contact power supply system, and power transmission device and vehicle used therein
WO2015032525A1 (en) * 2013-09-06 2015-03-12 Robert Bosch Gmbh Device for inductive energy transmission and method for inductive energy transmission
JP2018121388A (en) * 2017-01-23 2018-08-02 トヨタ自動車株式会社 Transmission apparatus and power transmission system

Also Published As

Publication number Publication date
JP2011155732A (en) 2011-08-11
CN102725940A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011093292A1 (en) Non-contact power transmission system and non-contact power transmission apparatus
JP2011155733A (en) Noncontact power transmission system and noncontact power transmission device
US9812893B2 (en) Wireless power receiver
JP5083480B2 (en) Non-contact power supply facility, vehicle, and control method for non-contact power supply system
TWI530046B (en) Wireless power feeding system and wireless power feeding method
US8519569B2 (en) Wireless power supply system and wireless power supply method
US10069340B2 (en) Wireless power receiver for adjusting magnitude of wireless power
US20140103711A1 (en) Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
JP5569182B2 (en) Non-contact power transmission system, non-contact power transmission device, and impedance adjustment method
US9865391B2 (en) Wireless power repeater and method thereof
JP5648694B2 (en) Non-contact power supply system and power supply equipment
WO2011093291A1 (en) Non-contact power transmission system
JP5751327B2 (en) Resonant contactless power supply system
CN103959598A (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
JP2010239769A (en) Wireless power supply system
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
US9912194B2 (en) Wireless power apparatus and operation method thereof
KR20130102218A (en) Wireless power receiving device with multi coil and wireless power receiving method
WO2012157115A1 (en) Power reception apparatus, vehicle provided therewith, power feeding equipment, and power feeding system
WO2012172899A1 (en) Resonance-type non-contact power supply system
WO2014054396A1 (en) Power reception device, power transmission device, and noncontact power transfer apparatus
JP5991380B2 (en) Non-contact power transmission device
WO2014030689A1 (en) Non-contact power transmission device and power-receiving apparatus
JP2011234565A (en) Non-contact power supply system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007107.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737005

Country of ref document: EP

Kind code of ref document: A1