JP2010279305A - Method for producing sugar and ethanol from vegetable biomass - Google Patents

Method for producing sugar and ethanol from vegetable biomass Download PDF

Info

Publication number
JP2010279305A
JP2010279305A JP2009135897A JP2009135897A JP2010279305A JP 2010279305 A JP2010279305 A JP 2010279305A JP 2009135897 A JP2009135897 A JP 2009135897A JP 2009135897 A JP2009135897 A JP 2009135897A JP 2010279305 A JP2010279305 A JP 2010279305A
Authority
JP
Japan
Prior art keywords
plant biomass
water
organic solvent
soluble organic
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009135897A
Other languages
Japanese (ja)
Inventor
Kazuhide Tabata
一英 田端
Akio Uchida
明男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009135897A priority Critical patent/JP2010279305A/en
Publication of JP2010279305A publication Critical patent/JP2010279305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating vegetable biomass and a method for producing sugars and ethanol from the vegetable biomass. <P>SOLUTION: This method for treating the vegetable biomass is provided by comprising a process of subjecting the vegetable biomass to a hydrothermal treatment by immersing the vegetable biomass in a solution containing a water soluble organic solvent and an inorganic acid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば植物バイオマスから有用な糖及びエタノールを製造する方法に関する。   The present invention relates to a process for producing useful sugars and ethanol from, for example, plant biomass.

近年、石油の大量消費による二酸化炭素等の地球温暖化物質の放出が問題になっている。その石油の代替として、廃木材等の廃棄バイオマスが化学原料資源として注目されている。   In recent years, the release of global warming substances such as carbon dioxide due to mass consumption of oil has become a problem. As an alternative to petroleum, waste biomass such as waste wood is attracting attention as a chemical raw material resource.

例えば、木材の主構成成分の1つであるセルロースは、グルコース分子を構成単位としている。このセルロースを加水分解することでグルコース等の糖類を得ることができる。得られた糖類を原料として、各種の触媒を用いて反応を行うことで、石油化学工業で製造している高分子原料を調製することができる。また、得られた糖類を用いて発酵を行うことによりエタノールを製造することができる。   For example, cellulose, which is one of the main constituents of wood, has glucose molecules as constituent units. Sugars such as glucose can be obtained by hydrolyzing the cellulose. By using the obtained saccharide as a raw material and performing a reaction using various catalysts, a polymer raw material produced in the petrochemical industry can be prepared. Moreover, ethanol can be manufactured by performing fermentation using the obtained saccharides.

植物バイオマスからの糖の製造に際し、植物バイオマスの前処理方法としては、例えば、加圧熱水で処理する熱水処理工程と機械的粉砕処理工程とを含む方法が知られている(特許文献1)。しかしながら、当該方法では、高圧条件下での処理が必要となる。   In the production of sugar from plant biomass, as a pretreatment method for plant biomass, for example, a method including a hydrothermal treatment process using a pressurized hot water and a mechanical pulverization process is known (Patent Document 1). ). However, this method requires treatment under high pressure conditions.

また、特許文献2には、植物バイオマスの前処理方法として、バイオマスを、水、水溶性有機溶剤及び有機酸を含む薬液に浸漬させ、植物バイオマスを蒸煮させる蒸煮工程を含む方法が開示されている。しかしながら、当該方法には、水溶性有機溶剤の使用量が多い;酸として有機酸を使用しているためコストが高い;有機酸の回収対応が必要となりコストが高い;有機溶剤が高濃度に存在するため、糖化工程前に固液分離工程が必要となる;また固液分離工程が必要であることから液側に溶解(抽出)したキシロース等が活用できないか、あるいは活用するには濃縮し、キシロース等の回収が必要であるのでコストが高い、といった問題がある。   Further, Patent Document 2 discloses a method including a steaming step in which biomass is immersed in a chemical solution containing water, a water-soluble organic solvent and an organic acid, and the plant biomass is cooked as a pretreatment method for plant biomass. . However, this method uses a large amount of a water-soluble organic solvent; the cost is high because an organic acid is used as an acid; the cost is high because it requires a recovery of the organic acid; the organic solvent is present in a high concentration Therefore, a solid-liquid separation process is required before the saccharification process; and since a solid-liquid separation process is necessary, xylose dissolved (extracted) on the liquid side cannot be used, or concentrated to use, There is a problem that the cost is high because collection of xylose or the like is necessary.

特開2006-136263号公報JP 2006-136263 A 特開2008-271962号公報JP 2008-271962

上述のように、従来においては、植物バイオマスからの糖の製造に際し、植物バイオマスの前処理方法として様々な方法が検討されているものの、低コストで、且つ効率良く行うことができる前処理方法が知られていなかった。   As described above, conventionally, various methods have been studied as a pretreatment method for plant biomass in the production of sugar from plant biomass. However, there is a pretreatment method that can be efficiently performed at low cost. It was not known.

そこで、本発明は、上述した実情に鑑み、植物バイオマスからの糖の製造に際し、低コストで、且つ効率良く行うことができ、糖化工程において糖化率が向上する原料を得るための植物バイオマスの前処理方法、並びに当該前処理を含む植物バイオマスからの糖及びエタノールの製造方法を提供する。   Therefore, in view of the above-described circumstances, the present invention provides a plant biomass for obtaining a raw material that can be efficiently produced at low cost and improved in the saccharification rate in the production of sugar from plant biomass. A treatment method and a method for producing sugar and ethanol from plant biomass including the pretreatment are provided.

上記課題を解決するため鋭意研究を行った結果、植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、水熱処理に供することで得られた処理物を糖化処理に供した場合に糖化率が向上することを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, when plant biomass is immersed in a solution containing a water-soluble organic solvent and an inorganic acid and subjected to hydrothermal treatment, a processed product obtained by saccharification treatment is used. The inventors have found that the saccharification rate is improved and have completed the present invention.

すなわち、本発明は、植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、水熱処理に供する工程を含む、植物バイオマス処理方法である。   That is, this invention is a plant biomass processing method including the process of immersing plant biomass in the solution containing a water-soluble organic solvent and an inorganic acid, and using for hydrothermal treatment.

水溶性有機溶媒としては、アセトン及びエタノールが挙げられる。水溶性有機溶媒と無機酸とを含む混合物における水溶性有機溶媒の含有割合としては、1〜5重量%が挙げられる。   Examples of the water-soluble organic solvent include acetone and ethanol. Examples of the content ratio of the water-soluble organic solvent in the mixture containing the water-soluble organic solvent and the inorganic acid include 1 to 5% by weight.

無機酸としては、硫酸及びリン酸が挙げられる。水溶性有機溶媒と無機酸とを含む混合物における無機酸の含有割合としては、0.1〜0.3重量%が挙げられる。
水熱処理の条件としては、温度140〜240℃及び圧力0.1〜4MPaの条件が挙げられる。
Examples of the inorganic acid include sulfuric acid and phosphoric acid. Examples of the content ratio of the inorganic acid in the mixture containing the water-soluble organic solvent and the inorganic acid include 0.1 to 0.3% by weight.
The conditions for the hydrothermal treatment include conditions of a temperature of 140 to 240 ° C. and a pressure of 0.1 to 4 MPa.

植物バイオマス処理方法には、水熱処理工程と同時又は後に水溶性有機溶媒を蒸気として回収する工程、水熱処理工程後に無機酸をアルカリ溶液により中和する工程を含むことができる。中和に使用するアルカリ溶液としては、水酸化ナトリウム、アンモニア及び水酸化カリウムが挙げられる。   The plant biomass treatment method can include a step of recovering the water-soluble organic solvent as a vapor simultaneously with or after the hydrothermal treatment step, and a step of neutralizing the inorganic acid with an alkaline solution after the hydrothermal treatment step. Examples of the alkaline solution used for neutralization include sodium hydroxide, ammonia and potassium hydroxide.

また、本発明は、上述の植物バイオマス処理方法に準じて植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、水熱処理に供する工程と、水熱処理物を酵素と接触させ、糖化処理に供する工程とを含む、糖の製造方法である。糖化処理に使用する酵素としては、セルラーゼが挙げられる。   The present invention also includes a step of immersing plant biomass in a solution containing a water-soluble organic solvent and an inorganic acid in accordance with the above-described plant biomass treatment method, subjecting the biomass to hydrothermal treatment, contacting the hydrothermally treated product with an enzyme, and saccharification. A method for producing sugar, comprising a step of subjecting to a treatment. An example of the enzyme used for the saccharification treatment is cellulase.

さらに、本発明は、上述の植物バイオマス処理方法及び糖の製造方法に準じて植物バイオマスを水溶性有機溶媒と硫酸及び/又はリン酸とを含む溶液に浸漬し、水熱処理に供する工程と、水熱処理物をアンモニア及び/又は水酸化カリウムにより中和する工程と、水熱処理物を酵素と接触させ、糖化処理に供し、酵母を発酵に供する工程とを含む、エタノールの製造方法である。   Furthermore, the present invention comprises a step of immersing plant biomass in a solution containing a water-soluble organic solvent and sulfuric acid and / or phosphoric acid in accordance with the above-described plant biomass treatment method and sugar production method, and subjecting the biomass to hydrothermal treatment, An ethanol production method comprising a step of neutralizing a heat-treated product with ammonia and / or potassium hydroxide, a step of bringing a hydrothermally-treated product into contact with an enzyme, subjecting it to a saccharification treatment, and subjecting a yeast to fermentation.

本発明に係る植物バイオマス処理方法によれば、低コストで糖化処理に使用する原料を得ることができる。また、本発明に係る糖の製造方法によれば、糖化率が向上し、優れた生産性で糖を製造できる。さらに、本発明に係るエタノールの製造方法によれば、酵母の発酵に必要なリン酸カリウム及び/又は硫酸アンモニウムを培地に添加することなく、酵母発酵を行うことができ、酵母発酵によるエタノール製造の低コスト化を図ることができる。   According to the plant biomass treatment method of the present invention, a raw material used for saccharification treatment can be obtained at low cost. Moreover, according to the sugar production method of the present invention, the saccharification rate is improved, and sugar can be produced with excellent productivity. Furthermore, according to the method for producing ethanol according to the present invention, yeast fermentation can be performed without adding potassium phosphate and / or ammonium sulfate necessary for yeast fermentation to the medium, and the ethanol production by yeast fermentation is reduced. Cost can be reduced.

以下、本発明を詳細に説明する。
本発明は、植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、水熱処理に供する工程を含む、植物バイオマス処理方法である。本発明に係る植物バイオマス処理方法によれば、無機酸により植物バイオマスのリグニン、セルロース、ヘミセルロース等を切断し、且つ水溶性有機溶媒によりリグニン、セルロース、ヘミセルロース等を溶解することで、糖化処理において糖化率が向上する原料を得ることができる。
Hereinafter, the present invention will be described in detail.
This invention is a plant biomass processing method including the process of immersing plant biomass in the solution containing a water-soluble organic solvent and an inorganic acid, and using for a hydrothermal treatment. According to the plant biomass treatment method of the present invention, saccharification is performed in a saccharification treatment by cutting lignin, cellulose, hemicellulose, etc. of plant biomass with an inorganic acid and dissolving lignin, cellulose, hemicellulose, etc. with a water-soluble organic solvent. A raw material with an improved rate can be obtained.

ここで、植物バイオマスとしては、例えばリグニン、セルロース、リグノセルロースやヘミセルロースを主成分とするバイオマスが挙げられる。当該リグノセルロースを主成分とするバイオマスとしては、例えば木質・草本系材料(木材、ユーカリ、バガス、稲ワラ、スギ、ムギワラ、竹等)、パルプ及びこれらの廃棄物(例えば古紙)が挙げられる。なお、本発明に係る植物バイオマス処理方法では、予め植物バイオマスを振動ミルやカッターミル等を用いた粉砕処理に供した粉砕品を植物バイオマスとして使用することができる。また、粉砕後、粉砕品を適宜、篩(例えば150μm〜4mmの目開きメッシュ)に供し、通過した粉砕品を植物バイオマスとして使用してもよい。あるいは、本発明に係る植物バイオマス処理方法の工程として、当該粉砕処理工程を含めることもできる。水熱処理における当該植物バイオマスの含有割合は、植物バイオマスと水溶性有機溶媒と無機酸とを含む混合物に対して、例えば5〜40重量%、好ましくは20〜40重量%、特に好ましくは30〜40重量%である。   Here, examples of plant biomass include biomass mainly composed of lignin, cellulose, lignocellulose, and hemicellulose. Examples of the biomass mainly composed of lignocellulose include woody and herbaceous materials (wood, eucalyptus, bagasse, rice straw, cedar, wheat straw, bamboo, etc.), pulp, and wastes thereof (for example, waste paper). In the plant biomass treatment method according to the present invention, a pulverized product obtained by subjecting plant biomass to a pulverization process using a vibration mill, a cutter mill, or the like in advance can be used as the plant biomass. In addition, after pulverization, the pulverized product may be appropriately subjected to a sieve (for example, an opening mesh of 150 μm to 4 mm), and the pulverized product that has passed may be used as plant biomass. Or the said grinding | pulverization process process can also be included as a process of the plant biomass processing method which concerns on this invention. The content ratio of the plant biomass in the hydrothermal treatment is, for example, 5 to 40% by weight, preferably 20 to 40% by weight, particularly preferably 30 to 40% with respect to the mixture containing the plant biomass, the water-soluble organic solvent, and the inorganic acid. % By weight.

水溶性有機溶媒としては、例えばアセトン、エタノール、メタノール、イソプロパノール、ブタノール等が挙げられ、アセトン又はエタノールが好ましい。水熱処理における当該水溶性有機溶媒の含有割合は、水溶性有機溶媒と無機酸とを含む混合物に対して、例えば1〜5重量%である。   Examples of the water-soluble organic solvent include acetone, ethanol, methanol, isopropanol, butanol and the like, and acetone or ethanol is preferable. The content ratio of the water-soluble organic solvent in the hydrothermal treatment is, for example, 1 to 5% by weight with respect to the mixture containing the water-soluble organic solvent and the inorganic acid.

無機酸としては、例えば硫酸、リン酸、硝酸、塩酸、ホウ酸等が挙げられ、硫酸又はリン酸が好ましい。水熱処理における当該無機酸の含有割合は、水溶性有機溶媒と無機酸とを含む混合物に対して、例えば0.1〜0.3重量%である。   Examples of the inorganic acid include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, boric acid and the like, and sulfuric acid or phosphoric acid is preferable. The content ratio of the inorganic acid in the hydrothermal treatment is, for example, 0.1 to 0.3% by weight with respect to the mixture containing the water-soluble organic solvent and the inorganic acid.

本発明に係る植物バイオマス処理方法では、植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、高温高圧容器等において水熱処理に供する。水熱処理条件としては、例えば温度140〜240℃及び圧力0.1〜4MPa、さらに好ましくは温度140〜180℃及び圧力0.5〜1MPaが挙げられる。処理時間は、リグニンとセルロース及びヘミセルロースとの交絡が解れ、繊維状になるのに十分な時間であればよく、例えば0.5〜3時間である。   In the plant biomass processing method according to the present invention, plant biomass is immersed in a solution containing a water-soluble organic solvent and an inorganic acid and subjected to hydrothermal treatment in a high-temperature and high-pressure vessel or the like. Examples of hydrothermal treatment conditions include a temperature of 140 to 240 ° C. and a pressure of 0.1 to 4 MPa, and more preferably a temperature of 140 to 180 ° C. and a pressure of 0.5 to 1 MPa. The treatment time may be a time sufficient for the lignin, cellulose and hemicellulose to be untangled and become fibrous, for example, 0.5 to 3 hours.

このようにして、無機酸と水溶性有機溶媒とを含む溶液中での水熱処理後に得られる処理物(以下、「水熱処理物」という)は、糖化処理に使用する原料として使用することができる。なお、当該水熱処理工程と同時又は後に、高温高圧状態を活用し、水溶性有機溶媒を蒸気として回収し、再度利用することができる。   In this way, a treated product obtained after hydrothermal treatment in a solution containing an inorganic acid and a water-soluble organic solvent (hereinafter referred to as “hydrothermal treated product”) can be used as a raw material used for saccharification treatment. . At the same time or after the hydrothermal treatment step, the high-temperature and high-pressure state can be utilized to recover the water-soluble organic solvent as a vapor and reuse it.

また、水熱処理物をアルカリ溶液で中和し、例えばpH5〜6に調整したものを水熱処理物として糖化処理に使用してもよい。上記水溶性有機溶媒回収が行われる場合には、中和工程は、水溶性有機溶媒回収の前若しくは後又は当該回収時に行うことができる。ここで、アルカリ溶液としては、例えば水酸化ナトリウム、アンモニア及び水酸化カリウムが挙げられる。   Further, a hydrothermally treated product may be neutralized with an alkali solution and adjusted to pH 5 to 6, for example, as a hydrothermally treated product and used for saccharification treatment. When the water-soluble organic solvent recovery is performed, the neutralization step can be performed before or after the water-soluble organic solvent recovery or at the time of the recovery. Here, examples of the alkaline solution include sodium hydroxide, ammonia, and potassium hydroxide.

さらに、本発明は、上述の本発明に係る植物バイオマス処理方法に準じて植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、水熱処理に供する工程を前処理工程とし、水熱処理物を酵素と接触させ、糖化処理に供する工程とを含む糖の製造方法である。得られる糖化処理物(糖)は、酵母を用いた発酵によりエタノールに変換することができる。   Furthermore, the present invention provides a pretreatment step in which plant biomass is immersed in a solution containing a water-soluble organic solvent and an inorganic acid in accordance with the above-described plant biomass treatment method according to the present invention, and subjected to hydrothermal treatment. A method for producing sugar, comprising a step of bringing a product into contact with an enzyme and subjecting the product to a saccharification treatment. The resulting saccharification product (sugar) can be converted to ethanol by fermentation using yeast.

ここで、酵素としては、例えばセルラーゼ、へミセルラーゼ(キシラナーゼ、キシロビアーゼ)、マンナナーゼ等が挙げられる。例えば、酵素としてセルラーゼを用いることで、グルコース(糖)を得ることができる。また、酵素としてヘミセルラーゼを用いることで、キシロース(糖)を得ることができる。さらに、酵素としてマンナナーゼを用いることで、マンノース(糖)を得ることができる。これら酵素は、当該酵素を生産する微生物それ自体、当該微生物の培養液又は培養上清、固定化酵素等を酵素として使用することができる。また、例えばセルラーゼを使用する場合には、水熱処理物1gに対して、例えば4〜40FPU(Filter Paper Unit)のセルラーゼを使用する。   Here, examples of the enzyme include cellulase, hemicellulase (xylanase, xylobiase), mannanase and the like. For example, glucose (sugar) can be obtained by using cellulase as an enzyme. Moreover, xylose (sugar) can be obtained by using hemicellulase as an enzyme. Furthermore, mannose (sugar) can be obtained by using mannanase as an enzyme. As these enzymes, microorganisms that produce the enzymes themselves, culture solutions or culture supernatants of the microorganisms, immobilized enzymes, and the like can be used as the enzymes. For example, when cellulase is used, for example, 4 to 40 FPU (Filter Paper Unit) cellulase is used per 1 g of the hydrothermally treated product.

糖化工程は、例えばセルラーゼを使用する場合には、緩衝液(例えば、酢酸ナトリウム緩衝液(pH5))を加えたセルラーゼと水熱処理物とを含む反応物を用いて、例えば温度35〜45℃、好ましくは38〜42℃で12〜48時間反応に供することにより行われる。なお、当該反応は、振盪下において行ってもよい。得られた処理物(以下、「糖化処理物」という)は、そのまま糖として使用してもよいし、また精製や抽出処理に供し、精製又は抽出したものを糖として使用してもよい。
得られる糖としては、例えばグルコース、キシロース、マンノース、ガラクトース等が挙げられる。
For example, when cellulase is used, the saccharification step uses a reaction product containing cellulase to which a buffer solution (for example, sodium acetate buffer (pH 5)) is added and a hydrothermal treatment, for example, at a temperature of 35 to 45 ° C. Preferably, it is carried out by subjecting to a reaction at 38 to 42 ° C. for 12 to 48 hours. In addition, you may perform the said reaction under shaking. The obtained processed product (hereinafter referred to as “saccharified product”) may be used as a saccharide as it is, or a product that has been subjected to purification or extraction treatment and purified or extracted may be used as a saccharide.
Examples of the sugar to be obtained include glucose, xylose, mannose, galactose and the like.

糖化処理により有意に糖化が行われたか否かは、HPLC等によって糖量を定量し、あるいは以下の式:

Figure 2010279305
によって算出される糖化率(%)を指標に判断することができる。 Whether or not saccharification was significantly performed by saccharification treatment is determined by quantifying the amount of sugar by HPLC or the following formula:
Figure 2010279305
The saccharification rate (%) calculated by the above can be used as an index.

また、本発明は、上述の本発明に係る植物バイオマス処理方法及び糖の製造方法に準じて植物バイオマスを水溶性有機溶媒と硫酸及び/又はリン酸とを含む溶液に浸漬し、水熱処理に供する工程を前処理とし、水熱処理物をアンモニア及び/又は水酸化カリウムにより中和する工程と、水熱処理物を酵素と接触させ、糖化処理に供し、酵母を発酵に供する工程とを含む、エタノールの製造方法である。本方法においては、中和工程と糖化工程とは、通常、中和工程後に糖化工程を行うが、糖化工程後に中和工程を行ってもよい。さらに、糖化・発酵工程は、通常、糖化工程後に発酵工程を行うが、同時に行ってもよい。   Further, the present invention provides a hydrothermal treatment by immersing plant biomass in a solution containing a water-soluble organic solvent and sulfuric acid and / or phosphoric acid according to the plant biomass treatment method and sugar production method according to the present invention described above. A step of pre-treating the hydrothermally treated product with ammonia and / or potassium hydroxide; and contacting the hydrothermally treated product with an enzyme, subjecting the hydrothermally treated product to saccharification, and subjecting the yeast to fermentation. It is a manufacturing method. In this method, the neutralization step and the saccharification step are usually performed after the neutralization step, but may be performed after the saccharification step. Furthermore, the saccharification / fermentation step is usually performed after the saccharification step, but may be performed simultaneously.

ここで使用する酵母としては、エタノール発酵を行うことができる酵母であればよく、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)等のサッカロミセス属、クルイベロミセス(Kluyveromyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ピキア(Pichia)属、カンジダ(Candida)属等に属する酵母が挙げられる。   The yeast used here may be any yeast that can perform ethanol fermentation. Examples include yeasts belonging to the genus Pichia and Candida.

酵母の培養に使用する基礎培地は、一般に、所定の濃度でyeast extract、グルコース、KH2PO4、MgSO4・7H2O、NaCl、CaCl2、(NH4)2SO4、H3BO4、CuSO4・5H2O、KI、FeCl3・6H2O、MnSO4・5H2O、ZnSO4・7H2O及びNa2MoO4・2H2Oを含む。本発明に係るエタノールの製造方法では、硫酸及び/またはリン酸を含む水熱処理物をアンモニア及び/又は水酸化カリウムにより中和することで、それぞれ上述の基礎培地の成分である(NH4)2SO4及びKH2PO4が生成される。従って、発酵工程において、糖化処理物を含む培地には、グルコースと共に(NH4)2SO4及びKH2PO4のいずれか又は双方を添加する必要がない。 The basic medium used for yeast culture is generally yeast extract, glucose, KH 2 PO 4 , MgSO 4 .7H 2 O, NaCl, CaCl 2 , (NH 4 ) 2 SO 4 , H 3 BO 4 at a predetermined concentration. CuSO 4 · 5H 2 O, KI, FeCl 3 · 6H 2 O, MnSO 4 · 5H 2 O, ZnSO 4 · 7H 2 O and Na 2 MoO 4 · 2H 2 O. In the method for producing ethanol according to the present invention, the hydrothermally treated product containing sulfuric acid and / or phosphoric acid is neutralized with ammonia and / or potassium hydroxide, so that each is a component of the above-mentioned basal medium (NH 4 ) 2. SO 4 and KH 2 PO 4 are produced. Therefore, in the fermentation process, it is not necessary to add (NH 4 ) 2 SO 4 and / or KH 2 PO 4 together with glucose to the medium containing the saccharified product.

発酵工程においては、糖化処理物と上述の培地組成(グルコースと共に(NH4)2SO4及びKH2PO4のいずれか又は双方を除く)を含む培地において酵母を培養する。培養条件としては、エタノール発酵が十分に行われ、且つ酵母が生育する条件であればよく、例えば温度25〜45℃(好ましくは30〜37℃)、pH3.0〜7.0(好ましくはpH4.0〜6.0)で12〜72時間(好ましくは24〜48時間)が挙げられる。なお、当該培養は、振盪培養であってもよい。得られた処理物(以下、「発酵処理物」という)は、そのままエタノールとして使用してもよいし、また精製や抽出処理に供し、精製又は抽出したものをエタノールとして使用してもよい。 In the fermentation process, yeast is cultured in a medium containing the saccharified product and the above-mentioned medium composition (excluding either or both of (NH 4 ) 2 SO 4 and KH 2 PO 4 together with glucose). The culture conditions may be any conditions as long as ethanol fermentation is sufficiently performed and the yeast grows.For example, the temperature is 25 to 45 ° C. (preferably 30 to 37 ° C.), pH 3.0 to 7.0 (preferably pH 4.0). -6.0) for 12-72 hours (preferably 24-48 hours). The culture may be shaking culture. The obtained processed product (hereinafter referred to as “fermented processed product”) may be used as ethanol as it is, or may be subjected to purification or extraction treatment and purified or extracted to be used as ethanol.

発酵により有意にエタノールが得られたか否かは、HPLC等によってエタノール量を定量し、あるいは以下の式:

Figure 2010279305
によって算出されるエタノール変換率(%)を指標に判断することができる。 Whether ethanol was significantly obtained by fermentation is determined by quantifying the amount of ethanol by HPLC or the like, or the following formula:
Figure 2010279305
The ethanol conversion rate (%) calculated by the above can be used as an index.

さらに、本発明に係るエタノールの製造方法は、酵母の培養方法として適用することもできる。   Furthermore, the ethanol production method according to the present invention can also be applied as a yeast culture method.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
1.植物バイオマスからの糖の製造
以下の実施例1〜8及び比較例1〜9においては、植物バイオマスからの糖の製造を、グルコースを指標とした糖化率により評価した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to these Examples.
1. Production of sugar from plant biomass In Examples 1 to 8 and Comparative Examples 1 to 9 below, production of sugar from plant biomass was evaluated by a saccharification rate using glucose as an index.

[実施例1]
植物バイオマス(以下、「BM」という)としてユーカリ粉砕品(50g)(振動ミル粉砕150μmメッシュ通過品)をビーカーに採取した。次いで、反応溶液(450g)を加えて、総重量が500gになるように調整した。反応溶液は、当該反応溶液(450g)に対して0.1重量%の硫酸(98%硫酸(特級、和光純薬製):本発明における「無機酸」に相当)と5重量%のアセトン(99%アセトン(特級、和光純薬製):本発明における「水溶性有機溶媒」に相当)とを含む。
[Example 1]
Eucalyptus ground product (50 g) (vibration mill ground 150 μm mesh passing product) was collected in a beaker as plant biomass (hereinafter referred to as “BM”). Next, the reaction solution (450 g) was added to adjust the total weight to 500 g. The reaction solution was 0.1% by weight sulfuric acid (98% sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries): equivalent to “inorganic acid” in the present invention) and 5% by weight acetone (99%) with respect to the reaction solution (450 g). Acetone (special grade, manufactured by Wako Pure Chemical Industries, Ltd.): equivalent to “water-soluble organic solvent” in the present invention.

さらに、当該混合物を高温高圧容器(SUS製、1L)に入れ、撹拌しながら180℃まで加熱し(約30分で昇温)、圧力約1MPa(飽和水蒸気圧)下で15分間維持した(前処理)。加熱処理後、直ちに混合物を室温まで水冷した。
水冷後、混合物のpHを測定し、1N NaOH(特級、ナカライテスク(株)製)で中和し、pH=5に調整した。
Further, the mixture was placed in a high-temperature and high-pressure vessel (made of SUS, 1 L), heated to 180 ° C. with stirring (heated up in about 30 minutes), and maintained at a pressure of about 1 MPa (saturated water vapor pressure) for 15 minutes (previous processing). Immediately after the heat treatment, the mixture was cooled to room temperature with water.
After cooling with water, the pH of the mixture was measured, neutralized with 1N NaOH (special grade, manufactured by Nacalai Tesque), and adjusted to pH = 5.

次いで、得られた前処理後の固液混合物(20g)(本発明における「水熱処理物」に相当)をファルコンチューブに採取し、乾物重量で1gのBMに対してセルラーゼ(CBH、EG)(NS50013、ノボザイム製)を1ml及びセルラーゼ(BGL)(NS50010、ノボザイム製)を0.2ml加えた。これらセルラーゼの合計のユニットは、40FPUであった。   Next, the obtained pre-treated solid-liquid mixture (20 g) (corresponding to `` hydrothermally treated product '' in the present invention) was collected in a falcon tube, and cellulase (CBH, EG) (1 g of BM by dry weight) (CBH, EG) ( 1 ml of NS50013 (Novozyme) and 0.2 ml of cellulase (BGL) (NS50010, Novozyme) were added. The total unit of these cellulases was 40 FPU.

さらに、緩衝液として酢酸ナトリウム緩衝液(pH5.0)を使用し、上記混合物に最終濃度が50mMになるように添加した。
当該混合物を振盪機内で、1分間に120回転の速度で振盪しながら45℃で48時間反応させた。
Further, sodium acetate buffer (pH 5.0) was used as a buffer, and added to the above mixture so that the final concentration was 50 mM.
The mixture was reacted in a shaker at 45 ° C. for 48 hours with shaking at a speed of 120 revolutions per minute.

次いで、反応後の混合物(本発明における「糖化処理物」に相当)中のグルコース量をHPLCにて定量し、糖化率を算出した。糖化率(%)は、式:

Figure 2010279305
により算出された。 Next, the amount of glucose in the mixture after the reaction (corresponding to the “saccharified product” in the present invention) was quantified by HPLC, and the saccharification rate was calculated. Saccharification rate (%) is calculated using the formula:
Figure 2010279305
It was calculated by.

[実施例2]
反応溶液が当該反応溶液(450g)に対して5重量%のアセトンに代えて1重量%のアセトンを含むようにしたこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Example 2]
Saccharide was produced in the same manner as in Example 1 except that the reaction solution contained 1% by weight of acetone instead of 5% by weight of acetone with respect to the reaction solution (450 g), and the saccharification rate was calculated. did.

[実施例3]
反応溶液が当該反応溶液(450g)に対して0.1重量%の硫酸に代えて0.1重量%のリン酸(85%リン酸(特級、和光純薬製))を含むようにしたこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Example 3]
Implementation was performed except that the reaction solution contained 0.1% by weight phosphoric acid (85% phosphoric acid (special grade, manufactured by Wako Pure Chemical Industries)) instead of 0.1% by weight sulfuric acid with respect to the reaction solution (450g). Sugar was produced in the same manner as in Example 1, and the saccharification rate was calculated.

[実施例4]
反応溶液が当該反応溶液(450g)に対して5重量%のアセトンに代えて5重量%のエタノール(特級、和光純薬製)を含むようにしたこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Example 4]
In the same manner as in Example 1, except that the reaction solution contains 5 wt% ethanol (special grade, manufactured by Wako Pure Chemical Industries) instead of 5 wt% acetone with respect to the reaction solution (450 g). And the saccharification rate was calculated.

[実施例5]
BMとしてユーカリ粉砕品(100g)(振動ミル粉砕150μmメッシュ通過品)を使用し、且つ反応溶液を400gとしたこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Example 5]
Sugar was produced in the same manner as in Example 1 except that a eucalyptus ground product (100 g) (vibrated mill ground 150 μm mesh-passed product) was used as BM, and the reaction solution was 400 g, and the saccharification rate was calculated.

[実施例6]
BMとしてユーカリ粉砕品(50g)(カッターミル4mmメッシュ通過品)を使用したこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Example 6]
Sugar was produced in the same manner as in Example 1 except that a eucalyptus ground product (50 g) (cutter mill 4 mm mesh passed product) was used as BM, and the saccharification rate was calculated.

[実施例7]
BMとしてバガス(50g)(粉砕4mmメッシュ通過品)を使用したこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Example 7]
A sugar was produced in the same manner as in Example 1 except that bagasse (50 g) (pulverized 4 mm mesh-passed product) was used as BM, and the saccharification rate was calculated.

[実施例8]
BMとしてバガス(50g)(粉砕4mmメッシュ通過品)を使用し、且つ加熱処理条件を165℃(約30分で昇温)及び圧力約0.7MPa(飽和水蒸気圧)下で15分間としたこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Example 8]
Other than using bagasse (50g) (pulverized 4mm mesh passing product) as BM and heat treatment conditions at 165 ° C (temperature rise in about 30 minutes) and pressure about 0.7MPa (saturated water vapor pressure) for 15 minutes Produced sugar in the same manner as in Example 1, and calculated the saccharification rate.

[比較例1]
反応溶液がアセトンを含まないこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 1]
A sugar was produced in the same manner as in Example 1 except that the reaction solution did not contain acetone, and the saccharification rate was calculated.

[比較例2]
反応溶液が当該反応溶液(450g)に対して0.1重量%の硫酸に代えて0.1重量%のリン酸を含むようにし、且つアセトンを含まないこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 2]
A sugar is produced in the same manner as in Example 1 except that the reaction solution contains 0.1% by weight of phosphoric acid instead of 0.1% by weight of sulfuric acid and 450% of the reaction solution (450 g). The saccharification rate was calculated.

[比較例3]
反応溶液が硫酸を含まないこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 3]
A sugar was produced in the same manner as in Example 1 except that the reaction solution did not contain sulfuric acid, and the saccharification rate was calculated.

[比較例4]
反応溶液が当該反応溶液(450g)に対して5重量%のアセトンに代えて1重量%のアセトンを含むようにし、且つ硫酸を含まないこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 4]
A sugar is produced in the same manner as in Example 1 except that the reaction solution contains 1% by weight of acetone instead of 5% by weight of acetone with respect to the reaction solution (450 g) and does not contain sulfuric acid. The saccharification rate was calculated.

[比較例5]
反応溶液が当該反応溶液(450g)に対して5重量%のアセトンに代えて5重量%のエタノールを含むようにし、且つ硫酸を含まないこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 5]
A sugar is produced in the same manner as in Example 1 except that the reaction solution contains 5% by weight of ethanol instead of 5% by weight of acetone with respect to the reaction solution (450 g) and does not contain sulfuric acid. The saccharification rate was calculated.

[比較例6]
BMとしてバガス、稲ワラ及びスギの粉砕品(50g)(振動ミル粉砕150μmメッシュ通過品)を使用し、且つ反応溶液がアセトンを含まないこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 6]
Sugar was produced in the same manner as in Example 1 except that bagasse, rice straw and cedar ground products (50 g) (passing through vibration mill 150 μm mesh) were used as BM, and the reaction solution did not contain acetone. The saccharification rate was calculated.

[比較例7]
BMとしてバガス、稲ワラ及びスギの粉砕品(50g)(振動ミル粉砕150μmメッシュ通過品)を使用し、反応溶液がアセトンを含まず、且つ加熱処理条件を165℃(約30分で昇温)及び圧力約0.7MPa(飽和水蒸気圧)下で15分間としたこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 7]
Bagasse, rice straw and cedar pulverized product (50 g) as BM (vibrated mill pulverized 150 μm mesh product), reaction solution does not contain acetone, and heat treatment condition is 165 ° C. (heated up in about 30 minutes) The sugar was produced in the same manner as in Example 1 except that the pressure was about 0.7 MPa (saturated water vapor pressure) for 15 minutes, and the saccharification rate was calculated.

[比較例8]
BMとしてバガス、稲ワラ及びスギの粉砕品(50g)(振動ミル粉砕150μmメッシュ通過品)を使用し、且つ反応溶液が硫酸及びアセトンのいずれも含まないこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
[Comparative Example 8]
Example 1 was used except that bagasse, rice straw and cedar ground products (50 g) (vibrated mill ground 150 μm mesh-passed product) were used as BM, and the reaction solution contained neither sulfuric acid nor acetone. Sugar was produced and the saccharification rate was calculated.

[比較例9]
BMとしてバガス、稲ワラ及びスギの粉砕品(50g)(振動ミル粉砕150μmメッシュ通過品)を使用し、反応溶液が硫酸及びアセトンのいずれも含まず、且つ加熱処理条件を165℃(約30分で昇温)及び圧力約0.7MPa(飽和水蒸気圧)下で15分間としたこと以外は、実施例1と同様にして糖を製造し、糖化率を算出した。
以下の表1は、実施例1〜8及び比較例1〜9における糖化率を示す。
[Comparative Example 9]
Bagasse, rice straw and cedar ground product (50 g) (product passing through vibration mill grinding 150 μm mesh) was used as BM, the reaction solution contained neither sulfuric acid nor acetone, and the heat treatment conditions were 165 ° C. (about 30 minutes) The saccharification rate was calculated in the same manner as in Example 1 except that the temperature was increased for 15 minutes under a pressure of about 0.7 MPa (saturated water vapor pressure).
Table 1 below shows saccharification rates in Examples 1 to 8 and Comparative Examples 1 to 9.

Figure 2010279305
Figure 2010279305

2.植物バイオマスからのエタノールの製造
以下の実施例9並びに比較例10及び11においては、植物バイオマスからエタノールを製造し、エタノール量を定量した。
2. Production of ethanol from plant biomass In Example 9 and Comparative Examples 10 and 11 below, ethanol was produced from plant biomass and the amount of ethanol was quantified.

[実施例9]
(1)酵母菌株の調製
1Lの溶液に対して、所定の濃度になるように以下の各試薬を添加し、液体培地を調製した[yeast extract(Extract yeast Dried(特級:ナカライテスク(株)製)):0.2g/L、グルコース(特級:ナカライテスク(株)製):20g/L、KH2PO4(特級:ナカライテスク(株)製):0.2g/L、MgSO4・7H2O(特級:ナカライテスク(株)製):0.5g/L、NaCl(特級:ナカライテスク(株)製):0.1g/L、CaCl2(特級:ナカライテスク(株)製):0.1g/L、(NH4)2SO4(特級:ナカライテスク(株)製):0.5g/L及び以下に示すミネラル液:1.0ml/L]。
[Example 9]
(1) Preparation of yeast strain
Each of the following reagents was added to 1 L of the solution to a predetermined concentration to prepare a liquid medium [yeast extract (Extract yeast Dried (special grade: manufactured by Nacalai Tesque)): 0.2 g / L , Glucose (special grade: manufactured by Nacalai Tesque): 20 g / L, KH 2 PO 4 (special grade: manufactured by Nacalai Tesque): 0.2 g / L, MgSO 4 · 7H 2 O (special grade: Nacalai Tesque) )): 0.5 g / L, NaCl (special grade: manufactured by Nacalai Tesque): 0.1 g / L, CaCl 2 (special grade: manufactured by Nacalai Tesque): 0.1 g / L, (NH 4 ) 2 SO 4 (special grade: manufactured by Nacalai Tesque Co., Ltd.): 0.5 g / L and the following mineral liquid: 1.0 ml / L].

次いで、ワイン酵母(Saccharomyces cerevisiae, OC-2)株を当該液体培地に播種し、前培養を行った。前培養は30℃及び静止培養の条件下で行った。なお、ワイン酵母(Saccharomyces cerevisiae, OC-2)株は、独立行政法人 製品評価技術基盤機構より入手した。前培養後、酵母を25℃、4000rpmで5分間の遠心分離に供した。遠心分離後、滅菌水を加えて酵母懸濁液を調製した。   Subsequently, wine yeast (Saccharomyces cerevisiae, OC-2) strain was inoculated on the liquid medium and precultured. Pre-culture was performed under the conditions of 30 ° C. and stationary culture. The wine yeast (Saccharomyces cerevisiae, OC-2) strain was obtained from National Institute of Technology and Evaluation. After preculture, the yeast was subjected to centrifugation at 25 ° C. and 4000 rpm for 5 minutes. After centrifugation, sterile water was added to prepare a yeast suspension.

(2)ミネラル液の調製
ミネラル液は、1Lの溶液に対して、所定の濃度になるように以下の各試薬を添加し、調製した[H3BO4(特級:ナカライテスク(株)製):0.5g/L、CuSO4・5H2O(排水試験用(10w/v%):和光純薬製):0.04g/L、KI(特級:ナカライテスク(株)製):0.1g/L、FeCl3・6H2O(特級:ナカライテスク(株)製):0.2g/L、MnSO4・5H2O(特級:ナカライテスク(株)製):0.4g/L、ZnSO4・7H2O(特級:KANTO Chemical製):0.4g/L及びNa2MoO4・2H2O(特級:ナカライテスク(株)製):0.2g/L]。
(2) Preparation of mineral liquid Mineral liquid was prepared by adding the following reagents to a predetermined concentration to 1 L of solution [H 3 BO 4 (special grade: manufactured by Nacalai Tesque) : 0.5g / L, CuSO 4 · 5H 2 O (for drainage test (10w / v%): Wako Pure Chemical Industries): 0.04g / L, KI (special grade: manufactured by Nacalai Tesque): 0.1g / L , FeCl 3 · 6H 2 O (special grade: made by Nacalai Tesque): 0.2 g / L, MnSO 4 · 5H 2 O (special grade: made by Nacalai Tesque): 0.4 g / L, ZnSO 4 · 7H 2 O (special grade: manufactured by KANTO Chemical): 0.4 g / L and Na 2 MoO 4 · 2H 2 O (special grade: manufactured by Nacalai Tesque): 0.2 g / L].

(3)糖化後反応液(本発明における「糖化処理物」に相当)の調製
(i)糖化後反応液1の調製
BMとしてユーカリ粉砕品(50g)(振動ミル粉砕150μmメッシュ通過品)をビーカーに採取した。次いで、反応溶液(450g)を加えて、総重量が500gになるように調整した。反応溶液は、当該反応溶液(450g)に対して0.1重量%の硫酸と5重量%のアセトンとを含む。
(3) Preparation of reaction solution after saccharification (corresponding to “saccharified product” in the present invention)
(i) Preparation of reaction solution 1 after saccharification
Eucalyptus ground product (50 g) (vibrated mill ground 150 μm mesh product) was collected in a beaker as BM. Next, the reaction solution (450 g) was added to adjust the total weight to 500 g. The reaction solution contains 0.1 wt% sulfuric acid and 5 wt% acetone with respect to the reaction solution (450 g).

さらに、当該混合物を高温高圧容器(SUS製、1L)に入れ、撹拌しながら180℃まで加熱し(約30分で昇温)、圧力約1MPa(飽和水蒸気圧)下で15分間維持した(前処理)。加熱処理後、直ちに混合物を室温まで水冷した。
水冷後、混合物のpHを測定し、10%アンモニア水(特級、和光純薬製)で中和し、pH=5に調整した。
Further, the mixture was placed in a high-temperature and high-pressure vessel (made of SUS, 1 L), heated to 180 ° C. with stirring (heated up in about 30 minutes), and maintained at a pressure of about 1 MPa (saturated water vapor pressure) for 15 minutes (previous processing). Immediately after the heat treatment, the mixture was cooled to room temperature with water.
After cooling with water, the pH of the mixture was measured, neutralized with 10% aqueous ammonia (special grade, manufactured by Wako Pure Chemical Industries), and adjusted to pH = 5.

次いで、得られた前処理後の固液混合物(20g)をファルコンチューブに採取し、乾物重量で1gのBMに対してセルラーゼ(CBH、EG)を0.25ml及びセルラーゼ(BGL)を0.05ml加えた。これらセルラーゼの合計のユニットは、10FPUであった。   Next, the obtained solid-liquid mixture (20 g) after the pretreatment was collected in a falcon tube, and 0.25 ml of cellulase (CBH, EG) and 0.05 ml of cellulase (BGL) were added to 1 g of BM by dry weight. . The total unit of these cellulases was 10 FPU.

さらに、緩衝液として酢酸ナトリウム緩衝液(pH5.0)を使用し、上記混合物に最終濃度が50mMになるように添加した。
当該混合物を振盪機内で、1分間に120回転の速度で振盪しながら45℃で72時間反応させた。
反応後、得られた反応液を以下「糖化後反応液1」という。
Further, sodium acetate buffer (pH 5.0) was used as a buffer, and added to the above mixture so that the final concentration was 50 mM.
The mixture was reacted in a shaker at 45 ° C. for 72 hours with shaking at a speed of 120 revolutions per minute.
The reaction solution obtained after the reaction is hereinafter referred to as “post-saccharification reaction solution 1”.

(ii)糖化後反応液2の調製
BMとしてユーカリ粉砕品(50g)(振動ミル粉砕150μmメッシュ通過品)をビーカーに採取した。次いで、反応溶液(450g)を加えて、総重量が500gになるように調整した。反応溶液は、当該反応溶液(450g)に対して0.1重量%のリン酸と5重量%のアセトンとを含む。
(ii) Preparation of reaction solution 2 after saccharification
Eucalyptus ground product (50 g) (vibrated mill ground 150 μm mesh product) was collected in a beaker as BM. Next, the reaction solution (450 g) was added to adjust the total weight to 500 g. The reaction solution contains 0.1 wt% phosphoric acid and 5 wt% acetone with respect to the reaction solution (450 g).

さらに、当該混合物を高温高圧容器(SUS製、1L)に入れ、撹拌しながら180℃まで加熱し(約30分で昇温)、圧力約1MPa(飽和水蒸気圧)下で15分間維持した(前処理)。加熱処理後、直ちに混合物を室温まで水冷した。
水冷後、混合物のpHを測定し、1N KOH(特級、ナカライテスク(株)製)で中和し、pH=5に調整した。
Further, the mixture was placed in a high-temperature and high-pressure vessel (made of SUS, 1 L), heated to 180 ° C. with stirring (heated up in about 30 minutes), and maintained at a pressure of about 1 MPa (saturated water vapor pressure) for 15 minutes (previous processing). Immediately after the heat treatment, the mixture was cooled to room temperature with water.
After cooling with water, the pH of the mixture was measured, neutralized with 1N KOH (special grade, manufactured by Nacalai Tesque), and adjusted to pH = 5.

次いで、得られた前処理後の固液混合物(20g)をファルコンチューブに採取し、乾物重量で1gのBMに対してセルラーゼ(CBH、EG)を0.25ml及びセルラーゼ(BGL)を0.05ml加えた。これらセルラーゼの合計のユニットは、10FPUであった。   Next, the obtained solid-liquid mixture (20 g) after the pretreatment was collected in a falcon tube, and 0.25 ml of cellulase (CBH, EG) and 0.05 ml of cellulase (BGL) were added to 1 g of BM by dry weight. . The total unit of these cellulases was 10 FPU.

さらに、緩衝液として酢酸ナトリウム緩衝液(pH5.0)を使用し、上記混合物に最終濃度が50mMになるように添加した。
当該混合物を振盪機内で、1分間に120回転の速度で振盪しながら45℃で72時間反応させた。
反応後、得られた反応液を以下「糖化後反応液2」という。
Further, sodium acetate buffer (pH 5.0) was used as a buffer, and added to the above mixture so that the final concentration was 50 mM.
The mixture was reacted in a shaker at 45 ° C. for 72 hours with shaking at a speed of 120 revolutions per minute.
The reaction solution obtained after the reaction is hereinafter referred to as “post-saccharification reaction solution 2”.

(4)発酵用培養液の調製
発酵用培養液は、1Lの溶液に対して、yeast extract:0.2g/L、無機塩をMgSO4・7H2O:0.5g/L、NaCl:0.1g/L、CaCl2:0.1g/L、ミネラル液:1.0ml/Lになるように各試薬を添加し、調製した。
(4) Preparation of fermentation broth For 1 L of the culture broth, the yeast extract was 0.2 g / L, the inorganic salt was MgSO 4 · 7H 2 O: 0.5 g / L, NaCl: 0.1 g / L Each reagent was added to prepare L, CaCl 2 : 0.1 g / L, and mineral liquid: 1.0 ml / L.

(5)発酵
上記(1)で調製した酵母懸濁液を、発酵用培養液の濁度がOD600=2になるように発酵用培養液に加えた。さらに糖化後反応液1及び2を混合し(糖化後反応液1と2の比=1:1)、最終濃度が10%(w/v)のBMになるように当該発酵用培養液に加えた。なお、当該混合物は、1N NaOHでpH5.0になるように調製した。
(5) Fermentation The yeast suspension prepared in (1) above was added to the fermentation broth so that the turbidity of the fermentation broth was OD 600 = 2. After mixing saccharification reaction liquids 1 and 2 (ratio of saccharification reaction liquids 1 and 2 = 1: 1), add to the fermentation broth so that the final concentration is 10% (w / v) BM. It was. The mixture was prepared to pH 5.0 with 1N NaOH.

次いで、混合物を1分間に120回転の速度における30℃での振盪培養に供し、発酵を行った。2日間の発酵後、発酵培養物中のエタノール量をHPLCにて定量し、エタノール変換率を算出した。エタノール変換率(%)は、式:

Figure 2010279305
により算出された。 The mixture was then subjected to shaking culture at 30 ° C. at a speed of 120 revolutions per minute for fermentation. After 2 days of fermentation, the amount of ethanol in the fermentation culture was quantified by HPLC, and the ethanol conversion rate was calculated. The ethanol conversion rate (%) is calculated using the formula:
Figure 2010279305
It was calculated by.

[比較例10]
本比較例(陽性対照)では、実施例9の糖化後反応液1における調製において、中和時に10%アンモニア水に代えて1N NaOHで中和したこと以外は同様に調製した糖化後反応液を使用した。
[Comparative Example 10]
In this comparative example (positive control), the reaction solution after saccharification prepared in the same manner as in Example 9 except that it was neutralized with 1N NaOH instead of 10% ammonia water during the preparation in the reaction solution 1 after saccharification. used.

また、実施例9の(5)発酵で使用する発酵用培養液に(NH4)2SO4:0.6g/L及びKH2PO4:0.6g/Lを加えたものを使用して発酵を行い、同様にエタノール量を定量し、エタノール変換率を算出した。 In addition, fermentation was performed using the fermentation broth used in (5) fermentation of Example 9 with (NH 4 ) 2 SO 4 : 0.6 g / L and KH 2 PO 4 : 0.6 g / L. The amount of ethanol was quantified in the same manner, and the ethanol conversion rate was calculated.

[比較例11]
本比較例(陰性対照)では、実施例9の(5)発酵で使用する発酵用培養液に(NH4)2SO4及びKH2PO4を加えないこと以外は、比較例10と同様にして発酵を行い、エタノール量を定量し、エタノール変換率を算出した。
[Comparative Example 11]
In this comparative example (negative control), the same procedure as in Comparative Example 10 was performed except that (NH 4 ) 2 SO 4 and KH 2 PO 4 were not added to the fermentation broth used in the fermentation of Example 9 (5). The amount of ethanol was quantified and the ethanol conversion rate was calculated.

実施例9並びに比較例10及び11の結果として、エタノール生成量は、それぞれ14.65g/L(実施例9)、14.25g/L(比較例10)及び0g/L(比較例11)であった。また、エタノール変換率は、それぞれ68%(実施例9)、65%(比較例10)及び0%(比較例11)であった。   As a result of Example 9 and Comparative Examples 10 and 11, the amount of ethanol produced was 14.65 g / L (Example 9), 14.25 g / L (Comparative Example 10) and 0 g / L (Comparative Example 11), respectively. . The ethanol conversion rates were 68% (Example 9), 65% (Comparative Example 10), and 0% (Comparative Example 11), respectively.

Claims (26)

植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、水熱処理に供する工程を含む、植物バイオマス処理方法。   A plant biomass treatment method comprising a step of immersing a plant biomass in a solution containing a water-soluble organic solvent and an inorganic acid and subjecting the plant biomass to hydrothermal treatment. 前記水溶性有機溶媒の含有割合が1〜5重量%であることを特徴とする、請求項1記載の植物バイオマス処理方法。   The plant biomass treatment method according to claim 1, wherein a content ratio of the water-soluble organic solvent is 1 to 5% by weight. 前記水溶性有機溶媒がアセトン又はエタノールであることを特徴とする、請求項1又は2記載の植物バイオマス処理方法。   The plant biomass treatment method according to claim 1 or 2, wherein the water-soluble organic solvent is acetone or ethanol. 前記無機酸の含有割合が0.1〜0.3重量%であることを特徴とする、請求項1〜3のいずれか1項記載の植物バイオマス処理方法。   The plant biomass treatment method according to any one of claims 1 to 3, wherein a content ratio of the inorganic acid is 0.1 to 0.3% by weight. 前記無機酸が硫酸又はリン酸であることを特徴とする、請求項1〜4のいずれか1項記載の植物バイオマス処理方法。   The plant biomass treatment method according to any one of claims 1 to 4, wherein the inorganic acid is sulfuric acid or phosphoric acid. 前記水熱処理を温度140〜240℃及び圧力0.1〜4MPaの条件下で行うことを特徴とする、請求項1〜5のいずれか1項記載の植物バイオマス処理方法。   The plant biomass treatment method according to any one of claims 1 to 5, wherein the hydrothermal treatment is performed under conditions of a temperature of 140 to 240 ° C and a pressure of 0.1 to 4 MPa. 前記水熱処理工程と同時又は後に、前記水溶性有機溶媒を蒸気として回収する工程を含むことを特徴とする、請求項1〜6のいずれか1項記載の植物バイオマス処理方法。   The plant biomass treatment method according to any one of claims 1 to 6, further comprising a step of recovering the water-soluble organic solvent as a vapor simultaneously with or after the hydrothermal treatment step. 前記水熱処理工程後に、前記無機酸をアルカリ溶液により中和する工程を含むことを特徴とする、請求項1〜7のいずれか1項記載の植物バイオマス処理方法。   The plant biomass treatment method according to any one of claims 1 to 7, further comprising a step of neutralizing the inorganic acid with an alkaline solution after the hydrothermal treatment step. 前記アルカリ溶液が水酸化ナトリウム、アンモニア又は水酸化カリウムであることを特徴とする、請求項8記載の植物バイオマス処理方法。   The plant biomass treatment method according to claim 8, wherein the alkaline solution is sodium hydroxide, ammonia, or potassium hydroxide. 植物バイオマスを水溶性有機溶媒と無機酸とを含む溶液に浸漬し、水熱処理に供する工程と、
水熱処理物を酵素と接触させ、糖化処理に供する工程と、
を含む、糖の製造方法。
Immersing plant biomass in a solution containing a water-soluble organic solvent and an inorganic acid, and subjecting the biomass to hydrothermal treatment;
Contacting the hydrothermally treated product with an enzyme and subjecting it to a saccharification treatment;
A method for producing sugar, comprising:
前記水溶性有機溶媒の含有割合が1〜5重量%であることを特徴とする、請求項10記載の糖の製造方法。   The method for producing a saccharide according to claim 10, wherein the content of the water-soluble organic solvent is 1 to 5% by weight. 前記水溶性有機溶媒がアセトン又はエタノールであることを特徴とする、請求項10又は11記載の糖の製造方法。   The method for producing a sugar according to claim 10 or 11, wherein the water-soluble organic solvent is acetone or ethanol. 前記無機酸の含有割合が0.1〜0.3重量%であることを特徴とする、請求項10〜12のいずれか1項記載の糖の製造方法。   The method for producing sugar according to any one of claims 10 to 12, wherein a content ratio of the inorganic acid is 0.1 to 0.3% by weight. 前記無機酸が硫酸又はリン酸であることを特徴とする、請求項10〜13のいずれか1項記載の糖の製造方法。   The method for producing a saccharide according to any one of claims 10 to 13, wherein the inorganic acid is sulfuric acid or phosphoric acid. 前記水熱処理を温度140〜240℃及び圧力0.1〜4MPaの条件下で行うことを特徴とする、請求項10〜14のいずれか1項記載の糖の製造方法。   The method for producing sugar according to any one of claims 10 to 14, wherein the hydrothermal treatment is performed under conditions of a temperature of 140 to 240 ° C and a pressure of 0.1 to 4 MPa. 前記酵素がセルラーゼであることを特徴とする、請求項10〜15のいずれか1項記載の糖の製造方法。   The method for producing sugar according to any one of claims 10 to 15, wherein the enzyme is cellulase. 前記水熱処理工程と同時又は後に、前記水溶性有機溶媒を蒸気として回収する工程を含むことを特徴とする、請求項10〜16のいずれか1項記載の糖の製造方法。   The method for producing sugar according to any one of claims 10 to 16, comprising a step of recovering the water-soluble organic solvent as a vapor simultaneously with or after the hydrothermal treatment step. 前記水熱処理工程後に、前記無機酸をアルカリ溶液により中和する工程を含むことを特徴とする、請求項10〜17のいずれか1項記載の糖の製造方法。   The method for producing sugar according to any one of claims 10 to 17, further comprising a step of neutralizing the inorganic acid with an alkaline solution after the hydrothermal treatment step. 前記アルカリ溶液が水酸化ナトリウム、アンモニア又は水酸化カリウムであることを特徴とする、請求項18記載の糖の製造方法。   The method for producing sugar according to claim 18, wherein the alkaline solution is sodium hydroxide, ammonia or potassium hydroxide. 植物バイオマスを水溶性有機溶媒と硫酸及び/又はリン酸とを含む溶液に浸漬し、水熱処理に供する工程と、
水熱処理物をアンモニア及び/又は水酸化カリウムにより中和する工程と、
水熱処理物を酵素と接触させ、糖化処理に供し、酵母を発酵に供する工程と、
を含む、エタノールの製造方法。
Immersing plant biomass in a solution containing a water-soluble organic solvent and sulfuric acid and / or phosphoric acid, and subjecting the biomass to hydrothermal treatment;
Neutralizing the hydrothermally treated product with ammonia and / or potassium hydroxide;
Contacting the hydrothermally treated product with an enzyme, subjecting it to a saccharification treatment, and subjecting the yeast to fermentation;
A method for producing ethanol, comprising:
前記水溶性有機溶媒の含有割合が1〜5重量%であることを特徴とする、請求項20記載のエタノールの製造方法。   The method for producing ethanol according to claim 20, wherein the content of the water-soluble organic solvent is 1 to 5% by weight. 前記水溶性有機溶媒がアセトン又はエタノールであることを特徴とする、請求項20又は21記載のエタノールの製造方法。   The method for producing ethanol according to claim 20 or 21, wherein the water-soluble organic solvent is acetone or ethanol. 前記硫酸及び/又はリン酸の含有割合が0.1〜0.3重量%であることを特徴とする、請求項20〜22のいずれか1項記載のエタノールの製造方法。   The method for producing ethanol according to any one of claims 20 to 22, wherein a content ratio of the sulfuric acid and / or phosphoric acid is 0.1 to 0.3% by weight. 前記水熱処理を温度140〜240℃及び圧力0.1〜4MPaの条件下で行うことを特徴とする、請求項20〜23のいずれか1項記載のエタノールの製造方法。   The method for producing ethanol according to any one of claims 20 to 23, wherein the hydrothermal treatment is performed under conditions of a temperature of 140 to 240 ° C and a pressure of 0.1 to 4 MPa. 前記酵素がセルラーゼであることを特徴とする、請求項20〜24のいずれか1項記載のエタノールの製造方法。   The method for producing ethanol according to any one of claims 20 to 24, wherein the enzyme is a cellulase. 前記水熱処理工程と同時又は後に、前記水溶性有機溶媒を蒸気として回収する工程を含むことを特徴とする、請求項20〜25のいずれか1項記載のエタノールの製造方法。   The method for producing ethanol according to any one of claims 20 to 25, comprising a step of recovering the water-soluble organic solvent as a vapor simultaneously with or after the hydrothermal treatment step.
JP2009135897A 2009-06-05 2009-06-05 Method for producing sugar and ethanol from vegetable biomass Pending JP2010279305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135897A JP2010279305A (en) 2009-06-05 2009-06-05 Method for producing sugar and ethanol from vegetable biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135897A JP2010279305A (en) 2009-06-05 2009-06-05 Method for producing sugar and ethanol from vegetable biomass

Publications (1)

Publication Number Publication Date
JP2010279305A true JP2010279305A (en) 2010-12-16

Family

ID=43536718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135897A Pending JP2010279305A (en) 2009-06-05 2009-06-05 Method for producing sugar and ethanol from vegetable biomass

Country Status (1)

Country Link
JP (1) JP2010279305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187099A (en) * 2011-02-21 2012-10-04 Shinshu Univ Ferulic acid bonding type saccharide and production method therefor
JP2014522895A (en) * 2011-07-09 2014-09-08 クラリアント インターナショナル リミティド A new sustainable range of sulfur dyes for textile and paper dyeing
JP2022140397A (en) * 2021-03-10 2022-09-26 インディアン オイル コーポレイション リミテッド Improved process for second generation lactic acid production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187099A (en) * 2011-02-21 2012-10-04 Shinshu Univ Ferulic acid bonding type saccharide and production method therefor
JP2014522895A (en) * 2011-07-09 2014-09-08 クラリアント インターナショナル リミティド A new sustainable range of sulfur dyes for textile and paper dyeing
US9340675B2 (en) 2011-07-09 2016-05-17 Clariant International Ltd. Sustainable range of sulfur dyes for textile and paper dyeing
JP2022140397A (en) * 2021-03-10 2022-09-26 インディアン オイル コーポレイション リミテッド Improved process for second generation lactic acid production

Similar Documents

Publication Publication Date Title
Dahnum et al. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch
Selvakumar et al. Optimization of binary acids pretreatment of corncob biomass for enhanced recovery of cellulose to produce bioethanol
CN101796247B (en) Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
WO2012029842A1 (en) Method for enzymatic saccharification of lignocellulosic biomass, and method for manufacturing ethanol from lignocellulosic biomass
Baadhe et al. Influence of dilute acid and alkali pretreatment on reducing sugar production from corncobs by crude enzymatic method: a comparative study
CN106011199B (en) Pretreatment method of crop straws
WO2013046624A1 (en) Method for producing ethanol using cellulosic biomass as starting material
JP2009125050A (en) Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
BR112017005071B1 (en) SUGAR LIQUID PRODUCTION METHOD
JP2010041923A (en) Enzymatic saccharification method and ethanol production method
US9809867B2 (en) Carbon purification of concentrated sugar streams derived from pretreated biomass
CN106574278B (en) Production of lactic acid and/or lactate from lignocellulosic material by separate saccharification and fermentation steps
JP4930650B1 (en) Method for producing ethanol from lignocellulose-containing biomass
Dai et al. Hydrogen production from acidic, alkaline, and steam-exploded Bambusa stenostachya hydrolysates in dark fermentation process
JP2012100617A (en) Enzymatic saccharification treatment method of lignocellulosic raw material
KR101039792B1 (en) Pretreatment device for fabricating of bio fuel and bio chemical material, and pretreatment process and fabricating process of bio fuel and bio chemical material using the same
JP2010279305A (en) Method for producing sugar and ethanol from vegetable biomass
CN105861592A (en) Method for pretreating lignocellulose biomass
Rajendran et al. Utilization of cellulosic biomass as a substrate for the production of bioethanol
Ali et al. Saccharification of corn cobs an agro-industrial waste by sulphuric acid for the production of monomeric sugars.
Chaudhary et al. Statistical optimization of alkaline treatment of pomegranate peel waste for bioethanol production
JP2014158437A (en) Saccharified solution of lignocellulosic biomass, and manufacturing and application method thereof
WO2011125992A1 (en) Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass
Geetha et al. Bioethanol production from paper fibre residue using diluted alkali hydrolysis and the fermentation process
Wang et al. Pretreatment of switchgrass with electrolyzed water and a two-stage method for bioethanol production