JP2010276355A - Receiver - Google Patents

Receiver Download PDF

Info

Publication number
JP2010276355A
JP2010276355A JP2009126297A JP2009126297A JP2010276355A JP 2010276355 A JP2010276355 A JP 2010276355A JP 2009126297 A JP2009126297 A JP 2009126297A JP 2009126297 A JP2009126297 A JP 2009126297A JP 2010276355 A JP2010276355 A JP 2010276355A
Authority
JP
Japan
Prior art keywords
period
signal
correlation value
tracking
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009126297A
Other languages
Japanese (ja)
Inventor
Kenta Osagawa
研太 長川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2009126297A priority Critical patent/JP2010276355A/en
Publication of JP2010276355A publication Critical patent/JP2010276355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a receiver determining the propriety of tracking, using separately obtained navigation data. <P>SOLUTION: A receiver may be applied to a GPS receiver or the like. In the receiver, a receiving means receives a satellite signal from a satellite, a frequency conversion means converts the satellite signal to an intermediate frequency, an integration means outputs an integration signal by integrating a reference signal and the converted signal, a reference signal generation means generates the reference signal of a prescribed frequency, and a tracking determination correlation value output means outputs a tracking determination correlation value that is a correlation value between integration signal and the reference signal. A prediction data obtaining means obtains prediction data of the navigation data. The tracking determination means performs comparison processing of comparing the tracking determination correlation value with the prediction data, and performs the tracking determination on the basis of the result of the comparison processing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、追尾状態を判定する受信機に関する。   The present invention relates to a receiver that determines a tracking state.

GPS(Global Positioning System)衛星から受信する衛星信号には、一般的にノイズも含まれている。受信機が衛星信号を変換して得た変換信号と、受信機自身で発信したPRNコードとの積算を行う場合において、上記衛星信号にノイズが多く含まれているとき、上記受信機は、ノイズに埋もれた信号を検出するために積算期間を長くする必要がある。   In general, a satellite signal received from a GPS (Global Positioning System) satellite includes noise. When the receiver performs integration of the converted signal obtained by converting the satellite signal and the PRN code transmitted by the receiver itself, when the satellite signal contains a lot of noise, the receiver It is necessary to lengthen the integration period in order to detect a signal buried in the signal.

なお、航法データの1ビットの周期は、PRNコード1周期(1msec)の20倍の20msecである。そのため、受信機は、航法データによるコード反転の影響を避けるために、20msec以内で積分を行わなければならず、十分な高感度化を実現することができない。   The 1-bit period of the navigation data is 20 msec, which is 20 times the PRN code 1 period (1 msec). Therefore, the receiver must perform integration within 20 msec in order to avoid the influence of code reversal due to the navigation data, and sufficient sensitivity cannot be realized.

そこで、航法データを何らかの方法で推定しデータ反転の影響を取り除くことによって、衛星信号を長時間に亘って位相積分し、GPS受信機の高感度化を図る方法も提案されている(特許文献1参照)。   Therefore, a method has been proposed in which the navigation data is estimated by some method and the influence of the data inversion is removed, thereby phase-integrating the satellite signal over a long period of time to increase the sensitivity of the GPS receiver (Patent Document 1). reference).

特許文献1のスペクトラム拡散信号受信装置では、推定した航法データから特定した位相反転情報を用いて、位相積分する。これにより、特許文献1に係るスペクトラム拡散信号受信装置は、コード反転箇所を特定することができ、コード反転の影響を回避して長期間積算を実現することができる。   In the spread spectrum signal receiving apparatus of Patent Document 1, phase integration is performed using the phase inversion information specified from the estimated navigation data. As a result, the spread spectrum signal receiving apparatus according to Patent Document 1 can specify the code inversion portion, and can achieve integration over a long period while avoiding the influence of the code inversion.

特開2005−64983号公報JP 2005-64983 A

特許文献1に係るスペクトラム拡散信号受信装置は、推定した航法データを用いて、長期間積算を実現することができるが、衛星信号の信号電力が著しく低い場合、衛星信号と、スペクトラム拡散信号受信装置で発生させている信号との位相差を検出することが不可能となり、追尾することができないという問題点がある。   The spread spectrum signal receiving apparatus according to Patent Document 1 can achieve long-term integration using the estimated navigation data, but when the signal power of the satellite signal is extremely low, the satellite signal and the spread spectrum signal receiving apparatus This makes it impossible to detect the phase difference from the signal generated in, and cannot be tracked.

ところで、複数の衛星から取得した衛星信号について、追尾しているか否かを判断すれば、どの衛星信号を用いて測位すべきかを判断することができるので、追尾することができるか否かを判断することが望まれる。特許文献1に記載のスペクトラム拡散信号受信装置は、航法データを用いて高感度化を図ることについて記載されているが、追尾判定の可否について判断することについては、記載されていない。   By the way, if it is determined whether or not the satellite signals acquired from a plurality of satellites are being tracked, it can be determined which satellite signal should be used for positioning, so whether or not tracking can be performed is determined. It is desirable to do. The spread spectrum signal receiving apparatus described in Patent Document 1 is described for achieving high sensitivity using navigation data, but is not described for determining whether or not tracking determination is possible.

本発明が解決しようとする課題としては、上記のようなものが例として挙げられる。本発明の目的は、別途取得した航法データを用いて、追尾可否の判断を行う受信機を提供することにある。   Examples of problems to be solved by the present invention include the above. An object of the present invention is to provide a receiver that determines whether or not tracking is possible using separately acquired navigation data.

請求項1に記載の発明は、受信機であって、衛星信号を受信する受信手段と、前記衛星信号を中間周波数に変換する周波数変換手段と、前記周波数変換手段によって変換された信号と、衛星を特定するための参照用信号とを積算し、積算信号を生成する積算手段と、所定周波数の基準信号を生成する基準信号生成手段と、前記積算信号と前記基準信号との相関値である追尾判定用相関値を出力する追尾判定用相関値出力手段と、航法データの予測データを取得する予測データ取得手段と、前記追尾判定用相関値と前記予測データとを比較する比較処理を行い、前記比較処理の結果に基づいて追尾判定を行う追尾判定手段と、を備えることを特徴とする。   The invention according to claim 1 is a receiver, which is a receiver for receiving a satellite signal, a frequency converter for converting the satellite signal into an intermediate frequency, a signal converted by the frequency converter, a satellite Are integrated with a reference signal for specifying the reference signal, an integration means for generating an integration signal, a reference signal generation means for generating a reference signal of a predetermined frequency, and a tracking that is a correlation value between the integration signal and the reference signal A tracking determination correlation value output means for outputting a determination correlation value, a prediction data acquisition means for acquiring prediction data of navigation data, a comparison process for comparing the tracking determination correlation value and the prediction data, and Tracking determination means for performing tracking determination based on the result of the comparison process.

受信機の概念構成図である。It is a conceptual block diagram of a receiver. 一般的なキャリアループのブロック図である。It is a block diagram of a general carrier loop. 先行技術文献のキャリアループのブロック図である。It is a block diagram of the carrier loop of a prior art document. 本願発明にかかるキャリアループのブロック図である。It is a block diagram of the carrier loop concerning this invention. ノイズがない場合における相関値の例である。It is an example of the correlation value when there is no noise. 信号電力が相対的に大きい状態における相関値の例である。It is an example of the correlation value in the state where signal power is relatively large. 信号電力が相対的に小さい状態における相関値の例である。It is an example of the correlation value in the state where signal power is relatively small. 信号電力が極端に小さい状態における相関値の例である。It is an example of the correlation value in the state where signal power is extremely small. 信号電力の変化を示すグラフである。It is a graph which shows the change of signal power. 位相差が大きい場合の相関値の例である。It is an example of a correlation value in case a phase difference is large. 第1期間及び第2期間の関係を示す図である。It is a figure which shows the relationship between a 1st period and a 2nd period. 追尾判定方法のフローチャートである。It is a flowchart of a tracking determination method. 第1期間及び第2期間の開始時期について説明する図である。It is a figure explaining the start time of a 1st period and a 2nd period.

本発明の1つの観点は、受信機であって、衛星信号を受信する受信手段と、前記衛星信号を中間周波数に変換する周波数変換手段と、前記周波数変換手段によって変換された信号と、衛星を特定するための参照用信号とを積算し、積算信号を生成する積算手段と、所定周波数の基準信号を生成する基準信号生成手段と、前記積算信号と前記基準信号との相関値である追尾判定用相関値を出力する追尾判定用相関値出力手段と、航法データの予測データを取得する予測データ取得手段と、前記追尾判定用相関値と前記予測データとを比較する比較処理を行い、前記比較処理の結果に基づいて追尾判定を行う追尾判定手段と、を備える。   One aspect of the present invention is a receiver comprising: a receiving unit that receives a satellite signal; a frequency converting unit that converts the satellite signal into an intermediate frequency; a signal converted by the frequency converting unit; Integration means for integrating a reference signal for identification and generating an integrated signal, reference signal generating means for generating a reference signal of a predetermined frequency, and tracking determination that is a correlation value between the integrated signal and the reference signal A tracking determination correlation value output means for outputting a correlation value for prediction, a prediction data acquisition means for acquiring prediction data of navigation data, and a comparison process for comparing the correlation value for tracking determination with the prediction data. Tracking determination means for performing tracking determination based on the result of the processing.

上記の受信機は、例えば、GPS受信機等に適用することができる。当該受信機は、受信手段が衛星から衛星信号を受信し、周波数変換手段が上記衛星信号を中間周波数に変換し、積算手段が参照用信号と上記変換信号とを積算することにより、積算信号を出力し、基準信号生成手段が、所定周波数の基準信号を生成し、追尾判定用相関値出力手段が積算信号と基準信号との相関値である追尾判定用相関値を出力する。予測データ取得手段は、航法データの予測データを取得する。ここでいう予測データとは、航法データを予測したデータをいう。追尾判定手段は、追尾判定用相関値と予測データとを比較する比較処理を行い、比較処理の結果に基づいて追尾判定を行う。   The above receiver can be applied to, for example, a GPS receiver. The receiver receives the satellite signal from the satellite, the frequency converting unit converts the satellite signal to an intermediate frequency, and the integrating unit integrates the reference signal and the converted signal, thereby obtaining the integrated signal. The reference signal generating means generates a reference signal having a predetermined frequency, and the tracking determination correlation value output means outputs a tracking determination correlation value that is a correlation value between the integrated signal and the reference signal. The predicted data acquisition means acquires predicted data of navigation data. The prediction data here refers to data obtained by predicting navigation data. The tracking determination means performs a comparison process that compares the correlation value for tracking determination and the prediction data, and performs a tracking determination based on the result of the comparison process.

一般的に、GPS受信機では、衛星信号がフロントエンドを介した結果、出力される中間周波数信号に対して、参照用信号に対応するPRNコードが掛け合わされ、コード成分が除去される。その信号に対して位相が90度ずれた2種類の基準信号であるローカルキャリア信号をVCO(Voltage Controlled Oscillator)で発生して掛け合わせる。これらをローパスフィルタに通した出力がI相関値、Q相関値として得られる。   In general, in a GPS receiver, as a result of the satellite signal passing through the front end, the output intermediate frequency signal is multiplied by the PRN code corresponding to the reference signal, and the code component is removed. A local carrier signal which is two kinds of reference signals whose phases are shifted by 90 degrees with respect to the signal is generated and multiplied by a VCO (Voltage Controlled Oscillator). An output obtained by passing these through a low-pass filter is obtained as an I correlation value and a Q correlation value.

GPS受信機は、上記I相関値及びQ相関値を位相比較器に通すことによって、衛星信号と基準信号との位相差を検出し、当該位相差が一定期間小さい状態の場合、追尾していると判断する。なお、上記I相関値とQ相関値を座標軸上にプロットした場合、プロットした点及び原点からなる直線と、I相関値の軸の直線とからなる角度が位相差になる。また、追尾しているとき、I相関値の符号は航法データビットに相当する。   The GPS receiver detects the phase difference between the satellite signal and the reference signal by passing the I correlation value and the Q correlation value through a phase comparator, and tracks if the phase difference is small for a certain period of time. Judge. When the I correlation value and the Q correlation value are plotted on the coordinate axis, the angle formed by the straight line consisting of the plotted point and origin and the straight line of the I correlation value axis is the phase difference. Further, when tracking, the sign of the I correlation value corresponds to a navigation data bit.

上記衛星信号の信号電力の大小や衛星信号に含まれるノイズの影響により、実際のI相関値やQ相関値に誤差が生じるため、位相差を適切に取得することはできない。ただし、位相差が小さい場合、ノイズにより実際のI相関値と異なるI相関値を算出したとしても、算出したI相関値の符号は、実際の航法データと同じになる。   Since an error occurs in the actual I correlation value or Q correlation value due to the magnitude of the signal power of the satellite signal or the influence of noise included in the satellite signal, the phase difference cannot be acquired appropriately. However, when the phase difference is small, even if an I correlation value different from the actual I correlation value is calculated due to noise, the sign of the calculated I correlation value is the same as the actual navigation data.

また、位相差が大きく、追尾できていない場合、衛星信号に含まれるノイズの影響により、誤差を含むI相関値は、実際の航法データと異なる符号になる傾向にある。   When the phase difference is large and tracking is not possible, the I correlation value including an error tends to have a code different from the actual navigation data due to the influence of noise included in the satellite signal.

このことから、本願発明に係る受信機は、上記の傾向に基づいて衛星信号から生成した積算信号と基準信号との相関値である追尾判定用相関値の符号と、外部の装置等から取得した航法データを予測したデータである予測データとを比較した結果により、追尾しているか否かを判断しているので、適切に追尾判断を行うことが可能となる。   From this, the receiver according to the present invention is obtained from the sign of the correlation value for tracking determination, which is the correlation value between the integrated signal generated from the satellite signal and the reference signal based on the above tendency, and from an external device or the like. Since it is determined whether or not tracking is performed based on a result of comparison with predicted data that is data obtained by predicting navigation data, it is possible to appropriately perform tracking determination.

上記の受信機の一態様では、前記比較処理は、所定期間である第1期間における前記予測データと、前記追尾判定用相関値との一致率に基づく結果を出力する。このように、受信機は、第1期間内における予測データと追尾判定用相関値との一致率に基づいて追尾しているか否かを判断しているので、第1期間に比してごくわずかな期間で追尾できない状態となっている場合でも、適切に追尾している状態を検出することができる。なお、第1期間は、設計により、動的に定められることが望ましい。また、一致率の閾値も設計により動的に定められるべきであるが、50%前後の場合、ランダムに計測した結果と変わらないため50%以上が望ましい(例えば、70%〜80%等)。   In one aspect of the above receiver, the comparison process outputs a result based on a matching rate between the prediction data in the first period which is a predetermined period and the tracking determination correlation value. As described above, the receiver determines whether or not the tracking is performed based on the matching rate between the prediction data and the tracking determination correlation value in the first period, so that the receiver is very small compared to the first period. Even when tracking is not possible in a long period, it is possible to detect the state of tracking properly. The first period is desirably determined dynamically by design. Further, the threshold value of the coincidence rate should be determined dynamically by design, but if it is around 50%, it is preferably 50% or more (for example, 70% to 80%, etc.) because it is not different from the result of random measurement.

上記の受信機の他の一態様では、前記比較処理は、前記第1期間に比して長い期間である第2期間の間に、前記第1期間内における前記一致率が、一致率の閾値である一致率閾値を超えた回数に基づいた結果を出力する。この場合、受信機は、ある第1期間内で受信した衛星信号の信号電力が低いことにより、追尾していないと判断してしまうことを回避することができ、ある第1期間の一致率のみで追尾状態を判断する場合に比して適切に追尾状態の判断をすることができる。   In another aspect of the above receiver, the comparison processing is performed during a second period that is longer than the first period, and the matching rate in the first period is a threshold value of a matching rate. A result based on the number of times that the matching rate threshold is exceeded is output. In this case, the receiver can avoid judging that tracking is not performed due to the low signal power of the satellite signal received within a certain first period, and only the coincidence rate of a certain first period. Thus, the tracking state can be appropriately determined as compared with the case where the tracking state is determined by.

一般的に、受信する衛星信号の電力の大きさは、受信機を搭載している移動体の位置変化や、時間変化等によりダイナミックに変動する。よって、一時期の予測データと、追尾判定用相関値の符号との比較結果だけで追尾しているか否かを判断しても判断結果に誤りがある可能性が高い。   In general, the magnitude of the power of a satellite signal to be received fluctuates dynamically due to a change in position or a change in time of a moving body equipped with a receiver. Therefore, even if it is determined whether or not the tracking is based only on the comparison result between the prediction data for one period and the code of the correlation value for tracking determination, there is a high possibility that the determination result has an error.

しかし、第1期間に比して長い期間である第2期間の間に、第1期間内における一致率が、一致率閾値を超えた回数に基づいて追尾しているか否かを判断すれば、受信機は、上述のように電力の大きさがダイナミックに変動している場合においても、適切に追尾状態の判断をすることができる。   However, if it is determined whether or not the matching rate in the first period exceeds the matching rate threshold during the second period, which is a longer period than the first period, As described above, the receiver can appropriately determine the tracking state even when the magnitude of the power fluctuates dynamically.

上記の受信機の他の一態様では、前記第2期間は、前記第1期間中の一致率が、前記一致率閾値を超えたタイミングで開始する。この場合、受信機は、第1期間中の一致率が閾値を超えたタイミングで開始することにより、追尾している状態を検出する可能性を向上させることができる。   In another aspect of the above receiver, the second period starts at a timing when the coincidence rate during the first period exceeds the coincidence rate threshold. In this case, the receiver can improve the possibility of detecting the tracking state by starting at the timing when the coincidence rate during the first period exceeds the threshold.

上記の受信機の他の一態様では、前記第1期間は、キャリアループの積算期間より短い。この場合、受信機は、追尾判定に時間がかかってしまうことを回避することができる。   In another aspect of the above receiver, the first period is shorter than a carrier loop integration period. In this case, the receiver can avoid that the tracking determination takes time.

上記の受信機の他の一態様では、前記第1期間が開始された後、当該第1期間が終了する前に別の第1期間を開始する。この場合、受信機は、並列に第1期間を設定することになり、追尾判定を行う回数が増えるので、追尾している状態を検出する可能性を向上させることができる。   In another aspect of the above receiver, after the first period starts, another first period starts before the first period ends. In this case, the receiver sets the first period in parallel, and the number of tracking determinations increases, so that the possibility of detecting the tracking state can be improved.

上記の受信機の他の一態様では、前記第2期間が開始された後、前記第2期間が終了する前に別の第2期間を開始する。この場合、受信機は、並列に第2期間を設定することになり、追尾判定を行う回数が増えるので、追尾している状態を検出する可能性を向上させることができる。   In another aspect of the above receiver, after the second period is started, another second period is started before the second period ends. In this case, the receiver sets the second period in parallel, and the number of tracking determinations increases, so that the possibility of detecting the tracking state can be improved.

以下、図面を参照して本発明の好適な実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[本願発明の受信機の概念構成]
本願発明の受信機100の概念構成を図1に示す。本実施例では、受信機100は、GPS受信機とする。受信機100は、アンテナ10、フロントエンド20、キャリアループ30、及びコードループ50を有する。アンテナ10が受信した衛星信号は、フロントエンド20で処理しやすい周波数に変換され、キャリアループ30とコードループ50に入力される。以下、フロントエンド20で変換された信号を「中間周波数信号」ともいう。本実施例の衛星信号は、GPS衛星から受信した衛星信号とする。なお、キャリアループ30やコードループ50は、測位に必要とする衛星個数分以上あるものとする。
[Conceptual configuration of receiver of the present invention]
A conceptual configuration of a receiver 100 of the present invention is shown in FIG. In this embodiment, the receiver 100 is a GPS receiver. The receiver 100 includes an antenna 10, a front end 20, a carrier loop 30, and a code loop 50. The satellite signal received by the antenna 10 is converted to a frequency that can be easily processed by the front end 20 and input to the carrier loop 30 and the code loop 50. Hereinafter, the signal converted by the front end 20 is also referred to as an “intermediate frequency signal”. The satellite signal of this embodiment is a satellite signal received from a GPS satellite. It is assumed that there are more carrier loops 30 and code loops 50 than the number of satellites required for positioning.

キャリアループ30は、衛星信号のキャリアの位相を追尾するためのものである。一方、コードループ50は衛星信号のPRNコードの位相を追尾するためのものである。両者は同時に動作し、キャリアループ30にはコードループ50の出力が接続され、余計なコード成分が除去される。   The carrier loop 30 is for tracking the phase of the carrier of the satellite signal. On the other hand, the code loop 50 is for tracking the phase of the PRN code of the satellite signal. Both operate simultaneously, and the output of the code loop 50 is connected to the carrier loop 30 to remove an extra code component.

受信機100内の積算器31は、中間周波数信号である信号S1と、コードループ50から送られてきたPRNコードC1とを積算し、その結果信号S1からコード成分が除去された信号S2が生成される。そして信号S2は、キャリアループ30へ入力される。   The accumulator 31 in the receiver 100 accumulates the signal S1, which is an intermediate frequency signal, and the PRN code C1 sent from the code loop 50, and as a result, a signal S2 in which the code component is removed from the signal S1 is generated. Is done. The signal S2 is input to the carrier loop 30.

本願発明にかかる受信機100は、キャリアループ30内で追尾しているか否かの判定である追尾判定を行い、追尾判定結果を出力することを特徴とする。以下に、一般的なキャリアループの構成や先行技術文献1のスペクトラム拡散信号受信装置のキャリアループの構成について説明した後に、本願発明にかかるキャリアループ30の構成について説明する。   The receiver 100 according to the present invention is characterized in that it performs a tracking determination that is a determination as to whether tracking is performed within the carrier loop 30 and outputs a tracking determination result. Below, after explaining the structure of a general carrier loop and the structure of the carrier loop of the spread spectrum signal receiving apparatus of Prior Art Document 1, the structure of the carrier loop 30 according to the present invention will be described.

[一般的なキャリアループ等の構成]
最初に、一般的なキャリアループであるキャリアループ300の構成を図2に示す。なお、キャリアループ300は、コスタスループで実装されている。
[General carrier loop configuration]
First, FIG. 2 shows a configuration of a carrier loop 300 that is a general carrier loop. The carrier loop 300 is implemented as a Costas loop.

キャリアループ300は、積算器32及び33と、ローパスフィルタ34及び35と、位相比較器36と、ループフィルタ37と、VCO(Voltage Controlled Oscillator)38と、π/2移相器39とを有する。   The carrier loop 300 includes integrators 32 and 33, low-pass filters 34 and 35, a phase comparator 36, a loop filter 37, a VCO (Voltage Controlled Oscillator) 38, and a π / 2 phase shifter 39.

キャリアループ300では、積算器31から出力された信号S2が積算器32及び33へ入力される。   In the carrier loop 300, the signal S <b> 2 output from the integrator 31 is input to the integrators 32 and 33.

上記積算器32には、VCO38で発生したローカルキャリア信号である信号LS1が入力される。また、VCO38で発生した信号LS1がπ/2移相器39でπ/2遅延され、当該遅延されたローカルキャリア信号である信号LS2が積算器33へ入力される。   The integrator 32 receives a signal LS1 that is a local carrier signal generated by the VCO 38. Further, the signal LS1 generated by the VCO 38 is delayed by π / 2 by the π / 2 phase shifter 39, and the signal LS2, which is the delayed local carrier signal, is input to the integrator 33.

積算器32では、信号S2と信号LS1とが積算される。また、積算器33においてπ/2移相器39で遅延された信号LS2と、信号S2とが積算される。   In the integrator 32, the signal S2 and the signal LS1 are integrated. Further, in the integrator 33, the signal LS2 delayed by the π / 2 phase shifter 39 and the signal S2 are integrated.

上記の積算器32の出力結果をローパスフィルタ34で処理した結果として、信号S2と信号LS1との相関値であるI相関値が得られる。また、上記の積算器33の出力結果をローパスフィルタ35で処理した結果として、信号S2と信号LS2との相関値であるQ相関値が得られる。そして、I相関値及びQ相関値は、位相比較器36へ入力される。   As a result of processing the output result of the integrator 32 by the low pass filter 34, an I correlation value which is a correlation value between the signal S2 and the signal LS1 is obtained. Further, as a result of processing the output result of the integrator 33 by the low-pass filter 35, a Q correlation value which is a correlation value between the signal S2 and the signal LS2 is obtained. Then, the I correlation value and the Q correlation value are input to the phase comparator 36.

位相比較器36は、I相関値及びQ相関値に基づいて信号S2と信号LS1との位相差(当該位相差を以下、単に「位相差」とも呼ぶ)を検出し、この位相差をループフィルタ37を介してVCO38へ供給する。これにより、VCO38が制御されてVCO38からの出力される信号LS1の位相が信号S2に同期するようになる。I相関値及びQ相関値を用いて位相差を検出する方法については、後述する。   The phase comparator 36 detects a phase difference between the signal S2 and the signal LS1 based on the I correlation value and the Q correlation value (hereinafter, the phase difference is also simply referred to as “phase difference”), and uses the phase difference as a loop filter. 37 to the VCO 38. Thereby, the VCO 38 is controlled so that the phase of the signal LS1 output from the VCO 38 is synchronized with the signal S2. A method for detecting the phase difference using the I correlation value and the Q correlation value will be described later.

キャリアループの目的はローカルキャリアの位相を制御してQ相関値を0にすることであり、それは衛星信号である信号S2とローカルキャリア信号である信号LS2との位相差を0にすることに相当する。位相差がほぼ0のとき、I相関値の符号は航法データのビットに相当する。位相比較器36で、Q相関値だけでなくI相関値も利用している理由は、I相関値を利用して未知の航法データの影響を取り除き、単純な正弦(sin)波同士の積算に置き換えるためである。VCO38から出力される信号LS2と、信号S2との位相差が一定期間に渡って十分小さい状態を、「追尾」していると言う。   The purpose of the carrier loop is to set the Q correlation value to 0 by controlling the phase of the local carrier, which corresponds to setting the phase difference between the signal S2 as the satellite signal and the signal LS2 as the local carrier signal to 0. To do. When the phase difference is approximately 0, the sign of the I correlation value corresponds to a bit of navigation data. The reason why the phase comparator 36 uses not only the Q correlation value but also the I correlation value is to remove the influence of unknown navigation data using the I correlation value and to integrate simple sine waves. This is to replace it. A state where the phase difference between the signal LS2 output from the VCO 38 and the signal S2 is sufficiently small over a certain period is said to be “tracking”.

次に、特許文献1のスペクトラム拡散信号受信装置内のキャリアループであるキャリアループ400の構成を図3に示す。図2に示した一般的なキャリアループ300と同一の構成要素には同一の符号を付し、その説明を省略する。   Next, FIG. 3 shows a configuration of a carrier loop 400 which is a carrier loop in the spread spectrum signal receiving apparatus of Patent Document 1. The same components as those of the general carrier loop 300 shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

キャリアループ400は、I相関値を使用しない代わりに、予測した航法データ(以下、「予測航法データ」とも呼ぶ)を用いる構成となる。ここでいう予測航法データの例として、過去に取得した航法データを所定の正規化処理した信号等がある。この場合、キャリアループ400では、予測航法データからI相関値を予測し得るため、従来に比して弱い信号でも追尾することが可能となる。   The carrier loop 400 is configured to use predicted navigation data (hereinafter also referred to as “predicted navigation data”) instead of not using the I correlation value. As an example of the predicted navigation data here, there is a signal obtained by performing a predetermined normalization process on the navigation data acquired in the past. In this case, in the carrier loop 400, the I correlation value can be predicted from the predicted navigation data, so that it is possible to track even a weak signal compared to the conventional case.

[本願発明のキャリアループの構成]
次に、本願発明のキャリアループ30の構成について図4に示す。図2に示す一般的なコスタスループ300や図3に示す特許文献1のキャリアループ400と同一の構成要素には同一の符号を付し、その説明を省略する。
[Configuration of carrier loop of the present invention]
Next, the configuration of the carrier loop 30 of the present invention is shown in FIG. The same components as those of the general Costas loop 300 shown in FIG. 2 and the carrier loop 400 of Patent Document 1 shown in FIG.

キャリアループ30は、上述のコスタスループ300に判定器40を加えており、外部サーバ等から予測航法データを取得している。   The carrier loop 30 has a determination unit 40 added to the above-described Costas loop 300, and obtains predicted navigation data from an external server or the like.

判定器40は、入力されたI相関値の符号と予測航法データとを比較して、当該比較結果に基づいて追尾しているか否かの結果を出力する。なお、判定器40の出力結果は、受信機100が有する測位計算手段(図示しない)へ送信する。測位計算手段は、判定器40が出力した結果を参照し、追尾しているのであれば、追尾しているキャリアループ30に対応する衛星の衛星信号を用いて測位を行う。このように、判定器40が追尾しているか否かの結果を出力することにより、受信機100は、測位に用いる衛星信号を特定することができる。   The determiner 40 compares the code of the input I correlation value with the predicted navigation data, and outputs a result indicating whether tracking is performed based on the comparison result. Note that the output result of the determiner 40 is transmitted to positioning calculation means (not shown) of the receiver 100. The positioning calculation means refers to the result output from the determiner 40 and, if tracking is performed, performs positioning using the satellite signal of the satellite corresponding to the carrier loop 30 being tracked. Thus, by outputting the result of whether or not the determiner 40 is tracking, the receiver 100 can specify the satellite signal used for positioning.

本実施例では、アンテナ10が、受信手段として機能し、フロントエンド20が周波数変換手段として機能し、積算器32及びLPF34が追尾判定用相関値出力手段として機能し、判定器40が追尾判定手段として機能する。また、信号S1が中間周波数信号として機能し、PRNコードC1が参照用信号として機能し、信号S2が積算信号として機能し、信号LS1が基準信号として機能し、予測航法データが予測データとして機能し、I相関値が追尾判定用相関値として機能する。   In the present embodiment, the antenna 10 functions as a receiving unit, the front end 20 functions as a frequency converting unit, the integrator 32 and the LPF 34 function as a tracking determination correlation value output unit, and the determination unit 40 includes a tracking determination unit. Function as. Further, the signal S1 functions as an intermediate frequency signal, the PRN code C1 functions as a reference signal, the signal S2 functions as an integrated signal, the signal LS1 functions as a reference signal, and the predicted navigation data functions as predicted data. , I correlation value functions as a tracking determination correlation value.

以下に、キャリアループ300等で行うI相関値及びQ相関値を用いて位相差を検出する方法を説明した後に、本願発明の特徴部分について説明する。   Hereinafter, after describing a method of detecting a phase difference using an I correlation value and a Q correlation value performed in the carrier loop 300 or the like, a characteristic part of the present invention will be described.

[相関値を用いて位相差を検出する方法]
キャリアループ300等が行う、I相関値及びQ相関値を用いて位相差を検出する方法を説明する。ノイズのない純粋な衛星信号を受信している場合、I相関値及びQ相関値を座標軸上にプロットすると図5のようになる。図5のグラフは、横軸をI相関値の軸(以下、「I軸」とも呼ぶ)とし、縦軸をQ相関値の軸(以下、「Q軸」とも呼ぶ)としている。プロットした点(点P1又は点P2)と原点とからなる直線と、I相関値の軸とからなる角度(角度Ang1又は角度Ang2)は、信号S2と信号LS1との位相差に相当する。すなわち、I相関値及びQ相関値が分かれば位相差が分かる。位相比較器36はこれを利用して位相差を検出している。また点P1と原点との距離である距離D1、点P2と原点との距離である距離D2は、信号電力によって決まり、信号電力が大きくなるほど距離D1、D2は長くなる。
[Method of detecting phase difference using correlation value]
A method for detecting the phase difference using the I correlation value and the Q correlation value performed by the carrier loop 300 and the like will be described. When a pure satellite signal without noise is received, the I correlation value and the Q correlation value are plotted on the coordinate axes as shown in FIG. In the graph of FIG. 5, the horizontal axis is an I correlation value axis (hereinafter also referred to as “I axis”), and the vertical axis is a Q correlation value axis (hereinafter also referred to as “Q axis”). An angle (angle Ang1 or angle Ang2) formed by a straight line composed of the plotted point (point P1 or point P2) and the origin and the axis of the I correlation value corresponds to a phase difference between the signal S2 and the signal LS1. That is, if the I correlation value and the Q correlation value are known, the phase difference can be known. The phase comparator 36 uses this to detect the phase difference. The distance D1 that is the distance between the point P1 and the origin and the distance D2 that is the distance between the point P2 and the origin are determined by the signal power, and the distances D1 and D2 become longer as the signal power increases.

I軸のプラスとマイナスの両方に点がプロットされている理由は、掛け合わされている未知の航法データによるためである。航法データが1のときはI>0、−1のときはI<0となる。追尾できている状態では、I相関値の符号を見ることにより航法データを検出することが可能となる。   The reason why the points are plotted on both the positive and negative of the I axis is due to the unknown navigation data being multiplied. When navigation data is 1, I> 0, and when −1, I <0. In the state where tracking is possible, the navigation data can be detected by looking at the sign of the I correlation value.

以下、図5のようなノイズのない衛星信号によるI>0の相関値を「正の真値」、I<0の相関値を「負の真値」と表現する。   Hereinafter, a correlation value of I> 0 by a satellite signal without noise as shown in FIG. 5 is expressed as “positive true value”, and a correlation value of I <0 is expressed as “negative true value”.

実際には処理する信号にはノイズが載っているため、図6に示すように、相関値は真値の周りに分布することになる(例えば、点P10や点P11等)。この分布の広がりの大きさはノイズ電力によって決まるものであり、受信機の系とLPFの設計によって決まると考えてよい。ノイズ電力が大きいほど分布の広がりは大きくなる。   Actually, since the signal to be processed includes noise, the correlation values are distributed around the true value as shown in FIG. 6 (for example, point P10, point P11, etc.). The magnitude of the spread of this distribution is determined by the noise power, and may be determined by the design of the receiver system and the LPF. The greater the noise power, the greater the distribution spread.

前述したように真値と原点との距離は信号電力によって決まるため、ノイズ電力と信号電力の相対的な関係から、I、Q相関値分布の特徴を大きく次の3つの状態に分けて考えることができる。   As described above, since the distance between the true value and the origin is determined by the signal power, the characteristics of the I and Q correlation value distributions are roughly divided into the following three states based on the relative relationship between the noise power and the signal power. Can do.

(状態A)信号電力が相対的に大きい状態
(状態B)信号電力が相対的に小さい状態
(状態C)信号電力が極端に小さい状態
状態Aの場合、図6に示すように、相関値が分布する。このような状態では、キャリアループ300を搭載した一般的なGPS受信機は、I相関値を参照すれば、そのプロットが正の真値、負の真値のどちらに対応したものであるか判断できるため、分布の中心から位相差を検出することが可能である。
(State A) State in which signal power is relatively large (State B) State in which signal power is relatively small (State C) State in which signal power is extremely small In state A, as shown in FIG. Distributed. In such a state, a general GPS receiver equipped with the carrier loop 300 refers to the I correlation value to determine whether the plot corresponds to a positive true value or a negative true value. Therefore, it is possible to detect the phase difference from the center of the distribution.

状態Bの場合、相関値は図7のように分布する。正の真値に対応した相関値も、I<0のエリアに分布してしまっている(例えば、点P12等)。その逆も同様である。こうした状況では、I相関値を見ても正の真値、負の真値どちらに対応したものなのかが判断できないため、上記の一般的なGPS受信機は、位相差を検出することが困難となる。   In the case of state B, the correlation values are distributed as shown in FIG. Correlation values corresponding to positive true values are also distributed in an area where I <0 (for example, point P12). The reverse is also true. In such a situation, it is difficult to detect the phase difference with the above general GPS receiver because it is impossible to determine whether the I correlation value corresponds to a positive true value or a negative true value. It becomes.

しかし、GPS受信機が、各プロットの対応する真値の正負についての情報を取得すれば、状態Bでも分布の中心を検出できるため、位相差を検出することが可能となる。   However, if the GPS receiver acquires information about the positive / negative of the corresponding true value of each plot, the center of the distribution can be detected even in the state B, so that the phase difference can be detected.

対応する真値の正負を知る方法として、航法データを何らかの方法で予測し、プロットの正負をI相関値から判定するのではなく、予測した航法データビットから判定することが、特許文献1で提案されている。予測する方法としては、航法データの繰り返しを利用した予測、外部サーバからの取得による予測等が提案されている。これにより、特許文献1に記載のスペクトラム拡散信号受信装置は、高感度化を図っている。   As a method of knowing whether the corresponding true value is positive or negative, Patent Document 1 proposes that the navigation data is predicted by some method, and the positive / negative of the plot is not determined from the I correlation value but from the predicted navigation data bit. Has been. As a prediction method, prediction using repetition of navigation data, prediction by acquisition from an external server, and the like have been proposed. As a result, the spread spectrum signal receiving apparatus described in Patent Document 1 is designed to be highly sensitive.

状態Cでは、相関値は、図8のように分布する。このような状態では、たとえ対応する真値の正負が分かったとしても、信号電力が極端に弱いことより、点P1又は点P2が原点に極端に近い位置にプロットされることとなる。従って、図5に示した角度Ang1又は角度Ang2を適切に算出することが困難となり、一般的なGPS受信機や特許文献1に記載のスペクトラム拡散信号受信装置は、分布の中心から位相差を正しく検出することは、困難となる。   In state C, the correlation values are distributed as shown in FIG. In such a state, even if the corresponding true value is positive or negative, the point P1 or the point P2 is plotted at a position extremely close to the origin because the signal power is extremely weak. Accordingly, it becomes difficult to appropriately calculate the angle Ang1 or the angle Ang2 shown in FIG. 5, and the general GPS receiver and the spread spectrum signal receiving device described in Patent Document 1 correctly correct the phase difference from the center of the distribution. It becomes difficult to detect.

カーナビゲーションシステムに搭載されるGPS受信機を考えた場合、衛星信号の強度は、上記カーナビゲーションシステムを搭載する車の走行による周囲の環境変化(例えば、時間経過や位置変更等)によってダイナミックに変化する。図9に時間経過や位置変更等の環境変化によって、信号電力がダイナミックに変化する例を示す。縦軸は信号電力の強度を示し、横軸は、環境変化を示す。   When considering a GPS receiver installed in a car navigation system, the intensity of the satellite signal changes dynamically due to changes in the surrounding environment (for example, the passage of time or position change) due to the driving of the car equipped with the car navigation system. To do. FIG. 9 shows an example in which the signal power dynamically changes due to environmental changes such as time passage and position change. The vertical axis represents the intensity of the signal power, and the horizontal axis represents the environmental change.

このような信号電力の変化の中で、従来の一般的なGPS受信機では、状態Aの時の衛星信号を利用して追尾を行ったり、特許文献1に記載のスペクトラム拡散信号受信装置では、状態A又は状態Bの時の衛星信号を利用して追尾を行ったりする。   In such a change in signal power, the conventional general GPS receiver performs tracking using the satellite signal in the state A, or in the spread spectrum signal receiving device described in Patent Document 1, Tracking is performed using the satellite signal in the state A or the state B.

特許文献1に記載のスペクトラム拡散信号受信装置のような高感度受信機であったとしても、状態Cの割合が多くなるような環境では、位相差を算出することが困難であるため、適切に追尾することができない。また予測方法によっては、予測した航法データ自体が間違っていることも考えられ、そのような場合も、特許文献1に記載のスペクトラム拡散信号受信装置は、追尾することはできない。このことを考慮すると、いずれのGPS受信機であっても、追尾できているか否かを判定することが重要となる。   Even in a high-sensitivity receiver such as the spread spectrum signal receiver described in Patent Document 1, it is difficult to calculate the phase difference in an environment where the ratio of the state C is large. I can't track. Depending on the prediction method, the predicted navigation data itself may be incorrect. In such a case, the spread spectrum signal receiving apparatus described in Patent Document 1 cannot be tracked. Considering this, it is important to determine whether or not tracking is possible with any GPS receiver.

状態Aの場合、GPS受信機は、I、Q相関値の関係を参照することにより、追尾しているか否かの判定が比較的簡単に行える。すなわちQ相関値に対してI相関値の絶対値が十分に大きい状態が続いたら追尾していると判断することができる。   In the state A, the GPS receiver can relatively easily determine whether tracking is performed by referring to the relationship between the I and Q correlation values. That is, if the absolute value of the I correlation value is sufficiently larger than the Q correlation value, it can be determined that the tracking is being performed.

しかし、予測した航法データを利用して状態Bの状況下で、GPS受信機が衛星信号も追尾しようとしているときには、ノイズの影響を受けているためI、Q相関値の関係だけで追尾を判定することは困難であり、これまで具体的な追尾判定方法の提案はされていなかった。また、図9のようにダイナミックに信号電力が変化する状況での判定方法についても具体的な提案はされていなかった。   However, when the GPS receiver tries to track the satellite signal in the state B using the predicted navigation data, it is affected by noise, so tracking is determined only by the relationship between the I and Q correlation values. It has been difficult to do so, and no specific tracking determination method has been proposed so far. Further, no specific proposal has been made regarding a determination method in a situation where the signal power dynamically changes as shown in FIG.

[本願発明の特徴]
本願の発明の特徴を第1の特徴と第2の特徴とに分けて以下に記載する。
[Features of the present invention]
The features of the invention of the present application are divided into the first feature and the second feature, and are described below.

(第1の特徴)
本願発明に係る受信機100は、予測航法データを利用して追尾を行っている間に、予測航法データとI相関値の符号との一致率に基づいて追尾判定を行う。前述したようにノイズがない状態でのI相関値の符号が航法データに相当することを利用して、受信機100は、追尾判定を行う。
(First feature)
The receiver 100 according to the present invention performs tracking determination based on the matching rate between the predicted navigation data and the code of the I correlation value while tracking is performed using the predicted navigation data. As described above, the receiver 100 performs the tracking determination using the fact that the sign of the I correlation value in the absence of noise corresponds to the navigation data.

図7から分かるように、状態Bに該当する信号電力であっても位相差が小さい場合には、正の真値に対応する相関値はI>0のエリアに、負の真値に対応する相関値はI<0のエリアに分布する確率が高い。つまり予測航法データが正しければ、予測航法データとI相関値の符号とが一致する可能性が高い。   As can be seen from FIG. 7, when the signal power corresponding to the state B is small in phase difference, the correlation value corresponding to the positive true value corresponds to the negative true value in the area of I> 0. The correlation value has a high probability of being distributed in an area of I <0. That is, if the predicted navigation data is correct, there is a high possibility that the predicted navigation data matches the sign of the I correlation value.

それに対し、状態Bの信号電力で位相差が大きい場合には、相関値の分布は図10のようになる。図10に示すように、位相差が大きいことによりQ軸付近に点P1又は点P2がプロットされるため、衛星信号に載っているノイズの影響を受けると正の真値に対応する相関値がI>0のエリアに分布する確率が低くなってしまう。その逆も同様である。つまり、予測航法データとI相関値の符号が一致する可能性が低くなる。   On the other hand, when the phase difference is large in the signal power in the state B, the distribution of correlation values is as shown in FIG. As shown in FIG. 10, since the point P1 or the point P2 is plotted in the vicinity of the Q axis due to the large phase difference, a correlation value corresponding to a positive true value is obtained when affected by noise on the satellite signal. The probability of distribution in an area where I> 0 is low. The reverse is also true. That is, the possibility that the prediction navigation data and the sign of the I correlation value match is reduced.

また、位相差が小さい場合でも、予測航法データ自体が間違っている場合には、予測航法データと、I相関値の符号とが一致する可能性は低くなる。このような状況では、誤った予測航法データを用いて追尾しようとしても位相差が大きくなってしまうことから、追尾できていないと判断して良いと考えられる。   Even if the phase difference is small, if the predicted navigation data itself is incorrect, the possibility that the predicted navigation data and the sign of the I correlation value match is low. In such a situation, even if an attempt is made to track using incorrect predicted navigation data, the phase difference becomes large, so it may be judged that tracking is not possible.

従って、以下の(1)及び(2)を導くことができる。   Therefore, the following (1) and (2) can be derived.

(1)「位相差が小さく、かつ予測航法データが正しい」場合は、予測航法データとI相関値の符号とが一致する可能性が高い。   (1) When “the phase difference is small and the predicted navigation data is correct”, there is a high possibility that the predicted navigation data matches the sign of the I correlation value.

(2)「位相差が大きい、又は予測航法データが間違っている」場合は、予測航法データとI相関値の符号とが一致する可能性が低い。   (2) When “the phase difference is large or the predicted navigation data is wrong”, it is unlikely that the predicted navigation data matches the sign of the I correlation value.

以上のことから、ある一定期間での予測航法データとI相関値の符号との一致率が一致率の閾値である一致率閾値よりも高い場合に、受信機100は、「その期間で連続して位相差が小さい」、つまり「追尾できている」と判定する。以下、この期間を「第1期間」と定義する。第1期間を長くすれば、長くするほど、また、一致率閾値を高くすれば高くするほど、実際には、追尾できていないのに追尾判定OKとしてしまう「誤判定」の可能性は、少なくなる。しかし、逆に追尾できているのになかなか追尾判定OKとできないことになるため、第1期間の長さや一致率閾値は適切に設計する必要がある。本実施例では、第1期間を100msec〜150msec程度とする。一致率閾値も設計により適切に定められるべきであるが、50%前後の場合、ランダムに計測した結果と変わらないため50%以上が望ましい(例えば、70%〜80%等)。   From the above, when the matching rate between the predicted navigation data and the code of the I correlation value in a certain period is higher than the matching rate threshold that is the matching rate threshold, the receiver 100 determines that “continuous in that period. The phase difference is small ”, that is,“ tracking is possible ”. Hereinafter, this period is defined as a “first period”. The longer the first period is, the higher the match rate threshold is, and the higher the coincidence rate threshold is, the smaller the possibility of “false determination” that is actually not tracking but is determined to be tracking determination OK. Become. However, since it is difficult to make a tracking determination despite tracking, it is necessary to appropriately design the length of the first period and the matching rate threshold. In this embodiment, the first period is set to about 100 msec to 150 msec. The coincidence rate threshold value should also be appropriately determined by design, but if it is around 50%, it is preferably 50% or more (for example, 70% to 80%, etc.) because it is not different from the result of random measurement.

上述のように、本願発明の受信機100の判定器40は、上記の第1期間内における予測航法データとI相関値の符号とを比較し、比較結果に基づいて追尾判定を行う。この場合、受信機100は、追尾しているときの航法データとI相関値の符号との関連性に基づいて、追尾判定を行うので、適切に追尾しているか否かを判断することが可能となる。   As described above, the determiner 40 of the receiver 100 of the present invention compares the predicted navigation data in the first period and the code of the I correlation value, and performs tracking determination based on the comparison result. In this case, since the receiver 100 performs the tracking determination based on the relationship between the navigation data during tracking and the code of the I correlation value, it is possible to determine whether or not the tracking is appropriately performed. It becomes.

また、受信機100は、第1期間内における予測航法データとI相関値の符号との一致率に基づいて追尾しているか否かを判断しているので、第1期間に比してごくわずかな期間で状態Cとなっている場合でも、適切に追尾している状態を検出することができる。   In addition, since the receiver 100 determines whether or not the tracking is based on the coincidence rate between the predicted navigation data and the code of the I correlation value in the first period, the receiver 100 is very small compared to the first period. Even when the state C is in a short period, it is possible to detect the state of being properly tracked.

(第2の特徴)
本願発明の受信機100は、「ある一定期間での予測航法データとI相関値の符号の一致率が一致率閾値よりも高い」という状態が、より長い対象期間の中で局所的に複数回発生することを検出して追尾できていると判定する。
(Second feature)
In the receiver 100 of the present invention, the state that “the coincidence rate between the predicted navigation data and the I correlation value code in a certain period is higher than the coincidence rate threshold” is locally multiple times within a longer target period. It is determined that tracking has been performed by detecting the occurrence.

図8に示したように状態Cでは、位相差の大きさによらずI相関値の分布が正と負をほぼランダムにとるようになる。すなわち、予測航法データが正しかったとしても、予測航法データとI相関値の符号との一致率は低くなる。よって、ダイナミックに信号電力が変化する環境で第1の特徴の手法を単純に使おうとすると、ある第1期間中の大部分が状態Cである場合に、一致率が低くなりなかなか追尾判定OKとならない可能性がある。これを避けるために単純に第1期間の長さを短くすると、前述したように誤判定の可能性が高くなってしまう。   As shown in FIG. 8, in the state C, the distribution of the I correlation value takes positive and negative almost randomly regardless of the magnitude of the phase difference. That is, even if the predicted navigation data is correct, the matching rate between the predicted navigation data and the sign of the I correlation value is low. Therefore, if the method of the first feature is simply used in an environment in which the signal power dynamically changes, the tracking rate OK is easily reduced when the majority of the first period is in the state C. It may not be possible. If the length of the first period is simply shortened to avoid this, the possibility of erroneous determination increases as described above.

そこで、第1期間に比してより長い対象期間を設定し、その中で第1期間の長さで局所的に一致率が高くなる状態が既定回数(以下、当該規定回数を「回数閾値」とも呼ぶ)発生したら追尾できていると判定する。これによれば、受信機100は、第1期間を短くして当該第1期間に状態Cが含まれる可能性を下げることができると共に、誤判定の可能性も低く抑えることができる。この長い対象期間を「第2期間」と表現する。第2期間も第1期間と同様、設計により動的に定められるべきである。本実施例では、第2期間を、1秒とする。   Therefore, a longer target period than the first period is set, and a state in which the matching rate is locally increased with the length of the first period is a predetermined number of times (hereinafter, the specified number of times is referred to as “number threshold”). It is also determined that tracking has been completed. According to this, the receiver 100 can shorten the first period to reduce the possibility that the state C is included in the first period, and can also reduce the possibility of erroneous determination. This long target period is expressed as a “second period”. Similarly to the first period, the second period should be determined dynamically by design. In this embodiment, the second period is 1 second.

この手法の例を図11に示す。この例では、「第2期間中に、一致率がm(一致率閾値)を超えた第1期間がn(回数閾値)回以上含まれたら追尾判定OKとする」という条件の例を示している。本実施例では、一致率閾値を超えた第1期間が、第2期間に含まれる第1期間計測回数の半分以上に達した場合に、追尾判定OKとする。   An example of this technique is shown in FIG. In this example, an example of a condition that “the tracking determination is OK if the first period in which the matching rate exceeds m (matching rate threshold) is included n (number of times threshold) times or more in the second period” is shown. Yes. In the present embodiment, the tracking determination is OK when the first period exceeding the coincidence rate threshold reaches half or more of the first period measurement count included in the second period.

[追尾判定方法ついて]
次に、上記の本願発明の第1及び第2の特徴を反映した追尾判定方法について、図12に示すフローチャートを用いて説明する。なお、図12に示すフローチャートは、第2期間の開始から終了までの処理を表している。
[Tracking judgment method]
Next, the tracking determination method reflecting the first and second features of the present invention will be described with reference to the flowchart shown in FIG. Note that the flowchart shown in FIG. 12 represents processing from the start to the end of the second period.

判定器40は、最初に、カウンタを0に設定する(ステップS1)。このカウンタは、第2期間中の追尾判定用のカウンタである。外部サーバ等から予測航法データが入力されることにより、受信機100は、予測航法データを取得する(ステップS2)。積算器32で信号S2と信号LS1とが積算された結果をローパスフィルタ34で処理することにより、受信機100は、I相関値を算出する(ステップS3)。上記予測航法データ及びI相関値が判定器40に入力され、判定器40は、当該予測航法データとI相関値の符号との一致判定を行う(ステップS4)。   First, the determiner 40 sets the counter to 0 (step S1). This counter is a tracking determination counter during the second period. When the predicted navigation data is input from an external server or the like, the receiver 100 acquires the predicted navigation data (step S2). The receiver 100 calculates the I correlation value by processing the result of integrating the signal S2 and the signal LS1 by the integrator 32 with the low-pass filter 34 (step S3). The predicted navigation data and the I correlation value are input to the determiner 40, and the determiner 40 determines whether the predicted navigation data and the sign of the I correlation value match (step S4).

第1期間が終了していない場合で(ステップS5;No)、第2期間が終了していない場合(ステップS11;No)、ステップS2へ移動する。   If the first period has not ended (step S5; No), and if the second period has not ended (step S11; No), the process moves to step S2.

第1期間が終了している場合(ステップS5;Yes)、判定器40は、第1期間における一致率を算出する(ステップS6)。一致率が一致率閾値を超えている場合(ステップS7;Yes)、判定器40は、カウンタをインクリメントする(ステップS8)。一致率が一致率閾値を超えていない場合(ステップS7;No)、ステップS11へ移る。   When the first period has ended (step S5; Yes), the determiner 40 calculates a match rate in the first period (step S6). When the coincidence rate exceeds the coincidence rate threshold (step S7; Yes), the determiner 40 increments the counter (step S8). When the coincidence rate does not exceed the coincidence rate threshold value (step S7; No), the process proceeds to step S11.

カウンタをインクリメントした結果、カウンタが回数閾値を超えた場合(ステップS9;Yes)、判定器40は、追尾していることを意味する追尾判定OKに対応する値を出力し、処理を終了する。   As a result of incrementing the counter, when the counter exceeds the number-of-times threshold (step S9; Yes), the determiner 40 outputs a value corresponding to the tracking determination OK indicating that tracking is performed, and ends the process.

ステップS11において、第2期間が終了していた場合(ステップS11;Yes)、第2期間の間で、カウンタが回数閾値に達していないので、判定器40は、追尾していないことを意味する追尾判定NGに対応する値を出力し(ステップS12)、処理を終了する。   In step S11, when the second period has ended (step S11; Yes), the counter does not reach the number-of-times threshold during the second period, which means that the determiner 40 is not tracking. A value corresponding to the tracking determination NG is output (step S12), and the process ends.

以上説明したように、受信機100は、衛星信号を受信する受信手段と、衛星信号を中間周波数に変換する周波数変換手段と、周波数変換手段によって変換された信号と、衛星を特定するための参照用信号とを積算し、積算信号を生成する積算手段と、所定周波数の基準信号を生成する基準信号生成手段と、前記積算信号と前記基準信号との相関値である追尾判定用相関値を出力する追尾判定用相関値出力手段と、航法データの予測データを取得する予測データ取得手段と、追尾判定用相関値と前記予測データとを比較する比較処理を行い、比較処理の結果に基づいて追尾判定を行う追尾判定手段と、を備える。   As described above, the receiver 100 receives the satellite signal, the frequency converter for converting the satellite signal into the intermediate frequency, the signal converted by the frequency converter, and the reference for specifying the satellite. Integration means for generating the integrated signal, a reference signal generating means for generating a reference signal of a predetermined frequency, and a tracking determination correlation value that is a correlation value between the integrated signal and the reference signal is output. A tracking determination correlation value output means, a prediction data acquisition means for acquiring prediction data of navigation data, a comparison process for comparing the tracking determination correlation value and the prediction data, and tracking based on the result of the comparison process Tracking determination means for performing determination.

本願発明に係る受信機100は、追尾している場合における、衛星信号から生成した積算信号と基準信号との相関値である追尾判定用相関値の符号と、外部の装置等から取得した航法データを予測したデータである予測データとの関連性に基づいて追尾判定を行っているので、適切に追尾判定を行うことができる。   The receiver 100 according to the present invention, when tracking, the code of the correlation value for tracking determination that is the correlation value between the integrated signal generated from the satellite signal and the reference signal, and the navigation data acquired from an external device or the like Since the tracking determination is performed based on the relevance with the predicted data that is the data that predicts the tracking, the tracking determination can be appropriately performed.

[他の実施例]
上述の実施例では、判定器40が、第1期間内における予測航法データとI相関値の符号との一致率に基づいて追尾しているか否かを判定する場合について述べたが、本発明は、これに限られず、単純に予測航法データとI相関値の符号とが一致するか否かに基づいて追尾しているか否か判定するようにしても良い。
[Other embodiments]
In the above-described embodiment, the case has been described in which the determiner 40 determines whether tracking is performed based on the matching rate between the predicted navigation data and the code of the I correlation value in the first period. However, the present invention is not limited to this, and it may be determined whether or not the tracking is simply performed based on whether or not the predicted navigation data and the sign of the I correlation value match.

上述の実施例では、判定器40は、第2期間内で第1期間内における一致率閾値を超えた回数が、回数閾値に達した場合に追尾していると判断する場合について述べたが、本発明は、これに限られず、第1期間内における一致率閾値を超えた場合に、追尾していると判断するようにしても良い。この場合、第1期間内における予測航法データとI相関値の符号との一致率に基づいて、受信機100が追尾しているか否かを判断すれば、第1期間に比して、ごくわずかな期間で状態Cとなっている場合でも、適切に追尾している状態を検出することができる。   In the above-described embodiment, the determination unit 40 has described the case where it is determined that the number of times the coincidence rate threshold in the first period has been exceeded within the second period has been tracked when the number threshold has been reached. The present invention is not limited to this, and it may be determined that tracking is performed when the matching rate threshold value in the first period is exceeded. In this case, if it is determined whether or not the receiver 100 is tracking based on the coincidence rate between the predicted navigation data and the code of the I correlation value in the first period, it is very small compared to the first period. Even when the state C is in a short period, it is possible to detect the state of being properly tracked.

上述の実施例では、判定器40は、ある第1期間がスタートした後に、当該第1期間が終了するまで別の第1期間がスタートしない場合について述べたが、本発明は、これに限られず、図13に示すように、ある第1期間がスタートしてから、当該第1期間が終了する前に、別の第1期間をスタートさせるようにしても良い。この場合、受信機100は、並列に第1期間を設定することになり、追尾判定を行う回数が増えるので、追尾している状態を検出する可能性を向上させることができる。   In the above-described embodiment, the determination unit 40 has described the case where another first period does not start until the first period ends after the first period starts. However, the present invention is not limited to this. As shown in FIG. 13, another first period may be started after a certain first period starts and before the first period ends. In this case, the receiver 100 sets the first period in parallel, and the number of tracking determinations increases, so that the possibility of detecting the tracking state can be improved.

上述の実施例では、特に述べなかったが、図13に示すように第1期間内における一致率が一致率閾値を超えた段階から第2期間を開始するようにしても良い。この場合、受信機100は、第1期間中の一致率が一致率閾値を超えたタイミングで開始することにより、追尾状態を検出する可能性を向上させることができる。   Although not particularly described in the above-described embodiment, as shown in FIG. 13, the second period may be started from the stage where the coincidence rate within the first period exceeds the coincidence rate threshold. In this case, the receiver 100 can improve the possibility of detecting the tracking state by starting at the timing when the matching rate during the first period exceeds the matching rate threshold.

上述の実施例では、特に述べなかったが、図13に示すように、第2期間が開始された後、第2期間が終了する前に別の第2期間を開始するようにしても良い。この場合、受信機100は、並列に第2期間を設定することになり、追尾判定を行う回数が増えるので、追尾している状態を検出する可能性を向上させることができる。   Although not particularly described in the above embodiment, as shown in FIG. 13, after the second period is started, another second period may be started before the second period is ended. In this case, the receiver 100 sets the second period in parallel, and the number of tracking determinations increases, so that the possibility of detecting the tracking state can be improved.

上述の実施例では、特に述べなかったが、I相関値の符号と予測航法データとの一致判断の周期を、ローパスフィルタ34の積算期間より短くする方が良い。特許文献1にかかるスペクトラム拡散信号受信装置では予測航法データを利用して積算期間を航法データの1ビットに相当する20msecよりも大きくすることが提案されている。このようにローパスフィルタ34を利用する場合、I相関値の符号と予測航法データの一致状況を判断する周期をローパスフィルタ34の積算期間と同じにしてしまうと追尾判定に時間がかかってしまう。   Although not particularly described in the above-described embodiment, it is better to set the period of coincidence determination between the sign of the I correlation value and the predicted navigation data shorter than the integration period of the low-pass filter 34. In the spread spectrum signal receiving apparatus according to Patent Document 1, it has been proposed to use the predicted navigation data to make the integration period longer than 20 msec corresponding to 1 bit of the navigation data. When the low-pass filter 34 is used in this way, if the period for determining the coincidence state of the sign of the I correlation value and the predicted navigation data is made the same as the integration period of the low-pass filter 34, tracking determination takes time.

そこで、受信機100は、ローパスフィルタ34の積算途中から比較用にI相関値を取り出し、それを用いて本発明の手法を適用することもできる。これにより、受信機100は、ローパスフィルタの設計に関わらず適切に追尾判定を行うことができる。具体例として、受信機100がローパスフィルタ34で積算期間を100msecとしている場合に、10msec毎に比較用にI相関値を取り出す等がある。この場合、受信機100は、追尾判定に時間がかかってしまうことを回避することができる。   Therefore, the receiver 100 can also extract the I correlation value for comparison from the middle of the integration of the low-pass filter 34 and use it to apply the method of the present invention. Thereby, the receiver 100 can appropriately perform tracking determination regardless of the design of the low-pass filter. As a specific example, when the receiver 100 is the low-pass filter 34 and the integration period is 100 msec, an I correlation value is extracted for comparison every 10 msec. In this case, the receiver 100 can avoid that the tracking determination takes time.

上述の実施例では、予測航法データを外部サーバから取得する場合について述べたが、本発明は、これに限られず、過去に取得した航法データを予測航法データとして使うようにしても良いし、受信機100が有する他のキャリアループ30が出力した航法データを予測航法データとして取得するようにしても良い。   In the above-described embodiments, the case where the predicted navigation data is acquired from the external server has been described. However, the present invention is not limited to this, and the navigation data acquired in the past may be used as the predicted navigation data or received. Navigation data output by another carrier loop 30 included in the aircraft 100 may be acquired as predicted navigation data.

上述の実施例では、受信機100を、GPSの受信機として適用する場合について述べたが、本発明は、これに限られず、例えば、Galileoに代表されるGPS以外の測位衛星システムにおける受信機にも適用することができる。   In the above-described embodiment, the case where the receiver 100 is applied as a GPS receiver has been described. However, the present invention is not limited to this, and is, for example, a receiver in a positioning satellite system other than GPS typified by Galileo. Can also be applied.

10 アンテナ
20 フロントエンド
30 キャリアループ
40 判定部
50 コードループ
100 受信機
DESCRIPTION OF SYMBOLS 10 Antenna 20 Front end 30 Carrier loop 40 Judgment part 50 Code loop 100 Receiver

Claims (7)

衛星信号を受信する受信手段と、
前記衛星信号を中間周波数に変換する周波数変換手段と、
前記周波数変換手段によって変換された信号と、衛星を特定するための参照用信号とを積算し、積算信号を生成する積算手段と、
所定周波数の基準信号を生成する基準信号生成手段と、
前記積算信号と前記基準信号との相関値である追尾判定用相関値を出力する追尾判定用相関値出力手段と、
航法データの予測データを取得する予測データ取得手段と、
前記追尾判定用相関値と前記予測データとを比較する比較処理を行い、前記比較処理の結果に基づいて追尾判定を行う追尾判定手段と、を備えることを特徴とする受信機。
Receiving means for receiving satellite signals;
A frequency converting means for converting the satellite signal to an intermediate frequency;
Integrating means for integrating the signal converted by the frequency converting means and a reference signal for identifying a satellite, and generating an integrated signal;
Reference signal generation means for generating a reference signal of a predetermined frequency;
A tracking determination correlation value output means for outputting a tracking determination correlation value which is a correlation value between the integrated signal and the reference signal;
Prediction data acquisition means for acquiring prediction data of navigation data;
A receiver comprising: tracking determination means for performing comparison processing for comparing the tracking determination correlation value with the prediction data and performing tracking determination based on a result of the comparison processing.
前記比較処理は、所定期間である第1期間における前記予測データと、前記追尾判定用相関値との一致率に基づく結果を出力することを特徴とする請求項1に記載の受信機。   The receiver according to claim 1, wherein the comparison process outputs a result based on a matching rate between the prediction data in the first period which is a predetermined period and the tracking determination correlation value. 前記比較処理は、前記第1期間に比して長い期間である第2期間の間に、前記第1期間内における前記一致率が、一致率の閾値である一致率閾値を超えた回数に基づいた結果を出力することを特徴とする請求項2に記載の受信機。   The comparison process is based on the number of times that the match rate in the first period exceeds a match rate threshold value that is a match rate threshold value during a second period that is longer than the first period. The receiver according to claim 2, wherein the result is output. 前記第2期間は、前記第1期間中の一致率が前記一致率閾値を超えたタイミングで開始することを特徴とする請求項3に記載の受信機。   The receiver according to claim 3, wherein the second period starts at a timing when the coincidence rate during the first period exceeds the coincidence rate threshold. 前記第1期間は、キャリアループの積算期間より短いことを特徴とする請求項1乃至4のいずれか一項に記載の受信機。   The receiver according to any one of claims 1 to 4, wherein the first period is shorter than an integration period of a carrier loop. 前記第1期間が開始された後、当該第1期間が終了する前に別の第1期間を開始することを特徴とする請求項2乃至5のいずれか一項に記載の受信機。   The receiver according to claim 2, wherein after the first period is started, another first period is started before the end of the first period. 前記第2期間が開始された後、前記第2期間が終了する前に別の第2期間を開始することを特徴とする請求項3乃至6のいずれか一項に記載の受信機。   The receiver according to any one of claims 3 to 6, wherein after the second period is started, another second period is started before the second period ends.
JP2009126297A 2009-05-26 2009-05-26 Receiver Pending JP2010276355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126297A JP2010276355A (en) 2009-05-26 2009-05-26 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126297A JP2010276355A (en) 2009-05-26 2009-05-26 Receiver

Publications (1)

Publication Number Publication Date
JP2010276355A true JP2010276355A (en) 2010-12-09

Family

ID=43423466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126297A Pending JP2010276355A (en) 2009-05-26 2009-05-26 Receiver

Country Status (1)

Country Link
JP (1) JP2010276355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680986A (en) * 2012-05-15 2012-09-19 哈尔滨工程大学 Feedback loop and method for capturing signal based on adjustable-frequency GPS (Global Positioning System) receiver
JP2014142229A (en) * 2013-01-23 2014-08-07 Japan Radio Co Ltd Satellite signal receiver

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297103A (en) * 1992-04-20 1993-11-12 Japan Radio Co Ltd Gps signal receiving device
JPH1062515A (en) * 1996-08-26 1998-03-06 Sony Corp Receiver of spread spectrum signal
JP2000252879A (en) * 1999-02-04 2000-09-14 Conexant Systems Inc Improvement in performance of spread spectrum receiver
JP2003240835A (en) * 2002-02-19 2003-08-27 Seiko Epson Corp Non-preamble frame synchronization
JP2005064983A (en) * 2003-08-15 2005-03-10 Japan Radio Co Ltd Spread spectrum signal receiver
JP2006157503A (en) * 2004-11-30 2006-06-15 Seiko Epson Corp Receiver, and correction back-diffusion code generating device and method therefor
JP2007006389A (en) * 2005-06-27 2007-01-11 Toshiba Corp Cdm receiver unit
JP2007281872A (en) * 2006-04-06 2007-10-25 Hitachi Kokusai Electric Inc Path assign controller of receiver
JP2008170338A (en) * 2007-01-12 2008-07-24 Japan Radio Co Ltd Satellite navigation device, external base station, and satellite positioning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297103A (en) * 1992-04-20 1993-11-12 Japan Radio Co Ltd Gps signal receiving device
JPH1062515A (en) * 1996-08-26 1998-03-06 Sony Corp Receiver of spread spectrum signal
JP2000252879A (en) * 1999-02-04 2000-09-14 Conexant Systems Inc Improvement in performance of spread spectrum receiver
JP2003240835A (en) * 2002-02-19 2003-08-27 Seiko Epson Corp Non-preamble frame synchronization
JP2005064983A (en) * 2003-08-15 2005-03-10 Japan Radio Co Ltd Spread spectrum signal receiver
JP2006157503A (en) * 2004-11-30 2006-06-15 Seiko Epson Corp Receiver, and correction back-diffusion code generating device and method therefor
JP2007006389A (en) * 2005-06-27 2007-01-11 Toshiba Corp Cdm receiver unit
JP2007281872A (en) * 2006-04-06 2007-10-25 Hitachi Kokusai Electric Inc Path assign controller of receiver
JP2008170338A (en) * 2007-01-12 2008-07-24 Japan Radio Co Ltd Satellite navigation device, external base station, and satellite positioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680986A (en) * 2012-05-15 2012-09-19 哈尔滨工程大学 Feedback loop and method for capturing signal based on adjustable-frequency GPS (Global Positioning System) receiver
JP2014142229A (en) * 2013-01-23 2014-08-07 Japan Radio Co Ltd Satellite signal receiver

Similar Documents

Publication Publication Date Title
JP5424338B2 (en) Abnormal value detection device, abnormal value detection method and abnormal value detection program for satellite positioning system
US9910160B2 (en) Detecting and removing spoofing signals
EP2495583B1 (en) Target tracking system and target tracking method
WO2011105447A1 (en) Multipath detection method, multipath detection program, gnss receiver apparatus, and mobile terminal
KR20160094728A (en) Appratus and method for generating global satellite system solution
WO2011089041A1 (en) A receiver and method for authenticating satellite signals
KR100953820B1 (en) Method and apparatus for detecting lock status of a gps signal
KR20160139065A (en) Techniques for affecting a wireless signal-based positioning capability of a mobile device based on one or more onboard sensors
CN113447959B (en) GNSS deception jamming detection method and related device based on Doppler frequency
US20140348213A1 (en) Receivers and methods for detecting false lock of a carrier tracking loop
JP5918351B2 (en) Signal search method, signal search program, signal search device, GNSS signal reception device, and information equipment terminal
JP2010276355A (en) Receiver
US20140372496A1 (en) Method for performing and validating navigation bit synchronization
JP5923111B2 (en) GNSS signal processing method, positioning method, GNSS signal processing program, positioning program, GNSS signal processing device, positioning device, and mobile terminal
EP2806609A1 (en) Receivers and methods for detecting false lock of a carrier tracking loop
US9798009B2 (en) Method and apparatus for acquiring signal of global navigation satellite system
JP2011058923A (en) Satellite signal receiving apparatus
JP5005446B2 (en) Independent high-sensitivity satellite signal receiver
Li et al. A modified histogram bit synchronization algorithm for GNSS receivers
JP2005207815A (en) Multipath signal detection device
JP2019045150A (en) Signal tracking program, signal tracking method and information processor
WO2010113302A1 (en) Receiving apparatus
JP2014142229A (en) Satellite signal receiver
KR20220081697A (en) Apparatus and method for gps signal acquisition
KR100752735B1 (en) System for detecting timing phase offset of packet-based wireless communication and a method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625