JP2010222693A - Converter operation method - Google Patents

Converter operation method Download PDF

Info

Publication number
JP2010222693A
JP2010222693A JP2009074517A JP2009074517A JP2010222693A JP 2010222693 A JP2010222693 A JP 2010222693A JP 2009074517 A JP2009074517 A JP 2009074517A JP 2009074517 A JP2009074517 A JP 2009074517A JP 2010222693 A JP2010222693 A JP 2010222693A
Authority
JP
Japan
Prior art keywords
converter
period
metal
blown
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009074517A
Other languages
Japanese (ja)
Inventor
Toshihiro Kametani
敏博 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009074517A priority Critical patent/JP2010222693A/en
Publication of JP2010222693A publication Critical patent/JP2010222693A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: in the operation of a converter, when a matte is received in a state where the large amount of oxides called as scale is left in the furnace, the fluidity of slag produced in the converter is made inferior since the content of Fe<SB>3</SB>O<SB>4</SB>in the scale is high, and the slag can not be sufficiently exhausted and is left in the converter and causes trouble in the operation of the converter. <P>SOLUTION: The matte produced by a refining furnace is charged inside a non-ferrous refining furnace in which the scale remains, air is blown from a tuyere, and blowing in a slag making term and a copper making term is performed. From the tuyere, SiC powder is blown in together with air and is contacted with the above scale. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、製錬炉で生成したかわから銅やニッケルなどを得る転炉の操業方法に関するものであり、さらに詳しく述べるならば、転炉から粗金属を出湯した後炉内に残留する金垢を少なくするための新規なインジェクション製錬による転炉操業法を提供するものである。以下主として銅製錬について説明する。 The present invention relates to a method of operating a converter that obtains copper, nickel, etc. from a smelter, and more specifically, after the crude metal is discharged from the converter, the residual metal remains in the furnace. It provides a new converter operation method by injection smelting to reduce the amount of waste. The following mainly describes copper smelting.

銅製錬においては、硫化鉱を自溶炉及び転炉を用いて製錬し、粗金属を得ている。自溶炉では硫化精鉱と珪石などの溶剤及び補助燃料を吹込み、鉄分を酸化除去したかわ中に銅を濃縮する。かわ及び珪石を転炉に装入して行う製錬は、造かん期と造銅期に分けられ、造かん期における反応は次の式で表わされる。
2FeS + 3O2 + SiO2 →2FeO ・SiO2 + 2SO2
したがって、造かん期からみの主成分は2FeO ・SiO2と表わされるが、高級酸化物であるFe3O4も含有している。造かん期終了後排滓が行われ、造銅期が開始され、造銅期終了後に粗銅が出湯される。ところが、転炉からみが造かん期終了後に完全に排滓されず、一部が炉内に残留する。また、造銅期終了後に粗銅が出湯される際には、転炉からみは炉内に残されている。
In copper smelting, sulfide ore is smelted using a flash smelting furnace and a converter to obtain a crude metal. In a flash smelting furnace, solvents such as sulfide concentrate and silica stone and auxiliary fuel are injected, and copper is concentrated in the iron that is oxidized and removed. The smelting performed by charging the river and the quartzite into the converter is divided into the forging period and the copper making period, and the reaction in the forging period is expressed by the following equation.
2FeS + 3O 2 + SiO 2 → 2FeO ・ SiO 2 + 2SO 2
Therefore, the main component from the manufacturing stage is expressed as 2FeO 2 · SiO 2 , but also contains Fe 3 O 4 which is a higher oxide. After the completion of the copper making period, drainage is performed, the copper making period is started, and the crude copper is discharged after the completion of the copper making period. However, the converter is not completely removed from the converter after the completion of the preparation period, and a part remains in the furnace. Moreover, when the crude copper is discharged after the copper making period, the converter is left in the furnace.

金垢については、資源素材学会発行「資源・素材・環境技術用語集」(日刊工業新聞社1996年1月30日発行)の第23頁によると、転炉造銅期に発生するスラグが金垢であると定義されている。しかしながら、造かん期終了後の未排滓からみも粗銅出湯後に炉内に残るから、造かん期のからみと造銅期のからみも転炉に残った状態では区別されないから、これらを含めて「金垢」と称しても、上記用語集とは実際上は矛盾していない。 Regarding gold, according to page 23 of the “Resource, Material and Environmental Technology Glossary” published by the Resource Materials Society (published on January 30, 1996, Nikkan Kogyo Shimbun), the slag generated during the converter coppermaking is gold. It is defined as dirty. However, since the undrained slag after the completion of the steelmaking period remains in the furnace after the crude copper tapping, there is no distinction between the state of the steelmaking period and the state of the coppermaking period remaining in the converter. Even if it is called “gold”, it is practically consistent with the above glossary.

ところで、特許文献1:特開2003−253350号公報では、「...生成したカラミを転炉外に排出し、造銅期では、更に3時間吹錬して白カワを粗銅にする。このとき、生成された白カワや造カン期に残留していたカラミ中の鉄分等から床ガラミと称するカラミが生成され、粗銅を転炉外に排出した後転炉内に残留し、滓化が次回の造かん期まで持ち越される。」と説明しているが、この「床ガラミ」も「金垢」と同じものである。また、特許文献2:2005−113179号公報では、「粗銅を転炉から精製炉に移す際に転炉内に残留したFe0-Cu2O-SiO2系スラグの一部が粗銅に混入し、精製炉内に持ち込まれる。便宜上このスラグをドブと称する。」と説明しているが、この「ドブ」も「金垢」と同じものである。
これらの先行技術のうち特許文献1は、床ガラミの量を測定し安定した転炉操業を可能にする方法であり、また、特許文献2はドブを固化・粉砕後、自溶炉と転炉にそれぞれ繰返す方法であるので、金垢量を直接的に少なくする方法ではない。
By the way, in patent document 1: Unexamined-Japanese-Patent No. 2003-253350, "...... generated calami is discharged | emitted out of a converter, and in a coppermaking period, it blows for 3 hours and turns white river into crude copper. At that time, the generated white river and the iron content in the calami that remained in the canning period produced calami called flooring, and after the crude copper was discharged out of the converter, it remained in the converter and hatched. "It will be carried over until the next construction period", but this "flooring" is the same as "gold". Further, Patent Document 2: 2005-113179 discloses a part of Fe0-Cu 2 O-SiO 2 slag remaining in the converter in when passing "blister copper from the converter to the refining furnace is mixed in the blister, It is taken into the refining furnace. For the sake of convenience, this slag is referred to as a dove, "but this" dob "is the same as" gold ".
Among these prior arts, Patent Document 1 is a method for measuring the amount of floor glaze to enable stable converter operation, and Patent Document 2 is a flash furnace and converter after solidifying and crushing the dove. Therefore, it is not a method for directly reducing the amount of gold.

特許文献3:特開2003−253349号公報は、(イ)鉄スクラップ、(ロ)産業廃棄物処理炉から産出される金属鉄を60%以上含有する溶融・固化金属及び/又は金属鉄分を60%以上含有する材料を転炉の造かん期に添加することにより溶体温度を上昇させ、もってかわとからみの分離効率を向上することを提案している。上記(イ)、(ロ)及び/又は(ハ)の添加量は、かわに対して金属鉄換算で20〜100kg/t(カワ)である。この明細書には金垢の記載はないが、かわとからみの相互分離が良好になることから、結果的には金垢量も少なくなると考えられる。 Patent Document 3: Japanese Patent Laid-Open No. 2003-253349 discloses (60) molten / solidified metal and / or metallic iron content containing 60% or more of metallic iron produced from (b) iron scrap and (b) industrial waste treatment furnace. It has been proposed to increase the solution temperature by adding a material containing more than 1% in the converter preparation period, thereby improving the separation efficiency of the cut and tangled. The addition amount of the above (a), (b) and / or (c) is 20 to 100 kg / t (kawa) in terms of metallic iron with respect to the glue. Although there is no description of gold in this specification, it is considered that the amount of gold is reduced as a result of the good separation between the cut and tangled.

銅転炉用インジェクション精錬剤としては、石灰、石灰岩、炭カルなどが知られている(特許文献4:特許4195919号公報)が、金垢を還元する還元剤自体は知られていなかった。 As an injection refining agent for a copper converter, lime, limestone, charcoal cal and the like are known (Patent Document 4: Japanese Patent No. 4195919), but a reducing agent itself for reducing gold metal has not been known.

特開2003−253350号公報JP 2003-253350 A 特開2005−113179号公報JP 2005-113179 A 特開2003−253349号公報JP 2003-253349 A 特許4195919公報Japanese Patent No. 4195919

旧「資源と素材」学会誌、2007,12、Vol123,製錬・リサイクリング大特集号「佐賀関製錬所の銅精錬」第627頁左欄及び第2表Former Journal of “Resources and Materials”, 2007, 12, Vol123, Special Issue on Smelting and Recycling “Smelting Copper at Sagaseki Smelter”, page 627, left column and Table 2

転炉操業において、粗銅を出湯した後炉内に残る金垢と称される酸化物は次の転炉操業の造かん期において確実に滓化され、転炉からみとして排出されるならば問題はない。しかし、金垢が多く残った状態の転炉にかわを受入れると、金垢中のFe3O4含有量が多いために、生成する転炉からみの流動性が悪くなり、からみが十分に排滓されないで、炉中に残ってしまう。この場合、次の造銅期中炉内に多量に残ったからみにより転炉内溶湯レベルが上昇し、吹錬中のジャンピングにより炉外への溶湯飛散量が多くなる、フォーミング(foaming)と呼ばれる溶湯流出事故が多く発生するなどの理由により、転炉操業に支障を来す。
上述のように直接金垢量の減少を目指す技術はない状況に鑑み、本発明は金垢の流動性を著しく向上することができる非鉄金属製錬転炉操業方法を提供することを目的とする。
In the converter operation, the oxide called gold metal that remains in the furnace after the crude copper is poured out is surely hatched in the next converter operation, and if it is discharged from the converter, the problem is Absent. However, when accepting the glue to the converter where a lot of metal remains, because of the high Fe 3 O 4 content in the metal, the fluidity of the converter will be poor and the entanglement will be sufficiently discharged. Not left in the furnace. In this case, the molten metal level in the converter rises due to a large amount remaining in the furnace during the next copper making phase, and the amount of molten metal splashing out of the furnace increases due to jumping during blowing. The converter operation will be hindered due to many spill accidents.
In view of the situation where there is no technique for reducing the amount of metal directly as described above, the present invention aims to provide a non-ferrous metal smelting converter operating method capable of significantly improving the fluidity of metal. .

本発明は次の方法に関する。
(1)金垢が残存している非鉄製錬転炉内に製錬炉で生成したかわを装入し、その後羽口から空気を吹込む吹錬を行う転炉の操業方法において、前記羽口からSiC粉末を併せて吹込み前記金垢と接触させることを特徴とする転炉の操業方法。
(2)造かん期の少なくとも一期間に前記SiC粉末を吹込むことを特徴とする(1)記載の方法。
(3)造銅期の少なくとも一期間に前記SiC粉末を吹込む(1)又は(2)記載の方法。
(4)一旦造銅期の吹錬を中断して排滓を行った後、前記SiC粉末を吹込まない吹錬を再開することを特徴とする(3)記載の方法。
(5)SiC粉末が貴金属を含むリサイクル原料である(1)から(4)までの何れか1項記載の方法。
(6)前記製錬炉が自溶炉である(1)〜(5)までの何れか1項記載の方法。
以下本発明を詳しく説明する。
The present invention relates to the following method.
(1) In the operation method of a converter in which a non-ferrous smelting converter in which metal remains remains is charged with a watch produced in the smelting furnace, and then blown by blowing air from the tuyere, A method of operating a converter, wherein SiC powder is blown together from the mouth and brought into contact with the metal dust.
(2) The method according to (1), wherein the SiC powder is blown in at least one period of the manufacturing period.
(3) The method according to (1) or (2), wherein the SiC powder is blown in at least one period of the copper making period.
(4) The method according to (3), characterized in that after the blowing in the copper making stage is interrupted and discharged, the blowing without blowing the SiC powder is resumed.
(5) The method according to any one of (1) to (4), wherein the SiC powder is a recycled raw material containing a noble metal.
(6) The method according to any one of (1) to (5), wherein the smelting furnace is a flash smelting furnace.
The present invention will be described in detail below.

本出願人の銅転炉の操業諸元については、非特許文献1:旧「資源と素材」学会誌、2007,12、Vol123,製錬・リサイクリング大特集号「佐賀関製錬所の銅精錬」第627頁左欄及び第2表に紹介されているとおりである。
金垢の主成分FeO、SiO2などであり、高級酸化物であるFe3O4なども含有されている。金垢の量は、本出願人の製錬所の250t転炉では一般に10〜 25tの範囲である。金垢量が10t程度であると、転炉操業への支障は少ないが、25tに達すると、次の転炉操業においてさらに金垢が増え、上記したような種々の支障が生じる。したがって、本発明により、粗銅出湯後の転炉炉内状況を観察し、必要な場合は、次の操業においてSiC粉末を羽口から吹込む。即ち、自溶炉からのかわを転炉に装入すると、かわと金垢が混合状態となり、かかる状況の転炉溶湯内にSiC粉末を羽口から高圧空気とともに吹込むと、金垢溶体とSiC粉末粒子の接触が転炉内の到る所で起こり、金垢がSiC粉末により選択的に還元され流動性は急速に向上し、溶湯上部に分離される転炉からみの量が多くなる。通常SiCは非常に安定な物質であるが、高温のかわ、金垢と接触すると徐々に分解してSiとCを生じ,接触する金垢成分を還元する。
Regarding the specifications of the applicant's copper converter operation, Non-Patent Document 1: Former Journal of “Resources and Materials”, 2007, 12, Vol 123, Special Feature on Smelting and Recycling “Sagaseki Smelter Copper Refining "as introduced in page 627, left column and Table 2.
The main components are gold oxide, such as FeO and SiO 2 , and higher oxides such as Fe 3 O 4 are also contained. The amount of gold is generally in the range of 10 to 25 tons in the Applicant's smelter 250t converter. If the amount of gold is about 10 tons, there will be little trouble for the converter operation, but if it reaches 25 tons, the gold will be further increased in the next converter operation, causing various troubles as described above. Therefore, according to the present invention, the condition inside the converter furnace after the crude copper tapping is observed, and if necessary, SiC powder is blown from the tuyere in the next operation. In other words, when the glue from the flash furnace is charged into the converter, the glue and the metal are mixed, and when SiC powder is blown into the converter molten metal with high-pressure air from the tuyere, The contact of the SiC powder particles occurs in the converter, the metal dust is selectively reduced by the SiC powder, the fluidity is rapidly improved, and the volume of the converter separated from the molten metal is increased. Normally, SiC is a very stable substance, but when it comes into contact with high-temperature glue or metal, it gradually decomposes to produce Si and C, reducing the metal components in contact.

SiC粉末の吹込みは造かん期の少なくとも一期間にて行い、金垢を滓化し、転炉からみとともに排出することが好ましい(上記(2)の方法)。吹込み時期は金垢の量に応じて造かん期全体もしくはその一部の期間とする。
SiC粉末吹込み量は金垢が転炉操業を妨げない程度とする。本出願人の製錬所の転炉の場合は一般に50 〜1000kg/回(1操業)である。転炉の容量が多くなる(少なくなる)と金垢の量も多くなる(少なくなる)ので、これに応じて吹込み量を調節する。吹込み量が少ないと金垢減少の効果が少なく、一方多すぎると、金垢成分が泡状になり炉外に溢出るので好ましくない。
SiC粉末を羽口から吹込むためには、SiC粉末のタンクを新たに設置し、タンク内を高圧空気によりSiC粉末流動状態にし、タンクから延びる配管を羽口直前で羽口噴射管に合流させ、高圧空気とともに転炉内に吹込む。
It is preferable that the SiC powder is blown in at least one period of the manufacturing period, and that the metal dust is hatched and discharged together with the converter (method (2) above). Depending on the amount of gold, the blowing time will be the whole or a part of the manufacturing period.
The amount of SiC powder blown is such that the metal does not hinder the converter operation. In the case of the converter of the applicant's smelter, it is generally 50 to 1000 kg / time (one operation). As the capacity of the converter increases (decreases), the amount of gold increases (decreases), so the blowing amount is adjusted accordingly. If the amount blown is small, the effect of reducing the metal scale is small. On the other hand, if it is too large, the metal scale component becomes foamy and overflows outside the furnace, which is not preferable.
In order to blow SiC powder from the tuyere, a new SiC powder tank is installed, the inside of the tank is made into a SiC powder flow state by high-pressure air, and the pipe extending from the tank is joined to the tuyere injection pipe just before the tuyere. Blow into the converter with air.

本発明の上記(2)の方法によると造かん期の末期に金垢は排滓されるので、造銅期中の金垢量は少なくなる。しかし、造かん期の排滓量が予想よりも少ない場合は、金垢が転炉炉底に残留している可能性が高いので、SiC粉末の吹込みにより金垢を、固体―液体反応により還元する(上記(3)の方法)。この場合は粗銅の出湯を待たずに、一旦排滓を行い、その後SiC粉末を吹込まない造銅期の吹錬を行うことが好ましい(上記(4)の方法)。 According to the above method (2) of the present invention, the amount of metal during the copper making period is reduced because the metal is discarded at the end of the steel making period. However, if the amount of waste discharged during the preparation period is less than expected, there is a high possibility that the metal remains on the bottom of the converter furnace. Reduction (method (3) above). In this case, it is preferable to perform drainage once without draining the crude copper, and then perform blowing in the copper making period without blowing SiC powder (method (4) above).

本発明によるSiC系インジェクション還元剤は金垢の高級酸化物を低級酸化物に還元し流動性を高めるとともに、自身も転炉からみの成分となるので、還元剤は粗銅中に取り込まれ純度を低下させることもない。
SiC(炭化ケイ素)は一般にカーボランダムとして市場で入手することができる。本発明によるSiC粉末を金垢還元剤としては、カーボランダムを勿論使用することができるが、研磨剤などのリサイクル原料が低価格であるので、これを使用することができる(上記(5)の方法)。この場合リサイクル原料のSiC純度は好ましくは98%以上であり、残部は研磨対象物であった金属部品の細かい破片などの不純物である。かかる残部に含まれる貴金属は粗銅中に吸収され、銅製錬の貴金属回収プロセスで回収される。また、SiC粉末の粒径は特に制限はないが、一般に入手できる数μm〜1mmであることが好ましい。
The SiC-based injection reducing agent according to the present invention improves the fluidity by reducing the higher oxide of gold metal to a lower oxide, and since it itself becomes a component seen from the converter, the reducing agent is incorporated into the crude copper and decreases the purity. I will not let you.
SiC (silicon carbide) is generally commercially available as carborundum. Of course, carborundum can be used as the metal powder reducing agent for the SiC powder according to the present invention, but this can be used because of the low cost of recycled materials such as abrasives (see (5) above). Method). In this case, the SiC purity of the recycled material is preferably 98% or more, and the balance is impurities such as fine debris of the metal part that was the object to be polished. The noble metal contained in the remainder is absorbed in the crude copper and recovered by a noble metal recovery process of copper smelting. Further, the particle size of the SiC powder is not particularly limited, but is preferably a few μm to 1 mm that is generally available.

本発明により次のような効果が達成される。
(1)金垢発生量が多くなった場合でも転炉からみが炉外に確実に排出され、炉内に残留する金垢量が少なくなる。このために、金垢が少なくなった分だけかわの装入量が多くなり、生産性向上につながる。
(2)造滓剤を添加することにより金垢を滓化する方法と比較すると、反応が迅速である。このため、転炉吹錬期の必要な時期だけ精錬剤を吹込めばよい。さらに、転炉における主反応である硫化銅から金属銅への酸化は羽口近傍で速やかに進行する気液反応であり、本発明の金垢の還元は徐々に進行する固液反応であるので、これらの反応を同時に進行させても、相互に影響することはほとんどない。
(3)転炉の容量に対して100%近い溶体量で吹錬を行った場合でも、ジャンピングが抑制されるために、飛散する溶湯が転炉フードに成長して鋳付きとなり、遂にはこれが落下して設備破壊、フード損傷などのトラブルをもたらすことが避けられる。また、フォーミングと言われる溶湯流出事故が防止される。
(4)通常の転炉操業を続けている過程で金垢量が次第に増えることがある。この場合は、次の転炉操業の造かん期にSiC粉末を吹込む(上記(2)の方法)。造かん期の開始時点では、装入されたマットと炉底に残存していた金垢のほとんどが一旦は混合され、混合状態になっている。かかる混合溶体にSiC粉末を吹込むと、金垢が急速に還元され、流動性が急激に向上する。造かん期の最後には転炉からみが排出される。目標とする金垢残存量達成後は、造かん期は通常の転炉操業に戻ることもできる。
(5)前掲(4)により目標金垢残存量を達成できない場合は、造銅期にSiC粉末を吹込む上記(3)の方法を行うことができる。したがって、本発明の方法は融通性が高い。(3)の方法は、(a)造かん期及び造銅期にSiC粉末を吹込む;(b)造銅期のみにSiC粉末を吹込む;の二つのパターンがある。上記(a)のパターンは、金垢の還元が2回に分けられるので、反応が穏やかになる。上記(b)のパターンは、造銅期に金垢量が増大した場合に対応できる。
(6)SiC粉末にリサイクル原料を使用すると、この有効活用を達成することができる。
続いて、本発明の実施例及び比較例を説明する。
The following effects are achieved by the present invention.
(1) Even when the amount of gold generation increases, the converter is reliably discharged out of the furnace, and the amount of metal remaining in the furnace decreases. For this reason, the amount of the filler inserted is increased as much as the amount of gold is reduced, leading to an improvement in productivity.
(2) The reaction is quicker than a method of hatching gold by adding a koji-making agent. For this reason, it is only necessary to blow the refining agent only during the time required for the converter blowing stage. Furthermore, the oxidation of copper sulfide to metallic copper, which is the main reaction in the converter, is a gas-liquid reaction that proceeds rapidly near the tuyere, and the reduction of the metal scale according to the present invention is a gradually proceeding solid-liquid reaction. Even if these reactions proceed simultaneously, there is little influence on each other.
(3) Even when blown with a solution amount close to 100% of the capacity of the converter, jumping is suppressed, and the molten metal grows on the converter hood and becomes cast. It is possible to avoid troubles such as equipment destruction and hood damage by dropping. Moreover, the molten metal outflow accident called forming is prevented.
(4) In the process of continuing normal converter operation, the amount of gold may gradually increase. In this case, SiC powder is blown in the next converter operation period (method (2) above). At the start of the manufacturing period, most of the charged mat and the metal remaining on the furnace bottom are once mixed and in a mixed state. When SiC powder is blown into such a mixed solution, the gold dust is rapidly reduced and the fluidity is rapidly improved. At the end of the manufacturing period, only the converter is discharged. After achieving the target amount of remaining gold, the preparation period can be returned to normal converter operation.
(5) If the target remaining amount of gold cannot be achieved according to the above (4), the method of (3) above in which SiC powder is blown during the copper making period can be performed. Therefore, the method of the present invention is highly flexible. The method (3) has two patterns: (a) blowing SiC powder during the steelmaking period and coppermaking period; and (b) blowing SiC powder only during the coppermaking period. In the pattern (a), since the reduction of the gold is divided into two times, the reaction becomes mild. The pattern (b) can cope with a case where the amount of gold increases during the copper making period.
(6) Use of recycled raw materials for SiC powder can achieve this effective utilization.
Then, the Example and comparative example of this invention are demonstrated.

従来例
本出願人の250ton転炉の通常の操業条件は、かわ装入量が230ton/吹錬(tap to tap、以下同じ)、粗銅出湯量206.2ton/吹錬、造かん期終了後のからみ排出量58.4tonであった。造かん期は第一造かん期と第二造かん期の2回に分けて行われたが両者を合計して平均50分、造銅期は平均240分であった。この操業において,金垢量が多くなった状況では、転炉の炉口から投入する溶剤の珪石を増量したが、SiC粉末を吹込まない吹錬を行ったところ、粗銅を出湯した後転炉内に残存する金垢の量は10 〜25tに達した。金垢量が多くなったときは、次回の操業でかわの装入量を少なくしかつ珪石装入量を多くして造かん期を開始した。
Conventional example The normal operating conditions of the Applicant's 250-ton converter are as follows. The discharge amount was 58.4 tons. The period of making was divided into two periods, the first and second periods, but the total was 50 minutes on average, and the average copper making period was 240 minutes. In this operation, when the amount of metal was increased, the amount of solvent silica added from the furnace port was increased, but when the blowing was performed without blowing SiC powder, after the crude copper was discharged, the converter The amount of gold remaining inside reached 10-25t. When the amount of gold increased, the next operation started to reduce the amount of glue and increase the amount of silica stone, and started the construction period.

実施例
上記従来例の操業において、金垢が25tonに達した転炉操業の次の造かん期に、SiC系研磨剤を廃棄した廃棄物を200kg羽口から4分間吹込んだところ、金垢の量は10tonに減少した。また、スプラッシュ、フォーミングなどの事故は起こらなかった。その後は上記した従来例による通常の操業を行った。
Example In the operation of the above-mentioned conventional example, in the next preparation period of the converter operation where the gold reached 25 tons, the waste from which the SiC-based abrasive was discarded was blown from the 200 kg tuyere for 4 minutes. The amount of was reduced to 10 tons. In addition, no accidents such as splash and forming occurred. Thereafter, normal operation according to the above-described conventional example was performed.

以上説明したように、本発明によると、非鉄製錬転炉に粗金属製造工程、特に造銅期後に残存する金垢の量を少なくすることができる。また、本出願人の製錬所の転炉を例にとって、具体的に説明したが、他の製錬所の転炉についても本発明を実施できることはいうまでもない。また、ニッケルの乾式製錬は日本では行なわれていないが、同様に本発明を実施することができる。
















As described above, according to the present invention, it is possible to reduce the amount of gold metal remaining in the non-ferrous smelting converter after the crude metal production process, particularly after the copper making period. In addition, the converter of the applicant's smelter has been specifically described by way of example, but it goes without saying that the present invention can also be implemented for converters of other smelters. Moreover, although nickel dry smelting is not performed in Japan, the present invention can be similarly implemented.
















Claims (6)

金垢が残存している非鉄製錬転炉内に製錬炉で生成したかわを装入し、その後羽口から空気を吹込む吹錬を行う転炉の操業方法において、前記羽口からSiC粉末を併せて吹込み前記金垢と接触させることを特徴とする転炉の操業方法。 In the operation method of the converter in which the non-ferrous smelting converter in which the metal remains remains is charged with the glue generated in the smelting furnace, and then blown by blowing air from the tuyere, A method for operating a converter, characterized in that powder is blown together and brought into contact with the metal dust. 造かん期の少なくとも一期間に前記SiC粉末を吹込む請求項1記載の転炉の操業方法。 The method for operating a converter according to claim 1, wherein the SiC powder is blown in at least one period of the manufacturing period. 造銅期の少なくとも一期間に前記SiC粉末を吹込む請求項1又は2記載の転炉の操業方法。 The method of operating a converter according to claim 1 or 2, wherein the SiC powder is blown in at least one period of the copper making period. 一旦造銅期の吹錬を中断して排滓を行った後、前記SiC粉末を吹込まない吹錬を再開することを特徴とする請求項3記載の転炉の操業方法。 4. The method of operating a converter according to claim 3, wherein after the blow-off in the copper making period is interrupted and discharged, the blowing without blowing the SiC powder is resumed. SiC粉末が貴金属を含むリサイクル原料である請求項1から4までの何れか1項記載の転炉の操業方法。 The method for operating a converter according to any one of claims 1 to 4, wherein the SiC powder is a recycled raw material containing a noble metal. 前記製錬炉が自溶炉である請求項1から5までの何れか1項記載の転炉の操業方法。




















The method for operating a converter according to any one of claims 1 to 5, wherein the smelting furnace is a flash furnace.




















JP2009074517A 2009-03-25 2009-03-25 Converter operation method Withdrawn JP2010222693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074517A JP2010222693A (en) 2009-03-25 2009-03-25 Converter operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074517A JP2010222693A (en) 2009-03-25 2009-03-25 Converter operation method

Publications (1)

Publication Number Publication Date
JP2010222693A true JP2010222693A (en) 2010-10-07

Family

ID=43040192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074517A Withdrawn JP2010222693A (en) 2009-03-25 2009-03-25 Converter operation method

Country Status (1)

Country Link
JP (1) JP2010222693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039961A (en) * 2015-08-18 2017-02-23 住友金属鉱山株式会社 Operation method of flash smelting furnace
CN109022824A (en) * 2018-07-13 2018-12-18 金川集团股份有限公司 A method of nickel fibers clinker is handled using silicon carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039961A (en) * 2015-08-18 2017-02-23 住友金属鉱山株式会社 Operation method of flash smelting furnace
CN109022824A (en) * 2018-07-13 2018-12-18 金川集团股份有限公司 A method of nickel fibers clinker is handled using silicon carbide

Similar Documents

Publication Publication Date Title
CN1060818C (en) Process for producing hydraulic binders and/or alloys, E.G. ferrochromium or ferrovanadium
JP4350711B2 (en) Industrial waste melting process
US11254599B2 (en) Method for producing rock wool and recoverable cast iron
WO1994011540A1 (en) Process for producing alloy utilizing aluminum dross
KR100446469B1 (en) Deoxidating material for manufacturing alloy steel
KR100925152B1 (en) Activator for slag of ladle in steel refining process
JP2010222693A (en) Converter operation method
JP6451462B2 (en) Method for recovering chromium from chromium-containing slag
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
JP4751100B2 (en) Copper recovery method by flotation
JP2009263742A (en) Method for reusing used tundish refractory
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JP6140423B2 (en) Method for recovering metal containing desulfurized slag
JP2002263606A (en) Treatment process of used refractory material
JP5726618B2 (en) Method for treating tin-containing copper
JP5493911B2 (en) Hot metal dephosphorization method
JP4854933B2 (en) Refining method with high reaction efficiency
JP3158912B2 (en) Stainless steel refining method
JP4254412B2 (en) Hot metal desulfurization method
JP5994549B2 (en) Hot metal dephosphorization refining agent used in converters.
JP6026210B2 (en) Metal refining method
JP4946314B2 (en) Method for recovering bullion from CaO desulfurization slag
JP2002003929A (en) SLAG-MAKING AGENT FOR DEOXIDATION COMPOSED OF ALUMINUM DUST AND SiC
JP6538522B2 (en) Reuse method of tundish refractories for continuous casting
JP5749546B2 (en) Method for removing bottom deposits of iron and tin-containing copper processing furnaces

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101102

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605