JP2010083314A - Driving support device for vehicle - Google Patents

Driving support device for vehicle Download PDF

Info

Publication number
JP2010083314A
JP2010083314A JP2008254160A JP2008254160A JP2010083314A JP 2010083314 A JP2010083314 A JP 2010083314A JP 2008254160 A JP2008254160 A JP 2008254160A JP 2008254160 A JP2008254160 A JP 2008254160A JP 2010083314 A JP2010083314 A JP 2010083314A
Authority
JP
Japan
Prior art keywords
vehicle
road
intersection
lane
driving support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008254160A
Other languages
Japanese (ja)
Inventor
Shinji Sawada
慎司 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008254160A priority Critical patent/JP2010083314A/en
Publication of JP2010083314A publication Critical patent/JP2010083314A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To predict the entry track of another vehicle to own-vehicle side road on a tolerance road, and to properly determine the risk of collision due to extrusion of the other vehicle to the traveling lane of own vehicle. <P>SOLUTION: When another vehicle attempts to make a turn, from a crossroad to the road of own vehicle, the lane width of the other vehicle and the lane width of the opposing lane of own vehicle are calculated (S10, S11), and a required radius R is calculated from the cross angle of the road (S12) and is compared with the minimum turning radius min. When R<min, the entry track of the other vehicle is obtained as a path having the minimum turning radius min (S14); and when R≥min, the entry track of the other vehicle is obtained as a path with a fixed required radium R (S15). For the case of the path with the required radius R, it is determined that there is no possibility of collision of own vehicle with the other vehicle; and for the case of the path having the minimum turning radius min, it is determined that there is a possibility of collision due to the extrusion of the other vehicle to the traveling lane of own vehicle, and an operation support control as alarm output, forced braking and avoidance steering is executed (S17). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自車両の周辺環境を認識し、衝突回避のための運転支援を行う車両の運転支援装置に関する。   The present invention relates to a vehicle driving support device that recognizes the surrounding environment of a host vehicle and performs driving support for collision avoidance.

近年、自動車等の車両においては、車載のカメラやレーザレーダ装置等により外界の走行環境を検出して障害物や先行車等の立体物を認識し、警報・自動ブレーキ・自動操舵といった各種制御を実行することで衝突を回避し、安全性を向上させる技術が開発・実用化されている。   In recent years, in vehicles such as automobiles, on-board cameras and laser radar devices are used to detect the driving environment in the outside world to recognize obstacles and three-dimensional objects such as preceding vehicles, and perform various controls such as alarms, automatic braking, and automatic steering. Technologies that avoid collisions and improve safety by executing them have been developed and put to practical use.

このような運転支援技術においては、交差点等のように2本以上の道路が交差する交差路での衝突を防止する技術が各種提案されており、例えば、特許文献1(特開2006−309445号公報)には、交差路における車両の走行軌跡を道路情報から予測し、将来起こりうる危険度を算出する技術が開示されている。
特開2006−309445号公報
In such driving support technology, various technologies for preventing a collision at an intersection where two or more roads intersect, such as an intersection, have been proposed. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-309445). (Patent Publication) discloses a technique for predicting a travel locus of a vehicle on an intersection from road information and calculating a risk level that may occur in the future.
JP 2006-309445 A

特許文献1に開示されるような従来の技術では、交差点における車両の進行路を、一方の道路の直線部と他方の道路の直線部とを一定の半径の円弧で結ぶことで予測するようにしている。しかしながら、実際には、交差路の一方の道路が細い場合や鋭角的に交差するような場合、このような道路から旋回して出てくる車両が自車線内で曲がりきれず、相手側の対向車線内に一旦はみ出てから戻るような軌跡を描く場合がある。   In the conventional technology as disclosed in Patent Document 1, a traveling path of a vehicle at an intersection is predicted by connecting a straight line portion of one road and a straight line portion of the other road with an arc having a certain radius. ing. However, in reality, when one of the crossing roads is narrow or intersects at an acute angle, the vehicle turning out from such a road cannot bend in its own lane and faces the other side. There is a case where a trajectory is drawn in such a manner that it once protrudes into the lane and then returns.

例えば、図4(a)に示すように、自車両100が進行する道路101に対して細い道路102が直交する公差路の場合、細い道路102から他車両103が左折して自車両100側の道路101の対向車線101bに進入しようとしても、自車両100側の道路101のセンターライン101cを超えて自車両100の走行車線101aにはみ出す場合があり、衝突の危険性が高くなる。   For example, as shown in FIG. 4A, in the case of a tolerance road in which a narrow road 102 is orthogonal to a road 101 on which the own vehicle 100 travels, another vehicle 103 turns left from the narrow road 102 and is on the own vehicle 100 side. Even if an attempt is made to enter the opposite lane 101b of the road 101, there is a case where the vehicle 101 protrudes beyond the center line 101c of the road 101 on the own vehicle 100 side to the traveling lane 101a of the own vehicle 100, and the risk of collision increases.

また、図4(b)に示すように、自車両100が進行する道路101に対して道路105が鋭角的に公差する場合、道路105から他車両106が左折しようとしても、他車両の進入軌跡が自車両100側の道路101のセンターライン101cを超えて大きくふくらみ、自車両100の走行車線101aにはみ出す場合があり、同様に、衝突の危険性が高くなる。   In addition, as shown in FIG. 4B, when the road 105 has an acute tolerance with respect to the road 101 on which the host vehicle 100 travels, even if the other vehicle 106 tries to turn left from the road 105, the approach locus of the other vehicle. May swell greatly beyond the center line 101c of the road 101 on the own vehicle 100 side and protrude into the traveling lane 101a of the own vehicle 100, and similarly, the risk of collision increases.

このように従来の技術では、細い道路や鋭角的に交差する道路から他車両が自車両の道路に進入するような状況に対して、他車両の進入軌跡が他車両の車線外にふくらんで自車両の走行車線内にはみ出すことを想定しておらず、衝突の危険性が適正に評価されない虞がある。   As described above, in the conventional technology, when the other vehicle enters the road of the own vehicle from a narrow road or a road that intersects acutely, the approach locus of the other vehicle swells outside the lane of the other vehicle. It is not assumed that the vehicle protrudes into the driving lane, and the risk of collision may not be properly evaluated.

本発明は上記事情に鑑みてなされたもので、公差路における自車両側の道路への他車両の進入軌跡を予測し、自車両側の道路における自車両の走行車線への他車両のはみ出しによる衝突の危険性を適切に判断することのできる車両の運転支援装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and predicts the approach trajectory of another vehicle to the road on the own vehicle side on the tolerance road, and the other vehicle protrudes into the traveling lane of the own vehicle on the road on the own vehicle side. An object of the present invention is to provide a driving support device for a vehicle that can appropriately determine the risk of a collision.

上記目的を達成するため、本発明による車両の運転支援装置は、自車両の周辺環境を認識し、衝突回避のための運転支援を行う車両の運転支援装置において、自車両が進行する自車両側道路と該自車両側道路に交差する接続道路とによる交差路を認識する交差路認識部と、上記交差路の形状に基づいて、上記接続道路から上記自車両側道路に進入する他車両の進入軌跡を予測する進入軌跡予測部と、上記他車両の進入軌跡の一部が上記自車両側道路における自車両の走行車線内に入るか否かにより、自車両と上記他車両との衝突可能性を判断する衝突判断部とを備えたことを特徴とする。   In order to achieve the above object, a vehicle driving support device according to the present invention recognizes the surrounding environment of the host vehicle and provides driving support for collision avoidance in the host vehicle side on which the host vehicle travels. An intersection recognition unit for recognizing an intersection between a road and a connection road intersecting the own vehicle side road, and an approach of another vehicle entering the own vehicle side road from the connection road based on the shape of the intersection The possibility of collision between the host vehicle and the other vehicle depends on whether or not a part of the approach track of the other vehicle enters the traveling lane of the host vehicle on the host vehicle side road. And a collision determination unit for determining the above.

本発明によれば、公差路における自車両側の道路への他車両の進入軌跡を公差路の形状に基づいて予測するため、自車両の走行車線への他車両のはみ出しによる衝突の危険性を適切に判断することができる。   According to the present invention, since the approach trajectory of the other vehicle to the road on the own vehicle side on the tolerance road is predicted based on the shape of the tolerance road, the risk of collision due to the protrusion of the other vehicle to the traveling lane of the own vehicle is reduced. Judgment can be made appropriately.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図3は本発明の実施の一形態に係り、図1は車両に搭載した運転支援装置の概略構成図、図2は交差路における他車両の進入軌跡を示す説明図、図3は進入軌跡予測及び衝突判断処理のフローチャートである。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 relate to an embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a driving support device mounted on a vehicle, FIG. 2 is an explanatory diagram showing an approach locus of another vehicle in an intersection, and FIG. It is a flowchart of approach locus prediction and collision judgment processing.

図1において、符号1は自動車等の車両(自車両)であり、この自車両1に、外部の走行環境を認識して障害物との衝突回避のための運転支援を行う運転支援装置2が搭載されている。本実施の形態においては、運転支援装置2は、ステレオカメラ3とステレオ画像認識装置4と走行環境情報取得装置5とによる外部環境の認識のための装置群と、各装置からの情報に基づいて運転支援のための各種処理を行うマイクロコンピュータ等からなる制御ユニット6を主要部として備えている。制御ユニット6には、警報装置を兼用するディスプレイ21、自動ブレーキ制御装置22、自動操舵制御装置23等の運転支援に係る各装置が接続されている。   In FIG. 1, reference numeral 1 denotes a vehicle (host vehicle) such as an automobile, and a driving support device 2 that recognizes an external driving environment and performs driving support for avoiding a collision with an obstacle is provided on the host vehicle 1. It is installed. In the present embodiment, the driving support device 2 is based on a device group for recognition of the external environment by the stereo camera 3, the stereo image recognition device 4, and the traveling environment information acquisition device 5, and information from each device. A control unit 6 including a microcomputer or the like that performs various processes for driving support is provided as a main part. The control unit 6 is connected to various devices related to driving support such as a display 21 that also serves as an alarm device, an automatic brake control device 22, and an automatic steering control device 23.

尚、ステレオ画像認識装置4、走行環境情報取得装置5、制御ユニット6、自動ブレーキ制御装置22、自動操舵制御装置23等は、それぞれ、単一或いは複数のコンピュータシステムからなる制御ユニットとして構成され、互いに通信バスを介してデータを相互に交換する。   The stereo image recognition device 4, the driving environment information acquisition device 5, the control unit 6, the automatic brake control device 22, the automatic steering control device 23, and the like are each configured as a control unit including a single or a plurality of computer systems. Data is exchanged with each other via a communication bus.

また、自車両1には、自車速を検出する車速センサ11、ヨーレートを検出するヨーレートセンサ12、運転支援制御のON−OFF信号が入力されるメインスイッチ13等が設けられている。自車速はステレオ画像認識装置4と制御ユニット6に入力され、ヨーレートは制御ユニット6に入力され、運転支援制御のON−OFF信号等は制御ユニット6に入力される。   The host vehicle 1 is also provided with a vehicle speed sensor 11 that detects the host vehicle speed, a yaw rate sensor 12 that detects the yaw rate, a main switch 13 to which an ON / OFF signal for driving support control is input, and the like. The own vehicle speed is input to the stereo image recognition device 4 and the control unit 6, the yaw rate is input to the control unit 6, and the ON / OFF signal for driving support control is input to the control unit 6.

ステレオカメラ3は、外界環境を認識するための認識センサの一つとして用いられ、例えばCCDやCMOS等の固体撮像素子を用いた1組の(左右の)カメラで構成されている。各カメラは、それぞれ車室内の天井前方に一定の基線長をもって取り付けられており、車外の対象を異なる視点からステレオ撮像し、画像データをステレオ画像認識装置4に出力する。   The stereo camera 3 is used as one of recognition sensors for recognizing the external environment, and includes a pair of (left and right) cameras using a solid-state image sensor such as a CCD or a CMOS. Each camera is attached to the front of the ceiling in the vehicle interior with a certain baseline length, and takes a stereo image of an object outside the vehicle from different viewpoints, and outputs image data to the stereo image recognition device 4.

ステレオ画像認識装置4は、ステレオカメラ3で撮像した画像を高速処理する画像処理エンジンを備え、この画像処理エンジンの出力結果に基づいて認識処理を行う処理ユニットとして構成されている。このステレオ画像認識装置4におけるステレオカメラ3の画像処理は、例えば、次のように行われる。   The stereo image recognition device 4 includes an image processing engine that processes an image captured by the stereo camera 3 at a high speed, and is configured as a processing unit that performs a recognition process based on an output result of the image processing engine. Image processing of the stereo camera 3 in the stereo image recognition device 4 is performed as follows, for example.

すなわち、ステレオ画像認識装置4は、先ず、ステレオカメラ3で撮像した自車両1の進行方向の1組のステレオ画像対に対し、対応する位置のずれ量から距離情報を求め、距離画像を生成する。そして、このデータを基に、周知のグルーピング処理を行い、予め記憶しておいた3次元的な道路形状データ、側壁データ、立体物データ等の枠(ウインドウ)と比較し、白線データ、道路に沿って存在するガードレール、縁石等の側壁データを抽出すると共に、立体物を、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出する。これらのデータは、自車両1を原点として、自車両1の前後方向をX軸、幅方向をY軸とする座標系でのデータとして演算され、白線データ、道路に沿って存在するガードレール、縁石等の側壁データ、及び、立体物の種別、自車両1からの距離、中心位置、速度等が障害物情報として制御ユニット6へ送信される。   That is, first, the stereo image recognition device 4 obtains distance information from a corresponding position shift amount with respect to a pair of stereo images in the traveling direction of the host vehicle 1 captured by the stereo camera 3, and generates a distance image. . Then, based on this data, a well-known grouping process is performed and compared with frames (windows) such as three-dimensional road shape data, side wall data, and three-dimensional object data stored in advance. Side wall data such as guardrails and curbs that exist along the road are extracted, and three-dimensional objects are classified and extracted into other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, and utility poles. These data are calculated as data in a coordinate system in which the own vehicle 1 is the origin, the front-rear direction of the own vehicle 1 is the X axis, and the width direction is the Y axis. White line data, guardrails existing along the road, curbstones And the like, the type of the three-dimensional object, the distance from the host vehicle 1, the center position, the speed, and the like are transmitted to the control unit 6 as obstacle information.

尚、本実施の形態では、認識センサの一つとしてステレオカメラ3を用いる例について説明するが、他に、単眼カメラ、ミリ波レーダ等の他の認識センサを用いるようにしても良い。   In this embodiment, an example in which the stereo camera 3 is used as one of the recognition sensors will be described. However, other recognition sensors such as a monocular camera and a millimeter wave radar may be used.

走行環境情報取得装置5は、ステレオカメラ3の検出範囲よりも広範囲での物体の検出、道路形状や交差点の有無や位置・形状の情報、渋滞情報等の各種情報の取得を行うものである。具体的には、走行環境情報取得装置5は、道路付帯設備からの光や電波ビーコンを受信して交通渋滞情報、気象情報、特定区域の交通規制情報等の各種情報を取得する路車間通信装置、自車両周辺に存在する他の車両との通信(車車間通信)を行い、車両種別、車両位置、車速、加減速状態、ブレーキ作動状態、ウィンカ状態等の車両情報を相互に交換する車車間通信装置、GPS等の測位装置、ナビゲーション装置等からの各情報を収集して広範囲の走行環境情報を取得可能な装置として構成されている。   The travel environment information acquisition device 5 detects an object in a wider range than the detection range of the stereo camera 3, and acquires various types of information such as road shape, the presence / absence of an intersection, position / shape information, and traffic jam information. Specifically, the traveling environment information acquisition device 5 receives light and radio wave beacons from road incidental facilities and acquires various information such as traffic congestion information, weather information, and traffic regulation information for a specific area. Communicate with other vehicles around the vehicle (vehicle-to-vehicle communication), and exchange vehicle information such as vehicle type, vehicle position, vehicle speed, acceleration / deceleration state, brake operation state, blinker state, etc. It is configured as a device capable of acquiring a wide range of travel environment information by collecting information from a communication device, a positioning device such as a GPS, and a navigation device.

制御ユニット6は、車速センサ11からの自車速、ヨーレートセンサ12からのヨーレート、ステレオ画像認識装置4からの障害物情報、走行環境情報取得装置5からの障害物情報に基づいて、自車両1の周辺環境に存在する危険度(リスク)を認識し、ドライバに対する警報、制動支援、操舵支援等の運転支援制御を実行する。   Based on the vehicle speed from the vehicle speed sensor 11, the yaw rate from the yaw rate sensor 12, the obstacle information from the stereo image recognition device 4, and the obstacle information from the traveling environment information acquisition device 5, the control unit 6 It recognizes the risk (risk) existing in the surrounding environment, and executes driving support control such as warning to the driver, braking support, and steering support.

また、制御ユニット6は、特に、外部環境の認識のための装置群(ステレオカメラ3,ステレオ画像認識装置4,走行環境情報取得装置5)により、自車両1が進行する道路(自車両側道路)と、この自車両側道路に交差する道路(接続道路)とによる交差路を認識した場合(交差路認識部としての機能)、他車両側の接続道路から自車両側の道路の対向車線に進入する他車両の走行軌跡を予測し、自車両側の走行車線への他車両のはみ出しによる衝突の可能性を判断する機能(進入軌跡予測部、衝突判断部としての機能)を有している。   In addition, the control unit 6 is particularly adapted for a road (own vehicle side road) on which the host vehicle 1 travels by a device group (stereo camera 3, stereo image recognition device 4, travel environment information acquisition device 5) for recognition of the external environment. ) And a road (connection road) that intersects with the own vehicle side road (function as an intersection recognition unit) from the connection road on the other vehicle side to the opposite lane of the road on the own vehicle side Predicts the travel trajectory of another vehicle that enters, and has a function (function as an entrance trajectory prediction unit and a collision determination unit) that determines the possibility of a collision due to the other vehicle protruding into the travel lane on the host vehicle side. .

更に、制御ユニット6は、進入軌跡予測を実行するか否かを判断する予測実行判断部としての機能を有しており、実際に進入軌跡予測を実行するか否かを走行環境に応じて判断するようにしている。この進入軌跡予測処理を実行するか否かは、例えば、他車両の位置(交差点までの距離)、信号機の有無、他車両の速度、ブレーキやアクセルの操作状態等に基づいて、交差する道路から他車両が自車両側の道路に進入してくるか否かを適切に判断し、その判断結果に応じて予測処理を実行するか否かを決定する。   Further, the control unit 6 has a function as a prediction execution determination unit that determines whether or not to execute the approach locus prediction, and determines whether or not the approach locus prediction is actually executed according to the traveling environment. Like to do. Whether or not to execute this approach trajectory prediction process depends on, for example, the position of the other vehicle (the distance to the intersection), the presence or absence of a traffic light, the speed of the other vehicle, the operating state of the brake or accelerator, etc. It is appropriately determined whether or not another vehicle enters the road on the own vehicle side, and it is determined whether or not to execute the prediction process according to the determination result.

交差路における他車両の進入軌跡を予測する場合、進入軌跡の予測は、道路の幅員、交差路の交差角度、車両の種別(大型車、小型車、軽自動車、2輪車等)によって異なる車両幅や最小回転半径を用いて予測する。以下、交差路における他車両の進入軌跡の予測処理について、図2を用いて説明する。   When predicting the approach trajectory of another vehicle on an intersection, the approach trajectory is predicted depending on the width of the road, the intersection angle of the intersection, and the type of vehicle (large car, small car, light car, motorcycle, etc.) And using the minimum turning radius. Hereinafter, the prediction process of the approach locus | trajectory of the other vehicle in an intersection is demonstrated using FIG.

図2は、自車両1が進行する道路50に、他の道路51が交差角度θで交差する例を示しており、以下では、交差する道路51から他車両52が左折して自車両側の道路50に進入する場合について説明する。図2においては、自車両1側の道路50は、自車両1の走行車線50aと対向車線50bとの2車線であり、また、他車両52側の道路51も他車両52の走行車線51aと対向車線51bとの2車線である。   FIG. 2 shows an example in which another road 51 intersects the road 50 on which the own vehicle 1 travels at an intersection angle θ. In the following, the other vehicle 52 turns left from the intersecting road 51 and is on the own vehicle side. A case of entering the road 50 will be described. In FIG. 2, the road 50 on the own vehicle 1 side is two lanes of the traveling lane 50 a and the opposite lane 50 b of the own vehicle 1, and the road 51 on the other vehicle 52 side is also the traveling lane 51 a of the other vehicle 52. Two lanes with the opposite lane 51b.

尚、図2は車両の通行区分が左側通行である場合の例であるが、車両の通行区分が右側通行の場合も同様である。   FIG. 2 shows an example in which the vehicle traffic category is left-hand traffic, but the same applies to the case where the vehicle traffic category is right-hand traffic.

ここで、他車両52が一定の半径の走行軌跡で自車両1側の道路50の対向車線50bに進入する場合を想定する(内輪差については後述する)。他車両52が自車両1側の走行車線50aにはみ出ることなく対向車線50bに進入することのできる最大半径(必要半径)Rは、他車両52の外側が道路51のセンターライン51cから道路50のセンターライン50cを通過する軌跡として捉えることができる。   Here, it is assumed that the other vehicle 52 enters the opposite lane 50b of the road 50 on the own vehicle 1 side with a traveling locus having a certain radius (the inner wheel difference will be described later). The maximum radius (necessary radius) R at which the other vehicle 52 can enter the oncoming lane 50b without protruding into the travel lane 50a on the own vehicle 1 side is such that the outside of the other vehicle 52 extends from the center line 51c of the road 51 to the road 50. It can be understood as a trajectory passing through the center line 50c.

また、必要半径Rは、必要半径Rと同心円で且つ他車両52の内側が道路50,51の内側交差部を通過する円の半径(限界半径)Rcに、他車両52の車両幅wを加算した半径として表すことができ、以下の(1)式で示される。尚、後述するように、車両の内輪差を考慮する場合には、必要半径Rは、車両幅wに代えて内輪差を考慮した幅w’を用いて算出する。   Further, the required radius R is concentric with the required radius R, and the vehicle width w of the other vehicle 52 is added to the radius (limit radius) Rc of the circle inside the other vehicle 52 passing through the inner intersection of the roads 50 and 51. Can be expressed as the following radius (1). As will be described later, when considering the difference between the inner wheels of the vehicle, the required radius R is calculated using a width w 'considering the difference between the inner wheels instead of the vehicle width w.

R=Rc+w …(1)
限界半径Rcは、図2に示すように、他車両52の外側が道路51のセンターライン51cから旋回を開始するときの他車両52の内側の位置C1と、自車両1側の道路50と他車両52側の道路51とが交差角θで交差する位置Bと、他車両52の外側が自車両1側の道路50のセンターライン50c上にあるときの他車両52の内側の位置C2との3点を通る円(中心O)の半径となる。
R = Rc + w (1)
As shown in FIG. 2, the limit radius Rc is determined based on the position C1 inside the other vehicle 52 when the outside of the other vehicle 52 starts turning from the center line 51c of the road 51, the road 50 on the own vehicle 1 side, and the like. A position B where the road 51 on the vehicle 52 side intersects with the intersection angle θ, and a position C2 inside the other vehicle 52 when the outside of the other vehicle 52 is on the center line 50c of the road 50 on the own vehicle 1 side. This is the radius of a circle (center O) passing through three points.

このとき、位置C1と円の中心Oとを結ぶライン、位置C2と円の中心Oとを結ぶラインは、それぞれ、道路51の走行車線51a側の路端ライン、道路50の対向車線50b側の路端ラインに、交点A,Dで直交し、2つの直角三角形AOB,DOBが形成される。一方の直角三角形AOBは、交差位置Bと中心Oとを結ぶ限界半径Rcの長さの辺を斜辺として、交点A及び中心Oによる辺aと、交点A及び交差位置Bによる辺bとが互いに直交する直角三角形である。また、他方の直角三角形DOBは、交差位置Bと中心Oとを結ぶ限界半径Rcの長さの辺を斜辺として、交点D及び中心Oによる辺dと、交点D及び交差位置Bによる辺cとが互いに直交する直角三角形である。   At this time, the line connecting the position C1 and the center O of the circle, and the line connecting the position C2 and the center O of the circle are respectively the road end line on the traveling lane 51a side of the road 51 and the road lane 50b side of the road 50. Two right triangles AOB and DOB are formed orthogonal to the road end line at intersections A and D. One right triangle AOB has a side of a limit radius Rc connecting the intersection position B and the center O as a hypotenuse, and the side a by the intersection A and the center O and the side b by the intersection A and the intersection position B are mutually connected. It is an orthogonal right triangle. The other right-angled triangle DOB has a side of a limit radius Rc connecting the intersection position B and the center O as a hypotenuse, a side d by the intersection D and the center O, and a side c by the intersection D and the intersection position B. Are right triangles orthogonal to each other.

これらの2つの直角三角形AOB,DOBは、限界半径Rcの斜辺を共有することから、交差位置Bと中心Oとの中点O’を中心とする円に内接する4角形OABDを形成する。従って、4角形OABDの2つの対角線AD,BOについて、トレミーの定理を適用することができ、以下の(2)式が得られる。但し、対角線ADの長さをeとする。また、対角線BOの長さは限界半径Rcである。   Since these two right triangles AOB and DOB share the hypotenuse of the limit radius Rc, they form a quadrangular OABD that is inscribed in a circle centered at the midpoint O ′ between the intersection position B and the center O. Therefore, Tremy's theorem can be applied to the two diagonal lines AD and BO of the quadrangular OABD, and the following equation (2) is obtained. Here, e is the length of the diagonal line AD. The length of the diagonal line BO is the limit radius Rc.

e・Rc=a・c+b・d …(2)
また、4角形OABDの対角線ADに余弦定理を適用すると、以下の(3)式が得られる。更に、4角形OABDを形成する2つの直角三角形AOB,DOBに、それぞれピタゴラスの定理を適用すると、以下の(4),(5)式を得ることができる。
e · Rc = a · c + b · d (2)
Further, when the cosine theorem is applied to the diagonal line AD of the quadrangular OABD, the following expression (3) is obtained. Further, when the Pythagorean theorem is applied to the two right triangles AOB and DOB forming the quadrangular OABD, the following equations (4) and (5) can be obtained.

2=a2+d2−2・a・d・cos(π−θ) …(3)
Rc2=a2+b2 …(4)
Rc2=c2+d2 …(5)
4角形OABDの各辺a,b,c,dのうち、辺a,dの長さは、以下の(6),(7)式に示すように、必要半径R、他車両52の走行車線51aの車線幅La、自車両1の対向車線50bの車線幅Loから求めることができる。
e 2 = a 2 + d 2 -2 · a · d · cos (π-θ) (3)
Rc 2 = a 2 + b 2 (4)
Rc 2 = c 2 + d 2 (5)
Of the sides a, b, c, d of the quadrangular OABD, the lengths of the sides a, d are the required radius R, the travel lane of the other vehicle 52, as shown in the following equations (6), (7). It can be obtained from the lane width La of 51a and the lane width Lo of the opposite lane 50b of the host vehicle 1.

a=R−La …(6)
d=R−Lo …(7)
従って、(2)〜(5)式から未知の辺b,cに関する項を消去し、限界半径Rcについて整理すると、以下の(8)式が得られる。
a = R−La (6)
d = R-Lo (7)
Therefore, when the terms related to the unknown sides b and c are deleted from the equations (2) to (5) and the limit radius Rc is arranged, the following equation (8) is obtained.

Rc2=(2・a・d・cosθ+a2+d2)/(1−cos2θ) …(8)
尚、道路50,51が直交する場合には、θ=π/2でcosθ=0となり、限界半径Rcは、以下の(8’)式で表すことができる。
Rc 2 = (2 · a · d · cos θ + a 2 + d 2 ) / (1-cos 2 θ) (8)
When the roads 50 and 51 are orthogonal to each other, θ = π / 2 and cos θ = 0, and the limit radius Rc can be expressed by the following equation (8 ′).

Rc2=a2+d2 …(8’)
最終的に、必要半径Rは、限界半径Rcに関する(8)式に、上述の(1),(6),(7)式を適用して得られる以下の(9)式によって求めることができる。(9)式は、必要半径Rについての2次方程式であり、この2次方程式を解くことにより、必要半径Rを求めることができる。
Rc 2 = a 2 + d 2 (8 ′)
Finally, the required radius R can be obtained by the following equation (9) obtained by applying the above-described equations (1), (6), and (7) to the equation (8) related to the limit radius Rc. . Equation (9) is a quadratic equation for the required radius R, and the required radius R can be obtained by solving this quadratic equation.

(1+cosθ)2・R2+2・(w−w・cos2θ−La・cosθ−Lo・cosθ−La−Lo)・R−(1−cos2θ)・w2+2・La・Lo・cosθ+La2+Lo2=0 …(9)
(9)式から得られる2つの解のうち、求める必要半径Rは、実数解且つ大きい方の値の解であり、以下の(10)式に示される。
(1 + cos θ) 2 · R 2 + 2 · (w−w · cos 2 θ−La · cos θ−Lo · cos θ−La−Lo) · R− (1−cos 2 θ) · w 2 + 2 · La · Lo · cos θ + La 2 + Lo 2 = 0 (9)
Of the two solutions obtained from the equation (9), the required radius R is a real solution and a solution having a larger value, and is represented by the following equation (10).

R=((2・(−w2+(La+Lo)・w−La・Lo)・cosθ+2・w2+2・(−La−Lo)・w+2・La・Lo)1/2+w・cosθ−w+La+Lo)/(1+cosθ) …(10)
以上により求めた必要半径Rは、他車両52の最小回転半径rminと比較され、実際に旋回可能な半径での経路が決定される。この場合、より精密には車両の内輪差を含めて経路を決定することが望ましいが、膨大な演算量を要する計算(近似計算)となって処理時間及び負荷が増大するばかりでなく、計算に必要な全てのデータを取得できるとは限らない。
R = ((2 · (−w 2 + (La + Lo) · w−La · Lo) · cos θ + 2 · w 2 + 2 · (−La−Lo) · w + 2 · La · Lo) 1/2 + w · cos θ−w + La + Lo) / (1 + cos θ) (10)
The required radius R obtained as described above is compared with the minimum turning radius rmin of the other vehicle 52, and a route with a radius that can actually be turned is determined. In this case, it is desirable to determine the route more precisely including the difference between the inner wheels of the vehicle. However, the calculation requires an enormous amount of calculation (approximate calculation), and not only the processing time and load increase, but also the calculation. Not all necessary data can be acquired.

従って、他車両52のトレッドTやホイールベースWb等の情報を取得できる場合には、以下の(11)式に示すように、内輪差を考慮した車両内側の最小半径(最内側半径)Rinを求め、以下の(12)式に示すように、最小回転半径rminから最内側半径Rinを減算した幅w’を、(1),(10)式における車両幅wに代えて用いることで、必要半径Rを求める。ここでの幅w’は、車両幅に内輪差を加えたものとなる。   Therefore, when information such as the tread T and the wheel base Wb of the other vehicle 52 can be acquired, the minimum radius (innermost radius) Rin on the vehicle inner side considering the inner ring difference is set as shown in the following equation (11). As shown in the following equation (12), the width w ′ obtained by subtracting the innermost radius Rin from the minimum turning radius rmin is used instead of the vehicle width w in the equations (1) and (10). The radius R is obtained. The width w 'here is the vehicle width plus the inner ring difference.

Rin=(rmin2−Wb2)1/2−T …(11)
w’=rmin−Rin=rmin+T−(rmin2−Wb2)1/2 …(12)
そして、必要半径Rと最小回転半径rminとの比較の結果、必要半径Rが他車両52の最小回転半径rmin以上(R≧rmin)の場合には、他車両52は、自車両1側の走行車線50aにはみ出ることなく自車両1側の対向車線50bに進入することができるものと判断する。従って、R≧rminの場合には、他車両52の自車両1側の道路50への進入軌跡を、一定の必要半径Rで時系列的に繋いだ経路とする。
Rin = (rmin 2 −Wb 2 ) 1/2 −T (11)
w ′ = rmin−Rin = rmin + T− (rmin 2 −Wb 2 ) 1/2 (12)
As a result of comparison between the required radius R and the minimum turning radius rmin, if the required radius R is equal to or greater than the minimum turning radius rmin of the other vehicle 52 (R ≧ rmin), the other vehicle 52 travels on the own vehicle 1 side. It is determined that the vehicle can enter the opposite lane 50b on the own vehicle 1 side without protruding into the lane 50a. Therefore, in the case of R ≧ rmin, the approach locus of the other vehicle 52 to the road 50 on the own vehicle 1 side is a route connected in time series with a certain required radius R.

一方、必要半径Rが最小回転半径rminを下回る(R<rmin)の場合には、他車両52の進入軌跡は必要半径Rよりも大きくなり、自車両1側の走行車線50aにはみ出ることなく自車両1側の対向車線50bに進入することはできない。このため、R<rminの場合には、他車両52の自車両1側の道路50への進入軌跡を、他車両52の最小回転半径rminで時系列的に繋いだ経路とする。   On the other hand, when the required radius R is less than the minimum turning radius rmin (R <rmin), the approach locus of the other vehicle 52 becomes larger than the required radius R and the vehicle does not protrude from the traveling lane 50a on the own vehicle 1 side. The vehicle cannot enter the opposite lane 50b on the vehicle 1 side. For this reason, when R <rmin, the approach locus of the other vehicle 52 to the road 50 on the own vehicle 1 side is a route connected in time series with the minimum rotation radius rmin of the other vehicle 52.

尚、簡易的には、内輪差を一定の値(例えば、小型車であれば、1m)と仮定し、この一定の内輪差を含めた必要半径(R+1)と最小回転半径rminとを比較するようにしても良い。   For simplicity, it is assumed that the inner ring difference is a constant value (for example, 1 m for a small vehicle), and the required radius (R + 1) including the constant inner ring difference is compared with the minimum turning radius rmin. Anyway.

そして、制御ユニット6は、他車両52の進入軌跡に基づいて、自車両1との衝突可能性を判断する。他車両52の進入軌跡が一定の必要半径Rを繋いだ経路である場合には、他車両52が自車両1側の道路50のセンターライン50cを超えることなく対向車線50bに安全に進入し、自車両1と他車両52との衝突の可能性は無いと判断する。   Then, the control unit 6 determines the possibility of collision with the host vehicle 1 based on the approach locus of the other vehicle 52. When the approach locus of the other vehicle 52 is a route connecting a certain required radius R, the other vehicle 52 safely enters the oncoming lane 50b without exceeding the center line 50c of the road 50 on the own vehicle 1 side, It is determined that there is no possibility of a collision between the host vehicle 1 and the other vehicle 52.

一方、他車両52の進入軌跡が最小回転半径rminで回る経路である場合には、他車両52は自車両1側の道路50のセンターライン50cを超えて一旦走行車線50aにはみ出すため、自車両1と他車両52との衝突可能性が有ると判断し、ドライバに対する警報制御、制動制御、操舵制御等の運転支援を実行することで、衝突を回避して安全を確保する。   On the other hand, when the approach track of the other vehicle 52 is a route that turns around with the minimum turning radius rmin, the other vehicle 52 exceeds the center line 50c of the road 50 on the own vehicle 1 side and once protrudes into the travel lane 50a. It is determined that there is a possibility of collision between the vehicle 1 and the other vehicle 52, and driving assistance such as alarm control, braking control, steering control, etc. for the driver is executed, thereby avoiding the collision and ensuring safety.

次に、以上の進入軌跡予測及び衝突判断に係るプログラム処理について、図3のフローチャートを用いて説明する。   Next, the program processing relating to the above approach trajectory prediction and collision determination will be described using the flowchart of FIG.

このプログラム処理では、先ず、ステップS1において、ステレオカメラ3等の自車両単独で認識可能な自律センサ、或いは車車間通信や路車間通信等の外部通信によって他車両の情報(進行方向、速度、ブレーキやアクセルの作動情報、ウィンカの作動情報、車両幅、最小回転半径等)を取得する。次に、ステップS2へ進み、GPS装置等により自車両1の絶対位置を取得してナビゲーション装置が保有する地図データとのマップマッチング等により自車両1の進行路上に交差点があるか否かを調べ、更に、交差道路に他車両がいるか否かを判断する。   In this program processing, first, in step S1, information on other vehicles (traveling direction, speed, brake, etc.) is obtained by an autonomous sensor that can be recognized by the own vehicle alone such as the stereo camera 3 or by external communication such as inter-vehicle communication or road-vehicle communication. And accelerator operation information, blinker operation information, vehicle width, minimum turning radius, etc.). Next, the process proceeds to step S2, where the absolute position of the host vehicle 1 is acquired by a GPS device or the like, and it is checked whether or not there is an intersection on the traveling path of the host vehicle 1 by map matching with map data held by the navigation device. Further, it is determined whether or not there is another vehicle on the intersection road.

その結果、交差点が無い場合、或いは交差点があっても他車両が存在しない場合には、ステップS2からステップS9へジャンプして自車両1の進行路側へ進入する他車両の進入軌跡を予測する処理を中止し、ステップS16以降の処理へ進む。一方、交差道路に他車両がいる場合には、ステップS2からステップS3へ進み、地図データから交差点の位置、交差する道路の形状や幅、交差角度、車線数等の道路情報を取得する。尚、道路の交差角度を取得できない場合には、他車両の進行方位を調べ、この進行方位から道路の公差角度を推定するようにしても良い。   As a result, when there is no intersection or when there is no other vehicle even if there is an intersection, the process jumps from step S2 to step S9 and predicts the entry trajectory of the other vehicle entering the traveling path side of the host vehicle 1 Is stopped, and the process proceeds to step S16 and subsequent steps. On the other hand, when there is another vehicle on the intersection road, the process proceeds from step S2 to step S3, and road information such as the position of the intersection, the shape and width of the intersecting road, the intersection angle, and the number of lanes is acquired from the map data. If the road intersection angle cannot be acquired, the traveling direction of the other vehicle may be examined, and the tolerance angle of the road may be estimated from the traveling direction.

次に、ステップS4へ進み、交差点に信号機が有るか否かを調べ、信号機がある場合には、進入軌跡の予測処理を中止すべくステップS9へジャンプし、信号機がない場合、ステップS5へ進み、他車両の位置が交差点までの設定距離L以下か否かを調べる、この設定距離Lは、他車両が交差点に達する前に自車両1が交差点を通過することのできる距離であり、他車両の位置が設定距離Lを超えている場合には、同様に、進入軌跡の予測処理を中止すべくステップS9へジャンプし、他車両の位置が設定距離L以下の場合、ステップS6へ進む。   Next, the process proceeds to step S4, where it is determined whether or not there is a traffic signal at the intersection. If there is a traffic signal, the process jumps to step S9 to stop the prediction process of the approach locus, and if there is no traffic signal, the process proceeds to step S5. It is checked whether the position of the other vehicle is equal to or less than the set distance L to the intersection. This set distance L is a distance that the own vehicle 1 can pass through the intersection before the other vehicle reaches the intersection. If the position of the vehicle exceeds the set distance L, similarly, the process jumps to step S9 to stop the prediction process of the approach locus, and if the position of the other vehicle is equal to or less than the set distance L, the process proceeds to step S6.

ステップS6では、他車両のウィンカの作動情報等から他車両が交差点で旋回して自車両1の対向車線に進入するか否かを調べる。その結果、他車両が交差点から自車両1の対向車線に進入しないと判断される場合、例えば、自車両1の道路に進行方向右側で交差する道路において、他車両が右折のウィンカを点滅させている場合やウィンカが非点灯の場合には、他車両が交差点から自車両1の対向車線に進入しないと判断してステップS6からステップS9へジャンプして進入軌跡の予測処理を中止する。また、例えば他車両が左折のウィンカを点滅させており、交差点から自車両1の対向車線に進入すると判断される場合には、ステップS6からステップS7へ進む。   In step S6, it is examined whether or not the other vehicle turns at the intersection and enters the oncoming lane of the host vehicle 1 from the operation information of the winker of the other vehicle. As a result, when it is determined that the other vehicle does not enter the opposite lane of the host vehicle 1 from the intersection, for example, the other vehicle blinks the right turn blinker on the road that intersects the road of the host vehicle 1 on the right side in the traveling direction. If the vehicle is blinking or the blinker is not lit, it is determined that the other vehicle does not enter the oncoming lane of the host vehicle 1 from the intersection, and the process jumps from step S6 to step S9 to stop the process of predicting the entry locus. For example, when the other vehicle blinks the left turn flasher and it is determined that the vehicle enters the opposite lane of the host vehicle 1 from the intersection, the process proceeds from step S6 to step S7.

ステップS7では、他車両の速度及びブレーキの作動情報から、他車両の速度が設定速度Vを超え、且つブレーキがOFFであるか否か、すなわち他車両が交差点で一時停止することなく旋回を開始しようとしているか否かを調べる。そして、ステップS7において、他車両の速度が設定速度Vを超え、且つブレーキがOFFである場合、ステップS10以降の進入軌跡予測処理へ進む。   In step S7, from the speed of the other vehicle and the brake operation information, whether the speed of the other vehicle exceeds the set speed V and the brake is OFF, that is, the other vehicle starts turning without temporarily stopping at the intersection. Find out if you are trying. In step S7, when the speed of the other vehicle exceeds the set speed V and the brake is OFF, the process proceeds to an approach locus prediction process after step S10.

一方、ステップS7において、他車両の速度が設定速度V以下、或いはブレーキがONである場合には、更に、ステップS8で他車両のアクセルがONされているか否かを調べる。そして、他車両のアクセルがOFFの場合には、交差点で一時停止するものと判断して進入軌跡の予測処理を中止するステップS9へ進み、他車両のアクセルがONの場合、一時停止することなく旋回を開始するものとして、ステップS10以降の進入軌跡予測処理へ進む。   On the other hand, if the speed of the other vehicle is equal to or lower than the set speed V or the brake is ON in step S7, it is further checked in step S8 whether the accelerator of the other vehicle is ON. Then, when the accelerator of the other vehicle is OFF, it is determined that the vehicle is temporarily stopped at the intersection, and the process proceeds to step S9 for stopping the prediction process of the approach locus. When the accelerator of the other vehicle is ON, the vehicle is not temporarily stopped. As a start of turning, the process proceeds to an approach locus prediction process after step S10.

ステップS10以降の進入軌跡予測処理では、先ず、ステップS10で他車両が走行する車線の車線幅Laを計算する。この車線幅Laは、他車両が存在する交差道路の情報に基づいて計算することができ、例えば、交差道路の幅員を、車線数で除算することで求めることができる。続くステップS11では、自車両1が進行する道路の対向車線の車線幅Loを計算する。この対向車線の車線幅Loも、同様に、他車両が走行する道路の幅員を、車線数で除算することで求めることができる。   In the approach trajectory prediction process after step S10, first, the lane width La of the lane in which another vehicle travels is calculated in step S10. This lane width La can be calculated based on the information of the intersection road where the other vehicle exists. For example, the lane width La can be obtained by dividing the width of the intersection road by the number of lanes. In subsequent step S11, the lane width Lo of the opposite lane of the road on which the host vehicle 1 travels is calculated. Similarly, the lane width Lo of the opposite lane can be obtained by dividing the width of the road on which the other vehicle is traveling by the number of lanes.

続くステップS12では、他車両の走行車線の車線幅La、自車両1の対向車線の車線幅Lo、他車両の車両幅w、道路の交差角度(或いは他車両の進行方位)θを用いて、前述の(10)式により、他車両が自車両1の走行車線にはみ出すことなく交差点を旋回して対向車線に進入するための最大半径である必要半径Rを計算する。   In the following step S12, using the lane width La of the traveling lane of the other vehicle, the lane width Lo of the opposite lane of the host vehicle 1, the vehicle width w of the other vehicle, and the road intersection angle (or the traveling direction of the other vehicle) θ, The required radius R that is the maximum radius for the other vehicle to turn at the intersection and enter the oncoming lane without protruding into the travel lane of the host vehicle 1 is calculated by the above-described equation (10).

次に、ステップS13で必要半径Rを他車両の最小回転半径rminと比較する。そして、R<rminの場合には、ステップS14へ進んで他車両の進入軌跡を他車両の最小回転半径rminで回る経路とし、R≧rminの場合、ステップS15へ進んで他車両の進入軌跡を一定の必要半径Rで繋いだ経路とする。   Next, in step S13, the required radius R is compared with the minimum turning radius rmin of the other vehicle. If R <rmin, the process proceeds to step S14, and the approach locus of the other vehicle is set as a route that turns around the minimum turning radius rmin of the other vehicle. The route is connected with a certain required radius R.

その後、ステップS9,S14,S15の何れかを経てステップS16へ進み、衝突の可能性を判断する。この衝突可能性の判断は、ステップS9で交差道路から自車両1の対向車線に進入する他車両の進入軌跡の予測処理を中止した場合、自車両1の走行車線に存在する車両や2輪車、路側の歩行者等を対象として、例えば障害物の存在確率等に基づいて衝突リスクを演算する。そして、衝突リスクから衝突の可能性が無いと判断した場合、ステップS16から本処理を抜ける。   Thereafter, the process proceeds to step S16 through one of steps S9, S14, and S15, and the possibility of collision is determined. The determination of the possibility of collision is made in the case where the prediction process of the approach locus of the other vehicle entering the opposite lane of the host vehicle 1 from the intersection road is stopped in step S9. The collision risk is calculated based on, for example, the existence probability of an obstacle for a roadside pedestrian or the like. If it is determined from the collision risk that there is no possibility of collision, the process exits from step S16.

一方、衝突の可能性があると判断した場合には、ステップS16からステップS17へ進み、ディスプレイ21を介した音声や表示による警報出力、自動ブレーキ制御装置22を介した強制制動、自動操舵制御装置23を介した回避操舵等の運転支援制御を実行し、安全を確保する。   On the other hand, if it is determined that there is a possibility of a collision, the process proceeds from step S16 to step S17 to output a warning by voice or display via the display 21, forced braking via the automatic brake control device 22, or automatic steering control device. Then, driving support control such as avoidance steering through 23 is executed to ensure safety.

また、交差道路から自車両1の対向車線に進入する他車両の進入軌跡を予測し、ステップS14或いはステップS15からステップS16へ進んだ場合には、上述の衝突リスクによる衝突判断の他、他車両の進入軌跡が必要半径Rの経路か最小回転半径rminの経路かに応じて、自車両1と交差道路から進入する他車両との衝突可能性を判断する。   Further, when an approach locus of another vehicle entering the oncoming lane of the host vehicle 1 from the intersection road is predicted and the process proceeds from step S14 or step S15 to step S16, in addition to the above-described collision risk judgment, the other vehicle The possibility of collision between the own vehicle 1 and another vehicle entering from the cross road is determined according to whether the approach locus is a route having the required radius R or a route having the minimum turning radius rmin.

そして、他車両の進入軌跡が必要半径Rによる経路である場合には、交差路から自車両側の道路に進入する他車両との衝突可能性は無いものと判断し、その他、自車両1の走行車線に存在する車両や2輪車、路側の歩行者等を対象とする衝突リスクによる衝突の可能性が無い場合、ステップS16から本処理を抜ける。   If the approach locus of the other vehicle is a route with the required radius R, it is determined that there is no possibility of collision with the other vehicle entering the road on the own vehicle side from the intersection, and the other vehicle 1 When there is no possibility of a collision due to a collision risk targeting a vehicle, a two-wheeled vehicle, a roadside pedestrian, or the like existing in the traveling lane, the present process is exited from step S16.

一方、他車両の進入軌跡が最小回転半径rminの経路である場合には、交差路から自車両側の道路に進入する他車両が自車両1の走行車線にはみ出してくるため、衝突の可能性があると判断する。そして、ステップS17で、交差路から自車両側の道路に進入する他車両の最小回転半径rminに基づく各時刻毎の位置、対応する時刻毎の自車両1の位置を算出する等して、ディスプレイ21を介した音声や表示により交差路から進入する他車両が自車両前方にはみ出してくる旨の警告を出力し、更には、自動ブレーキ制御装置22を介した強制制動や自動操舵制御装置23を介した回避操舵等の運転支援制御を実行し、安全を確保する。   On the other hand, in the case where the approach locus of the other vehicle is a route having the minimum turning radius rmin, the other vehicle that enters the road on the own vehicle side from the crossing road protrudes from the traveling lane of the own vehicle 1, and thus the possibility of a collision. Judge that there is. In step S17, the position at each time based on the minimum turning radius rmin of the other vehicle entering the road on the own vehicle side from the intersection, the position of the own vehicle 1 at the corresponding time, and the like are calculated. A warning that another vehicle entering from the crossing road protrudes ahead of the host vehicle is output by voice or display via 21, and forced braking or automatic steering control device 23 via automatic brake control device 22 is output. Driving safety control such as avoidance steering is performed to ensure safety.

このように本実施の形態では、公差路の形状に基づいて自車両1が進行する道路に進入する他車両の進入軌跡を予測するため、自車両1の走行車線への他車両のはみ出しを事前に察知することができる。これにより、交差路における衝突の危険性を適正に評価することができ、予防安全性を大幅に向上することができる。   In this way, in this embodiment, in order to predict the entry trajectory of another vehicle that enters the road on which the host vehicle 1 travels based on the shape of the tolerance road, the other vehicle protrudes into the travel lane of the host vehicle 1 in advance. Can be detected. Thereby, the danger of the collision in an intersection can be evaluated appropriately and preventive safety can be improved significantly.

車両に搭載した運転支援装置の概略構成図Schematic configuration diagram of a driving support device mounted on a vehicle 交差路における他車両の進入軌跡を示す説明図Explanatory drawing which shows the approach locus | trajectory of the other vehicle in an intersection 進入軌跡予測及び衝突判断処理のフローチャートFlow chart of approach locus prediction and collision determination processing 交差路における左折車両のはみ出しを示す説明図Explanatory drawing which shows the protrusion of the left turn vehicle in an intersection

符号の説明Explanation of symbols

1 自車両
2 運転支援装置
3 ステレオカメラ(交差路認識部)
4 ステレオ画像認識装置(交差路認識部)
5 走行環境情報取得装置(交差路認識部)
6 制御ユニット(進入軌跡予測部、衝突判断部)
R 必要半径
rmin 最小回転半径
θ 道路の交差角
La,Lo 車線幅
w 車両幅
1 self-vehicle 2 driving support device 3 stereo camera (intersection recognition unit)
4 Stereo image recognition device (intersection recognition unit)
5 Driving environment information acquisition device (intersection recognition unit)
6 Control unit (entrance trajectory prediction unit, collision determination unit)
R Required radius rmin Minimum turning radius θ Road intersection angle La, Lo Lane width w Vehicle width

Claims (6)

自車両の周辺環境を認識し、衝突回避のための運転支援を行う車両の運転支援装置において、
自車両が進行する自車両側道路と該自車両側道路に交差する接続道路とによる交差路を認識する交差路認識部と、
上記交差路の形状に基づいて、上記接続道路から上記自車両側道路に進入する他車両の進入軌跡を予測する進入軌跡予測部と、
上記他車両の進入軌跡の一部が上記自車両側道路における自車両の走行車線内に入るか否かにより、自車両と上記他車両との衝突可能性を判断する衝突判断部と
を備えたことを特徴とする車両の運転支援装置。
In a vehicle driving support device that recognizes the surrounding environment of the host vehicle and performs driving support for collision avoidance,
An intersection recognition unit for recognizing an intersection between the own vehicle side road on which the own vehicle travels and a connecting road intersecting the own vehicle side road;
Based on the shape of the intersection, an approach trajectory prediction unit that predicts an approach trajectory of another vehicle entering the host vehicle side road from the connection road;
A collision determination unit that determines whether or not a collision between the host vehicle and the other vehicle depends on whether or not a part of the approach locus of the other vehicle enters the travel lane of the host vehicle on the host vehicle side road. A vehicle driving support device characterized by the above.
上記他車両の進入軌跡を、上記交差路の幅員を用いて予測することを特徴とする請求項1記載の車両の運転支援装置。   The driving assistance apparatus for a vehicle according to claim 1, wherein an approach locus of the other vehicle is predicted using a width of the intersection. 上記他車両の進入軌跡を、上記交差路の交差角度を用いて予測することを特徴とする請求項1又は2記載の車両の運転支援装置。   The driving assistance apparatus for a vehicle according to claim 1 or 2, wherein an approach locus of the other vehicle is predicted using an intersection angle of the intersection. 上記交差角度を上記他車両の進行方位で推定することを特徴とする請求項3記載の車両の運転支援装置。   The vehicle driving support device according to claim 3, wherein the intersection angle is estimated from a traveling direction of the other vehicle. 上記他車両の進入軌跡を、車両種別に応じた最小回転半径及び車両幅を用いて予測することを特徴とする請求項1〜4の何れか一に記載の車両の運転支援装置。   The vehicle driving support apparatus according to any one of claims 1 to 4, wherein an approach locus of the other vehicle is predicted using a minimum turning radius and a vehicle width according to a vehicle type. 上記他車両の位置及び速度に基づいて、上記進入軌跡の予測を実行するか否かを判断する予測実行判断部を更に備えたことを特徴とする請求項1〜5の何れか一に記載の車両の運転支援装置。   The prediction execution determination unit that determines whether or not to execute the prediction of the approach trajectory based on the position and speed of the other vehicle is further provided. Vehicle driving support device.
JP2008254160A 2008-09-30 2008-09-30 Driving support device for vehicle Pending JP2010083314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254160A JP2010083314A (en) 2008-09-30 2008-09-30 Driving support device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254160A JP2010083314A (en) 2008-09-30 2008-09-30 Driving support device for vehicle

Publications (1)

Publication Number Publication Date
JP2010083314A true JP2010083314A (en) 2010-04-15

Family

ID=42247699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254160A Pending JP2010083314A (en) 2008-09-30 2008-09-30 Driving support device for vehicle

Country Status (1)

Country Link
JP (1) JP2010083314A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348944B1 (en) * 2011-12-30 2014-01-16 한국과학기술연구원 Crossroad Detecting Method for Auto-Driving Robot and Auto-Driving Robot Using The Same
KR101362706B1 (en) 2012-11-23 2014-02-24 현대엠엔소프트 주식회사 Method for runnability ensuring the vhicle's straight in complex lanes system
JP2015064747A (en) * 2013-09-25 2015-04-09 日産自動車株式会社 Operation support device and operation support method
CN105608927A (en) * 2014-11-14 2016-05-25 丰田自动车株式会社 Alerting apparatus
JP2016137741A (en) * 2015-01-26 2016-08-04 三菱電機株式会社 Vehicle travel control system
CN106103231A (en) * 2014-03-18 2016-11-09 日产自动车株式会社 Vehicle operation device
US9555801B2 (en) 2014-03-05 2017-01-31 Denso International America, Inc. Active steering safety system
US9852633B2 (en) 2011-02-28 2017-12-26 Toyota Jidosha Kabushiki Kaisha Travel assist apparatus and travel assist method
DE102017119028A1 (en) 2016-09-01 2018-03-01 Mazda Motor Corporation Vehicle control device
JP2018097648A (en) * 2016-12-14 2018-06-21 株式会社デンソー Vehicle collision avoidance device and vehicle collision avoidance method
US10127817B2 (en) 2016-11-24 2018-11-13 Hyundai Motor Company Vehicle and method for controlling thereof
JP2019018712A (en) * 2017-07-18 2019-02-07 スズキ株式会社 Drive assistance device
KR20190078824A (en) * 2017-12-27 2019-07-05 현대자동차주식회사 Vehicle and controlling method thereof
CN110060467A (en) * 2018-01-19 2019-07-26 本田技研工业株式会社 Prediction meanss, prediction technique and storage medium
KR20190102868A (en) * 2018-02-27 2019-09-04 삼성전자주식회사 Method of motion planning for a vehicle and electronic apparatus therefor
JP2019159861A (en) * 2018-03-14 2019-09-19 本田技研工業株式会社 Vehicle operation support device
JP2019156270A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle controller, vehicle control method and program
JP2019156269A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle controller, vehicle control method and program
JP2019160032A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
JP2019156271A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
CN111683851A (en) * 2018-12-26 2020-09-18 百度时代网络技术(北京)有限公司 Mutual avoidance algorithm for self-reversing lanes for autonomous driving
JP2020158007A (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Behavior prediction method and behavior prediction device
WO2020194017A1 (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Behavior prediction method and behavior prediction device for mobile unit, and vehicle
CN111731270A (en) * 2020-06-04 2020-10-02 重庆长安汽车股份有限公司 Parking method and system for 1D forward running of automatic parking system and vehicle
WO2020259243A1 (en) * 2019-06-28 2020-12-30 长城汽车股份有限公司 Vehicle driving control method and device
CN112550287A (en) * 2020-12-16 2021-03-26 重庆大学 Driving risk assessment method for structured road
CN112577756A (en) * 2019-09-29 2021-03-30 宝能汽车集团有限公司 Method and device for acquiring minimum turning radius of vehicle
CN113104045A (en) * 2021-03-24 2021-07-13 东风柳州汽车有限公司 Vehicle collision early warning method, device, equipment and storage medium
CN113335276A (en) * 2021-07-20 2021-09-03 中国第一汽车股份有限公司 Obstacle trajectory prediction method, obstacle trajectory prediction device, electronic device, and storage medium
US20210300345A1 (en) * 2020-03-26 2021-09-30 Honda Motor Co., Ltd. Vehicle and control apparatus thereof
DE112019007147T5 (en) 2019-04-01 2022-01-05 Mitsubishi Electric Corporation Vehicle path generation device, vehicle path generation method, and vehicle control device
WO2024004532A1 (en) * 2022-06-27 2024-01-04 株式会社デンソー Driving control device, driving control method, information presentation control device, and information presentation control method
JP7458797B2 (en) 2020-01-23 2024-04-01 日産自動車株式会社 Driving support method and driving support device
KR102663017B1 (en) * 2016-11-24 2024-05-07 현대자동차주식회사 Vehicle and method for controlling thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309445A (en) * 2005-04-27 2006-11-09 Aisin Aw Co Ltd Driving-support device
JP2007316018A (en) * 2006-05-29 2007-12-06 Denso Corp Vehicular navigation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309445A (en) * 2005-04-27 2006-11-09 Aisin Aw Co Ltd Driving-support device
JP2007316018A (en) * 2006-05-29 2007-12-06 Denso Corp Vehicular navigation system

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852633B2 (en) 2011-02-28 2017-12-26 Toyota Jidosha Kabushiki Kaisha Travel assist apparatus and travel assist method
KR101348944B1 (en) * 2011-12-30 2014-01-16 한국과학기술연구원 Crossroad Detecting Method for Auto-Driving Robot and Auto-Driving Robot Using The Same
KR101362706B1 (en) 2012-11-23 2014-02-24 현대엠엔소프트 주식회사 Method for runnability ensuring the vhicle's straight in complex lanes system
JP2015064747A (en) * 2013-09-25 2015-04-09 日産自動車株式会社 Operation support device and operation support method
US9555801B2 (en) 2014-03-05 2017-01-31 Denso International America, Inc. Active steering safety system
JPWO2015141308A1 (en) * 2014-03-18 2017-04-06 日産自動車株式会社 Vehicle operating device
CN106103231A (en) * 2014-03-18 2016-11-09 日产自动车株式会社 Vehicle operation device
CN105608927B (en) * 2014-11-14 2018-12-14 丰田自动车株式会社 Warning device
KR101821862B1 (en) * 2014-11-14 2018-01-24 도요타지도샤가부시키가이샤 Alerting apparatus
CN105608927A (en) * 2014-11-14 2016-05-25 丰田自动车株式会社 Alerting apparatus
JP2016137741A (en) * 2015-01-26 2016-08-04 三菱電機株式会社 Vehicle travel control system
US10322720B2 (en) 2016-09-01 2019-06-18 Mazda Motor Corporation Vehicle control device including object detection, speed distribution area setting and avoidance control execution sections
DE102017119028A1 (en) 2016-09-01 2018-03-01 Mazda Motor Corporation Vehicle control device
KR102663017B1 (en) * 2016-11-24 2024-05-07 현대자동차주식회사 Vehicle and method for controlling thereof
US10127817B2 (en) 2016-11-24 2018-11-13 Hyundai Motor Company Vehicle and method for controlling thereof
WO2018110607A1 (en) * 2016-12-14 2018-06-21 株式会社デンソー Collision avoidance device for vehicle, and collision avoidance method
JP2018097648A (en) * 2016-12-14 2018-06-21 株式会社デンソー Vehicle collision avoidance device and vehicle collision avoidance method
CN110062938A (en) * 2016-12-14 2019-07-26 株式会社电装 Collision avoidance device and collision avoidance method in vehicle
US11260853B2 (en) 2016-12-14 2022-03-01 Denso Corporation Collision avoidance device and collision avoidance method for vehicle
JP2019018712A (en) * 2017-07-18 2019-02-07 スズキ株式会社 Drive assistance device
KR20190078824A (en) * 2017-12-27 2019-07-05 현대자동차주식회사 Vehicle and controlling method thereof
KR102464607B1 (en) 2017-12-27 2022-11-08 현대자동차주식회사 Vehicle and controlling method thereof
JP2019128614A (en) * 2018-01-19 2019-08-01 本田技研工業株式会社 Prediction device, prediction method, and program
CN110060467A (en) * 2018-01-19 2019-07-26 本田技研工业株式会社 Prediction meanss, prediction technique and storage medium
US11247692B2 (en) 2018-01-19 2022-02-15 Honda Motor Co., Ltd. Prediction device, prediction method, and storage medium
KR20190102868A (en) * 2018-02-27 2019-09-04 삼성전자주식회사 Method of motion planning for a vehicle and electronic apparatus therefor
KR102507115B1 (en) * 2018-02-27 2023-03-07 삼성전자주식회사 Method of motion planning for a vehicle and electronic apparatus therefor
JP2019159861A (en) * 2018-03-14 2019-09-19 本田技研工業株式会社 Vehicle operation support device
JP7011954B2 (en) 2018-03-14 2022-01-27 本田技研工業株式会社 Vehicle operation support device
CN110271544A (en) * 2018-03-15 2019-09-24 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
JP2019156269A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle controller, vehicle control method and program
JP2019156270A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle controller, vehicle control method and program
JP2019160032A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
CN110271544B (en) * 2018-03-15 2022-08-12 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
JP7085371B2 (en) 2018-03-15 2022-06-16 本田技研工業株式会社 Vehicle control devices, vehicle control methods, and programs
JP7030573B2 (en) 2018-03-15 2022-03-07 本田技研工業株式会社 Vehicle control devices, vehicle control methods, and programs
JP2019156271A (en) * 2018-03-15 2019-09-19 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
CN110271541A (en) * 2018-03-15 2019-09-24 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
JP7017443B2 (en) 2018-03-15 2022-02-08 本田技研工業株式会社 Vehicle control devices, vehicle control methods, and programs
US11225249B2 (en) 2018-03-15 2022-01-18 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
CN111683851A (en) * 2018-12-26 2020-09-18 百度时代网络技术(北京)有限公司 Mutual avoidance algorithm for self-reversing lanes for autonomous driving
CN111683851B (en) * 2018-12-26 2023-09-12 百度时代网络技术(北京)有限公司 Mutual avoidance algorithm for self-steering lanes for autopilot
WO2020194017A1 (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Behavior prediction method and behavior prediction device for mobile unit, and vehicle
JP7336861B2 (en) 2019-03-27 2023-09-01 日産自動車株式会社 Behavior prediction method and behavior prediction device
JP7251611B2 (en) 2019-03-27 2023-04-04 日産自動車株式会社 Mobile object behavior prediction method, behavior prediction device, and vehicle
JP2020158007A (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Behavior prediction method and behavior prediction device
JPWO2020194017A1 (en) * 2019-03-27 2020-10-01
DE112019007147T5 (en) 2019-04-01 2022-01-05 Mitsubishi Electric Corporation Vehicle path generation device, vehicle path generation method, and vehicle control device
WO2020259243A1 (en) * 2019-06-28 2020-12-30 长城汽车股份有限公司 Vehicle driving control method and device
CN112577756A (en) * 2019-09-29 2021-03-30 宝能汽车集团有限公司 Method and device for acquiring minimum turning radius of vehicle
JP7458797B2 (en) 2020-01-23 2024-04-01 日産自動車株式会社 Driving support method and driving support device
US11787399B2 (en) * 2020-03-26 2023-10-17 Honda Motor Co., Ltd. Vehicle and control apparatus thereof
US20210300345A1 (en) * 2020-03-26 2021-09-30 Honda Motor Co., Ltd. Vehicle and control apparatus thereof
CN111731270A (en) * 2020-06-04 2020-10-02 重庆长安汽车股份有限公司 Parking method and system for 1D forward running of automatic parking system and vehicle
CN111731270B (en) * 2020-06-04 2022-05-17 重庆长安汽车股份有限公司 Parking method and system for 1D forward running of automatic parking system and vehicle
CN112550287A (en) * 2020-12-16 2021-03-26 重庆大学 Driving risk assessment method for structured road
CN113104045A (en) * 2021-03-24 2021-07-13 东风柳州汽车有限公司 Vehicle collision early warning method, device, equipment and storage medium
CN113335276A (en) * 2021-07-20 2021-09-03 中国第一汽车股份有限公司 Obstacle trajectory prediction method, obstacle trajectory prediction device, electronic device, and storage medium
WO2024004532A1 (en) * 2022-06-27 2024-01-04 株式会社デンソー Driving control device, driving control method, information presentation control device, and information presentation control method

Similar Documents

Publication Publication Date Title
JP2010083314A (en) Driving support device for vehicle
CN110392652B (en) System and method for steering a vehicle prior to the vehicle turning from a lane of a road
US9896094B2 (en) Collision avoidance control system and control method
JP5167016B2 (en) Vehicle driving support device
JP5345350B2 (en) Vehicle driving support device
CN110662683B (en) Driving support device and driving support method
CN109466542B (en) Vehicle control device, vehicle control method, and storage medium
CN110036426B (en) Control device and control method
JP2012519346A (en) Method for automatically recognizing driving maneuvering of a vehicle and driver assistance system including the method
CN110329250A (en) Method for exchanging information between at least two automobiles
JP2012519346A5 (en)
CN110550105B (en) Driving assistance system and method
WO2020016621A1 (en) Travel assistance method and travel assistance device
CN111213193B (en) Vehicle control device
JP7401978B2 (en) Intersection start determination device
JP2017068461A (en) Vehicle driving assistance device
CN109501798B (en) Travel control device and travel control method
JP5210064B2 (en) Vehicle collision prevention device
JP5452004B2 (en) Vehicle driving support device
CN112849133B (en) Driving support device
CN113291298A (en) Driving assistance system for vehicle
JP2022075292A (en) Drive support device of vehicle
JP7145178B2 (en) Travel control device, travel control method and program
JP4911094B2 (en) Driving support device, driving support method, and computer program
WO2022162909A1 (en) Display control device and display control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507