JP2009283547A - Forming method and forming apparatus for conductive pattern, and conductive substrate - Google Patents

Forming method and forming apparatus for conductive pattern, and conductive substrate Download PDF

Info

Publication number
JP2009283547A
JP2009283547A JP2008131854A JP2008131854A JP2009283547A JP 2009283547 A JP2009283547 A JP 2009283547A JP 2008131854 A JP2008131854 A JP 2008131854A JP 2008131854 A JP2008131854 A JP 2008131854A JP 2009283547 A JP2009283547 A JP 2009283547A
Authority
JP
Japan
Prior art keywords
pattern
fine particles
forming apparatus
plasma
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131854A
Other languages
Japanese (ja)
Inventor
Mikiko Hojo
美貴子 北條
Tsutomu Takizawa
力 滝沢
Yuichi Sakamoto
雄一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Denshi Co Ltd
Dai Nippon Printing Co Ltd
Original Assignee
Micro Denshi Co Ltd
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Denshi Co Ltd, Dai Nippon Printing Co Ltd filed Critical Micro Denshi Co Ltd
Priority to JP2008131854A priority Critical patent/JP2009283547A/en
Priority to KR1020090043310A priority patent/KR20090121222A/en
Publication of JP2009283547A publication Critical patent/JP2009283547A/en
Priority to JP2014023678A priority patent/JP6072709B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1275Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by other printing techniques, e.g. letterpress printing, intaglio printing, lithographic printing, offset printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that when a resin film having low thermal resistance is used as a base for a conductive pattern forming method of using and printing a dispersion solution of metal particulates on the base and heating the printed body to sinter the metal particulates, the base may be fused when the metal particulates are sintered to deform or discolor, and further it is difficult to shorten the sintering time of the metal particulates. <P>SOLUTION: Prepared is the printed body 100 formed by using and pattern-printing the dispersion solution wherein particulates of metal or a metal compound are dispersed on the nonconductive base. The printed body 100 is exposed to microwave surface wave plasma in a treatment chamber 11 of a pattern forming apparatus which generates the microwave surface wave plasma and the metal particulates of the pattern printed body are sintered to form the conductive pattern. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属又は金属化合物の微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、そのパターンをマイクロ波表面波プラズマに晒し、描画パターンに存在する微粒子の焼結処理を行って導電性パターンを形成するパターンの形成方法と、そのパターン形成装置と、上記のパターン形成方法またはパターン形成装置によってパターン形成した導電性基板に関する。   The present invention draws a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles of a metal or metal compound are dispersed, exposes the pattern to microwave surface wave plasma, and removes fine particles present in the drawn pattern. The present invention relates to a pattern forming method for performing a sintering process to form a conductive pattern, a pattern forming apparatus thereof, and a conductive substrate patterned by the above pattern forming method or pattern forming apparatus.

金属微粒子を分散させた微粒子分散液を用いて非導電性の基板面にパターンを描画し、このパターンに存在する金属微粒子を焼結させて回路パターンを形成する回路基板については既に知られている。   There is already known a circuit board that forms a circuit pattern by drawing a pattern on a non-conductive substrate surface using a fine particle dispersion in which metal fine particles are dispersed, and sintering the metal fine particles present in the pattern. .

一例を述べれば、金、銀、銅などからなる金属又はそれらの合金からなる金属微粒子を有機溶媒中に安定に分散させたペースト組成物を用い、基板面に描画し、その後、描画した基板に加熱温度を加え、金属微粒子を焼結させて回路パターンを形成する。   For example, a paste composition in which metal fine particles made of a metal such as gold, silver, copper, or an alloy thereof are stably dispersed in an organic solvent is used for drawing on the substrate surface, and then on the drawn substrate. A circuit temperature is formed by applying a heating temperature and sintering the fine metal particles.

このような回路パターンの形成方法で用いるペースト組成物は、平均一次粒子径が1〜100nmの金属微粒子の表面を当該金属元素と配位結合が可能な化合物(例えば、アミン、アルコール、フェノール、チオールなどの分散剤)で被覆し、この金属微粒子が有機溶媒中で安定な形で分散して存在するようにしたペースト組成物となっている。   The paste composition used in such a circuit pattern forming method is a compound (for example, amine, alcohol, phenol, thiol) that can coordinate the surface of metal fine particles having an average primary particle diameter of 1 to 100 nm with the metal element. In the paste composition, the fine metal particles are dispersed and exist in a stable form in an organic solvent.

また、上記のペースト組成物を用いた描画は、インクジェットやスクリーン印刷などの各種の手法を用いて行っている。
そして、描画パターンに加熱温度(例えば、180℃×30分)を加えて金属微粒子の被覆層を除去し、金属微粒子同士を焼結させ、回路パターンを形成する。
なお、基板には、エポキシ、ポリイミド、熱硬化性樹脂などが用いられている。
In addition, drawing using the paste composition is performed using various methods such as ink jet and screen printing.
Then, a heating temperature (for example, 180 ° C. × 30 minutes) is applied to the drawing pattern to remove the coating layer of the metal fine particles, and the metal fine particles are sintered together to form a circuit pattern.
Note that epoxy, polyimide, thermosetting resin, or the like is used for the substrate.

上記した回路パターンの形成方法によれば、ビルドアップ配線板、プラスチック配線板、プリント配線板などの生産が可能で、例えば、ライン/スペースが25μm/25μm、比抵抗が4×10−5Ωとする微細な回路パターンを形成することができる。 According to the circuit pattern forming method described above, it is possible to produce a build-up wiring board, a plastic wiring board, a printed wiring board, etc. For example, the line / space is 25 μm / 25 μm and the specific resistance is 4 × 10 −5 Ω. A fine circuit pattern can be formed.

特開2002−299833号公報JP 2002-299833 A

上記した従来の回路パターン形成方法は、耐熱性の低い樹脂フィルムを基材として使用する場合、金属微粒子の焼結時に基材が溶融し、また、変形することがあり、その上、微粒子を被覆する化合物を除去するために加熱時間を長くする必要があり、導電性パターンの形成時間を短縮することが難しい。   In the conventional circuit pattern forming method described above, when a resin film having low heat resistance is used as a base material, the base material may be melted and deformed when the metal fine particles are sintered, and the fine particles are coated. It is necessary to lengthen the heating time in order to remove the compound to be performed, and it is difficult to shorten the formation time of the conductive pattern.

特に、銅、ニッケルなどの卑金属微粒子や酸化銅などの金属化合物微粒子に対しては、焼結の際に酸化を抑制し、還元させるために、還元性気体の雰囲気の中で焼結を行う必要があるが、還元反応のためには300℃以上の温度が必要であるため、例えば、融点が280℃以下であるような耐熱性の低い樹脂フィルム上の焼結は、例えば、120℃〜150℃の温度で熱変形してしまうため、より難しいという問題があった。
また、還元性気体の雰囲気制御や焼結にかかる時間が長いために、ロール状のフィルムに作製したパターンを焼結するのは、非常に困難であった。
In particular, for base metal fine particles such as copper and nickel, and metal compound fine particles such as copper oxide, it is necessary to sinter in a reducing gas atmosphere in order to suppress and reduce oxidation during sintering. However, since a temperature of 300 ° C. or higher is necessary for the reduction reaction, for example, sintering on a resin film having a low heat resistance having a melting point of 280 ° C. or lower is, for example, 120 ° C. to 150 ° C. There is a problem that it is more difficult because it is thermally deformed at a temperature of ° C.
Moreover, since it takes a long time to control the atmosphere of the reducing gas and to sinter, it is very difficult to sinter the pattern produced on the roll film.

さらに、大きい面積のものについては、均一した導電性パターンの形成に難点があり、また、基材が変色することがあるため、高い透過率を必要とする導電性部品の導電性パターン形成には適さない。
本発明はこのような問題を可能なる限り解決することを目的とする。
Furthermore, for those with a large area, there is a difficulty in forming a uniform conductive pattern, and since the base material may be discolored, it is necessary to form a conductive pattern for conductive parts that require high transmittance. Not suitable.
The present invention aims to solve such problems as much as possible.

上記した目的を達成するため、本発明の導電性パターンの形成方法は、微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、前記パターンの微粒子を焼結処理して導電性パターンを形成する方法に関する。
そして、前記パターンの描画には、金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用い、前記焼結処理には、減圧室からなる処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段を用いる。
このようにして、前記描画パターンを、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒し、パターンの微粒子を焼結させる構成としてある。
In order to achieve the above-mentioned object, the conductive pattern forming method of the present invention draws a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles are dispersed, and sinters the fine particles of the pattern. And a method of forming a conductive pattern.
And for drawing the pattern, a fine particle dispersion in which fine particles made of metal or a metal compound are dispersed is used, and for the sintering process, microwave energy is supplied from an irradiation window of a processing chamber consisting of a decompression chamber, An electrodeless plasma generating means for generating surface wave plasma along the irradiation window is used in the processing chamber.
In this way, the drawing pattern is exposed to microwave surface wave plasma having a low electron temperature and a high electron density to sinter the fine particles of the pattern.

上記した金属又は金属化合物からなる微粒子は、金、銀などの貴金属及び銅、ニッケルなどの卑金属、その他、2種類以上の金属からなる合金などの金属化合物を材料とした微粒子である。
なお、銅微粒子などの卑金属微粒子は、表面が酸化されている金属微粒子や、内部まで酸化されている金属微粒子も使用することができる。
The above-mentioned fine particles made of a metal or a metal compound are fine particles made of a metal compound such as a noble metal such as gold or silver, a base metal such as copper or nickel, or an alloy made of two or more metals.
As the base metal fine particles such as copper fine particles, metal fine particles whose surface is oxidized and metal fine particles which are oxidized to the inside can also be used.

微粒子は、平均一次粒子径が、1〜100nmのものが好ましい。
この平均一次粒子径については、透過型電子顕微鏡による観察像から測定することができる。
そして、微粒子の合成方法は、金属粉を粉砕して得る物理的方法、CVD法、蒸着法、スパッタ法、熱プラズマ法のような化学的乾式法、化学還元法、電気分解法などの化学的湿式法などの方法を採用して実現することができる。
The fine particles preferably have an average primary particle diameter of 1 to 100 nm.
About this average primary particle diameter, it can measure from the observation image by a transmission electron microscope.
Fine particle synthesis methods include physical methods obtained by pulverizing metal powders, chemical dry methods such as CVD, vapor deposition, sputtering, and thermal plasma, chemical reduction, and electrolysis. It can be realized by adopting a method such as a wet method.

また、微粒子は、分散液中で安定化させるために、表面を分散保護剤によって覆うのが好ましい。
微粒子を分散させる上記した分散液の溶媒としては、水、メタノールなどが採用できる。
The surface of the fine particles is preferably covered with a dispersion protective agent in order to be stabilized in the dispersion.
Water, methanol, or the like can be used as a solvent for the above dispersion for dispersing the fine particles.

さらに、基材には、用途に応じて、無機材料基板、合成樹脂基板を使用する。
合成樹脂基板は、フィルム状であってもよい。
基材と導電層の密着性を向上させるために、基材表面に易接着成分を成膜したり、基材表面を改質することが好ましい。
また、微粒子分散液は通常の印刷方法で描画し、その後、基材上の微粒子分散液を乾燥させる。
Furthermore, an inorganic material substrate or a synthetic resin substrate is used as the base material depending on the application.
The synthetic resin substrate may be in the form of a film.
In order to improve the adhesion between the substrate and the conductive layer, it is preferable to form an easy-adhesive component on the substrate surface or to modify the substrate surface.
The fine particle dispersion is drawn by a normal printing method, and then the fine particle dispersion on the substrate is dried.

描画されたパターンの金属微粒子層は、マイクロ波表面波プラズマに晒し焼結させる。
そして、この焼結には、照射窓から処理室内にマイクロ波エネルギーを供給し、処理室内に表面波プラズマを発生させる無電極のプラズマ発生手段を用いることができる。
なお、前記プラズマ発生手段としては、処理室の照射窓から周波数2450MHzのマイクロ波エネルギーを供給し、処理室内には、電子温度が約1eV以下、電子密度が約1×1011〜1×1013cm−3のマイクロ波表面波プラズマを発生させることができる。
The drawn metal fine particle layer is exposed to microwave surface wave plasma and sintered.
For this sintering, electrodeless plasma generating means for supplying microwave energy from the irradiation window into the processing chamber and generating surface wave plasma in the processing chamber can be used.
As the plasma generating means, microwave energy having a frequency of 2450 MHz is supplied from the irradiation window of the processing chamber, and the electron temperature is about 1 eV or less and the electron density is about 1 × 10 11 to 1 × 10 13 in the processing chamber. A cm −3 microwave surface wave plasma can be generated.

一方、導電性パターンを形成するパターン形成装置の発明として、次の第1発明、第2発明、第3発明を提案する。
第1の発明のパターン形成装置は、金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、このパターンに存在する微粒子を焼結処理し導電性パターンを形成するパターン形成装置であって、減圧室として構成した処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段と、前記パターンを描画した基材を前記処理室内に配置するための処理台とを備え、描画パターンを描画した基材を前記処理台に配置し、前記描画パターンを処理室内で、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒して前記描画パターンの微粒子を焼結させ、導電性パターンを形成する構成となっている。
On the other hand, the following first invention, second invention, and third invention are proposed as inventions of a pattern forming apparatus for forming a conductive pattern.
The pattern forming apparatus of the first invention draws a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles made of metal or a metal compound are dispersed, and sinters the fine particles present in the pattern. A pattern forming apparatus for forming a conductive pattern, wherein microwave energy is supplied from an irradiation window of a processing chamber configured as a decompression chamber, and electrodeless plasma generating means for generating surface wave plasma along the irradiation window in the processing chamber And a processing table for arranging the substrate on which the pattern is drawn in the processing chamber, the substrate on which the drawing pattern is drawn is arranged on the processing table, and the drawing temperature is set in the processing chamber, and the electronic temperature is The conductive pattern is formed by sintering fine particles of the drawing pattern by being exposed to a microwave surface wave plasma having a low and high electron density.

第2の発明のパターン形成装置は、金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、このパターンに存在する微粒子を焼結処理し導電性パターンを形成するパターン形成装置であって、減圧室として構成した処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段と、前記パターンを描画した基材を前記処理室内に配置するための処理台とを備え、前記処理室の搬入口に付随させた第1予備室と、その搬出口に付随させた第2予備室と、前記第1予備室を減圧すると共に搬入口を開放させ、パターンを描画した基材を第1予備室から処置室内の処理台上に送り込む搬入機構と、前記第2予備室を減圧すると共に搬出口を開放させ、パターンを描画した基材を処置室内の処理台上から第2予備室に送り出す搬出機構とを備え、搬入機構による搬入と、処理台でのプラズマ処理と、搬出機構による搬出とを一連に行い、前記描画パターンに存在する微粒子を処理室内で、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒し、前記描画パターンの微粒子を焼結処理して導電性パターンを形成する構成となっている。   The pattern forming apparatus according to the second invention draws a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles made of metal or a metal compound are dispersed, and sinters the fine particles present in the pattern. A pattern forming apparatus for forming a conductive pattern, wherein microwave energy is supplied from an irradiation window of a processing chamber configured as a decompression chamber, and electrodeless plasma generating means for generating surface wave plasma along the irradiation window in the processing chamber And a processing stand for arranging the substrate on which the pattern is drawn in the processing chamber, a first preliminary chamber associated with the carry-in port of the processing chamber, and a second preliminary chamber associated with the carry-out port The chamber, the first preliminary chamber are decompressed and the inlet is opened, and a loading mechanism for feeding the substrate on which the pattern is drawn from the first preliminary chamber onto the treatment table in the treatment chamber, and the second preliminary chamber are decompressed. Both are equipped with a carry-out mechanism that opens the carry-out port and feeds the substrate on which the pattern is drawn from the treatment table in the treatment chamber to the second preliminary chamber. A series of unloading, exposing the fine particles present in the drawing pattern to a microwave surface wave plasma having a low electron temperature and a high electron density in a processing chamber, and sintering the fine particles of the drawing pattern to form a conductive pattern It is the structure which forms.

上記した第1、2の発明では、所定の大きさのガラスや樹脂材などの基材に上記の微粒子分散液を用いてパターンを描画した基材を予め用意する。
そして、第1の発明のパターン形成装置は、描画した基材を無電極のプラズマ発生手段の処理室に入れ、その処理台に載置し、続いて、マイクロ波エネルギー(マイクロ波電力)を供給する。
これにより、処理室内にはプラズマが発生するが、このプラズマが照射窓の近くとなる処理室内に多く発生する表面波プラズマとなる。
なお、本出願では、この表面波プラズマを、便宜上、マイクロ波表面波プラズマと言う。
したがって、基材の描画パターンが、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒され、描画パターンの微粒子が焼結され、導電性パターンが形成される。
In the first and second inventions described above, a base material in which a pattern is drawn on the base material such as glass or resin material having a predetermined size using the fine particle dispersion is prepared in advance.
In the pattern forming apparatus according to the first aspect of the present invention, the drawn base material is placed in the processing chamber of the electrodeless plasma generating means, placed on the processing table, and then supplied with microwave energy (microwave power). To do.
As a result, plasma is generated in the processing chamber, but this plasma becomes surface wave plasma generated in a large amount in the processing chamber near the irradiation window.
In the present application, this surface wave plasma is referred to as microwave surface wave plasma for convenience.
Therefore, the drawing pattern of the substrate is exposed to microwave surface wave plasma having a low electron temperature and a high electron density, and the fine particles of the drawing pattern are sintered to form a conductive pattern.

第2の発明のパターン形成装置は、パターンを描画した基材を第1予備室に入れると、その基材が搬入手段によって処理室内の処理台上に送り込まれる。
処理室は基材の搬入、搬出にかかわらずマイクロ波表面波プラズマを発生せておく構成としてあり、描画した基材が処理台上でマイクロ波表面波プラズマに晒され、描画パターンの微粒子が焼結して導電性パターンを形成する。
続いて、描画した基材が搬出手段によって第2予備室に送り出されるので、第2予備室から導電性パターンを有する基板を取り出すことができる。
In the pattern forming apparatus of the second invention, when a substrate on which a pattern is drawn is placed in the first preliminary chamber, the substrate is fed onto a processing table in the processing chamber by the carrying-in means.
The processing chamber is configured to generate microwave surface wave plasma regardless of whether the substrate is loaded or unloaded. The drawn substrate is exposed to the microwave surface wave plasma on the processing table, and the fine particles of the drawing pattern are burned. As a result, a conductive pattern is formed.
Subsequently, since the drawn base material is sent out to the second preliminary chamber by the carry-out means, the substrate having the conductive pattern can be taken out from the second preliminary chamber.

上記した第1、第2の発明のパターン形成装置は、描画した基材が処理台上でマイクロ波表面波プラズマに晒されるため、温度上昇によって生ずる変形や溶融などが生じることがあるが、この弊害を防ぐために、処理台には、基材の裏面を冷却する冷却手段を備えることができる。   In the pattern forming apparatuses according to the first and second inventions described above, the drawn base material is exposed to the microwave surface wave plasma on the processing table, so that deformation or melting caused by temperature rise may occur. In order to prevent adverse effects, the processing table can be provided with a cooling means for cooling the back surface of the substrate.

上記した第1、第2の発明のパターン形成装置は、フィルム状の基材に描画すると、基材の湾曲部分のために、処理台面に対し接合した部分と離れた部分が生じることがある。この問題を解決するため、描画した基材を空気吸引して処理台に接合させる吸引保持手段を備えてもよい。   When the pattern forming apparatus according to the first and second inventions described above is drawn on a film-like substrate, a portion separated from the portion joined to the processing table surface may be generated due to the curved portion of the substrate. In order to solve this problem, a suction holding unit that sucks the drawn base material into the processing table by air suction may be provided.

上記した第1、第2の発明のパターン形成装置は、描画した基材の接合度合いを高めるため、処理台面を緩やかな膨出面に形成することが好ましい。   In the pattern forming apparatus of the first and second inventions described above, it is preferable to form the processing surface on a gently bulging surface in order to increase the degree of joining of the drawn base materials.

上記した第1、第2の発明のパターン形成装置は、マイクロ波表面波プラズマが描画した基材に均一に当たるように、処理台を回転させる駆動手段を備えることができる。 The pattern forming apparatus according to the first and second inventions described above can include a driving unit that rotates the processing table so that the microwave surface wave plasma uniformly strikes the drawn substrate.

なお、卑金属微粒子の分散液で描画した基材は、マイクロ波表面波プラズマに晒して描画パターンの微粒子が焼結し導電性パターンとなった後でも、高い温度状態のままで処理室から取り出すと、導電性パターンが大気に触れて酸化することがあるので、第1の発明のパターン形成装置の場合は、導電性基板の温度が通常温度(室温)に下がってから、処理室から取り出すようにする。
この問題を解決するため、第2の発明のパターン形成装置では、第2予備室に導電性パターンの酸化を抑制する酸化抑制ガスを供給するガス供給手段を備えることが好ましい。
Note that the substrate drawn with the dispersion of the base metal fine particles is exposed to the microwave surface wave plasma, and after the fine particles of the drawn pattern are sintered and become conductive patterns, the substrate is taken out from the processing chamber in a high temperature state. Since the conductive pattern may oxidize when exposed to the atmosphere, in the case of the pattern forming apparatus according to the first aspect of the invention, the conductive substrate should be removed from the processing chamber after the temperature of the conductive substrate has dropped to the normal temperature (room temperature). To do.
In order to solve this problem, the pattern forming apparatus according to the second aspect of the invention preferably includes a gas supply means for supplying an oxidation-suppressing gas that suppresses oxidation of the conductive pattern to the second preliminary chamber.

また、第3の発明のパターン形成装置は、金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、このパターンに存在する微粒子を焼結処理し導電性パターンを形成するパターン形成装置であって、減圧室として構成した処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段を備え、さらに、前記処理室内には、パターンを描画した長径のフレキシブル基材を巻き込んだ巻込リールと、そのフレキシブル基材を巻き取る巻取リールと、これら2つのリール間に設け描画パターンにマイクロ波表面波プラズマを照射させるプラズマ処理ローラとを備え、巻込リールから供給される前記フレキシブル基材をプラズマ処理ローラを介して巻取リールに移動する間に、描画パターンに存在する微粒子を、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒して焼結処理を連続的に施し、導電性パターンを形成する構成となっている。   Further, the pattern forming apparatus of the third invention draws a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles made of metal or a metal compound are dispersed, and sinters the fine particles present in the pattern. A pattern forming apparatus for processing and forming a conductive pattern, which supplies microwave energy from an irradiation window of a processing chamber configured as a decompression chamber and generates surface wave plasma along the irradiation window in the processing chamber And a winding reel that winds up a flexible substrate having a long diameter on which a pattern is drawn, a winding reel that winds up the flexible substrate, and a drawing reel provided between the two reels. A plasma processing roller for irradiating the surface with microwave surface wave plasma, and the flexible base material supplied from a winding reel While moving to the take-up reel through the processing roller, the fine particles present in the drawing pattern are exposed to microwave surface wave plasma with a low electron temperature and a high electron density, and then subjected to a sintering process to make it conductive. The pattern is formed.

上記の第3の発明のパターン形成装置は、描画したフレキシブル基板が、プラズマ処理ローラを通過する過程でマイクロ波表面波プラズマに晒されて加熱されるため、プラズマ処理ローラを冷却する冷却手段を設け、フレキシブル基材の裏面を冷やすようにすることが好ましい。   The pattern forming apparatus according to the third aspect of the invention is provided with a cooling means for cooling the plasma processing roller because the drawn flexible substrate is heated by being exposed to the microwave surface wave plasma in the process of passing through the plasma processing roller. It is preferable to cool the back surface of the flexible substrate.

さらに、プラズマ処理ローラと巻取リールとの間に冷却ローラを設け、プラズマ加熱で温度上昇した描画付きフレキシブル基材を冷却ローラで冷やし、温度を下げた状態で巻取リールで巻き取ることが好ましい。   Furthermore, it is preferable to provide a cooling roller between the plasma processing roller and the take-up reel, cool the flexible substrate with drawing that has been heated by plasma heating with the cooling roller, and take up the take-up reel with the temperature lowered. .

また、この第3の発明のパターン形成装置は、描画付きフレキシブル基材にマイクロ波表面波プラズマが均一に当たるようにするため、プラズマ処理ローラを正逆転させ、フレキシブル基材を少ない距離で往復移動させることがでる正逆転駆動手段を備えることができる。   In the pattern forming apparatus of the third aspect of the invention, in order to uniformly apply the microwave surface wave plasma to the flexible base material with drawing, the plasma processing roller is rotated forward and backward to reciprocate the flexible base material at a small distance. It is possible to provide forward / reverse drive means.

他方、卑金属微粒子や、表面が酸化されている卑金属微粒子、内部まで酸化されている卑金属酸化物微粒子の分散液を使って描画した基材であっても、第1、第2、第3の発明とほぼ同様にして導電性パターンを形成することができるが、処理室には、マイクロ波エネルギーと共に水素ガスなどの還元性気体を供給し、還元性気体の雰囲気の中でマイクロ波表面波プラズマを発生させる構成とすることにより、描画パターンに存在する微粒子の還元処理と焼結処置とが施される。
また、上記した第1、第2、第3の発明のプラズマ発生手段としては、処理室の照射窓から周波数2450MHzのマイクロ波エネルギーを供給し、処理室内には、電子温度が約1eV以下、電子密度が約1×1011〜1×1013cm−3のマイクロ波表面波プラズマを発生させることができる。
On the other hand, even if the substrate is drawn using a dispersion of base metal fine particles, base metal fine particles whose surface is oxidized, or base metal oxide fine particles which are oxidized to the inside, the first, second and third inventions A conductive pattern can be formed in substantially the same manner as described above. However, a reducing gas such as hydrogen gas is supplied to the processing chamber together with microwave energy, and microwave surface wave plasma is generated in the reducing gas atmosphere. By adopting such a configuration, reduction treatment and sintering treatment of fine particles existing in the drawing pattern are performed.
Further, as the plasma generating means of the first, second and third inventions described above, microwave energy having a frequency of 2450 MHz is supplied from the irradiation window of the processing chamber, and the electron temperature is about 1 eV or less in the processing chamber. A microwave surface wave plasma having a density of about 1 × 10 11 to 1 × 10 13 cm −3 can be generated.

上記したように、本発明は、金属微粒子又は金属化合物微粒子の分散液を用いて描画した基材をプラズマ発生手段を用いて焼結し、導電性パターン形成する。
プラズマ発生手段は、減圧室からなる処理室の照射窓からマイクロ波エネルギー(マイクロ波電力)を供給し、処理室内の照射窓近くでマイクロ波励起によって生じる表面波プラズマを発生させる。
したがって、このマイクロ波表面波プラズマが、無電極で発生させることができること、電子温度が低温であること、電子密度が高いことなどの特質を有することから、次の効果を得ることができる。
As described above, the present invention sinters a substrate drawn using a dispersion of metal fine particles or metal compound fine particles using plasma generating means to form a conductive pattern.
The plasma generating means supplies microwave energy (microwave power) from the irradiation window of the processing chamber including the decompression chamber, and generates surface wave plasma generated by microwave excitation near the irradiation window in the processing chamber.
Therefore, since the microwave surface wave plasma can be generated without an electrode, the electron temperature is low, and the electron density is high, the following effects can be obtained.

耐熱性の低い樹脂フィルム、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などを基材として使用する場合でも、電子温度が低いので、金属微粒子の焼結時に基材が溶融したり、変形するようなことがない。
その上、従来の導電性パターンの形成方法に比べ、電子密度が高いので、焼結時間を極力短縮することができる。
この結果、この種の導電性基板の使用範囲が広がり、また、生産のローコスト化に有利となる。
Even when using a resin film with low heat resistance, for example, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) as the base material, the base material melts when the metal fine particles are sintered because the electron temperature is low, There is no such thing as deformation.
In addition, since the electron density is higher than the conventional method for forming a conductive pattern, the sintering time can be shortened as much as possible.
As a result, the range of use of this type of conductive substrate is widened, and it is advantageous for reducing the production cost.

さらに、マイクロ表面波プラズマは無電極のプラズマ発生手段で発生させるので、大きい面積の基材の導電性パターン形成が可能となる上、電極によって集中するプラズマによる基材ダメージ(変形や変色など)がない。
また、マイクロ波表面波プラズマによる焼結は、基材が変色することがないので、基材に高い透過率を必要とする導電性基板の導電性パターン形成には最適となる。
その他、マイクロ波表面波プラズマは、マイクロ波エネルギーを供給する減圧室で発生させることができ、構成が簡単なプラズマ発生手段となることから、実用に供することが容易なものとなる。
Furthermore, since the micro surface wave plasma is generated by an electrodeless plasma generating means, it is possible to form a conductive pattern on a large area substrate, and substrate damage (deformation, discoloration, etc.) due to plasma concentrated by the electrode. Absent.
In addition, sintering by microwave surface wave plasma is optimal for forming a conductive pattern on a conductive substrate that requires high transmittance in the base material because the base material does not discolor.
In addition, the microwave surface wave plasma can be generated in a decompression chamber for supplying microwave energy and becomes a plasma generating means having a simple configuration, so that it can be easily put into practical use.

また、特に、表面が少なくとも酸化されている卑金属微粒子、銅微粒子の分散液を用いて描画した基材の微粒子に対しては、還元性気体の雰囲気の中で発生させるマイクロ波表面波プラズマに晒すことで、低温でも焼結と同時に還元処理を行うことができる。   In particular, substrate fine particles drawn with a dispersion of base metal fine particles and copper fine particles whose surfaces are at least oxidized are exposed to microwave surface wave plasma generated in a reducing gas atmosphere. Thus, reduction treatment can be performed simultaneously with sintering even at a low temperature.

さらに、マイクロ波表面波プラズマは有機物を分解除去する効果があるので、貴金属微粒子の分散液を用いて描画した基材の微粒子に対しても焼結を促進する効果がある。
そして、特に、有機物が分解するので、非常に高密度で高純度な金属薄膜が得られる。
Furthermore, since the microwave surface wave plasma has an effect of decomposing and removing organic substances, it also has an effect of promoting the sintering of the fine particles of the base material drawn using a dispersion of noble metal fine particles.
In particular, since organic substances are decomposed, a very high-density and high-purity metal thin film can be obtained.

一方、本発明のパターン形成装置によれば、還元処理と焼結処理とを同時に連続して行うことができるので、導電性基板の連続生産に適する他、描画した長径のフレキシブル基材を巻込リールから供給しながらプラズマ処理ローラでプラズマ処理するので、長径の描画付き基材の還元処理と焼結処理が可能になり、さらに、描画した基材を冷却しながらプラズマに晒す構成とすれば、基材の熱ダメージを極力少なくすることができる等の効果がある。   On the other hand, according to the pattern forming apparatus of the present invention, the reduction treatment and the sintering treatment can be performed simultaneously and continuously, so that it is suitable for continuous production of conductive substrates, and a drawn long-diameter flexible base material is entrained. Since plasma processing is performed with the plasma processing roller while supplying from the reel, it becomes possible to reduce and sinter the substrate with a long-diameter drawing, and further, if it is configured to be exposed to plasma while cooling the drawn substrate, There is an effect that the thermal damage of the substrate can be reduced as much as possible.

先ず、導電性パターンの形成方法の実施形態について説明する。
本発明の実施には、微粒子分散液を使用してパターンを描画した基材を予め準備する。
微粒子分散液は、金属又は金属化合物からなる微粒子を溶媒に分散させて調製する。
First, an embodiment of a method for forming a conductive pattern will be described.
In the practice of the present invention, a substrate on which a pattern is drawn using a fine particle dispersion is prepared in advance.
The fine particle dispersion is prepared by dispersing fine particles made of a metal or a metal compound in a solvent.

そして、金属微粒子としては、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムなどの貴金属の他、銅、ニッケル、スズ、鉄、クロムなどの卑金属を使用する。
金属化合物の微粒子としては、これら金属の酸化物、窒化物、硫化物などの微粒子や、2種類以上の金属からなる合金などの金属化合物を材料とした微粒子が好ましい。
なお、銅など卑金属の微粒子の場合は、表面が大気中の酸素により酸化されている場合があるが、このような少なくとも表面が酸化されている卑金属微粒子や内部まで酸化されている卑金属微粒子も使用することができる。
As the fine metal particles, base metals such as copper, nickel, tin, iron, and chromium are used in addition to noble metals such as gold, silver, platinum, palladium, rhodium, iridium, ruthenium, and osmium.
The fine particles of the metal compound are preferably fine particles such as oxides, nitrides and sulfides of these metals, and fine particles made of a metal compound such as an alloy composed of two or more kinds of metals.
In addition, in the case of fine particles of base metal such as copper, the surface may be oxidized by oxygen in the atmosphere, but such base metal fine particles whose surface is oxidized or base metal fine particles which are oxidized to the inside are also used can do.

金属又は金属化合物は、微粒子生成が容易で、特に、銀、銅及びその酸化物、合金は、導電性とコストの点で適当な微粒子となる。
この金属又は金属化合物の微粒子は、平均一次粒子径が、1〜100nmのものが好ましい。
この平均一次粒子径については、透過型電子顕微鏡による観察像から測定することができる。
Metals or metal compounds are easy to produce fine particles. In particular, silver, copper and oxides and alloys thereof are suitable fine particles in terms of conductivity and cost.
The fine particles of the metal or metal compound preferably have an average primary particle diameter of 1 to 100 nm.
About this average primary particle diameter, it can measure from the observation image by a transmission electron microscope.

また、溶媒としては、水、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等のアルコール類、トルエン、キシレン等の芳香族炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸エチル、酢酸プロピル等のエステル類、シクロヘキサン、テトラデカン等の炭化水素類などが採用できる。   Examples of the solvent include water, methanol, ethanol, n-propanol, isopropanol, n-butanol, alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin, aromatic hydrocarbons such as toluene and xylene, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone, esters such as methyl acetate, ethyl acetate and propyl acetate, and hydrocarbons such as cyclohexane and tetradecane can be employed.

さらに、金属又は金属化合物は、溶媒に分散させるに当たって、分散液中で安定化させるために、表面を分散保護剤によって覆うのが好ましい。
分散保護剤としては、例えば、高分子材料としては、ポリビニルピロリドンなどの水溶性高分子、グラフト共重合高分子、低分子材料としては、界面活性剤、金属と相互作用するチオール基、アミノ基、水酸基、カルボキシル基を有する化合物などを用いることができる。
Furthermore, when the metal or metal compound is dispersed in a solvent, the surface is preferably covered with a dispersion protective agent in order to stabilize the dispersion in the dispersion.
As a dispersion protective agent, for example, as a polymer material, a water-soluble polymer such as polyvinylpyrrolidone, a graft copolymer polymer, as a low-molecular material, a surfactant, a thiol group that interacts with a metal, an amino group, A compound having a hydroxyl group or a carboxyl group can be used.

その他、分散液には、基材への密着性を高めること、成膜性を高めること、印刷適性を付与することを目的として、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の樹脂やエチルシリケート、シリケートオリゴマー等の無機塗料をバインダー成分として添加してもよい。
また、必要に応じて、粘度調整剤、表面張力調整剤、安定剤等を添加してもよい。
In addition, for the purpose of enhancing adhesion to the substrate, improving film formability, and imparting printability to the dispersion, for example, resins such as polyester resin, acrylic resin, urethane resin, and ethyl silicate An inorganic paint such as a silicate oligomer may be added as a binder component.
Moreover, you may add a viscosity modifier, a surface tension modifier, a stabilizer, etc. as needed.

このように調製した微粒子分散液を用いて非導電性の基材にパターンを描画する。
基材としては、用途に応じて、無機材料基板、合成樹脂基板を使用する。
合成樹脂基板は、フィルム状であってもよい。
無機材料基板としては、例えば、ガラス(例えば、ソーダライムガラス、無アルカリガラス、ホウケイ酸ガラス、石英ガラスなど)、アルミナなどが採用できる。
また、プラスチック基板、または、フィルムとしては、例えば、ポリエチレン、ポリプロピレン、アクリル樹脂、ポリスチレン、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド、エポキシ樹脂、ガラス−エポキシ樹脂、ポリフェニレンエーテル、紙材などが採用できる。
特に、融点が280℃以下の基材、例えば、ポリプロピレン、アクリル樹脂、ポリエチレン、PET、PENなどであってもよい。
A pattern is drawn on a non-conductive substrate using the fine particle dispersion prepared in this manner.
As the substrate, an inorganic material substrate or a synthetic resin substrate is used depending on the application.
The synthetic resin substrate may be in the form of a film.
As the inorganic material substrate, for example, glass (for example, soda lime glass, alkali-free glass, borosilicate glass, quartz glass, etc.), alumina, or the like can be employed.
Examples of the plastic substrate or film include polyethylene, polypropylene, acrylic resin, polystyrene, polycarbonate, polyimide, polyamideimide, polyethersulfone, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide, Epoxy resin, glass-epoxy resin, polyphenylene ether, paper material, etc. can be employed.
In particular, it may be a substrate having a melting point of 280 ° C. or lower, such as polypropylene, acrylic resin, polyethylene, PET, PEN and the like.

基材と導電層の密着性を向上させるために、基材表面に易接着成分を成膜したり、基材表面を改質することができる。
易接着成分の成膜としては、例えば、ニッケル、クロム、チタン等の金属薄膜を成膜する方法、熱可塑性接着剤、熱硬化性接着剤、光硬化性接着剤等を塗布する方法、その他、有機無機カップリング剤を塗布する方法が採用できる。
また、基材表面の改質方法としては、例えば、コロナ処理、紫外線処理、エキシマランプ処理、大気圧プラズマ処理などがある。
In order to improve the adhesion between the base material and the conductive layer, an easy-adhesive component can be formed on the base material surface, or the base material surface can be modified.
Examples of the film formation of the easy-adhesive component include a method of forming a metal thin film such as nickel, chromium, titanium, a method of applying a thermoplastic adhesive, a thermosetting adhesive, a photocurable adhesive, etc. A method of applying an organic-inorganic coupling agent can be employed.
Examples of the method for modifying the surface of the substrate include corona treatment, ultraviolet treatment, excimer lamp treatment, and atmospheric pressure plasma treatment.

上記の基材に上記微粒子分散液を使ってパターンを描画する。
具体的には、形成しようとする導電性パターンに対応するパターンを定め、微粒子分散液を使って描画する。
この描画には、例えば、グラビア印刷、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット印刷、ディスペンサ印刷、スピンコート、バーコートなどで実現できる。
A pattern is drawn on the substrate using the fine particle dispersion.
Specifically, a pattern corresponding to the conductive pattern to be formed is determined and drawn using a fine particle dispersion.
This drawing can be realized by, for example, gravure printing, screen printing, offset printing, flexographic printing, ink jet printing, dispenser printing, spin coating, bar coating, and the like.

上記のようにして描画した後は、基材上の微粒子分散液を乾燥させる。
この乾燥は、通常の方法で乾燥を行ってもよい。例えば、オーブン、赤外線加熱炉を用いて、溶媒を乾燥させることができる。
After drawing as described above, the fine particle dispersion on the substrate is dried.
This drying may be performed by a normal method. For example, the solvent can be dried using an oven or an infrared heating furnace.

上記のようにパターンを描画して予め準備した基材は、マイクロ波表面波プラズマに晒して描画パターンの導電性微粒子を融着させ、導電性を実現する。
なお、融着とは、微粒子同士が焼結、溶融などにより一部または全体が連続の膜を形成することを言うが、本出願ではこの融着について、便宜上、「焼結」と言う。
The substrate prepared by drawing a pattern in advance as described above is exposed to microwave surface wave plasma, and the conductive fine particles of the drawing pattern are fused to realize conductivity.
Note that the fusion means that a part or the whole of the fine particles forms a continuous film by sintering, melting or the like. In the present application, this fusion is called “sintering” for convenience.

マイクロ波表面波プラズマは、減圧した処理室内にマイクロ波エネルギーを供給して表面波プラズマを発生させるプラズマ発生装置が使用できる。
マイクロ波表面波プラズマは、既に述べたように、電子密度が高く、電子温度が低い特質をもっており、無電極のプラズマであるので、基材にダメージを与えない。
詳しくは、マイクロ波表面波プラズマは、電子密度が1×1011〜1×1013cm−3と高く有機物を除去する作用が強いため、加熱しなくとも、低温で焼結を促進し、導電性パターンを形成する。
As the microwave surface wave plasma, a plasma generator for generating surface wave plasma by supplying microwave energy into a decompressed processing chamber can be used.
As described above, the microwave surface wave plasma has characteristics of high electron density and low electron temperature, and is an electrodeless plasma, and therefore does not damage the substrate.
Specifically, the microwave surface wave plasma has a high electron density of 1 × 10 11 to 1 × 10 13 cm −3 and has a strong action of removing organic substances. Forming a sex pattern.

したがって、描画した基材をマイクロ波表面波プラズマに晒すことで、金、銀などの貴金属からなる導電性微粒子は、その表面を覆う分散保護材がマイクロ波表面波プラズマによって除去され、導電性微粒子同士が焼結して導電層を形成する。   Therefore, by exposing the drawn substrate to the microwave surface wave plasma, the conductive fine particles made of noble metal such as gold and silver are removed from the dispersion protective material covering the surface by the microwave surface wave plasma. They are sintered together to form a conductive layer.

また、銅、ニッケルなどの卑金属からなる微粒子の分散液を使用する場合は、その表面が酸化被膜と分散保護膜によって覆われているため、酸化被膜を還元させる水素ガスなどの還元性気体を処理室に供給する。
すなわち、還元気体の存在下に発生させたマイクロ波表面波プラズマに描画した基材を晒し、分散保護膜の除去と共に、酸化被膜を還元処理する。
この結果、導電性微粒子同士が焼結して導電層を形成する。
内部まで酸化されている酸化銅微粒子などの卑金属微粒子の分散液は、上記した卑金属微粒子の分散液を使用した場合と同様の焼結処理となる。
In addition, when using a dispersion of fine particles of base metal such as copper or nickel, the surface is covered with an oxide film and a dispersion protective film, so a reducing gas such as hydrogen gas that reduces the oxide film is treated. Supply to the room.
That is, the drawn substrate is exposed to microwave surface wave plasma generated in the presence of a reducing gas, and the oxide film is reduced along with the removal of the dispersion protective film.
As a result, the conductive fine particles are sintered to form a conductive layer.
The dispersion of base metal fine particles such as copper oxide fine particles that have been oxidized to the inside is subjected to the same sintering treatment as when the above-described dispersion of base metal fine particles is used.

なお、還元性気体としては、水素、一酸化炭素、アンモニア、窒素などのガス、或いは、これらの混合ガスが挙げられるが、特に、微粒子表面に付着した有機物の除去には水素ガスが好ましい。
また、還元性気体には、ヘリウム、アルゴン、ネオン、クリプトン、キセノンなどの不活性ガスを混合して用いれば、プラズマが発生し易くなるなどの効果がある。
The reducing gas includes hydrogen, carbon monoxide, ammonia, nitrogen, or a mixed gas thereof. Hydrogen gas is particularly preferable for removing organic substances adhering to the surface of the fine particles.
Further, the reducing gas has an effect that plasma is easily generated when an inert gas such as helium, argon, neon, krypton, or xenon is mixed and used.

続いて、導電性パターンのパターン形成装置の実施形態について、図1を参照しながら説明する。
図1は、パターン形成装置を示す概略構成図であり、処理室11内に設けた処理台12にプラズマ処理する基材(描画した基材)100を載置する。
なお、描画した基材100は、既に述べたように微粒子分散液を用いてパターンを描画して予め準備した基材で、処理室11のドア13を開いて処理台12に載置し、また、処理室11内から取り出すようにしてある。
Next, an embodiment of a pattern forming apparatus for conductive patterns will be described with reference to FIG.
FIG. 1 is a schematic configuration diagram showing a pattern forming apparatus, and a substrate (drawn substrate) 100 to be plasma-treated is placed on a processing table 12 provided in a processing chamber 11.
The drawn base material 100 is a base material prepared in advance by drawing a pattern using the fine particle dispersion as described above, and is placed on the processing table 12 by opening the door 13 of the processing chamber 11. In this case, the processing chamber 11 is taken out.

処理室11の天井壁には、石英ガラスで密閉したマイクロ波照射窓14を設け、このマイクロ波照射窓14から照射するマイクロ波電力(マイクロ波エネルギー
)によって表面波プラズマを発生さる。
マイクロ波照射窓14には、導波管15に設けた結合孔16からマイクロ波電力を送る。
すなわち、導波管15は、アイソレータ17、パワーモニタ18、チューナー19などと共に導波管系回路を形成しており、マグネトロン20が出力する周波数2450MHzのマイクロ波電力をその導波管系回路を介して送り、結合孔16とマイクロ波照射窓14を通して処理室11内に伝播する。
なお、マイクロ波電力は2450mHzの高周波電力を言うが、マグネトロン20の精度誤差などのために2450MHz/±50MHzの周波数範囲が許されている。
A microwave irradiation window 14 sealed with quartz glass is provided on the ceiling wall of the processing chamber 11, and surface wave plasma is generated by the microwave power (microwave energy) irradiated from the microwave irradiation window 14.
Microwave power is sent to the microwave irradiation window 14 from a coupling hole 16 provided in the waveguide 15.
That is, the waveguide 15 forms a waveguide system circuit together with the isolator 17, the power monitor 18, the tuner 19, and the like, and the microwave power of the frequency 2450 MHz output from the magnetron 20 is passed through the waveguide system circuit. And propagates into the processing chamber 11 through the coupling hole 16 and the microwave irradiation window 14.
The microwave power is a high frequency power of 2450 mHz, but a frequency range of 2450 MHz / ± 50 MHz is allowed due to an accuracy error of the magnetron 20 and the like.

また、処理室11には、水素ガスを供給する水素供給経路(パイプ)21が配設してある。なお、この水素供給経路21には流量計22、バルブ23が設けてある。
さらに、処理室11には、処理室11内を減圧するための真空ポンプ経路(パイプ)24が設けてある。なお、この真空ポンプ経路24には、真空ポンプ25、バルブ26が設けてある。
その他、処理室11には、処理室11内の減圧状態を計測する圧力計27などが配設してある。
The processing chamber 11 is provided with a hydrogen supply path (pipe) 21 for supplying hydrogen gas. The hydrogen supply path 21 is provided with a flow meter 22 and a valve 23.
Further, the processing chamber 11 is provided with a vacuum pump path (pipe) 24 for decompressing the inside of the processing chamber 11. The vacuum pump path 24 is provided with a vacuum pump 25 and a valve 26.
In addition, the processing chamber 11 is provided with a pressure gauge 27 for measuring the reduced pressure state in the processing chamber 11.

上記したパターン形成装置によれば、処理室11内に供給されたマイクロ波電力がプラズマ化し、処理室11内にはマイクロ波照射窓14に沿った表面波プラズマが発生する。
この表面波プラズマは、電子温度が約1eV以下と低く、電子密度が約1×1011〜1×1013cm−3と高いマイクロ波表面波プラズマとして発生するので、このマイクロ波表面波プラズマに晒される描画した基材100が、そのパターンに存在する導電性微粒子同士が短時間で融着し、導電性パターンを形成する。
According to the pattern forming apparatus described above, the microwave power supplied into the processing chamber 11 is turned into plasma, and surface wave plasma along the microwave irradiation window 14 is generated in the processing chamber 11.
This surface wave plasma is generated as a microwave surface wave plasma having an electron temperature as low as about 1 eV or less and an electron density as high as about 1 × 10 11 to 1 × 10 13 cm −3. The drawn substrate 100 to be exposed fuses the conductive fine particles present in the pattern in a short time to form a conductive pattern.

次に、パターンの形成装置の実施例について装置実施例1、2として図面に沿って説明する。
なお、以下の実施例の説明では、ガラス、樹脂フィルムなどを「基材」、微粒子分散液を用いてパターンを描画した基材を「印刷物」と言う。
Next, embodiments of the pattern forming apparatus will be described as apparatus embodiments 1 and 2 with reference to the drawings.
In the description of the following examples, glass, resin film, and the like are referred to as “substrate”, and a substrate on which a pattern is drawn using a fine particle dispersion is referred to as “printed matter”.

装置実施例1
図2は装置実施例1として示したパターン形成装置の簡略的斜視図、図3は同パターン形成装置の簡略的な断面図である。
本実施例は、金属又は金属化合物の微粒子分散液を用いて基材に描画した四辺形の印刷物100を予め作成し、この印刷物100を加熱して導電性パターンを形成するものである。
Apparatus Example 1
2 is a simplified perspective view of the pattern forming apparatus shown as the apparatus embodiment 1, and FIG. 3 is a simplified cross-sectional view of the pattern forming apparatus.
In this embodiment, a quadrilateral printed material 100 drawn on a base material using a metal or metal compound fine particle dispersion is prepared in advance, and the printed material 100 is heated to form a conductive pattern.

図示するように、このパターン形成装置は、表面波プラズマ30を発生させる処理室31内に処理台32を設け、印刷物100をこの処理台32に載置させてプラズマに晒す。
そして、本装置実施例では、3台のマグネトロン33a、33b、33cが出力するマイクロ波電力を各導波管系回路34a、34b、34cを介して処理室31内に送り、広い範囲の表面波プラズマを発生させる。
なお、導波管系回路は、既に述べたように、導波管35a、35b、35cに設けられたアイソレータ、パワーモニタ、チューナーなどの回路系である。
As shown in the figure, this pattern forming apparatus is provided with a processing table 32 in a processing chamber 31 for generating surface wave plasma 30, and a printed material 100 is placed on the processing table 32 and exposed to plasma.
In the present embodiment, the microwave power output from the three magnetrons 33a, 33b, and 33c is sent into the processing chamber 31 via the respective waveguide circuits 34a, 34b, and 34c, and a wide range of surface waves are transmitted. Generate plasma.
As already described, the waveguide system circuit is a circuit system such as an isolator, a power monitor, and a tuner provided in the waveguides 35a, 35b, and 35c.

また、処理室31の天井壁には、平行配置した導波管35a、35b、35cの各々の結合孔に対向させたマイクロ波電力の照射窓36a、36b、36cが設けてある。
なお、これら照射窓36a、36b、36cは石英ガラスで形成して処理室31を密閉する構造としてある。
また、処理室31には、水素ガスを供給する水素供給経路(パイプ)37、真空ポンプ経路38が配設してある。なお、参照符号39は水素供給経路(パイプ)37に設けたバルブ、参照符号40、41は真空ポンプ経路38に設けたバルブ、真空ポンプである。
In addition, microwave power irradiation windows 36a, 36b, and 36c are provided on the ceiling wall of the processing chamber 31 so as to face the coupling holes of the waveguides 35a, 35b, and 35c arranged in parallel.
The irradiation windows 36a, 36b, and 36c are made of quartz glass so as to seal the processing chamber 31.
The processing chamber 31 is provided with a hydrogen supply path (pipe) 37 for supplying hydrogen gas and a vacuum pump path 38. Reference numeral 39 is a valve provided in the hydrogen supply path (pipe) 37, and reference numerals 40 and 41 are valves provided in the vacuum pump path 38 and a vacuum pump.

一方、処理室31には、その搬入口31aに連通可能とした第1予備室42と、その搬出口31bに連通可能とした第2予備室43とが設けてある。
すなはち、第1予備室42は、搬入口31aに備えた常閉構造のシャッタ44を開放させて処理室31と連通させ、第2予備室43は搬出口31bに備えた常閉構造のシャッタ45を開放させて処理室31と連通させる。
On the other hand, the processing chamber 31 is provided with a first spare chamber 42 that can communicate with the carry-in port 31a and a second spare chamber 43 that can communicate with the carry-out port 31b.
That is, the first preliminary chamber 42 opens the normally closed shutter 44 provided in the carry-in port 31a to communicate with the processing chamber 31, and the second pre-chamber 43 has a normally closed structure provided in the carry-out port 31b. The shutter 45 is opened to communicate with the processing chamber 31.

第1予備室42は、印刷物100を処理室31に搬入させる待機室とも言うべき部室で、これには、密閉することができる蓋板42aが設けてあり、この蓋板42aを開けて印刷物100を第1予備室42内に納入する。
また、この第1予備室42には、印刷物100を載せて処理室31内に運ぶための搬入移動板46が設けてある。
なお、この搬入移動板46については、第1予備室42と処理室31内の処理台32上との間を進退させる駆動機構が備えてあるが、この搬入移動板46は手動で進退操作させる構成としてもよい。
The first preliminary chamber 42 is a part chamber that should be called a standby chamber for carrying the printed material 100 into the processing chamber 31, and is provided with a lid plate 42 a that can be sealed, and the printed material 100 is opened by opening the lid plate 42 a. Is delivered into the first spare chamber 42.
The first preliminary chamber 42 is provided with a carry-in moving plate 46 for loading the printed material 100 and carrying it into the processing chamber 31.
The carry-in moving plate 46 is provided with a drive mechanism for moving back and forth between the first preliminary chamber 42 and the processing table 32 in the processing chamber 31. However, the carry-in moving plate 46 is manually advanced and retracted. It is good also as a structure.

また、上記した第1予備室42には、真空ポンプ経路(パイプ)47を配設してあり、蓋板42aを閉めた状態で第1予備室42を減圧してシャッタ44を開き、印刷物100を処理室31内に搬入する。   In addition, a vacuum pump path (pipe) 47 is disposed in the first preliminary chamber 42 described above, and the first preliminary chamber 42 is decompressed and the shutter 44 is opened with the cover plate 42a closed, and the printed matter 100 is printed. Is carried into the processing chamber 31.

搬入移動板46と処理台32とは図4に示す構成としてある。
すなわち、処理台32の四方位置には貫通孔32aを設けると共に、これら貫通孔32a内を通って印刷物100を一旦押し上げる押上杆48が備えてある。
この押上杆48は、上下方向に進出し、また、後退する構成として処理台32の下側に設けてある。
The carry-in moving plate 46 and the processing table 32 are configured as shown in FIG.
That is, through holes 32a are provided at four positions of the processing table 32, and a push-up bar 48 that pushes up the printed material 100 once through the through holes 32a is provided.
The push-up bar 48 is provided on the lower side of the processing table 32 so as to advance in the vertical direction and to move backward.

図5には、印刷物100の搬入動作を示す。
図5(A)に示すように、印刷物100を載せた搬入移動板46が処理台32上に進出したとき、図5(B)に示すように、押上杆48が上昇して印刷物100を押し上げる。
この押し上げ動作で、搬入移動板46が後退し、その後、図5(C)に示すように、押上杆48が下降し、印刷物100が処理台32に載置される。
FIG. 5 shows an operation for carrying in the printed material 100.
As shown in FIG. 5A, when the carry-in moving plate 46 on which the printed material 100 is placed advances onto the processing table 32, as shown in FIG. 5B, the pusher bar 48 rises to push up the printed material 100. .
With this push-up operation, the carry-in moving plate 46 moves backward, and thereafter, as shown in FIG. 5C, the push-up collar 48 is lowered and the printed matter 100 is placed on the processing table 32.

第2予備室43は、処理室31内で焼結された印刷物100を搬出するためのもので、第1予備室42とほぼ同様に構成してある。
すなわち、真空ポンプ経路(パイプ)49によって減圧し、減圧状態でシャッタ45を開放させ搬出移動板50を往復移動させ、印刷物100を第2予備室43内に搬出する。
The second preliminary chamber 43 is for carrying out the printed material 100 sintered in the processing chamber 31 and is configured in substantially the same manner as the first preliminary chamber 42.
That is, the pressure is reduced by the vacuum pump path (pipe) 49, the shutter 45 is opened in the reduced pressure state, the carry-out moving plate 50 is reciprocated, and the printed matter 100 is carried out into the second preliminary chamber 43.

また、搬出時には、図5に示す搬入動作に比べて逆動作となる。
つまり、印刷物100が図5(C)の状態から(B)のように押し上げられ、処理台32と印刷物100との間に搬出移動板50が入り込む。
続いて、押上杆48が下降して印刷物100が搬出移動板50に載せられ、搬出移動板50の後退動によって搬出される。
なお、この搬出移動板50については、第2予備室43と処理室31内の処理台32上との間を進退させる駆動機構が備えてあるが、この搬入移動板50は手動で進退操作させる構成としてもよい。
Further, at the time of carry-out, the reverse operation is performed as compared with the carry-in operation shown in FIG.
That is, the printed material 100 is pushed up from the state of FIG. 5C as shown in (B), and the carry-out moving plate 50 enters between the processing table 32 and the printed material 100.
Subsequently, the push-up bar 48 descends and the printed material 100 is placed on the carry-out movement plate 50 and carried out by the backward movement of the carry-out movement plate 50.
The carry-out moving plate 50 is provided with a drive mechanism for moving back and forth between the second preliminary chamber 43 and the processing table 32 in the processing chamber 31, but the carry-in moving plate 50 is manually advanced and retracted. It is good also as a structure.

印刷物100を第2予備室43内に搬出した後は、シャッタ45を閉成し、さらに、ガス供給経路51から第2予備室43内に冷却ガスを供給し、印刷物100の温度を下げた後、蓋体43aを開いて印刷物100を取り出す。
これは、焼結直後の印刷物100は温度が上っているため、直ちに印刷物100を第2予備室43から取り出すと、銅などの卑金属微粒子の焼結パターンが酸化する恐れがあるからである。
なお、冷却ガスとしては、水素ガス、アルゴンガス、窒素ガス、へリウムガス、二酸化炭素ガスなどが有効である。
したがって、酸化しない金属微粒子の分散液で描画した基材の焼結の場合、第2予備室43に供給する冷却ガスは必ずしも必要ではない。
After the printed material 100 is carried out into the second preliminary chamber 43, the shutter 45 is closed, and further, a cooling gas is supplied from the gas supply path 51 into the second preliminary chamber 43 to lower the temperature of the printed material 100. Then, the lid 43a is opened and the printed matter 100 is taken out.
This is because the temperature of the printed material 100 immediately after sintering is high, and if the printed material 100 is immediately taken out from the second preliminary chamber 43, the sintered pattern of base metal fine particles such as copper may be oxidized.
As the cooling gas, hydrogen gas, argon gas, nitrogen gas, helium gas, carbon dioxide gas and the like are effective.
Therefore, in the case of sintering a substrate drawn with a dispersion of non-oxidized metal fine particles, the cooling gas supplied to the second preliminary chamber 43 is not necessarily required.

その他、図3に示す参照符号52、53は第1、第2予備室42、43に空気を送り大気圧とするための空気経路(パイプ)、54は真空ポンプ、55〜59はバルブを示す。   In addition, reference numerals 52 and 53 shown in FIG. 3 are air paths (pipes) for sending air to the first and second auxiliary chambers 42 and 43 to be atmospheric pressure, 54 is a vacuum pump, and 55 to 59 are valves. .

上記した通り、装置実施例1のパターン形成装置は、予め作成した印刷物100を第1予備室42に納入して搬入移動板46に載せて蓋体42aを閉めることによって、第1予備室42を減圧すると共に、シャッタ44を開放し、搬入移動板46による印刷物100の搬入が行なわれる。
なお、処理台32に印刷物100を載置した搬入移動板46が後退すると、シャッタ44が閉成し、その後、第1予備室42が常圧(大気圧)に戻される。
As described above, the pattern forming apparatus according to the apparatus embodiment 1 delivers the printed material 100 prepared in advance to the first preliminary chamber 42, places it on the carry-in moving plate 46, and closes the lid 42 a, thereby forming the first preliminary chamber 42. While reducing the pressure, the shutter 44 is opened, and the printed material 100 is carried in by the carry-in moving plate 46.
Note that when the carry-in moving plate 46 on which the printed material 100 is placed on the processing table 32 is retracted, the shutter 44 is closed, and then the first preliminary chamber 42 is returned to normal pressure (atmospheric pressure).

処理台32に載置された印刷物100がマイクロ波表面波プラズマ30に晒され、印刷物100が加熱されて導電性微粒子が焼結する。
その後、シャッタ45が開放し、減圧されている第2予備室43から搬出移動板50が進出し、第2予備室43内に印刷物100を搬出する。
続いて、シャッタ45が閉成すると共に、導電性基板となった印刷物100が冷却ガスによって冷やされる。
The printed material 100 placed on the processing table 32 is exposed to the microwave surface wave plasma 30, and the printed material 100 is heated to sinter the conductive fine particles.
Thereafter, the shutter 45 is opened, the carry-out moving plate 50 advances from the decompressed second preliminary chamber 43, and the printed material 100 is carried into the second preliminary chamber 43.
Subsequently, the shutter 45 is closed, and the printed material 100 that becomes the conductive substrate is cooled by the cooling gas.

以上より、焼結された印刷物100、つまり、導電性パターン形成された導電性基板を第2予備室43から取り出すことができる。
この結果、本装置実施例1によれば、描画パターンの焼結を半自動的に行って導電性パターンを形成することができる。
From the above, the sintered printed material 100, that is, the conductive substrate on which the conductive pattern is formed can be taken out from the second preliminary chamber 43.
As a result, according to the first embodiment, the conductive pattern can be formed by semi-automatically sintering the drawing pattern.

上記した装置実施例1では、処理台32を回転させ、表面波プラズマ30を印刷物100全体に均一に照射させる構成とすることができる。
また、図6に示すように、処理台32には冷水を循環させる冷却パイプ60を設け、マイクロ波表面波プラズマ30よって加熱される印刷物100の裏面から冷却することもできる。
In the apparatus embodiment 1 described above, the processing table 32 can be rotated to uniformly irradiate the entire printed matter 100 with the surface wave plasma 30.
In addition, as shown in FIG. 6, a cooling pipe 60 that circulates cold water is provided in the processing table 32, and cooling can be performed from the back surface of the printed material 100 heated by the microwave surface wave plasma 30.

他方、印刷物100は、処理台32に載せてあるだけであるので、安定した位置が保てない場合がある。
したがって、押上杆48を吸引パイプとして構成し、印刷物100を処理台32に載置する図5(B)の次のステップとして、図7の動作状態を作り、印刷物100を押上杆48によって吸引して処理台32上に安定させることができる。
On the other hand, since the printed material 100 is only placed on the processing table 32, a stable position may not be maintained.
Therefore, as the next step of FIG. 5B in which the push-up collar 48 is configured as a suction pipe and the printed material 100 is placed on the processing table 32, the operation state of FIG. Can be stabilized on the processing table 32.

また、処理台32は、印刷物100を面接合させるために、図8に示すように、表面を緩やかな膨出形状とすることが好ましく、また、押上杆48を利用した吸引パイプで印刷物100を吸引保持することができる。
さらに、空気吸引する手段としては、図9、図10に示すように、処理台32に多数の吸引孔61を設けてもよい。なお、処理台32には空気吸引パイプ62などを備える。
Further, as shown in FIG. 8, it is preferable that the processing table 32 has a gently bulging surface as shown in FIG. 8 in order to surface-bond the printed material 100, and the printed material 100 is attached by a suction pipe using the lifting rod 48. It can be sucked and held.
Further, as means for sucking air, a plurality of suction holes 61 may be provided in the processing table 32 as shown in FIGS. The processing table 32 includes an air suction pipe 62 and the like.

装置実施例2
図11は、パターン形成装置の他の実施例を示す簡略的な斜視図、図12は同パターン形成装置の簡略的な断面図である。
本実施例は、金属又は金属化合物の微粒子分散液を用いて所定幅の長形フレキシブル基材に描画した長形の印刷物200を予め準備し、この印刷物200をマイクロ波表面波プラズマに晒して導電性パターンを形成するものである。
Apparatus Example 2
FIG. 11 is a simplified perspective view showing another embodiment of the pattern forming apparatus, and FIG. 12 is a simplified sectional view of the pattern forming apparatus.
In this example, a long printed material 200 drawn on a long flexible substrate having a predetermined width using a fine particle dispersion of a metal or metal compound is prepared in advance, and the printed material 200 is exposed to microwave surface wave plasma to conduct electricity. Forming a sex pattern.

図示する如く、この装置実施例2では、長形の印刷物200を巻き込んだ巻込リール72と、印刷物200を巻き取る巻取リール73と、これらリール72、73の間となるようにしたプラズマ処理ローラ74とを処理室71内に配置した構成としてある。
また、本装置実施例2では、ガイドローラ75、76と共に、プラズマ処理ローラ74と巻取リール73との経路間には冷水を循環させる冷却ローラ77、78、79、80が設けてある。
なお、上記のリール72、73やローラ74については、これらを回転制御する駆動機構を備える他、これらリール72、73やローラ74は処理室71から取り出しできる構成としてある。
As shown in the figure, in the apparatus embodiment 2, a winding reel 72 around which a long printed material 200 is wound, a winding reel 73 around which the printed material 200 is wound, and a plasma treatment between the reels 72 and 73. The roller 74 is arranged in the processing chamber 71.
In the second embodiment, cooling rollers 77, 78, 79, and 80 for circulating cold water are provided between the plasma processing roller 74 and the take-up reel 73 along with the guide rollers 75 and 76.
The reels 72 and 73 and the rollers 74 are provided with a drive mechanism for controlling the rotation of the reels 72 and 73 and the rollers 74, and the reels 72, 73 and the rollers 74 can be taken out from the processing chamber 71.

さらに、装置実施例1と同様に、マイクロ波電力を伝送する3つの導波管81a、81b、81cを平行配置し、これら導波管の結合孔から照射窓82a、82b、82cを通して処理室71内にマイクロ波電力を伝播して表面波プラズマを発生させる構成としてある。
その他、本装置実施例2では、水素ガスを供給するガス供給経路83が、導波管81a、81b、81cに対応させた分路パイプ83a〜83dとして配設してあり、同様に真空ポンプ経路84についても、分路パイプ84a〜84dとして配設してある。
Further, similarly to the apparatus embodiment 1, three waveguides 81a, 81b, 81c transmitting microwave power are arranged in parallel, and the processing chamber 71 is passed through the irradiation windows 82a, 82b, 82c from the coupling holes of these waveguides. It is configured to generate surface wave plasma by propagating microwave power therein.
In addition, in the apparatus embodiment 2, the gas supply path 83 for supplying hydrogen gas is arranged as the shunt pipes 83a to 83d corresponding to the waveguides 81a, 81b and 81c, and similarly the vacuum pump path. 84 is also arranged as shunt pipes 84a to 84d.

このように、ガス供給経路83と、真空ポンプ経路84とを分路パイプで配設することで、水素ガスが処理室71内に均等化され、また、図12より分かるように、分路パイプ先端を処理ローラ74の上方向に向けることで、還元性気体としての水素ガスを一層効果的に利用することができる。   As described above, by arranging the gas supply path 83 and the vacuum pump path 84 by the shunt pipe, the hydrogen gas is equalized in the processing chamber 71, and as can be seen from FIG. 12, the shunt pipe By directing the tip toward the upper direction of the processing roller 74, the hydrogen gas as the reducing gas can be used more effectively.

この装置実施例2のパターン形成装置は、巻込リール72から送り出された印刷物200がプラズマ処理ローラ74に沿って移動する間に、マイクロ波表面波プラズマに晒され、印刷物200の導電性微粒子が焼結される。
その後、冷却ローラのガイドにより移動している過程で印刷物200の温度が下がり、低温となった印刷物200が巻取リール73によって巻き取られる。
In the pattern forming apparatus according to the second embodiment, the printed matter 200 fed from the take-up reel 72 is exposed to the microwave surface wave plasma while moving along the plasma processing roller 74, and the conductive fine particles of the printed matter 200 are exposed. Sintered.
Thereafter, the temperature of the printed material 200 is lowered in the process of being moved by the guide of the cooling roller, and the printed material 200 having a low temperature is taken up by the take-up reel 73.

このように、本装置実施例2によれば、巻込リール72から送り出される印刷物200を連続して加熱し、その描画パターンの導電性微粒子を焼結させることができる。
また、マイクロ波表面波プラズマの加熱で温度上昇した印刷物200は冷却ローラ77〜80を介して送り、温度を下げた印刷物200を巻取リール73によって巻き取るので、巻取リール73が巻き終わりとなれば、巻取リール73を処理室71から取り外すことができる。
なお、巻取リール73に巻かれた焼結済みの印刷物200はその後に適宜加工し、導電性パターンの電気部品とする。
Thus, according to the second embodiment of the present apparatus, the printed material 200 fed out from the take-up reel 72 can be continuously heated to sinter the conductive fine particles of the drawing pattern.
Further, the printed matter 200 whose temperature has been increased by heating the microwave surface wave plasma is sent through the cooling rollers 77 to 80, and the printed matter 200 whose temperature has been lowered is taken up by the take-up reel 73. If this is the case, the take-up reel 73 can be removed from the processing chamber 71.
Note that the sintered printed matter 200 wound around the take-up reel 73 is appropriately processed thereafter to obtain an electric component having a conductive pattern.

図13は、装置実施例2の改良例を示すパターン形成装置の簡略的な断面図である。
この改良例では、3つのプラズマ処理ローラ74a、74b、74cを備え、また、各々の導波管81a、81b、81cには、プラズマ処理ローラ74a、74b、74cに対応させた照射窓85a、85b、85cを設けたことが特徴となっている。
この改良例によれば、印刷物200が移動中に3つのプラズマ処理ローラ74a、74b、74cの各々の部所でマイクロ波表面波プラズマに晒されることから、印刷物200の導電性微粒子の焼結時間を一段と短縮させることができる。
FIG. 13 is a simplified cross-sectional view of a pattern forming apparatus showing an improved example of the apparatus embodiment 2.
In this improved example, three plasma processing rollers 74a, 74b, 74c are provided, and each of the waveguides 81a, 81b, 81c has irradiation windows 85a, 85b corresponding to the plasma processing rollers 74a, 74b, 74c. , 85c.
According to this improved example, since the printed material 200 is exposed to the microwave surface wave plasma at each of the three plasma processing rollers 74a, 74b, and 74c during the movement, the sintering time of the conductive fine particles of the printed material 200 is increased. Can be further shortened.

なお、上記した装置実施例2と改良例のパターン形成装置においては、マイクロ波表面波プラズマが印刷物200に均等に晒されるように、リールや処理ローラを正逆転させ、印刷物200を少ない距離で往復動せる正逆転駆動機構を備えることができる。
また、上記装置実施例2と改良例は、プラズマ処理ローラを冷却する冷却手段を備え、印刷物200の裏面を冷しながら、印刷物200をマイクロ波表面波プラズマに晒すようにすることもできる。
In the pattern forming apparatus of the apparatus embodiment 2 and the improved example described above, the reel and the processing roller are rotated forward and backward so that the microwave surface wave plasma is evenly exposed to the printed matter 200, and the printed matter 200 is reciprocated at a small distance. A forward / reverse drive mechanism can be provided.
Further, the apparatus embodiment 2 and the improved example include a cooling means for cooling the plasma processing roller, and the printed material 200 can be exposed to the microwave surface wave plasma while the back surface of the printed material 200 is cooled.

続いて、パターン形成方法の実施例について、方法実施例1〜5として説明する。
この方法実施例ついては、図2、図3に示したパターン形成装置を使用して実験を行って実施した。
そして、この実験では、真空ポンプ経路38で処理室31を1×10―3Pa以下に減圧し、その後、水素供給経路37から処理室11内に還元性気体として水素ガスを流量100sccmを供給した。
Subsequently, Examples of the pattern forming method will be described as Method Examples 1 to 5.
This method embodiment was carried out by conducting an experiment using the pattern forming apparatus shown in FIGS.
In this experiment, the processing chamber 31 was depressurized to 1 × 10 −3 Pa or less by the vacuum pump path 38, and then hydrogen gas was supplied as a reducing gas from the hydrogen supply path 37 into the processing chamber 11 at a flow rate of 100 sccm. .

また、各方法実施例については、導電性部品について以下の方法によって評価した。
(1)基材ダメージ
焼成後の基材の変形、変色の有無を目視にて観察した。
(2)全光線透過率変化
実施例及び比較例の全光線透過率は、濁度計(商品名:NDH2000、日本電色工業(株)製)を用いて、JIS K−7361−1にしたがい測定した値を用い、プラズマ照射前のフィルムの透過率に対する照射後の透過率の減少量(%)を算出した。
Moreover, about each method Example, it evaluated with the following method about the electroconductive component.
(1) Substrate damage The presence or absence of deformation or discoloration of the substrate after firing was visually observed.
(2) Total light transmittance change The total light transmittance of an Example and a comparative example is based on JISK-7361-1 using a turbidimeter (brand name: NDH2000, Nippon Denshoku Industries Co., Ltd. product). Using the measured value, a decrease amount (%) of the transmittance after irradiation with respect to the transmittance of the film before plasma irradiation was calculated.

(3)導電性
抵抗率計(商品名:ロレスタGP、ダイアインスツルメンツ社製)を用いて、JIS K7194にしたがい、4探針法にて体積抵抗率を測定した。
(3) Conductivity Volume resistivity was measured by a four-probe method according to JIS K7194 using a resistivity meter (trade name: Loresta GP, manufactured by Dia Instruments).

(4)表面観察
走査型電子顕微鏡(商品名:S−4500、(株)日立ハイテクノロジー製)を用いて、表面及び断面の構造を観察した。
断面は、試料をミクロトームにより切断した面を観察した。
(4) Surface observation The structure of the surface and the cross section was observed using the scanning electron microscope (Brand name: S-4500, product made from Hitachi High Technology).
As for the cross section, the surface obtained by cutting the sample with a microtome was observed.

方法実施例1
銅微粒子のトルエン分散液(商品名:Cuメタルインク、アルバックマテリアル(株)製、平均一次粒子径5nm)を、固形分30質量%に調整した。
膜厚75μmのポリイミド基材(商品名:カプトン300H、東レ・デュポン(株)製)に、エキシマランプ照射処理を行った後、基板をガラス基板に粘着テープで固定し、スピンコート法を用いて銅微粒子を塗布(描画)した。
その後、室温で自然乾燥させて印刷物100を作製した。
Method Example 1
A toluene dispersion of copper fine particles (trade name: Cu metal ink, manufactured by ULVAC Material Co., Ltd., average primary particle size of 5 nm) was adjusted to a solid content of 30% by mass.
Excimer lamp irradiation treatment was performed on a polyimide substrate (trade name: Kapton 300H, manufactured by Toray DuPont Co., Ltd.) having a film thickness of 75 μm, and then the substrate was fixed to a glass substrate with an adhesive tape, and a spin coating method was used. Copper fine particles were applied (drawn).
Thereafter, it was naturally dried at room temperature to produce a printed material 100.

続いて、印刷物100を処理室31に入れ、マイクロ波表面波水素プラズマ(水素ガス雰囲気の中の表面波プラズマ)を、水素導入時圧力20Pa、マイクロ波電力600Wで100秒照射した後、印刷物100を処理室31から取り出した。
印刷物100に変形、変色などのダメージはなかった。
Subsequently, the printed material 100 is put into the processing chamber 31, and microwave surface wave hydrogen plasma (surface wave plasma in a hydrogen gas atmosphere) is irradiated for 100 seconds at a hydrogen introduction pressure of 20 Pa and a microwave power of 600 W. Was removed from the processing chamber 31.
There was no damage such as deformation and discoloration on the printed material 100.

印刷物100の表面には金属光沢が見られ、導電性基板としての体積抵抗率を測定したところ、4.28×10−6Ω・cmとなり、低抵抗化していた。
微粒子焼結層の基材からの剥離などはなく、密着良好であった。
印刷物100の表面を走査型電子顕微鏡により観察すると、微粒子が溶融、焼結し、融着した構造が観察された。
同様に断面を観察すると、微粒子焼結層の厚みは0.4μmであり、均一でボイドのない高密度の膜であった。
Metallic luster was observed on the surface of the printed material 100, and the volume resistivity as a conductive substrate was measured to be 4.28 × 10 −6 Ω · cm.
There was no peeling of the fine particle sintered layer from the substrate, and adhesion was good.
When the surface of the printed material 100 was observed with a scanning electron microscope, a structure in which the fine particles were melted, sintered, and fused was observed.
Similarly, when the cross section was observed, the thickness of the fine particle sintered layer was 0.4 μm, and it was a uniform and high-density film without voids.

方法実施例2
酸化銅微粒子のアルコール分散液(シーアイ化成(株)製、平均一次粒子径40nm)を固形分15質量%に調整した。
厚み125μmのポリエチレンナフタレート基材(商品名:テオネックスQ81、帝人デュポンフィルム(株)製)にエキシマランプ照射処理を行なった後、基材をガラス基板に粘着テープで固定し、スピンコート法を用いて酸化銅微粒子を塗布した。
その後、室温で自然乾燥させて印刷物100を作製した。
Method Example 2
An alcohol dispersion of copper oxide fine particles (manufactured by C-I Kasei Co., Ltd., average primary particle size 40 nm) was adjusted to a solid content of 15% by mass.
Excimer lamp irradiation treatment was performed on a 125 μm thick polyethylene naphthalate substrate (trade name: Teonex Q81, manufactured by Teijin DuPont Films Ltd.), and then the substrate was fixed to a glass substrate with an adhesive tape, and a spin coating method was used. Then, copper oxide fine particles were applied.
Thereafter, it was naturally dried at room temperature to produce a printed material 100.

続いて、印刷物100を処理室31に入れ、マイクロ波表面波水素プラズマを、水素導入時圧力20Pa、マイクロ波電力600Wで100秒照射した後、印刷物100を処理室31から取り出した。
印刷物100に変形、変色などのダメージはなかった。微粒子層の膜厚は0.3μmであった。
印刷物100の表面には金属光沢が見られ、導電性部品として体積抵抗率を測定したところ、7.39×10ー6Ω・cmとなり、低抵抗化していた。
微粒子焼結層の基材からの剥離などはなく、密着良好であった。
印刷物100の表面を走査型電子顕微鏡により観察すると、微粒子が溶融、焼結し、融着した構造が観察された。
断面を観察すると、均一でボイドのない高密度の膜であった。
Subsequently, the printed material 100 was put into the processing chamber 31, and microwave surface wave hydrogen plasma was irradiated for 100 seconds at a hydrogen introduction pressure of 20 Pa and a microwave power of 600 W, and then the printed material 100 was taken out from the processing chamber 31.
There was no damage such as deformation and discoloration on the printed material 100. The film thickness of the fine particle layer was 0.3 μm.
On the surface of the printed matter 100 is seen metallic luster, was measured for volume resistivity as a conductive component, 7.39 × 10 over 6 Omega · cm, and the had low resistance.
There was no peeling of the fine particle sintered layer from the substrate, and adhesion was good.
When the surface of the printed material 100 was observed with a scanning electron microscope, a structure in which the fine particles were melted, sintered, and fused was observed.
When the cross section was observed, it was a high-density film that was uniform and free of voids.

比較例1
方法実施例2と同様にして、酸化銅微粒子を塗布、乾燥させて印刷物100を作製した。
続いて、印刷物100に対し、マイクロ波表面波水素プラズマに代えて、オーブン(水素ガス4%を含むアルゴンガス雰囲気)にて、昇温速度10℃/min、230℃で60分焼成を行った後、室温まで自然冷却して印刷物100をオーブンから取り出した。
Comparative Example 1
In the same manner as in Method Example 2, copper oxide fine particles were applied and dried to produce a printed material 100.
Subsequently, the printed material 100 was baked for 60 minutes at 230 ° C. at a heating rate of 10 ° C./min in an oven (argon gas atmosphere containing 4% hydrogen gas) instead of microwave surface wave hydrogen plasma. Thereafter, the print 100 was taken out of the oven after being naturally cooled to room temperature.

印刷物100は丸まって変形し、印刷物100表面の微粒子層には多数の傷が入っていた。
印刷物100の表面には金属光沢が見られず、体積抵抗率を測定したところ、1×10Ω・cm以上と高抵抗であった。
The printed material 100 was curled and deformed, and the fine particle layer on the surface of the printed material 100 had many scratches.
Metallic luster was not seen on the surface of the printed matter 100, and the volume resistivity was measured and found to be as high as 1 × 10 7 Ω · cm or higher.

マイクロ波表面波水素プラズマを使うことにより、オーブンでは焼成することのできない低耐熱基材上であっても、短時間で微粒子の融着を進行させることができた。   By using microwave surface wave hydrogen plasma, fusion of fine particles was able to proceed in a short time even on a low heat resistant substrate that could not be fired in an oven.

方法実施例3
方法実施例2と同じ酸化銅微粒子の分散液を使用した。厚み100μmのポリエチレンテレフタレート基材(商品名:東洋紡エステルフィルムE5000、東洋紡績(株)製)にエキシマランプ照射処理を行った後、基材をガラス基板に粘着テープで固定し、スピンコート法を用いて酸化銅微粒子を塗布した。
その後、室温で自然乾燥させて印刷物100を作製した。
Method Example 3
The same dispersion of fine copper oxide particles as in Method Example 2 was used. Excimer lamp irradiation treatment was performed on a polyethylene terephthalate base material (trade name: Toyobo Ester Film E5000, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm, and then the base material was fixed to a glass substrate with an adhesive tape, and a spin coating method was used. Then, copper oxide fine particles were applied.
Thereafter, it was naturally dried at room temperature to produce a printed material 100.

続いて、印刷物100を処理室31に入れ、マイクロ波表面波水素プラズマを、水素導入時圧力20Pa、マイクロ波電力600Wで100秒照射した後、印刷物100を処理室31から取り出した。
印刷物100に変形、変色などのダメージはなかった。
微粒子層の膜厚は0.3μmであった。
印刷物100の表面には金属光沢が見られ、導電性基板としての体積抵抗率を測定したところ、7.63×10―6Ω・cmとなり、低抵抗化していた。
微粒子焼結層の基材からの剥離などはなく、密着良好であった。
印刷物100の表面を走査型電子顕微鏡により観察すると、微粒子が溶融、焼結して融着した構造が観察された。
断面を観察すると、均一でボイドのない高密度の膜であった。
下記表1参照。
Subsequently, the printed material 100 was put into the processing chamber 31, and microwave surface wave hydrogen plasma was irradiated for 100 seconds at a hydrogen introduction pressure of 20 Pa and a microwave power of 600 W, and then the printed material 100 was taken out from the processing chamber 31.
There was no damage such as deformation and discoloration on the printed material 100.
The film thickness of the fine particle layer was 0.3 μm.
Metallic luster was observed on the surface of the printed material 100, and the volume resistivity as a conductive substrate was measured to be 7.63 × 10 −6 Ω · cm.
There was no peeling of the fine particle sintered layer from the substrate, and adhesion was good.
When the surface of the printed material 100 was observed with a scanning electron microscope, a structure in which the fine particles were melted, sintered and fused was observed.
When the cross section was observed, it was a high-density film that was uniform and free of voids.
See Table 1 below.

比較例2
方法実施例3と同様にして、酸化銅微粒子の分散液を塗布、乾燥させて印刷物100を作製した。
続いて、この印刷物100に対し、マイクロ波表面波水素プラズマに代えて、オーブン(水素ガス4%を含むアルゴンガス雰囲気)にて、昇温速度10℃/min、200℃で60分焼成を行い、室温まで自然冷却後に印刷物100をオーブンから取り出した。
Comparative Example 2
In the same manner as in Method Example 3, a dispersion of copper oxide fine particles was applied and dried to prepare a printed matter 100.
Subsequently, the printed material 100 is baked at 200 ° C. for 60 minutes in an oven (argon gas atmosphere containing 4% hydrogen gas) in an oven instead of microwave surface wave hydrogen plasma. After natural cooling to room temperature, the printed material 100 was taken out of the oven.

印刷物100は熱収縮により変形し、裏面は白濁する等のダメージが見られた。
微粒子層の膜厚は0.3μmであった。
印刷物100の表面には金属光沢が見られず、印刷物100の導電性パターンの体積抵抗率を測定したところ、高抵抗であり、測定することができなかった。
下記表1参照。
The printed material 100 was deformed by heat shrinkage, and damage such as clouding of the back surface was observed.
The film thickness of the fine particle layer was 0.3 μm.
Metallic luster was not seen on the surface of the printed matter 100, and the volume resistivity of the conductive pattern of the printed matter 100 was measured.
See Table 1 below.

比較例3
実施例3と同様にして、酸化銅微粒子を塗布、乾燥させて印刷物100を作製した。
続いて、印刷物100をオーブンに入れ、マイクロ波表面波水素プラズマに代えて、高周波水素プラズマを水素導入時圧力20Pa、600Wで100秒照射し、その後、印刷物100をオーブンから取り出した。
なお、高周波プラズマは、マイクロ波表面波水素プラズアマと同一装置に、13.56MHzの高周波電源を設置して発生させた。
印刷物100に変形、変色などのダメージはなかった。微粒子層の膜厚は0.3μmであった。
印刷物100の表面には金属光沢が見られ、印刷物100の導電性パターンの体積抵抗率を測定したところ、4.14×10―4Ω・cmとなっており、実施例3と比べて高抵抗であった。
下記表1参照。
Comparative Example 3
In the same manner as in Example 3, copper oxide fine particles were applied and dried to produce a printed product 100.
Subsequently, the printed material 100 was put in an oven, and instead of microwave surface wave hydrogen plasma, high-frequency hydrogen plasma was irradiated at a hydrogen introduction pressure of 20 Pa and 600 W for 100 seconds, and then the printed material 100 was taken out of the oven.
The high frequency plasma was generated by installing a 13.56 MHz high frequency power source in the same apparatus as the microwave surface wave hydrogen plasma amateur.
There was no damage such as deformation and discoloration on the printed material 100. The film thickness of the fine particle layer was 0.3 μm.
Metallic luster was observed on the surface of the printed matter 100, and the volume resistivity of the conductive pattern of the printed matter 100 was measured to be 4.14 × 10 −4 Ω · cm, which is higher than that of Example 3. Met.
See Table 1 below.

比較例4
比較例3と同様の印刷物100に対し、高周波水素プラズマを水素導入時圧力20Pa、600Wで400秒照射したところ、印刷物100の一部が激しく変形し、熱収縮を起こした。
収縮しなかった一部の体積抵抗率を測定したところ、2.62×10―5Ω・cmであり、実施例3に比べて高抵抗であった。
下記表1参照。
Comparative Example 4
When a printed material 100 similar to Comparative Example 3 was irradiated with high-frequency hydrogen plasma at a hydrogen introduction pressure of 20 Pa and 600 W for 400 seconds, a part of the printed material 100 was severely deformed and caused thermal contraction.
A part of the volume resistivity that did not shrink was measured and found to be 2.62 × 10 −5 Ω · cm, which is higher than that of Example 3.
See Table 1 below.

Figure 2009283547
Figure 2009283547

以上の結果から、マイクロ波表面波水素プラズマは、PET基材のような耐熱性の低い基材に対して、高周波プラズマでは還元焼結が十分にできない場合でも、短時間で焼結が可能であることが分かる。   From the above results, microwave surface wave hydrogen plasma can be sintered in a short time even when reduction sintering is not sufficient with high-frequency plasma against low heat resistance substrate such as PET substrate. I understand that there is.

方法実施例4
実施例3と同じ酸化銅微粒子の分散液及びポリエチレンテレフタレート基材を使用し、マスクテープを用いてバーコート法により、3mm幅のラインパターンを形成した印刷物100を作製した。
続いて、この印刷物100を処理室31にいれ、マイクロ波表面波水素プラズマを水素導入時圧力20Pa、マイクロ波電力600Wで100秒照射した後、印刷物100を処理室31から取り出した。
Method Example 4
Using the same dispersion of copper oxide fine particles as in Example 3 and a polyethylene terephthalate base material, a printed material 100 in which a 3 mm wide line pattern was formed by a bar coating method using a mask tape was produced.
Subsequently, the printed material 100 was put into the processing chamber 31, and microwave surface wave hydrogen plasma was irradiated for 100 seconds at a hydrogen introduction pressure of 20 Pa and a microwave power of 600 W, and then the printed material 100 was taken out from the processing chamber 31.

印刷物100に変形、変色などのダメージはなかった。
また、パターン未形成部の全光線透過率を、プラズマ処理前、処理後で比較したところ、変化は0.0%であった。パターン成形部の微粒子層は0.3μmであった。
さらに、パターン形成部には金属光沢が見られ、パターン形成部の体積抵抗率を測定したところ、8.55×10―6Ω・cmとなり、低抵抗化していた。
パターン形成部の微粒子焼結層の基材からの剥離などはなく、密着良好であった。
There was no damage such as deformation and discoloration on the printed material 100.
Further, when the total light transmittance of the pattern-unformed portion was compared before and after the plasma treatment, the change was 0.0%. The fine particle layer of the pattern forming part was 0.3 μm.
Furthermore, metallic luster was seen in the pattern forming portion, and when the volume resistivity of the pattern forming portion was measured, it was 8.55 × 10 −6 Ω · cm, and the resistance was reduced.
There was no peeling from the substrate of the fine particle sintered layer of the pattern forming part, and the adhesion was good.

比較例5
実施例4と同様にして、パターン形成した印刷物100を作製した。
続いて、印刷物100をオーブンに入れ、マイクロ波表面波水素プラズマに代えて高周波水素プラズマを水素導入時圧力20Pa、600Wで100秒照射し、その後、印刷物100をオーブンから取り出した。
なお、高周波プラズマは、マイクロ波表面波水素プラズマと同一装置に、13.56MHzの高周波電源を設置した発生させた。
パターン形成部は金属光沢が見られたが、パターン未形成部が茶色に変色していた。
パターン未形成部の全光線透過率を、プラズマ処理前、処理後で比較したところ、透過率が2.3%減少していた。
Comparative Example 5
In the same manner as in Example 4, a patterned printed material 100 was produced.
Subsequently, the printed material 100 was put in an oven, and high-frequency hydrogen plasma was irradiated for 100 seconds at a pressure of 20 Pa and 600 W when hydrogen was introduced instead of the microwave surface wave hydrogen plasma, and then the printed material 100 was taken out of the oven.
The high frequency plasma was generated by installing a 13.56 MHz high frequency power source in the same apparatus as the microwave surface wave hydrogen plasma.
The pattern formation part showed metallic luster, but the pattern non-formation part was discolored brown.
When the total light transmittance of the pattern-unformed part was compared before and after the plasma treatment, the transmittance was reduced by 2.3%.

方法実施例5
銀微粒子のアルコール系分散液(商品名:AG−IJ−G−100−S1、キャボット社製、平均一次粒子径40nm)を、固形分15質量%に調整した。
続いて、膜厚が100μmのポリエチレンテレフタレート基材(商品名:東洋紡エステルフイルムE5000、東洋紡績(株)製)にコロナ放電処理を行った後、基材をガラス基板に粘着テープで固定し、スピンコート法を用いて銀微粒子塗布した。
その後、自然乾燥して印刷物100を作製した。
Method Example 5
An alcoholic dispersion of silver fine particles (trade name: AG-IJ-G-100-S1, manufactured by Cabot Corporation, average primary particle size of 40 nm) was adjusted to a solid content of 15% by mass.
Subsequently, after a corona discharge treatment was performed on a polyethylene terephthalate base material (trade name: Toyobo Ester Film E5000, manufactured by Toyobo Co., Ltd.) having a film thickness of 100 μm, the base material was fixed to a glass substrate with an adhesive tape, and spin Silver fine particles were applied using a coating method.
Then, it dried naturally and produced the printed matter 100.

続いて、印刷物100を処理室31に入れ、マイクロ波表面波水素プラズマを、圧力20Pa、マイクロ波電力600Wで40秒照射した後、印刷物100を処理室31から取り出した。
印刷物に変形、変色などのダメージはなかった。
微粒子層の膜厚は、1.0μmであった。
Subsequently, the printed material 100 was put into the processing chamber 31, and microwave surface wave hydrogen plasma was irradiated at a pressure of 20 Pa and a microwave power of 600 W for 40 seconds, and then the printed material 100 was taken out from the processing chamber 31.
There was no damage such as deformation and discoloration in the printed matter.
The film thickness of the fine particle layer was 1.0 μm.

印刷物100の表面には金属光沢が見られ、印刷物100の導電性パターンの体積抵抗率を測定したところ、5.27×10―6Ω・cmとなり、低抵抗化していた。
微粒子焼結層の基材からの剥離などはなく、密着良好であった。
印刷物100の表面を走査型電子顕微鏡により観察したところ、微粒子同士が溶融・焼結して融着した構造が観察された。
断面を観察すると、均一でボイドのない高密度の膜であった。
Metallic luster was observed on the surface of the printed material 100, and the volume resistivity of the conductive pattern of the printed material 100 was measured. As a result, the resistance was reduced to 5.27 × 10 −6 Ω · cm.
There was no peeling of the fine particle sintered layer from the substrate, and adhesion was good.
When the surface of the printed material 100 was observed with a scanning electron microscope, a structure in which the fine particles were melted and sintered and fused was observed.
When the cross section was observed, it was a high-density film that was uniform and free of voids.

銀微粒子は、大気中でも加熱により還元されるため、還元のために還元性のプラズマは必要ないと考えられるが、水素プラズマによって塗膜中の有機成分が除去されるため、短時間で効率よく融着が進むことが確認された。   Since silver fine particles are reduced by heating in the atmosphere, reducing plasma is considered unnecessary for reduction, but since organic components in the coating film are removed by hydrogen plasma, they can be efficiently melted in a short time. It was confirmed that the wear progressed.

プリント配線基板、RFIDタグアンテナ、メンブレンスイッチの配線、電磁波遮蔽材、フラットパネルディスプレイ用の電極、配線、太陽電池などの電池の電極、電波反射板、アンテナ、曇り防止板などに適用することができる。   It can be applied to printed wiring boards, RFID tag antennas, membrane switch wiring, electromagnetic shielding materials, electrodes for flat panel displays, wiring, electrodes of batteries such as solar cells, radio wave reflectors, antennas, anti-fogging plates, etc. .

実施形態として示したパターン形成装置の簡略的な断面図である。It is a simplified sectional view of the pattern formation device shown as an embodiment. 装置実施例1として示したパターン形成装置の簡略的な斜視図である。1 is a simplified perspective view of a pattern forming apparatus shown as apparatus example 1. FIG. 装置実施例1のパターン形成装置を示す簡略的な断面図である。1 is a simplified cross-sectional view illustrating a pattern forming apparatus according to an apparatus embodiment 1. FIG. 装置実施例1のパターン形成装置に備える処理台、押上杆、搬入移動板と印刷物を示す斜視図である。It is a perspective view which shows the process stand with which the pattern formation apparatus of apparatus Example 1 is equipped, a pushing up lever, a carrying-in movement board, and printed matter. 装置実施例1のパターン形成装置における印刷物の搬入動作を示す処理台部分の簡略図である。FIG. 3 is a simplified view of a processing table portion illustrating a printed material carrying-in operation in the pattern forming apparatus according to the apparatus embodiment 1; 上記した処理台に冷却手段として冷却パイプを設けた一例を示す簡略断面図である。It is a simplified sectional view showing an example in which a cooling pipe is provided as a cooling means on the above-described processing table. 上記した押上杆を印刷物の吸引手段に利用した構成を示す処理台部分の簡略図である。It is a simplified diagram of a processing stand portion showing a configuration in which the above-described push-up bar is used as a suction unit for printed matter. 上記した処理台の表面を緩やかに膨出形成して印刷物をより正確に接合させる構成を示す処理台部分の簡略図である。It is a simplified view of a processing table portion showing a configuration in which the surface of the processing table described above is gently bulged to more accurately join a printed material. 上記した処理台に多数の吸引孔を設けて印刷物を吸引保持する構成を示した処理台部分の簡略図である。FIG. 3 is a simplified view of a processing table portion showing a configuration in which a large number of suction holes are provided in the processing table and the printed material is sucked and held. 図9に示す処理台の断面図である。It is sectional drawing of the processing stand shown in FIG. 装置実施例2として示したパターン形成装置の簡略的な斜視図である。It is a simple perspective view of the pattern formation apparatus shown as apparatus Example 2. 装置実施例2のパターン形成装置を示す簡略的な断面図である。It is a simplified sectional view showing a pattern forming apparatus of apparatus example 2. 装置実施例2の改良例と示したパターン形成装置の簡略的な断面図である。FIG. 6 is a simplified cross-sectional view of a pattern forming apparatus shown as an improved example of the apparatus embodiment 2.

符号の説明Explanation of symbols

11 処理室
12 処理台
14 マイクロ波照射窓
15 導波管
21 水素供給経路
24 真空ポンプ経路
31 処理室
32 処理台
35a、35b、35c 導波管
36a、36b、36c 照射窓
37 水素供給経路
38 真空ポンプ経路
42 第1予備室
43 第2予備室
44、45 シャッタ
46 搬入移動板
48 押上杆
50 搬出移動板
71 処理室
72 巻込リール
73 巻取リール
74 処理ローラ
77〜80 冷却ローラ
74a、74b、74c 処理ローラ
100、200 印刷物
11 Processing chamber 12 Processing table 14 Microwave irradiation window 15 Waveguide 21 Hydrogen supply path 24 Vacuum pump path 31 Processing chamber 32 Processing tables 35a, 35b, 35c Waveguides 36a, 36b, 36c Irradiation window 37 Hydrogen supply path 38 Vacuum Pump path 42 First spare chamber 43 Second spare chamber 44, 45 Shutter 46 Carry-in moving plate 48 Push-up rod 50 Carry-out moving plate 71 Processing chamber 72 Take-up reel 73 Take-up reel 74 Processing rollers 77-80 Cooling rollers 74a, 74b, 74c Processing roller 100, 200 Printed matter

Claims (34)

微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、前記パターンの微粒子を焼結処理して導電性パターンを形成する方法であって、
前記パターンの描画には、金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用い、
前記焼結処理には、減圧室からなる処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段を用い、
前記描画パターンを、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒し、パターンの微粒子を焼結させることを特徴とする導電性パターンの形成方法。
A method of drawing a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles are dispersed, and sintering the fine particles of the pattern to form a conductive pattern,
For drawing the pattern, a fine particle dispersion in which fine particles of metal or metal compound are dispersed is used.
The sintering process uses an electrodeless plasma generating means for supplying microwave energy from an irradiation window of a processing chamber consisting of a decompression chamber and generating surface wave plasma along the irradiation window in the processing chamber,
A method for forming a conductive pattern, comprising exposing the drawing pattern to microwave surface wave plasma having a low electron temperature and a high electron density to sinter the fine particles of the pattern.
請求項1に記載した導電性パターンの形成方法において、
前記パターンの描画には、貴金属からなる微粒子を分散させた微粒子分散液を用いたことを特徴とする導電性パターンの形成方法。
In the formation method of the electroconductive pattern of Claim 1,
A method for forming a conductive pattern, wherein a fine particle dispersion in which fine particles made of a noble metal are dispersed is used for drawing the pattern.
請求項1に記載した導電性パターンの形成方法において、
前記パターンの描画には、卑金属又は表面が少なくとも酸化されている卑金属からなる微粒子を分散させた微粒子分散液を用い、
前記焼結処理には、処理室内にマイクロ波エネルギーと共に還元性気体を供給し、還元性気体の雰囲気の中で、照射窓の近くとなる処理室内に表面波プラズマを発生させる無電極のプラズマ発生手段を用い、
前記描画パターンを、還元性気体の雰囲気の中で発生させたマイクロ波表面波プラズマに晒し、パターンの微粒子の還元処理と焼結処理とを行うことを特徴とする導電性パターンの形成方法。
In the formation method of the electroconductive pattern of Claim 1,
For drawing the pattern, a fine particle dispersion in which fine particles of a base metal or a base metal whose surface is at least oxidized is dispersed,
In the sintering process, electrodeless plasma generation is performed in which reducing gas is supplied together with microwave energy into the processing chamber, and surface wave plasma is generated in the processing chamber near the irradiation window in the reducing gas atmosphere. Using means,
A method for forming a conductive pattern, wherein the drawing pattern is exposed to a microwave surface wave plasma generated in an atmosphere of a reducing gas to perform reduction treatment and sintering treatment of fine particles of the pattern.
請求項3に記載した導電性パターンの形成方法において、
前記パターンの描画には、銅微粒子又は表面が少なくとも酸化されている銅微粒子を分散させた微粒子分散液を用いたことを特徴とする導電性パターンの形成方法。
In the formation method of the conductive pattern according to claim 3,
The pattern is drawn using a fine particle dispersion in which copper fine particles or copper fine particles whose surface is at least oxidized are dispersed.
請求項1乃至4のいずれかに記載した導電性パターンの形成方法において、
前記基材がガラス材又は合成樹脂材からなることを特徴とする導電性パターンの形成方法。
In the formation method of the electroconductive pattern in any one of Claims 1 thru | or 4,
The method for forming a conductive pattern, wherein the substrate is made of a glass material or a synthetic resin material.
請求項5に記載した導電性パターンの形成方法において、
前記基材が透過率の高い樹脂フィルムからなることを特徴とする導電性パターンの形成方法。
In the formation method of the conductive pattern according to claim 5,
The method for forming a conductive pattern, wherein the substrate is made of a resin film having a high transmittance.
請求項5又は6に記載した導電性パターンの形成方法において、
前記基材が、融点280℃以下の合成樹脂材からなることを特徴とする導電性パターンの形成方法。
In the formation method of the conductive pattern according to claim 5 or 6,
The method for forming a conductive pattern, wherein the substrate is made of a synthetic resin material having a melting point of 280 ° C or lower.
請求項1乃至7のいずれかに記載した導電性パターンの形成方法において、
パターンを描画する前に、前記基材に易接着成分を成膜し、或いは、基材を改質する工程を含むことを特徴とする導電性パターンの形成方法。
In the formation method of the electroconductive pattern in any one of Claims 1 thru | or 7,
A method of forming a conductive pattern comprising a step of forming an easy-adhesive component on the base material or modifying the base material before drawing the pattern.
請求項3乃至8のいずれかに記載した導電性パターンの形成方法において、
水素ガスなどの還元性気体を使用することを特徴とする導電性パターンの形成方法。
In the formation method of the electroconductive pattern in any one of Claim 3 thru | or 8,
A method for forming a conductive pattern, wherein a reducing gas such as hydrogen gas is used.
請求項1に記載した導電性パターンの形成方法において、
前記プラズマ発生手段は、処理室の照射窓から周波数2450MHzのマイクロ波エネルギーを供給し、処理室内には、電子温度が約1eV以下、電子密度が約1×1011〜1×1013cm−3のマイクロ波表面波プラズマを発生させることを特徴とする導電性パターンの形成方法。
In the formation method of the electroconductive pattern of Claim 1,
The plasma generating means supplies microwave energy having a frequency of 2450 MHz from the irradiation window of the processing chamber, and the electron temperature is about 1 eV or less and the electron density is about 1 × 10 11 to 1 × 10 13 cm −3 in the processing chamber. A method for forming a conductive pattern, characterized by generating a microwave surface wave plasma.
請求項1乃至10のいずれかの導電性パターンの形成方法によってパターン形成された導電性基板。   A conductive substrate patterned by the method for forming a conductive pattern according to claim 1. 金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、このパターンに存在する微粒子を焼結処理し導電性パターンを形成するパターン形成装置において、
減圧室として構成した処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段と、
前記パターンを描画した基材を前記処理室内に配置するための処理台とを備え、
パターンを描画した基材を前記処理台に配置し、前記描画パターンを処理室内で、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒して前記描画パターンの微粒子を焼結させ、導電性パターンを形成することを特徴とするパターン形成装置。
In a pattern forming apparatus for drawing a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles made of metal or a metal compound are dispersed, and sintering the fine particles present in the pattern to form a conductive pattern ,
An electrodeless plasma generating means for supplying microwave energy from an irradiation window of a processing chamber configured as a decompression chamber and generating surface wave plasma along the irradiation window in the processing chamber;
A processing table for arranging the substrate on which the pattern is drawn in the processing chamber;
A substrate on which a pattern is drawn is placed on the processing table, and the drawing pattern is exposed to microwave surface wave plasma having a low electron temperature and a high electron density in the processing chamber to sinter the fine particles of the drawing pattern, thereby conducting the conductive process. A pattern forming apparatus for forming a characteristic pattern.
請求項12に記載したパターン形成装置において、
貴金属微粒子の分散液を用いてパターンを描画した基材を前記処理台に配置してマイクロ波表面波プラズマに晒し、パターンに存在する微粒子を焼結処理して導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 12, wherein
A substrate on which a pattern is drawn using a dispersion of noble metal fine particles is placed on the processing table, exposed to microwave surface wave plasma, and the fine particles present in the pattern are sintered to form a conductive pattern. A pattern forming apparatus.
請求項12に記載したパターン形成装置において、
前記処理室にマイクロ波エネルギーと共に還元性気体を供給し、還元性気体の雰囲気の中で表面波プラズマを発生させるプラズマ発生手段を備え、
卑金属微粒子又は表面が少なくとも酸化されている銅微粒子の分散液を用いてパターンを描画した基材を前記処理台に配置してマイクロ波表面波プラズマに晒し、描画パターンに存在する微粒子を還元処理し、焼結処理して導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 12, wherein
Supplying reducing gas together with microwave energy to the processing chamber, comprising plasma generating means for generating surface wave plasma in the atmosphere of reducing gas,
A substrate on which a pattern is drawn using a dispersion of base metal fine particles or copper fine particles whose surface is at least oxidized is placed on the processing table and exposed to microwave surface wave plasma to reduce the fine particles present in the drawn pattern. A pattern forming apparatus characterized by forming a conductive pattern by sintering.
請求項14に記載したパターン形成装置において、
銅微粒子又は表面が少なくとも酸化されている銅微粒子の分散液を用いてパターンを描画した基材を前記処理台に配置してマイクロ波表面波プラズマに晒し、パターンに存在する微粒子を還元処理し、焼結処理して導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 14, wherein
A substrate on which a pattern is drawn using a dispersion of copper fine particles or copper fine particles whose surface is at least oxidized is placed on the processing table and exposed to microwave surface wave plasma, and the fine particles present in the pattern are reduced. A pattern forming apparatus characterized by forming a conductive pattern by sintering.
金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、このパターンに存在する微粒子を焼結処理し導電性パターンを形成するパターン形成装置において、
減圧室として構成した処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段と、
前記パターンを描画した基材を前記処理室内に配置するための処理台とを備え、
前記処理室の搬入口に付随させた第1予備室と、その搬出口に付随させた第2予備室と、
前記第1予備室を減圧すると共に搬入口を開放させ、パターンを描画した基材を第1予備室から処置室内の処理台上に送り込む搬入機構と、
前記第2予備室を減圧すると共に搬出口を開放させ、パターンを描画した基材を処置室内の処理台上から第2予備室に送り出す搬出機構とを備え、
搬入機構による搬入と、処理台でのプラズマ処理と、搬出機構による搬出とを一連に行い、前記描画パターンに存在する微粒子を処理室内で、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒し、前記描画パターンの微粒子を焼結処理して導電性パターンを形成することを特徴とするパターン形成装置。
In a pattern forming apparatus for drawing a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles made of metal or a metal compound are dispersed, and sintering the fine particles present in the pattern to form a conductive pattern ,
An electrodeless plasma generating means for supplying microwave energy from an irradiation window of a processing chamber configured as a decompression chamber and generating surface wave plasma along the irradiation window in the processing chamber;
A processing table for arranging the substrate on which the pattern is drawn in the processing chamber;
A first auxiliary chamber associated with the carry-in port of the processing chamber, a second auxiliary chamber associated with the carry-out port,
A loading mechanism for depressurizing the first preliminary chamber and opening a loading port, and feeding a substrate on which a pattern is drawn from the first preliminary chamber onto a processing table in a treatment chamber;
A decompression mechanism that decompresses the second preliminary chamber and opens the carry-out port, and feeds the substrate on which the pattern is drawn from the treatment table in the treatment chamber to the second preliminary chamber,
Microwave surface wave plasma with a low electron temperature and a high electron density in the processing chamber for fine particles existing in the drawing pattern by carrying in a series of carry-in by the carry-in mechanism, plasma treatment at the processing table, and carry-out by the carry-out mechanism. And forming a conductive pattern by subjecting the fine particles of the drawing pattern to a sintering process.
請求項16に記載したパターン形成装置において、
貴金属微粒子の分散液を用いてパターンを描画した基材を、前記搬入機構によって搬入し、処理台でマイクロ波表面波プラズマに晒し、搬出機構によって搬出し、描画パターンに存在する微粒子を焼結処理して導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 16, wherein
A substrate on which a pattern is drawn using a dispersion of noble metal fine particles is carried in by the carry-in mechanism, exposed to microwave surface wave plasma on the processing table, carried out by the carry-out mechanism, and fine particles present in the drawn pattern are sintered. And forming a conductive pattern.
請求項16に記載したパターン形成装置において、
前記処理室にマイクロ波エネルギーと共に還元性気体を供給し、還元性気体の雰囲気の中で表面波プラズマを発生させるプラズマ発生手段を備え、
卑金属微粒子又は表面が少なくとも酸化されている卑金属微粒子の分散液を用いてパターンを描画した基材を、前記搬入機構によって搬入し、処理台でマイクロ波表面波プラズマに晒し、搬出機構によって搬出し、描画パターンに存在する微粒子を還元処理し、焼結処理して導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 16, wherein
Supplying reducing gas together with microwave energy to the processing chamber, comprising plasma generating means for generating surface wave plasma in the atmosphere of reducing gas,
A base material on which a pattern is drawn using a dispersion of base metal fine particles or base metal fine particles whose surface is at least oxidized is carried in by the carry-in mechanism, exposed to microwave surface wave plasma in a processing table, and carried out by a carry-out mechanism. A pattern forming apparatus characterized in that fine particles present in a drawing pattern are reduced and sintered to form a conductive pattern.
請求項18に記載したパターン形成装置において、
銅微粒子又は表面が少なくとも酸化されている銅微粒子の分散液を用いてパターンを描画した基材を、前記搬入機構によって搬入し、処理台でマイクロ波表面波プラズマに晒し、搬出機構によって搬出し、描画パターンに存在する微粒子を還元処理し、焼結処理して導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 18, wherein
A substrate on which a pattern is drawn using a dispersion of copper fine particles or copper fine particles whose surface is at least oxidized is carried in by the carry-in mechanism, exposed to microwave surface wave plasma in a processing table, and carried out by a carry-out mechanism. A pattern forming apparatus characterized in that fine particles present in a drawing pattern are reduced and sintered to form a conductive pattern.
請求項12乃至19のいずれかに記載したパターン形成装置において、
前記処理台には、パターンが描画された基材の裏面を冷却する冷却手段を備えたことを特徴とするパターン形成装置。
The pattern forming apparatus according to any one of claims 12 to 19,
The pattern forming apparatus according to claim 1, further comprising a cooling unit that cools the back surface of the substrate on which the pattern is drawn.
請求項12乃至19のいずれかに記載したパターン形成装置において、
前記処理台には、前記描画した基材を空気吸引し、印刷物を処理台に接合させる吸引保持手段を設けたことを特徴とするパターン形成装置。
The pattern forming apparatus according to any one of claims 12 to 19,
The pattern forming apparatus, wherein the processing table is provided with suction holding means for sucking the drawn base material into the air and bonding the printed material to the processing table.
請求項12乃至19のいずれかに記載したパターン形成装置において、
前記処理台の台面を緩やかな膨出面に形成したことを特徴とするパターン形成装置。
The pattern forming apparatus according to any one of claims 12 to 19,
A pattern forming apparatus, wherein a base surface of the processing base is formed on a gently bulging surface.
請求項12乃至19のいずれかに記載したパターン形成装置において、
前記処理台を回転させる駆動手段を備えたことを特徴とするパターン形成装置。
The pattern forming apparatus according to any one of claims 12 to 19,
A pattern forming apparatus comprising driving means for rotating the processing table.
請求項18又は19に記載したパターン形成装置において、
第2予備室には、描画した基材を取り出す前に、焼結された導電性パターンの酸化を抑制する酸化抑制ガスの供給手段を備えたことを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 18 or 19,
An apparatus for forming a pattern, characterized in that the second preliminary chamber is provided with means for supplying an oxidation-suppressing gas for suppressing oxidation of the sintered conductive pattern before taking out the drawn substrate.
金属又は金属化合物からなる微粒子を分散させた微粒子分散液を用いて非導電性の基材にパターンを描画し、このパターンに存在する微粒子を焼結処理し導電性パターンを形成するパターン形成装置において、
減圧室として構成した処理室の照射窓からマイクロ波エネルギーを供給し、処理室内に照射窓に沿う表面波プラズマを発生させる無電極のプラズマ発生手段を備え、
さらに、前記処理室内には、パターンを描画した長径のフレキシブル基材を巻き込んだ巻込リールと、そのフレキシブル基材を巻き取る巻取リールと、これら2つのリール間に設け描画パターンにマイクロ波表面波プラズマを照射させるプラズマ処理ローラとを備え、
巻込リールから供給される前記フレキシブル基材をプラズマ処理ローラを介して巻取リールに移動する間に、描画パターンに存在する微粒子を、電子温度が低く、電子密度が高いマイクロ波表面波プラズマに晒して焼結処理を連続的に施し、導電性パターンを形成することを特徴とするパターン形成装置。
In a pattern forming apparatus for drawing a pattern on a non-conductive substrate using a fine particle dispersion in which fine particles made of metal or a metal compound are dispersed, and sintering the fine particles present in the pattern to form a conductive pattern ,
Supplying microwave energy from the irradiation window of the processing chamber configured as a decompression chamber, and comprising electrodeless plasma generating means for generating surface wave plasma along the irradiation window in the processing chamber,
Further, in the processing chamber, a winding reel in which a long-diameter flexible base material on which a pattern is drawn is wound, a take-up reel on which the flexible base material is wound, and a microwave surface provided on the drawing pattern provided between these two reels. A plasma processing roller for irradiating wave plasma,
While moving the flexible substrate supplied from the take-up reel to the take-up reel through the plasma processing roller, the fine particles present in the drawing pattern are converted into microwave surface wave plasma having a low electron temperature and a high electron density. A pattern forming apparatus characterized in that a conductive pattern is formed by continuously performing a sintering process by exposure.
請求項25に記載したパターン形成装置において、
貴金属微粒子を分散した分散液を用いてパターンを描画した長形のフレキシブル基材を巻込リールから供給し、プラズマ処理ローラを介して巻取リールに移動する間に、描画パターンに存在する微粒子をマイクロ波表面波プラズマに晒して焼結処理を連続的に施し、導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 25, wherein
While a long flexible substrate with a pattern drawn using a dispersion liquid in which noble metal fine particles are dispersed is supplied from the take-up reel and moved to the take-up reel through the plasma processing roller, the fine particles present in the draw pattern are removed. A pattern forming apparatus characterized in that it is exposed to microwave surface wave plasma and continuously subjected to a sintering process to form a conductive pattern.
請求項25に記載したパターン形成装置において、
前記処理室にマイクロ波エネルギーと共に還元性気体を供給し、還元性気体の雰囲気の中で表面波プラズマを発生させるプラズマ発生手段を備え、
卑金属又は表面が少なくとも酸化されている卑金属の微粒子を分散した分散液を用いてパターンを描画した長形のフレキシブル基材を巻込リールから供給し、プラズマ処理ローラを介して巻取リールに移動する間に、描画パターンに存在する微粒子をマイクロ波表面波プラズマに晒し、還元処理と、焼結処理とを連続的に施し、導電性パターンを形成することを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 25, wherein
Supplying reducing gas together with microwave energy to the processing chamber, comprising plasma generating means for generating surface wave plasma in the atmosphere of reducing gas,
A long flexible base material on which a pattern is drawn using a dispersion in which fine particles of base metal or base metal whose surface is at least oxidized is dispersed is supplied from the take-up reel and moved to the take-up reel through the plasma processing roller. In the meantime, a pattern forming apparatus is characterized in that fine particles present in a drawing pattern are exposed to microwave surface wave plasma, and a reduction process and a sintering process are continuously performed to form a conductive pattern.
請求項27に記載したパターン形成装置において、
フレキシブル基材が、銅微粒子又は表面が少なくとも酸化されている銅微粒子を分散させた微粒子分散液を用いて長形の基材にパターンを描画したものであることを特徴とするパターン形成装置。
The pattern forming apparatus according to claim 27, wherein
A pattern forming apparatus, wherein the flexible base material is obtained by drawing a pattern on a long base material using a fine particle dispersion liquid in which copper fine particles or copper fine particles whose surfaces are at least oxidized are dispersed.
請求項25乃至28のいずれかに記載したパターン形成装置において、
プラズマ処理ローラには、フレキシブル基材の裏面を冷却する冷却手段を設けたことを特徴とするパターン形成装置。
The pattern forming apparatus according to any one of claims 25 to 28,
A pattern forming apparatus, wherein the plasma processing roller is provided with cooling means for cooling the back surface of the flexible substrate.
請求項25乃至28のいずれかに記載したパターン形成装置において、
プラズマ処理ローラと巻取リールとの間に、フレキシブル基材を案内しながら温度を下げる冷却ローラを配置したことを特徴とするパターン形成装置。
The pattern forming apparatus according to any one of claims 25 to 28,
A pattern forming apparatus, wherein a cooling roller for lowering a temperature while guiding a flexible base material is disposed between a plasma processing roller and a take-up reel.
請求項25至28のいずれかに記載したパターン形成装置において、
前記した巻込リール、巻取リール、プラズマ処理ローラを駆動する駆動手段には、巻込リールと巻取リールと共に、プラズマ波処理ローラを少ない範囲で正逆転さる正逆転駆動手段を備えたことを特徴とするパターン形成装置。
The pattern forming apparatus according to any one of claims 25 to 28,
The driving means for driving the take-up reel, the take-up reel, and the plasma processing roller is provided with a forward / reverse drive means for rotating the plasma wave processing roller forward and backward within a small range together with the take-up reel and the take-up reel. A characteristic pattern forming apparatus.
請求項12、16、25のいずれかに記載したパターン形成装置において、
前記プラズマ発生手段は、処理室の照射窓から周波数2450MHzのマイクロ波エネルギーを供給し、処理室内には、電子温度が約1eV以下、電子密度が約1×1011〜1×1013cm−3のマイクロ波表面波プラズマを発生させる構成であることを特徴とするパターン形成装置。
In the pattern formation apparatus in any one of Claim 12, 16, 25,
The plasma generating means supplies microwave energy having a frequency of 2450 MHz from the irradiation window of the processing chamber, and the electron temperature is about 1 eV or less and the electron density is about 1 × 10 11 to 1 × 10 13 cm −3 in the processing chamber. A pattern forming apparatus characterized by generating a microwave surface wave plasma.
請求項14、15、18、19、27、28のいずれかに記載したパターン形成装置において、
水素ガスなどの還元性気体を使用することを特徴とするパターン形成装置。
In the pattern formation apparatus in any one of Claim 14, 15, 18, 19, 27, 28,
A pattern forming apparatus using a reducing gas such as hydrogen gas.
請求項12乃至33のいずれかに記載したパターン形成装置においてパターン形成した導電性基板。




















34. A conductive substrate patterned in the pattern forming apparatus according to claim 12.




















JP2008131854A 2008-05-20 2008-05-20 Forming method and forming apparatus for conductive pattern, and conductive substrate Pending JP2009283547A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008131854A JP2009283547A (en) 2008-05-20 2008-05-20 Forming method and forming apparatus for conductive pattern, and conductive substrate
KR1020090043310A KR20090121222A (en) 2008-05-20 2009-05-19 Forming method and device for conductive pattern and substrate with conductive pattern
JP2014023678A JP6072709B2 (en) 2008-05-20 2014-02-10 Method for forming conductive pattern, apparatus for forming the same, and conductive substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008131854A JP2009283547A (en) 2008-05-20 2008-05-20 Forming method and forming apparatus for conductive pattern, and conductive substrate
JP2014023678A JP6072709B2 (en) 2008-05-20 2014-02-10 Method for forming conductive pattern, apparatus for forming the same, and conductive substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014023678A Division JP6072709B2 (en) 2008-05-20 2014-02-10 Method for forming conductive pattern, apparatus for forming the same, and conductive substrate

Publications (1)

Publication Number Publication Date
JP2009283547A true JP2009283547A (en) 2009-12-03

Family

ID=59519967

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008131854A Pending JP2009283547A (en) 2008-05-20 2008-05-20 Forming method and forming apparatus for conductive pattern, and conductive substrate
JP2014023678A Active JP6072709B2 (en) 2008-05-20 2014-02-10 Method for forming conductive pattern, apparatus for forming the same, and conductive substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014023678A Active JP6072709B2 (en) 2008-05-20 2014-02-10 Method for forming conductive pattern, apparatus for forming the same, and conductive substrate

Country Status (2)

Country Link
JP (2) JP2009283547A (en)
KR (1) KR20090121222A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086825A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Method of manufacturing conductive substrate and conductive substrate obtained by its method
JP2012142551A (en) * 2010-12-16 2012-07-26 Nisshin:Kk Heat treatment method and apparatus
WO2013058379A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Microwave heating device and microwave heating method
WO2013077447A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
WO2013077448A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
WO2013076999A1 (en) * 2011-11-25 2013-05-30 Showa Denko K.K. Conductive pattern formation method
JP2013135070A (en) * 2011-12-26 2013-07-08 Jsr Corp Pattern forming method and metal pattern
WO2014050828A1 (en) * 2012-09-25 2014-04-03 昭和電工株式会社 Microwave heating device
WO2014168172A1 (en) * 2013-04-12 2014-10-16 東京エレクトロン株式会社 Firing method and firing device
WO2014181372A1 (en) * 2013-05-08 2014-11-13 国立大学法人大阪大学 Joining method
JP2015530760A (en) * 2012-10-05 2015-10-15 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation Electrical component and method and system for manufacturing electrical component
KR20160034092A (en) * 2014-09-19 2016-03-29 포항공과대학교 산학협력단 Sintering method of nanoparticles layer
WO2016063907A1 (en) * 2014-10-23 2016-04-28 矢崎総業株式会社 Film-like printed circuit board, and production method therefor
JP2016086013A (en) * 2014-10-23 2016-05-19 矢崎総業株式会社 Film-like printed circuit board and method for manufacturing the same
WO2018169012A1 (en) * 2017-03-16 2018-09-20 旭化成株式会社 Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure
WO2019022230A1 (en) * 2017-07-27 2019-01-31 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2019029668A (en) * 2017-07-28 2019-02-21 旭化成株式会社 Method for manufacturing conducting pattern and plasma processing device
US11109492B2 (en) 2017-07-18 2021-08-31 Asahi Kasei Kabushiki Kaisha Structure including electroconductive pattern regions, method for producing same, stack, method for producing same, and copper wiring
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006625B2 (en) 2010-01-29 2015-04-14 Lg Chem, Ltd. Method for forming conductive patterns using microwave
JP2020123480A (en) * 2019-01-30 2020-08-13 日本ゼオン株式会社 Method for producing conductive film, method for producing counter electrode for dye-sensitized solar cell, method for producing photoelectrode for dye-sensitized solar cell, and method for producing wiring
KR102125646B1 (en) * 2019-05-28 2020-06-23 한국기초과학지원연구원 Window for plasma oes diagnostic and plasma apparatus using the same
KR102481806B1 (en) * 2021-12-20 2022-12-27 (주)디피테크닉스 Apparatus for sintering substrate

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227438A (en) * 1988-03-07 1989-09-11 Tokyo Electron Ltd Base plate for semiconductor substrate
JPH1140397A (en) * 1997-05-22 1999-02-12 Canon Inc Microwave feeder having annular waveguide and plasma processing device provided with the microwave feeder and processing method
JP2000031253A (en) * 1998-07-10 2000-01-28 Komatsu Ltd Substrate processing device and method
JP2000164516A (en) * 1998-11-30 2000-06-16 Shibaura Mechatronics Corp Microwave plasma processor
JP2000232067A (en) * 1991-05-28 2000-08-22 Semiconductor Energy Lab Co Ltd Multi-chamber device
JP2002280197A (en) * 2001-03-15 2002-09-27 Micro Denshi Kk Igniter for generating plasma
JP2002280196A (en) * 2001-03-15 2002-09-27 Micro Denshi Kk Plasma generating device using microwave
JP2004006818A (en) * 2002-04-16 2004-01-08 Tadatomo Suga Reflow method and solder paste
JP2004119686A (en) * 2002-09-26 2004-04-15 Harima Chem Inc Method of forming fine wiring pattern
JP2004143571A (en) * 2001-11-22 2004-05-20 Fuji Photo Film Co Ltd Board and ink for drawing conductive pattern and method for forming conductive pattern
JP2004247572A (en) * 2003-02-14 2004-09-02 Harima Chem Inc Method for forming fine wiring pattern
JP2004285453A (en) * 2003-03-25 2004-10-14 Shimadzu Corp Sputtering apparatus
JP2005135982A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Circuit board and manufacturing method therefor
JP2006134686A (en) * 2004-11-05 2006-05-25 Micro Denshi Kk Plasma generator using microwave
JP2006156438A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Manufacturing method of electronic component loading device and electronic component loading device
JP2006165424A (en) * 2004-12-10 2006-06-22 Micro Denshi Kk O-ring structure of plasma generator
JP2006303265A (en) * 2005-04-22 2006-11-02 Dainippon Printing Co Ltd Film forming system and method
JP2006312778A (en) * 2005-04-06 2006-11-16 Toyo Seikan Kaisha Ltd Method for forming vapor deposition film by using surface wave plasma, and apparatus therefor
WO2006121068A1 (en) * 2005-05-10 2006-11-16 Ulvac, Inc. Winding plasma cvd apparatus
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film, and organic electroluminescent element
JP2007042725A (en) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc Metal pattern forming method
JP2007116103A (en) * 2005-09-20 2007-05-10 Kimoto & Co Ltd Substrate and manufacturing method of electric circuit using thereof
WO2007141883A1 (en) * 2006-06-06 2007-12-13 Kabushiki Kaisha Nihon Micronics Method of forming electrical wiring and method of repairing the same
JP2008059991A (en) * 2006-09-01 2008-03-13 Canon Inc Plasma processing apparatus and plasma processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376752B2 (en) * 2006-04-21 2013-12-25 信越半導体株式会社 Solar cell manufacturing method and solar cell

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227438A (en) * 1988-03-07 1989-09-11 Tokyo Electron Ltd Base plate for semiconductor substrate
JP2000232067A (en) * 1991-05-28 2000-08-22 Semiconductor Energy Lab Co Ltd Multi-chamber device
JPH1140397A (en) * 1997-05-22 1999-02-12 Canon Inc Microwave feeder having annular waveguide and plasma processing device provided with the microwave feeder and processing method
JP2000031253A (en) * 1998-07-10 2000-01-28 Komatsu Ltd Substrate processing device and method
JP2000164516A (en) * 1998-11-30 2000-06-16 Shibaura Mechatronics Corp Microwave plasma processor
JP2002280197A (en) * 2001-03-15 2002-09-27 Micro Denshi Kk Igniter for generating plasma
JP2002280196A (en) * 2001-03-15 2002-09-27 Micro Denshi Kk Plasma generating device using microwave
JP2004143571A (en) * 2001-11-22 2004-05-20 Fuji Photo Film Co Ltd Board and ink for drawing conductive pattern and method for forming conductive pattern
JP2004006818A (en) * 2002-04-16 2004-01-08 Tadatomo Suga Reflow method and solder paste
JP2004119686A (en) * 2002-09-26 2004-04-15 Harima Chem Inc Method of forming fine wiring pattern
JP2004247572A (en) * 2003-02-14 2004-09-02 Harima Chem Inc Method for forming fine wiring pattern
JP2004285453A (en) * 2003-03-25 2004-10-14 Shimadzu Corp Sputtering apparatus
JP2005135982A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Circuit board and manufacturing method therefor
JP2006134686A (en) * 2004-11-05 2006-05-25 Micro Denshi Kk Plasma generator using microwave
JP2006156438A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Manufacturing method of electronic component loading device and electronic component loading device
JP2006165424A (en) * 2004-12-10 2006-06-22 Micro Denshi Kk O-ring structure of plasma generator
JP2006312778A (en) * 2005-04-06 2006-11-16 Toyo Seikan Kaisha Ltd Method for forming vapor deposition film by using surface wave plasma, and apparatus therefor
JP2006303265A (en) * 2005-04-22 2006-11-02 Dainippon Printing Co Ltd Film forming system and method
WO2006121068A1 (en) * 2005-05-10 2006-11-16 Ulvac, Inc. Winding plasma cvd apparatus
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film, and organic electroluminescent element
JP2007042725A (en) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc Metal pattern forming method
JP2007116103A (en) * 2005-09-20 2007-05-10 Kimoto & Co Ltd Substrate and manufacturing method of electric circuit using thereof
WO2007141883A1 (en) * 2006-06-06 2007-12-13 Kabushiki Kaisha Nihon Micronics Method of forming electrical wiring and method of repairing the same
JP2008059991A (en) * 2006-09-01 2008-03-13 Canon Inc Plasma processing apparatus and plasma processing method

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086825A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Method of manufacturing conductive substrate and conductive substrate obtained by its method
JP2012142551A (en) * 2010-12-16 2012-07-26 Nisshin:Kk Heat treatment method and apparatus
KR101550952B1 (en) 2010-12-16 2015-09-07 가부시키가이샤 닛신 Heat treatment method and apparatus
JP2013128144A (en) * 2010-12-16 2013-06-27 Nisshin:Kk Heating treatment method and device for the same
JPWO2013058379A1 (en) * 2011-10-21 2015-04-02 昭和電工株式会社 Microwave heating apparatus and microwave heating method
WO2013058379A1 (en) * 2011-10-21 2013-04-25 昭和電工株式会社 Microwave heating device and microwave heating method
TWI642328B (en) * 2011-10-21 2018-11-21 日商昭和電工股份有限公司 Microwave heating device and microwave heating method
CN103947304B (en) * 2011-11-24 2016-03-23 昭和电工株式会社 Conductive pattern formation method and to be penetrated by illumination or microwave heating forms the conductive pattern formation composition of conductive pattern
WO2013077448A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
CN103947304A (en) * 2011-11-24 2014-07-23 昭和电工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
CN103947305A (en) * 2011-11-24 2014-07-23 昭和电工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
TWI561608B (en) * 2011-11-24 2016-12-11 Showa Denko Kk
CN103947305B (en) * 2011-11-24 2017-03-08 昭和电工株式会社 Conductive pattern forming method and the conductive pattern formation compositionss forming conductive pattern by light irradiation or microwave heating
WO2013077447A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
US9318243B2 (en) 2011-11-24 2016-04-19 Showa Denko K.K. Conductive-pattern forming method and composition for forming conductive pattern by photo irradiation or microwave heating
KR101608295B1 (en) 2011-11-24 2016-04-04 쇼와 덴코 가부시키가이샤 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
JPWO2013077448A1 (en) * 2011-11-24 2015-04-27 昭和電工株式会社 Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
JP2014534605A (en) * 2011-11-25 2014-12-18 昭和電工株式会社 Conductive pattern forming method
WO2013076999A1 (en) * 2011-11-25 2013-05-30 Showa Denko K.K. Conductive pattern formation method
JP2013135070A (en) * 2011-12-26 2013-07-08 Jsr Corp Pattern forming method and metal pattern
CN104704912A (en) * 2012-09-25 2015-06-10 昭和电工株式会社 Microwave heating device
US20150223295A1 (en) * 2012-09-25 2015-08-06 Showa Denko K.K. Microwave heating apparatus
TWI649009B (en) * 2012-09-25 2019-01-21 昭和電工股份有限公司 Microwave heating device
KR20150038542A (en) * 2012-09-25 2015-04-08 쇼와 덴코 가부시키가이샤 Microwave heating device
WO2014050828A1 (en) * 2012-09-25 2014-04-03 昭和電工株式会社 Microwave heating device
US10375773B2 (en) 2012-09-25 2019-08-06 Showa Denko K.K. Microwave heating apparatus
JPWO2014050828A1 (en) * 2012-09-25 2016-08-22 昭和電工株式会社 Microwave heating device
CN104704912B (en) * 2012-09-25 2016-11-02 昭和电工株式会社 Microwave heating equipment
KR101677506B1 (en) 2012-09-25 2016-11-18 쇼와 덴코 가부시키가이샤 Microwave heating device
JP2015530760A (en) * 2012-10-05 2015-10-15 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation Electrical component and method and system for manufacturing electrical component
WO2014168172A1 (en) * 2013-04-12 2014-10-16 東京エレクトロン株式会社 Firing method and firing device
JPWO2014181372A1 (en) * 2013-05-08 2017-02-23 国立大学法人大阪大学 Joining method
JP6087425B2 (en) * 2013-05-08 2017-03-01 国立大学法人大阪大学 Joining method
WO2014181372A1 (en) * 2013-05-08 2014-11-13 国立大学法人大阪大学 Joining method
KR102206052B1 (en) * 2014-09-19 2021-01-21 포항공과대학교 산학협력단 Sintering method of nanoparticles layer
KR20160034092A (en) * 2014-09-19 2016-03-29 포항공과대학교 산학협력단 Sintering method of nanoparticles layer
JP2016086013A (en) * 2014-10-23 2016-05-19 矢崎総業株式会社 Film-like printed circuit board and method for manufacturing the same
CN107113977A (en) * 2014-10-23 2017-08-29 矢崎总业株式会社 Film-form Printed circuit board and manufacturing methods
WO2016063907A1 (en) * 2014-10-23 2016-04-28 矢崎総業株式会社 Film-like printed circuit board, and production method therefor
TWI665332B (en) * 2017-03-16 2019-07-11 日商旭化成股份有限公司 Dispersion,method for manufacturing structure with conductive pattern using the same,and structure with conductive pattern
US11270809B2 (en) 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
JP7477581B2 (en) 2017-03-16 2024-05-01 旭化成株式会社 Dispersion, method for producing conductive patterned structure using same, and conductive patterned structure
KR20190093628A (en) * 2017-03-16 2019-08-09 아사히 가세이 가부시키가이샤 Dispersion, A manufacturing method of a conductive patterned structure using the same, and a conductive patterned structure
CN110366761A (en) * 2017-03-16 2019-10-22 旭化成株式会社 Dispersion and using its structural body with conductive pattern manufacturing method and structural body with conductive pattern
JPWO2018169012A1 (en) * 2017-03-16 2020-01-16 旭化成株式会社 Dispersion, method for producing structure with conductive pattern using the same, and structure with conductive pattern
JP7316414B2 (en) 2017-03-16 2023-07-27 旭化成株式会社 Dispersion, method for producing structure with conductive pattern using the same, and structure with conductive pattern
JP2022119790A (en) * 2017-03-16 2022-08-17 旭化成株式会社 Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure
JP7104687B2 (en) 2017-03-16 2022-07-21 旭化成株式会社 Dispersion and method for manufacturing a structure with a conductive pattern using the dispersion and a structure with a conductive pattern
WO2018169012A1 (en) * 2017-03-16 2018-09-20 旭化成株式会社 Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure
KR102225197B1 (en) * 2017-03-16 2021-03-09 아사히 가세이 가부시키가이샤 Dispersion, and a method of manufacturing a structure with a conductive pattern using the same, and a structure with a conductive pattern
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US11109492B2 (en) 2017-07-18 2021-08-31 Asahi Kasei Kabushiki Kaisha Structure including electroconductive pattern regions, method for producing same, stack, method for producing same, and copper wiring
CN110933948A (en) * 2017-07-27 2020-03-27 旭化成株式会社 Copper oxide ink, method for producing conductive substrate using same, product comprising coating film, method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2022008655A (en) * 2017-07-27 2022-01-13 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using the same, product containing coating film and method for producing product using the same, method for producing product with conductive pattern, and product with conductive pattern
JPWO2019022230A1 (en) * 2017-07-27 2020-05-28 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using the same, product containing coating film and method for producing product using the same, method for producing product with conductive pattern, and product with conductive pattern
KR102456821B1 (en) 2017-07-27 2022-10-19 아사히 가세이 가부시키가이샤 Copper oxide ink and a method for manufacturing a conductive substrate using the same, a product including a coating film and a method for manufacturing a product using the same, a method for manufacturing a product having a conductive pattern, and a product having a conductive pattern
KR20220142551A (en) * 2017-07-27 2022-10-21 아사히 가세이 가부시키가이샤 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP7291078B2 (en) 2017-07-27 2023-06-14 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using the same, product containing coating film and method for producing product using the same, method for producing product with conductive pattern, and product with conductive pattern
KR102559500B1 (en) 2017-07-27 2023-07-24 아사히 가세이 가부시키가이샤 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
KR20200018583A (en) * 2017-07-27 2020-02-19 아사히 가세이 가부시키가이샤 Copper oxide ink and method for producing conductive substrate using same, product comprising coating film and method for producing product using same, method for producing product with conductive pattern, product having conductive pattern
US11760895B2 (en) 2017-07-27 2023-09-19 Asahi Kasei Kabushiki Kaisha Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP7403512B2 (en) 2017-07-27 2023-12-22 旭化成株式会社 Copper oxide ink and a method for manufacturing a conductive substrate using the same, a product including a coating film and a method for manufacturing a product using the same, a method for manufacturing a product with a conductive pattern, and a product with a conductive pattern
WO2019022230A1 (en) * 2017-07-27 2019-01-31 旭化成株式会社 Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2019029668A (en) * 2017-07-28 2019-02-21 旭化成株式会社 Method for manufacturing conducting pattern and plasma processing device

Also Published As

Publication number Publication date
JP2014130827A (en) 2014-07-10
KR20090121222A (en) 2009-11-25
JP6072709B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6072709B2 (en) Method for forming conductive pattern, apparatus for forming the same, and conductive substrate
US9420698B2 (en) Conductive substrate comprising a metal fine particle sintered film
EP2930722B1 (en) Process for manufacturing conductive film and printed wiring board
JP5332759B2 (en) Method for manufacturing conductive substrate and conductive substrate
JPWO2009054343A1 (en) Copper wiring pattern forming method and copper oxide particle dispersion used therefor
JP5849426B2 (en) Metal oxide fine particle dispersion, conductive substrate and method for producing the same
JP5446097B2 (en) Conductive substrate and method for manufacturing the same
JP2010219075A (en) Printed wiring board and method of manufacturing the same
JP6520133B2 (en) Laminate, method of manufacturing conductive substrate using the same, and method of manufacturing electronic device
JP6205954B2 (en) Heat treatment method for resin film, method for producing plating laminate using the same, and heat treatment apparatus therefor
JP2009088122A (en) Conductive substrate
JP6520143B2 (en) Laminate, method of manufacturing conductive substrate using the same, method of manufacturing electronic device, and transfer tool
JP5382444B2 (en) Method and apparatus for forming conductive pattern
JP2014222689A (en) Method and apparatus for manufacturing double-side metal laminated film, and manufacturing method of flexible double-side printed wiring board
JP5151622B2 (en) Method for manufacturing conductive substrate and conductive substrate
JP6699784B2 (en) Laminated body, method of manufacturing conductive substrate using the same, method of manufacturing electronic device, and transfer tool
JP6699783B2 (en) Laminated body, method of manufacturing conductive substrate using the same, and method of manufacturing electronic device
JP5338235B2 (en) Manufacturing method of conductive substrate and conductive substrate obtained by the method
JP2010277974A (en) Conductive thin film substrate, and method of manufacturing the same
JP5531394B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate obtained by the method
JP5354037B2 (en) Method for manufacturing conductive substrate
JP2010226513A (en) Antenna pattern and manufacturing method of the antenna pattern
JP6849131B2 (en) Laminates, methods for manufacturing conductive substrates using them, methods for manufacturing electronic devices, and transfer tools
JP2020142523A (en) Laminate, method for producing conductive base material using the same, and method for producing electronic device
EP2894030A1 (en) Laminated body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112